CY7C006AV-20AC [CYPRESS]

3.3V 4K/8K/16K/32K x 8/9 Dual-Port Static RAM; 3.3V 4K / 8K / 16K / 32K X 8/9双口静态RAM
CY7C006AV-20AC
型号: CY7C006AV-20AC
厂家: CYPRESS    CYPRESS
描述:

3.3V 4K/8K/16K/32K x 8/9 Dual-Port Static RAM
3.3V 4K / 8K / 16K / 32K X 8/9双口静态RAM

文件: 总20页 (文件大小:303K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
25/0251  
CY7C138AV/144AV/006AV  
CY7C139AV/145AV/016AV  
CY7C007AV/017AV  
3.3V 4K/8K/16K/32K x 8/9  
Dual-Port Static RAM  
• Fully asynchronous operation  
• Automatic power-down  
Features  
• True Dual-Ported memory cells which allow simulta-  
neous access of the same memory location  
• 4K/8K/16K/32K x 8 organizations  
(CY7C0138AV/144AV/006AV/007AV)  
• 4K/8K/16K/32K x 9 organizations  
(CY7C0139AV/145AV/016AV/017AV)  
• 0.35-micron CMOS for optimum speed/power  
• High-speed access: 20/25 ns  
• Low operating power  
• Expandabledatabusto16/18bitsormoreusingMaster/  
Slave chip select when using more than one device  
• On-chip arbitration logic  
• Semaphores included to permit software handshaking  
between ports  
• INT flag for port-to-port communication  
• Pin select for Master or Slave  
• Commercial and Industrial Temperature Ranges  
• Available in 68-pin PLCC (all) and 64-pin TQFP  
(7C006AV & 7C144AV)  
— Active: ICC = 115 mA (typical)  
— Standby: ISB3 = 10 µA (typical)  
• Pin-compatible and functionally equivalent to  
IDT70V05, 70V06, and 70V07.  
Logic Block Diagram  
R/WL  
CEL  
R/WR  
CER  
OEL  
OER  
[1]  
[1]  
8/9  
8/9  
I/O0LI/O7/8L  
I/O0RI/O7/8R  
I/O  
Control  
I/O  
Control  
[2]  
1215  
1215  
[2]  
Address  
Decode  
Address  
Decode  
True Dual-Ported  
A0LA1114L  
A0RA1114R  
RAM Array  
1215  
1215  
[2]  
[2]  
A0LA1114L  
A0RA1114R  
CEL  
CER  
OER  
Interrupt  
Semaphore  
Arbitration  
OEL  
R/WL  
SEML  
R/WR  
SEMR  
[3]  
BUSYL  
INTL  
[3] BUSYR  
INTR  
M/S  
Notes:  
1. I/O0I/O7 for x8 devices; I/O0I/O8 for x9 devices.  
2. A0A11 for 4K devices; A0A12 for 8K devices; A0A13 for 16K devices; A0A14 for 32K devices;  
3. BUSY is an output in master mode and an input in slave mode.  
For the most recent information, visit the Cypress web site at www.cypress.com  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
Document #: 38-06051 Rev. *A  
Revised December 27, 2002  
CY7C138AV/144AV/006AV  
CY7C139AV/145AV/016AV  
CY7C007AV/017AV  
cessor/multiprocessor designs, communications status buffer-  
ing, and dual-port video/graphics memory.  
Functional Description  
The CY7C138AV/144AV/006AV/007AV and CY7C139AV/  
145AV/ 016AV/017AV are low-power CMOS 4K, 8K, 16K, and  
32K x8/9 dual-port static RAMs. Various arbitration schemes  
are included on the devices to handle situations when multiple  
processors access the same piece of data. Two ports are pro-  
vided, permitting independent, asynchronous access for reads  
and writes to any location in memory. The devices can be uti-  
lized as standalone 8/9-bit dual-port static RAMs or multiple  
devices can be combined in order to function as a 16/18-bit or  
wider master/slave dual-port static RAM. An M/S pin is provid-  
ed for implementing 16/18-bit or wider memory applications  
without the need for separate master and slave devices or  
additional discrete logic. Application areas include interpro-  
Each port has independent control pins: Chip Enable (CE),  
Read or Write Enable (R/W), and Output Enable (OE). Two  
flags are provided on each port (BUSY and INT). BUSY sig-  
nals that the port is trying to access the same location currently  
being accessed by the other port. The Interrupt flag (INT) per-  
mits communication between ports or systems by means of a  
mail box. The semaphores are used to pass a flag, or token,  
from one port to the other to indicate that a shared resource is  
in use. The semaphore logic is comprised of eight shared  
latches. Only one side can control the latch (semaphore) at  
any time. Control of a semaphore indicates that a shared re-  
source is in use. An automatic power-down feature is con-  
trolled independently on each port by a Chip Select (CE) pin.  
Pin Configurations  
68-Pin PLCC  
Top View  
9
8
7
6
5 4 3 2 1 68 67 66 65 64 63 62 61  
I/O  
I/O  
I/O  
2L  
3L  
4L  
A
A
A
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
5L  
4L  
3L  
I/O  
5L  
A
2L  
A
1L  
A
0L  
GND  
I/O  
6L  
I/O  
7L  
INT  
L
V
CC  
BUSY  
L
CY7C138AV (4K x 8)  
CY7C139AV (4K x 9)  
GND  
GND  
M/S  
I/O  
I/O  
I/O  
V
0R  
1R  
2R  
BUSY  
R
INT  
21  
22  
23  
24  
25  
26  
R
A
0R  
CC  
I/O  
3R  
4R  
5R  
6R  
A
A
47  
46  
45  
44  
1R  
I/O  
I/O  
I/O  
2R  
A
3R  
A
4R  
2728 29 30 3132 33 34 35 36 37 38 39 40 41 42 43  
Notes:  
4. I/O8L on the CY7C139AV.  
5. I/O8R on the CY7C139AV.  
Document #: 38-06051 Rev. *A  
Page 2 of 20  
CY7C138AV/144AV/006AV  
CY7C139AV/145AV/016AV  
CY7C007AV/017AV  
Pin Configurations (continued)  
PLCC  
68-Pin  
Top View  
9
8
7
6
5 4 3 2 1 68 6766 65 64 63 62 61  
I/O  
2L  
3L  
4L  
A
A
A
A
A
A
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
5L  
4L  
3L  
I/O  
I/O  
I/O  
5L  
2L  
1L  
0L  
GND  
I/O  
6L  
I/O  
7L  
INT  
L
V
CC  
BUSY  
L
CY7C144AV (8K x 8)  
CY7C145AV (8K x 9)  
GND  
GND  
M/S  
I/O  
I/O  
0R  
1R  
2R  
BUSY  
R
I/O  
V
INT  
21  
22  
23  
24  
25  
26  
R
A
0R  
CC  
I/O  
3R  
4R  
5R  
A
A
47  
46  
45  
44  
1R  
I/O  
I/O  
I/O  
2R  
A
3R  
A
4R  
6R  
2728 29 30 3132 33 34 35 36 37 38 39 40 41 42 43  
64-Pin TQFP  
Top View  
I/O  
I/O  
A
48  
47  
2L  
1
2
4L  
A
A
3L  
3L  
4L  
I/O  
I/O  
2L  
46  
45  
3
4
A
A
1L  
5L  
GND  
44  
43  
42  
41  
5
6
7
8
9
0L  
I/O  
6L  
INT  
L
I/O  
7L  
BUSY  
L
GND  
M/S  
V
CC  
CY7C144AV (8K x 8)  
GND  
40  
39  
BUSY  
I/O  
0R  
10  
R
I/O  
1R  
38  
37  
36  
INT  
R
11  
12  
13  
I/O  
2R  
A
0R  
A
1R  
A
2R  
A
3R  
V
CC  
I/O  
3R  
35  
34  
14  
15  
I/O  
4R  
I/O  
5R  
33  
A
4R  
16  
Notes:  
6. I/O8L on the CY7C145AV.  
7. I/O8R on the CY7C145AV.  
Document #: 38-06051 Rev. *A  
Page 3 of 20  
CY7C138AV/144AV/006AV  
CY7C139AV/145AV/016AV  
CY7C007AV/017AV  
Pin Configurations (continued)  
68-Pin PLCC  
Top View  
60  
A
A
10  
11  
12  
13  
I/O  
I/O  
5L  
2L  
59  
58  
57  
3L  
4L  
4L  
I/O  
A
A
A
3L  
I/O  
5L  
2L  
56  
55  
GND  
1L  
14  
15  
A
0L  
I/O  
6L  
54  
53  
52  
INT  
I/O  
7L  
L
16  
17  
CY7C006AV (16K x 8)  
CY7C007AV (32K x 8)  
CY7C016AV (16K x 9)  
CY7C017AV (32K x 9)  
BUSY  
V
CC  
L
GND  
M/S  
GND  
18  
19  
20  
21  
I/O  
0R  
51  
50  
I/O  
1R  
BUSY  
R
I/O  
2R  
INT  
R
49  
48  
V
CC  
A
A
0R  
22  
23  
I/O  
3R  
1R  
47  
I/O  
4R  
24  
25  
26  
A
A
A
46  
45  
2R  
3R  
4R  
I/O  
5R  
I/O6  
R
44  
64-Pin TQFP  
Top View  
I/O  
I/O  
A
48  
47  
2L  
1
2
4L  
A
A
3L  
3L  
4L  
I/O  
I/O  
2L  
46  
45  
3
4
A
A
1L  
5L  
GND  
44  
43  
42  
41  
5
6
0L  
I/O  
6L  
INT  
L
I/O  
7L  
BUSY  
7
L
GND  
M/S  
V
CC  
8
CY7C006AV (16K x 8)  
GND  
40  
39  
9
BUSY  
I/O  
0R  
10  
11  
12  
R
I/O  
1R  
38  
37  
36  
INT  
R
I/O  
2R  
A
0R  
A
1R  
A
2R  
A
3R  
V
CC  
13  
I/O  
3R  
35  
34  
14  
15  
I/O  
4R  
I/O  
5R  
33  
A
4R  
16  
Notes:  
8. I/O for CY7C016AV and CY7C017AV only. NC for other parts.  
9. Address line for CY7C007AV and CY7C017AV only. NC for other parts.  
Document #: 38-06051 Rev. *A  
Page 4 of 20  
CY7C138AV/144AV/006AV  
CY7C139AV/145AV/016AV  
CY7C007AV/017AV  
Selection Guide  
CY7C138AV/144AV/006AV  
CY7C139AV/145AV/016AV  
CY7C007AV/017AV  
-20  
CY7C138AV/144AV/006AV  
CY7C139AV/145AV/016AV  
CY7C007AV/017AV  
-25  
Maximum Access Time (ns)  
20  
120  
35  
25  
115  
30  
Typical Operating Current (mA)  
Typical Standby Current for ISB1 (mA)  
(Both Ports TTL level)  
Typical Standby Current for ISB3 (µA)  
10 µA  
10 µA  
(Both Ports CMOS level)  
Pin Definitions  
Left Port  
CEL  
Right Port  
CER  
Description  
Chip Enable  
R/WL  
OEL  
R/WR  
Read/Write Enable  
Output Enable  
OER  
A0LA14L  
I/O0LI/O8L  
SEML  
INTL  
A0RA14R  
Address (A0A11 for 4K devices; A0A12 for 8K devices; A0A13 for 16K devices; A0A14 for 32K)  
I/O0RI/O8R Data Bus Input/Output (I/O0I/O7 for x8 devices and I/O0I/O8 for x9)  
SEMR  
INTR  
Semaphore Enable  
Interrupt Flag  
Busy Flag  
BUSYL  
M/S  
BUSYR  
Master or Slave Select  
Power  
VCC  
GND  
Ground  
NC  
No Connect  
Maximum Ratings [10]  
Output Current into Outputs (LOW)............................. 20 mA  
Static Discharge Voltage .......................................... >2001V  
Latch-Up Current.................................................... >200 mA  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Storage Temperature .................................65°C to +150°C  
Operating Range  
Ambient Temperature with  
Ambient  
Power Applied.............................................55°C to +125°C  
Range  
Commercial  
Industrial[12]  
Temperature  
0°C to +70°C  
40°C to +85°C  
VCC  
Supply Voltage to Ground Potential............... 0.5V to +4.6V  
3.3V ± 300 mV  
3.3V ± 300 mV  
DC Voltage Applied to  
Outputs in High Z State ...........................0.5V to VCC+0.5V  
DC Input Voltage[11] .................................0.5V to VCC+0.5V  
Notes:  
10. The Voltage on any input or I/O pin can not exceed the power pin during power-up.  
11. Pulse width < 20 ns.  
12. Industrial parts are available in CY7C007AV and CY7C017AV only.  
Document #: 38-06051 Rev. *A  
Page 5 of 20  
CY7C138AV/144AV/006AV  
CY7C139AV/145AV/016AV  
CY7C007AV/017AV  
Electrical Characteristics Over the Operating Range  
CY7C138AV/144AV/006AV  
CY7C139AV/145AV/016AV  
CY7C007AV/017AV  
-20  
-25  
Parameter  
VOH  
Description  
Output HIGH Voltage (VCC = 3.3V)  
Output LOW Voltage  
Min.  
Typ. Max. Min.  
Typ. Max.  
Unit  
V
2.4  
2.4  
VOL  
0.4  
2.0  
0.8  
0.4  
V
VIH  
Input HIGH Voltage  
2.0  
V
VIL  
Input LOW Voltage  
0.8  
10  
V
IOZ  
Output Leakage Current  
10  
10  
175  
195  
45  
10  
µA  
mA  
mA  
mA  
mA  
mA  
mA  
µA  
µA  
mA  
mA  
ICC  
Operating Current (VCC = Max.,  
IOUT = 0 mA) Outputs Disabled  
Coml.  
Ind.[12]  
Coml.  
Ind.[12]  
Coml.  
Ind.[12]  
Coml.  
Ind.[12]  
Coml.  
Ind.[12]  
120  
140  
35  
115  
30  
65  
10  
60  
165  
ISB1  
ISB2  
ISB3  
ISB4  
Standby Current (Both Ports TTL Level)  
40  
[13]  
CEL & CER VIH, f = fMAX  
45  
55  
Standby Current (One Port TTL Level)  
75  
110  
130  
500  
500  
95  
95  
[13]  
CEL | CER VIH, f = fMAX  
85  
Standby Current(BothPortsCMOS Level)  
10  
500  
80  
CEL & CER VCC 0.2V, f = 0[13]  
10  
Standby Current (One Port CMOS Level)  
70  
[13]  
CEL | CER VIH, f = fMAX  
80  
105  
Capacitance[14]  
Parameter  
Description  
Input Capacitance  
Output Capacitance  
Test Conditions  
TA = 25°C, f = 1 MHz,  
VCC = 3.3V  
Max.  
Unit  
CIN  
10  
10  
pF  
pF  
COUT  
AC Test Loads and Waveforms  
3.3V  
3.3V  
R
TH  
= 250Ω  
R1 = 590Ω  
OUTPUT  
30 pF  
OUTPUT  
R1 = 590Ω  
R2 = 435Ω  
OUTPUT  
C
=
C = 30 pF  
R2 = 435Ω  
C = 5 pF  
V
= 1.4V  
TH  
(a) Normal Load (Load 1)  
(c) Three-State Delay(Load 2)  
(b) ThéveninEquivalent (Load 1)  
(Used for tLZ, tHZ, tHZWE & tLZWE  
including scope and jig)  
ALL INPUTPULSES  
3.0V  
GND  
90%  
90%  
10%  
3 ns  
10%  
3 ns  
Notes:  
13. fMAX = 1/tRC. All inputs cycling at f = 1/tRC (except output enable). f = 0 means no address or control lines change. This applies only to inputs at CMOS level standby ISB3  
.
14. Tested initially and after any design or process changes that may affect these parameters.  
Document #: 38-06051 Rev. *A  
Page 6 of 20  
CY7C138AV/144AV/006AV  
CY7C139AV/145AV/016AV  
CY7C007AV/017AV  
Switching Characteristics Over the Operating Range[15]  
CY7C138AV/144AV/006AV  
CY7C139AV/145AV/016AV  
CY7C007AV/017AV  
-20  
-25  
Parameter  
Description  
Min.  
20  
Max.  
Min.  
25  
3
Max.  
Unit  
READ CYCLE  
tRC  
Read Cycle Time  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tAA  
Address to Data Valid  
Output Hold From Address Change  
CE LOW to Data Valid  
OE LOW to Data Valid  
OE Low to Low Z  
20  
25  
tOHA  
3
[16]  
tACE  
20  
12  
25  
13  
tDOE  
[17, 18, 19]  
tLZOE  
3
3
0
3
3
0
[17, 18, 19]  
tHZOE  
OE HIGH to High Z  
12  
12  
20  
15  
15  
25  
[17, 18, 19]  
tLZCE  
CE LOW to Low Z  
[17, 18, 19]  
tHZCE  
CE HIGH to High Z  
[19]  
tPU  
CE LOW to Power-Up  
CE HIGH to Power-Down  
[19]  
tPD  
WRITE CYCLE  
tWC  
Write Cycle Time  
20  
16  
16  
0
25  
20  
20  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
[16]  
tSCE  
CE LOW to Write End  
tAW  
tHA  
Address Valid to Write End  
Address Hold From Write End  
Address Set-Up to Write Start  
Write Pulse Width  
[16]  
tSA  
0
0
tPWE  
tSD  
16  
12  
0
20  
15  
0
Data Set-Up to Write End  
Data Hold From Write End  
R/W LOW to High Z  
tHD  
[18, 19]  
tHZWE  
12  
15  
[18, 19]  
tLZWE  
R/W HIGH to Low Z  
3
3
[20]  
tWDD  
Write Pulse to Data Delay  
Write Data Valid to Read Data Valid  
40  
30  
50  
35  
[20]  
tDDD  
BUSY TIMING[21]  
tBLA  
tBHA  
tBLC  
tBHC  
BUSY LOW from Address Match  
BUSY HIGH from Address Mismatch  
BUSY LOW from CE LOW  
20  
20  
20  
16  
20  
20  
20  
17  
ns  
ns  
ns  
ns  
ns  
BUSY HIGH from CE HIGH  
Port Set-Up for Priority  
tPS  
5
5
Note:  
15. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified  
IOI/IOH and 30-pF load capacitance.  
16. To access RAM, CE=L, SEM=H. To access semaphore, CE=H and SEM=L. Either condition must be valid for the entire tSCE time.  
17. At any given temperature and voltage condition for any given device, tHZCE is less than tLZCE and tHZOE is less than tLZOE  
.
18. Test conditions used are Load 3.  
19. This parameter is guaranteed but not tested. For information on port-to-port delay through RAM cells from writing port to reading port, refer to Read Timing  
with Busy waveform.  
20. For information on port-to-port delay through RAM cells from writing port to reading port, refer to Read Timing with Busy waveform.  
21. Test conditions used are Load 2.  
Document #: 38-06051 Rev. *A  
Page 7 of 20  
CY7C138AV/144AV/006AV  
CY7C139AV/145AV/016AV  
CY7C007AV/017AV  
Switching Characteristics Over the Operating Range[15] (continued)  
CY7C138AV/144AV/006AV  
CY7C139AV/145AV/016AV  
CY7C007AV/017AV  
-20  
-25  
Parameter  
Description  
R/W HIGH after BUSY (Slave)  
R/W HIGH after BUSY HIGH (Slave)  
BUSY HIGH to Data Valid  
Min.  
0
Max.  
Min.  
0
Max.  
Unit  
ns  
tWB  
tWH  
15  
17  
ns  
[22]  
tBDD  
20  
25  
ns  
INTERRUPT TIMING[21]  
tINS INT Set Time  
tINR INT Reset Time  
SEMAPHORE TIMING  
20  
20  
20  
20  
ns  
ns  
tSOP  
tSWRD  
tSPS  
SEM Flag Update Pulse (OE or SEM)  
10  
5
12  
5
ns  
ns  
ns  
ns  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
SEM Address Access Time  
5
5
tSAA  
20  
25  
Data Retention Mode  
Timing  
The CY7C0138AV/144AV/006AV/007AV and CY7C139AV/  
145AV/016AV/017AV are designed with battery backup in  
mind. Data retention voltage and supply current are guaran-  
teed over temperature. The following rules ensure data reten-  
tion:  
Data Retention Mode  
3.0V  
V
CC  
3.0V  
V
CC  
> 2.0V  
t
RC  
1. Chip enable (CE) must be held HIGH during data retention, with-  
in VCC to VCC 0.2V.  
V
CC  
to V 0.2V  
CC  
V
IH  
CE  
2. CE must be kept between VCC 0.2V and 70% of VCC  
during the power-up and power-down transitions.  
3. The RAM can begin operation >tRC after VCC reaches the  
minimum operating voltage (3.0 volts).  
Parameter  
ICCDR1  
Test Conditions[23]  
Max.  
Unit  
µA  
@ VCCDR = 2V  
50  
Notes:  
22. tBDD is a calculated parameter and is the greater of tWDDtPWE (actual) or tDDDtSD (actual).  
23. CE = VCC, Vin = GND to VCC, TA = 25°C. This parameter is guaranteed but not tested.  
Document #: 38-06051 Rev. *A  
Page 8 of 20  
CY7C138AV/144AV/006AV  
CY7C139AV/145AV/016AV  
CY7C007AV/017AV  
Switching Waveforms  
Read Cycle No. 1 (Either Port Address Access)[24, 25, 26]  
t
RC  
ADDRESS  
DATA OUT  
t
AA  
t
t
OHA  
OHA  
PREVIOUS DATAVALID  
DATA VALID  
Read Cycle No. 2 (Either Port CE/OE Access)[24, 27, 28]  
t
ACE  
CE  
OE  
t
HZCE  
t
DOE  
t
HZOE  
t
LZOE  
DATA VALID  
DATA OUT  
t
LZCE  
t
PU  
t
PD  
I
CC  
CURRENT  
I
SB  
Read Cycle No. 3 (Either Port)[24, 26, 27, 28]  
t
RC  
ADDRESS  
t
AA  
t
OHA  
t
LZCE  
LZCE  
t
ABE  
CE  
t
HZCE  
t
ACE  
t
DATA OUT  
Notes:  
24. R/W is HIGH for read cycles.  
25. Device is continuously selected CE = VIL. This waveform cannot be used for semaphore reads.  
26. OE = VIL  
.
27. Address valid prior to or coincident with CE transition LOW.  
28. To access RAM, CE = VIL, SEM = VIH. To access semaphore, CE = VIH, SEM = VIL.  
Document #: 38-06051 Rev. *A  
Page 9 of 20  
CY7C138AV/144AV/006AV  
CY7C139AV/145AV/016AV  
CY7C007AV/017AV  
Switching Waveforms (continued)  
Write Cycle No. 1: R/W Controlled Timing[29, 30, 31, 32]  
t
WC  
ADDRESS  
OE  
[33]  
t
HZOE  
t
AW  
[34]  
CE  
[32]  
PWE  
t
SA  
t
t
HA  
R/W  
DATAOUT  
DATA IN  
[33]  
HZWE  
t
t
LZWE  
[35]  
[35]  
t
t
HD  
SD  
Write Cycle No. 2: CE Controlled Timing[29, 30, 31, 36]  
t
WC  
ADDRESS  
t
AW  
[34]  
CE  
t
SA  
t
t
HA  
SCE  
R/W  
t
t
HD  
SD  
DATA IN  
Notes:  
29. R/W must be HIGH during all address transitions.  
30. A write occurs during the overlap (tSCE or tPWE) of a LOW CE or SEM.  
31. HA is measured from the earlier of CE or R/W or (SEM or R/W) going HIGH at the end of write cycle.  
t
32. If OE is LOW during a R/W controlled write cycle, the write pulse width must be the larger of tPWE or (tHZWE + tSD) to allow the I/O drivers to turn off and  
data to be placed on the bus for the required tSD. If OE is HIGH during an R/W controlled write cycle, this requirement does not apply and the write pulse  
can be as short as the specified tPWE  
33. Transition is measured ±500 mV from steady state with a 5-pF load (including scope and jig). This parameter is sampled and not 100% tested.  
34. To access RAM, CE = VIL, SEM = VIH  
.
.
35. During this period, the I/O pins are in the output state, and input signals must not be applied.  
36. If the CE or SEM LOW transition occurs simultaneously with or after the R/W LOW transition, the outputs remain in the high-impedance state.  
Document #: 38-06051 Rev. *A  
Page 10 of 20  
CY7C138AV/144AV/006AV  
CY7C139AV/145AV/016AV  
CY7C007AV/017AV  
Switching Waveforms (continued)  
Semaphore Read After Write Timing, Either Side[37]  
t
t
OHA  
SAA  
A
A  
0 2  
VALID ADRESS  
VALID ADRESS  
t
AW  
t
ACE  
t
HA  
SEM  
t
t
SOP  
SCE  
t
SD  
I/O  
0
DATA VALID  
DATA  
VALID  
IN  
OUT  
t
HD  
t
SA  
t
PWE  
R/W  
OE  
t
t
DOE  
SWRD  
t
SOP  
WRITE CYCLE  
READ CYCLE  
Timing Diagram of Semaphore Contention[38, 39, 40]  
A
A  
2L  
0L  
MATCH  
R/W  
L
SEM  
L
t
SPS  
A
A  
2R  
0R  
MATCH  
R/W  
R
SEM  
R
Notes:  
37. CE = HIGH for the duration of the above timing (both write and read cycle).  
38. I/O0R = I/O0L = LOW (request semaphore); CER = CEL = HIGH.  
39. Semaphores are reset (available to both ports) at cycle start.  
40. If tSPS is violated, the semaphore will definitely be obtained by one side or the other, but which side will get the semaphore is unpredictable.  
Document #: 38-06051 Rev. *A  
Page 11 of 20  
CY7C138AV/144AV/006AV  
CY7C139AV/145AV/016AV  
CY7C007AV/017AV  
Switching Waveforms (continued)  
Timing Diagram of Read with BUSY (M/S=HIGH)[41]  
t
WC  
ADDRESS  
R
MATCH  
t
PWE  
R/W  
R
t
t
HD  
SD  
DATA IN  
VALID  
R
t
PS  
ADDRESS  
L
MATCH  
t
BLA  
t
BHA  
BUSY  
L
t
BDD  
t
DDD  
DATA  
VALID  
OUTL  
t
WDD  
Write Timing with Busy Input (M/S=LOW)  
t
PWE  
R/W  
t
t
WH  
WB  
BUSY  
Note:  
41. CEL = CER = LOW.  
Document #: 38-06051 Rev. *A  
Page 12 of 20  
CY7C138AV/144AV/006AV  
CY7C139AV/145AV/016AV  
CY7C007AV/017AV  
Switching Waveforms (continued)  
Busy Timing Diagram No. 1 (CE Arbitration)[42]  
CELValid First:  
ADDRESS  
L,R  
ADDRESS MATCH  
CE  
L
t
PS  
CE  
R
t
t
BHC  
BLC  
BUSY  
R
CER ValidFirst:  
ADDRESS  
L,R  
ADDRESS MATCH  
CE  
R
t
PS  
CE  
L
L
t
t
BHC  
BLC  
BUSY  
Busy Timing Diagram No. 2 (Address Arbitration)[42]  
Left Address Valid First  
t
or t  
WC  
RC  
ADDRESS  
L
ADDRESS MATCH  
ADDRESS MISMATCH  
t
PS  
ADDRESS  
R
t
t
BHA  
BLA  
BUSY  
R
Right AddressValid First:  
t
or t  
WC  
RC  
ADDRESS  
R
ADDRESS MATCH  
ADDRESS MISMATCH  
t
PS  
ADDRESS  
L
t
t
BHA  
BLA  
BUSY  
L
Note:  
42. If tPS is violated, the busy signal will be asserted on one side or the other, but there is no guarantee to which side BUSY will be asserted.  
Document #: 38-06051 Rev. *A  
Page 13 of 20  
CY7C138AV/144AV/006AV  
CY7C139AV/145AV/016AV  
CY7C007AV/017AV  
Switching Waveforms (continued)  
Interrupt Timing Diagrams  
Left Side Sets INTR :  
t
WC  
ADDRESS  
WRITE FFF (See Functional Description)  
[43]  
L
t
HA  
CE  
L
R/W  
INT  
L
R
[44]  
t
INS  
Right Side Clears INTR:  
t
RC  
READ FFF  
(See Functional Description)  
ADDRESS  
R
CE  
R
[44]  
t
INR  
R/W  
R
OE  
R
INT  
R
:
Right SideSets INTL  
t
WC  
ADDRESS  
R
WRITE FFE (See Functional Description)  
[43]  
t
HA  
CE  
R
R
R/W  
INT  
L
[44]  
INS  
t
Left Side Clears INTL:  
t
RC  
READ FFE  
(See Functional Description)  
ADDRESS  
R
CE  
L
[44]  
t
INR  
R/W  
L
OE  
INT  
L
L
Notes:  
43. tHA depends on which enable pin (CEL or R/WL) is deasserted first.  
44. INS or tINR depends on which enable pin (CEL or R/WL) is asserted last.  
t
Document #: 38-06051 Rev. *A  
Page 14 of 20  
CY7C138AV/144AV/006AV  
CY7C139AV/145AV/016AV  
CY7C007AV/017AV  
neous memory location access (contention). If both portsCEs are  
asserted and an address match occurs within tPS of each other, the  
busy logic will determine which port has access. If tPS is violated, one  
port will definitely gain permission to the location, but it is not predict-  
able which port will get that permission. BUSY will be asserted tBLA  
after an address match or tBLC after CE is taken LOW.  
Architecture  
The CY7C138AV/144AV/006AV/007AV and CY7C139AV/  
145AV/016AV/017AV consist of an array of 4K, 8K, 16K, and 32K  
words of 8 and 9 bits each of dual-port RAM cells, I/O and address  
lines, and control signals (CE, OE, R/W). These control pins permit  
independent access for reads or writes to any location in memory. To  
handle simultaneous writes/reads to the same location, a BUSY pin  
is provided on each port. Two interrupt (INT) pins can be utilized for  
port-to-port communication. Two semaphore (SEM) control pins are  
used for allocating shared resources. With the M/S pin, the device  
can function as a master (BUSY pins are outputs) or as a slave  
(BUSY pins are inputs). The device also has an automatic power-  
down feature controlled by CE. Each port is provided with its own  
output enable control (OE), which allows data to be read from the  
device.  
Master/Slave  
An M/S pin is provided in order to expand the word width by config-  
uring the device as either a master or a slave. The BUSY output of  
the master is connected to the BUSY input of the slave. This will allow  
the device to interface to a master device with no external compo-  
nents. Writing to slave devices must be delayed until after the BUSY  
input has settled (tBLC or tBLA), otherwise, the slave chip may begin  
a write cycle during a contention situation. When tied HIGH, the M/S  
pin allows the device to be used as a master and, therefore, the  
BUSY line is an output. BUSY can then be used to send the arbitra-  
tion outcome to a slave.  
Functional Description  
Read and Write Operations  
Semaphore Operation  
When writing data must be set up for a duration of tSD before  
the rising edge of R/W in order to guarantee a valid write. A write  
operation is controlled by either the R/W pin (see Write Cycle No. 1  
waveform) or the CEpin (see Write Cycle No. 2 waveform). Required  
inputs for non-contention operations are summarized in Table 1.  
The CY7C138AV/144AV/006AV/007AV and CY7C139AV/  
145AV/016AV/017AV provide eight semaphore latches, which  
are separate from the dual-port memory locations. Sema-  
phores are used to reserve resources that are shared between  
the two ports. The state of the semaphore indicates that a  
resource is in use. For example, if the left port wants to request  
a given resource, it sets a latch by writing a zero to a sema-  
phore location. The left port then verifies its success in setting  
the latch by reading it. After writing to the semaphore, SEMor  
OE must be deasserted for tSOP before attempting to read the sema-  
phore. The semaphore value will be available tSWRD + tDOE after the  
rising edge of the semaphore write. If the left port was successful  
(reads a zero), it assumes control of the shared resource, otherwise  
(reads a one) it assumes the right port has control and continues to  
poll the semaphore. When the right side has relinquished control of  
the semaphore (by writing a one), the left side will succeed in gaining  
control of the semaphore. If the left side no longer requires the sema-  
phore, a one is written to cancel its request.  
If a location is being written to by one port and the opposite  
port attempts to read that location, a port-to-port flowthrough  
delay must occur before the data is read on the output; other-  
wise the data read is not deterministic. Data will be valid on the  
port tDDD after the data is presented on the other port.  
When reading the device, the user must assert both the OE  
and CE pins. Data will be available tACE after CE or tDOE after OE is  
asserted. If the user wishes to access a semaphore flag, then the  
SEM pin must be asserted instead of the CE pin and OE must also  
be asserted.  
Interrupts  
The upper two memory locations may be used for message  
passing. The highest memory location (FFF for the  
CY7C138AV/9AV, 1FFF for the CY7C144AV/5AV, 3FFF for the  
CY7C006AV/16AV, 7FFF for the CY7C007AV/17AV) is the  
mailbox for the right port and the second-highest memory lo-  
cation (FFE for the CY7C138AV/9AV, 1FFE for the  
CY7C144AV/5AV, 3FFE for the CY7C006AV/16AV, 7FFE for  
the CY7C007AV/17AV) is the mailbox for the left port. When  
one port writes to the other ports mailbox, an interrupt is gen-  
erated to the owner. The interrupt is reset when the owner  
reads the contents of the mailbox. The message is user de-  
fined.  
Semaphores are accessed by asserting SEM LOW. The SEM  
pin functions as a chip select for the semaphore latches (CE must  
remain HIGH during SEM LOW). A02 represents the semaphore  
address. OE and R/W are used in the same manner as a normal  
memory access. When writing or reading a semaphore, the other  
address pins have no effect.  
When writing to the semaphore, only I/O0 is used. If a zero is  
written to the left port of an available semaphore, a one will appear at  
the same semaphore address on the right port. That semaphore can  
now only be modified by the side showing zero (the left port in this  
case). If the left port now relinquishes control by writing a one to the  
semaphore, the semaphore will be set to one for both sides. Howev-  
er, if the right port had requested the semaphore (written a zero) while  
the left port had control, the right port would immediately own the  
semaphore as soonas the left port released it. Table 3 shows sample  
semaphore operations.  
Each port can read the other ports mailbox without resetting  
the interrupt. The active state of the busy signal (to a port)  
prevents the port from setting the interrupt to the winning port.  
Also, an active busy to a port prevents that port from reading  
its own mailbox and, thus, resetting the interrupt to it. If an  
application does not require message passing, do not connect  
the interrupt pin to the processors interrupt request input pin.  
The operation of the interrupts and their interaction with Busy  
are summarized in Table 2.  
When reading a semaphore, all data lines output the sema-  
phore value. The read value is latched in an output register to  
prevent the semaphore from changing state during a write  
from the other port. If both ports attempt to access the sema-  
phore within tSPS of each other, the semaphore will definitely be  
obtained by one side or the other, but there is no guarantee which  
side will control the semaphore.  
Busy  
The CY7C138AV/144AV/006AV/007AV and CY7C139AV/  
145AV/016AV/017AV provide on-chip arbitration to resolve simulta-  
Document #: 38-06051 Rev. *A  
Page 15 of 20  
CY7C138AV/144AV/006AV  
CY7C139AV/145AV/016AV  
CY7C007AV/017AV  
Table 1. Non-Contending Read/Write  
Inputs  
Outputs  
CE  
H
R/W  
X
OE  
X
SEM  
I/O0I/O8  
Operation  
H
L
High Z  
Deselected: Power-Down  
H
H
L
Data Out  
High Z  
Read Data in Semaphore Flag  
I/O Lines Disabled  
X
X
H
X
L
H
X
Data In  
Write into Semaphore Flag  
L
L
L
H
L
L
X
X
H
H
L
Data Out  
Data In  
Read  
Write  
X
Not Allowed  
Table 2. Interrupt Operation Example (assumes BUSYL=BUSYR=HIGH)  
Left Port  
Right Port  
OER A0R14R  
X
Function  
R/WL CEL  
OEL  
X
A0L14L  
FFF[45]  
X
INTL R/WR CER  
INTR  
L[46]  
H[47]  
X
Set Right INTR Flag  
Reset Right INTR Flag  
Set Left INTL Flag  
Reset Left INTL Flag  
L
X
X
X
L
X
X
L
X
X
X
L
X
L
L
X
X
L
X
X
FFF[45]  
1FFE[45]  
X
X
X
L[47]  
H[46]  
X
X
L
1FFE[45]  
X
X
Table 3. Semaphore Operation Example  
Function I/O0I/O8 Left I/O0I/O8 Right  
Status  
No action  
1
0
0
1
1
0
1
1
1
0
1
1
1
1
0
0
1
1
0
1
1
1
Semaphore free  
Left Port has semaphore token  
Left port writes 0 to semaphore  
Right port writes 0 to semaphore  
Left port writes 1 to semaphore  
Left port writes 0 to semaphore  
Right port writes 1 to semaphore  
Left port writes 1 to semaphore  
Right port writes 0 to semaphore  
Right port writes 1 to semaphore  
Left port writes 0 to semaphore  
No change. Right side has no write access to semaphore  
Right port obtains semaphore token  
No change. Left port has no write access to semaphore  
Left port obtains semaphore token  
Semaphore free  
Right port has semaphore token  
Semaphore free  
Left port has semaphore token  
Semaphore free  
Left port writes 1 to semaphore  
Note:  
45. See Functional Description for specific addresses by device part number.  
46. If BUSYL = L, then no change.  
47. If BUSYR = L, then no change.  
Document #: 38-06051 Rev. *A  
Page 16 of 20  
CY7C138AV/144AV/006AV  
CY7C139AV/145AV/016AV  
CY7C007AV/017AV  
Ordering Information  
Package Availability Guide  
Device  
Organization  
4K x 8  
68-Pin PLCC  
64-Pin TQFP  
CY7C138AV  
CY7C139AV  
CY7C144AV  
CY7C145AV  
CY7C006AV  
CY7C016AV  
CY7C007AV  
CY7C017AV  
X
X
X
X
X
X
X
X
4K x 9  
8K x 8  
X
X
8K x 9  
16K x 8  
16K x 9  
32K x 8  
32K x 9  
4K x8 3.3V Asynchronous Dual-Port SRAM  
Speed  
Package  
Name  
Operating  
(ns)  
Ordering Code  
CY7C138AV20JC  
CY7C138AV25JC  
Package Type  
68-Pin Plastic Leaded Chip Carrier  
68-Pin Plastic Leaded Chip Carrier  
Range  
Commercial  
Commercial  
20  
J81  
J81  
25  
4K x9 3.3V Asynchronous Dual-Port SRAM  
Speed  
Package  
Name  
Operating  
Range  
(ns)  
Ordering Code  
CY7C139AV20JC  
CY7C139AV25JC  
Package Type  
68-Pin Plastic Leaded Chip Carrier  
68-Pin Plastic Leaded Chip Carrier  
20  
J81  
J81  
Commercial  
Commercial  
25  
8K x8 3.3V Asynchronous Dual-Port SRAM  
Speed  
Package  
Name  
Operating  
Range  
(ns)  
Ordering Code  
CY7C144AV20AC  
CY7C144AV20JC  
CY7C144AV25AC  
CY7C144AV25JC  
Package Type  
64-Pin Thin Quad Flat Pack  
20  
A65  
J81  
A65  
J81  
Commercial  
68-Pin Plastic Leaded Chip Carrier  
64-Pin Thin Quad Flat Pack  
25  
Commercial  
68-Pin Plastic Leaded Chip Carrier  
8K x9 3.3V Asynchronous Dual-Port SRAM  
Speed  
Package  
Name  
Operating  
Range  
(ns)  
Ordering Code  
CY7C145AV20JC  
CY7C145AV25JC  
Package Type  
68-Pin Plastic Leaded Chip Carrier  
68-Pin Plastic Leaded Chip Carrier  
20  
J81  
J81  
Commercial  
Commercial  
25  
16K x8 3.3V Asynchronous Dual-Port SRAM  
Speed  
Package  
Name  
Operating  
Range  
(ns)  
Ordering Code  
CY7C006AV20AC  
CY7C006AV20JC  
CY7C006AV25AC  
CY7C006AV25JC  
Package Type  
64-Pin Thin Quad Flat Pack  
20  
A65  
J81  
A65  
J81  
Commercial  
68-Pin Plastic Leaded Chip Carrier  
64-Pin Thin Quad Flat Pack  
25  
Commercial  
68-Pin Plastic Leaded Chip Carrier  
Document #: 38-06051 Rev. *A  
Page 17 of 20  
CY7C138AV/144AV/006AV  
CY7C139AV/145AV/016AV  
CY7C007AV/017AV  
Ordering Information (continued)  
16K x9 3.3V Asynchronous Dual-Port SRAM  
Speed  
Package  
Name  
Operating  
(ns)  
Ordering Code  
CY7C016AV20JC  
CY7C016AV25JC  
Package Type  
Range  
Commercial  
Commercial  
20  
J81  
J81  
68-Pin Plastic Leaded Chip Carrier  
68-Pin Plastic Leaded Chip Carrier  
25  
32K x8 3.3V Asynchronous Dual-Port SRAM  
Speed  
Package  
Name  
Operating  
Range  
(ns)  
Ordering Code  
CY7C007AV20JC  
CY7C007AV20JI  
CY7C007AV25JC  
Package Type  
68-Pin Plastic Leaded Chip Carrier  
68-Pin Plastic Leaded Chip Carrier  
68-Pin Plastic Leaded Chip Carrier  
20  
J81  
J81  
J81  
Commercial  
Industrial  
25  
Commercial  
32K x9 3.3V Asynchronous Dual-Port SRAM  
Speed  
Package  
Name  
Operating  
Range  
(ns)  
Ordering Code  
CY7C017AV20JC  
CY7C017AV20JI  
CY7C017AV25JC  
Package Type  
68-Pin Plastic Leaded Chip Carrier  
68-Pin Plastic Leaded Chip Carrier  
68-Pin Plastic Leaded Chip Carrier  
20  
J81  
J81  
J81  
Commercial  
Industrial  
25  
Commercial  
Document #: 38-06051 Rev. *A  
Page 18 of 20  
CY7C138AV/144AV/006AV  
CY7C139AV/145AV/016AV  
CY7C007AV/017AV  
Package Diagrams  
64-Lead Thin Plastic Quad Flat Pack (14 x 14 x 1.4 mm) A65  
51-85046-B  
68-Lead Plastic Leaded Chip Carrier J81  
51-85005-A  
Document #: 38-06051 Rev. *A  
Page 19 of 20  
© Cypress Semiconductor Corporation, 2001. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  
CY7C138AV/144AV/006AV  
CY7C139AV/145AV/016AV  
CY7C007AV/017AV  
Document Title: CY7C138AV/144AV/006AV/CY7C139AV/145AV/016AV/CY7C007AV/017AV 3.3V 4K/8K/16K/32K x 8/9  
Dual Port SRAM  
Document Number: 38-06051  
Issue  
Date  
Orig. of  
Change  
REV.  
**  
ECN NO.  
110203  
Description of Change  
Change from Spec number: 38-00837 to 38-06051  
Power up requirements added to Maximum Ratings Information  
12/02/01  
12/27/02  
SZV  
RBI  
*A  
122301  
Document #: 38-06051 Rev. *A  
Page 20 of 20  

相关型号:

CY7C006AV-20JC

3.3V 4K/8K/16K/32K x 8/9 Dual-Port Static RAM
CYPRESS

CY7C006AV-25AC

3.3V 4K/8K/16K/32K x 8/9 Dual-Port Static RAM
CYPRESS

CY7C006AV-25AXC

3.3V 4K/8K/16K/32K x 8/9 Dual-Port Static RAM
CYPRESS

CY7C006AV-25JC

3.3V 4K/8K/16K/32K x 8/9 Dual-Port Static RAM
CYPRESS

CY7C006A_12

32 K/16 K × 8, 16 K × 9 Dual-Port Static RAM
CYPRESS

CY7C006A_13

16 K × 8 Dual-Port Static RAM
CYPRESS

CY7C006V-20JC

Dual-Port SRAM, 16KX8, 20ns, CMOS, PQCC68, PLASTIC, LCC-68
CYPRESS

CY7C007-12AC

Multi-Port SRAM, 32KX8, 12ns, CMOS, PQFP80, PLASTIC, TQFP-80
CYPRESS

CY7C007-15AC

Multi-Port SRAM, 32KX8, 15ns, CMOS, PQFP80, PLASTIC, TQFP-80
CYPRESS

CY7C007-15JC

Dual-Port SRAM, 32KX8, 15ns, CMOS, PQCC68, PLASTIC, LCC-68
CYPRESS

CY7C007-15JCT

Dual-Port SRAM, 32KX8, 15ns, CMOS, PQCC68, PLASTIC, LCC-68
CYPRESS

CY7C007-15JIR

Multi-Port SRAM, 32KX8, 15ns, CMOS, PQCC68, PLASTIC, LCC-68
CYPRESS