CY7B9910-7SI [CYPRESS]

Low Skew Clock Buffer; 低偏移的时钟缓冲器
CY7B9910-7SI
型号: CY7B9910-7SI
厂家: CYPRESS    CYPRESS
描述:

Low Skew Clock Buffer
低偏移的时钟缓冲器

时钟驱动器 逻辑集成电路 光电二极管 信息通信管理
文件: 总7页 (文件大小:165K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
1CY7B9920  
fax id: 3516  
CY7B9910  
CY7B9920  
Low Skew  
Clock Buffer  
Features  
Block Diagram Description  
• All outputs skew <100 ps typical (250 max.)  
• 15- to 80-MHz output operation  
• Zero input to output delay  
• 50% duty-cycle outputs  
Outputs drive 50terminated lines  
• Low operating current  
Phase Frequency Detector and Filter  
These two blocks accept inputs from the reference frequency  
(REF) input and the feedback (FB) input and generate correc-  
tion information to control the frequency of the Voltage-Con-  
trolled Oscillator (VCO). These blocks, along with the VCO,  
form a Phase-Locked Loop (PLL) that tracks the incoming  
REF signal.  
• 24-pin SOIC package  
VCO  
• Jitter: <200 ps peak to peak, <25 ps RMS  
• Compatible with Pentium™-based processors  
The VCO accepts analog control inputs from the PLL filter  
block and generates a frequency. The operational range of the  
VCO is determined by the FS control pin.  
Functional Description  
The CY7B9910 and CY7B9920 Low Skew Clock Buffers offer  
low-skew system clock distribution. These multiple-output  
clock drivers optimize the timing of high-performance comput-  
er systems. Eight individual drivers can each drive terminated  
transmission lines with impedances as low as 50while deliv-  
ering minimal and specified output skews and full-swing logic  
levels (CY7B9910 TTL or CY7B9920 CMOS).  
Test Mode  
The TEST input is a three-level input. In normal system oper-  
ation, this pin is connected to ground, allowing the  
CY7B9910/CY7B9920 to operate as explained above. (For  
testing purposes, any of the three-level inputs can have a re-  
movable jumper to ground, or be tied LOW through a 100Ω  
resistor. This will allow an external tester to change the state of  
these pins.)  
The completely integrated PLL allows “zero delay” capability.  
External divide capability, combined with the internal PLL, allows  
distribution of a low-frequency clock that can be multiplied by virtu-  
ally any factor at the clock destination. This facility minimizes clock  
distribution difficulty while allowing maximum system clock speed  
and flexibility.  
If the TEST input is forced to its MID or HIGH state, the device  
will operate with its internal phase-locked loop disconnected,  
and input levels supplied to REF will directly control all outputs.  
Relative output to output functions are the same as in normal  
mode.  
Logic Block Diagram  
Pin Configuration  
TEST  
Voltage  
Controlled  
Oscillator  
PHASE  
FREQ  
DET  
FB  
FILTER  
REF  
SOIC  
Top View  
FS  
REF  
1
24  
23  
22  
21  
GND  
TEST  
NC  
Q0  
Q1  
Q2  
Q3  
Q4  
Q5  
Q6  
Q7  
V
CCQ  
FS  
2
3
NC  
4
GND  
V
CCQ  
20  
19  
18  
17  
16  
15  
5
V
CCN  
6
V
CCN  
Q0  
7B9910  
7B9920  
Q7  
Q6  
GND  
Q5  
Q4  
7
Q1  
GND  
Q2  
8
9
10  
11  
12  
14  
13  
Q3  
V
CCN  
V
CCN  
FB  
7B9910–1  
7B9910–2  
Pentium is a trademark of Intel Corporation.  
Cypress Semiconductor Corporation  
3901 North First Street  
San Jose  
CA 95134  
408-943-2600  
November 1994 – Revised July 7, 1997  
CY7B9910  
CY7B9920  
Pin Definitions  
Signal  
Name  
I/O  
Description  
REF  
I
Reference frequency input. This input supplies thefrequencyand timing against which allfunctional  
variation is measured.  
FB  
I
I
PLL feedback input (typically connected to one of the eight outputs).  
Three-level frequency range select.  
Three-level select. See Test Mode section.  
Clock outputs.  
[9,10,11]  
FS  
TEST  
I
Q[0..7]  
O
V
V
PWR  
PWR  
PWR  
Power supply for output drivers.  
Power supply for internal circuitry.  
Ground.  
CCN  
CCQ  
GND  
Static Discharge Voltage ........................................... >2001V  
(per MIL-STD-883, Method 3015)  
Maximum Ratings  
(Above which the useful life may be impaired. For user guide-  
lines, not tested.)  
Latch-Up Current..................................................... >200 mA  
Operating Range  
Storage Temperature .................................–65°C to +150°C  
Ambient Temperature with  
Power Applied.............................................–55°C to +125°C  
Ambient  
Range  
Commercial  
Industrial  
Temperature  
0°C to +70°C  
–40°C to +85°C  
V
CC  
Supply Voltage to Ground Potential............... –0.5V to +7.0V  
DC Input Voltage............................................ –0.5V to +7.0V  
Output Current into Outputs (LOW) .............................64 mA  
5V ± 10%  
5V ± 10%  
Electrical Characteristics Over the Operating Range  
CY7B9910  
CY7B9920  
Min. Max.  
Parameter  
Description  
Test Conditions  
= Min., I = –16 mA  
Min.  
Max.  
Unit  
V
Output HIGH Voltage  
V
V
V
V
2.4  
V
OH  
CC  
CC  
CC  
CC  
OH  
= Min., I =–40 mA  
V
–0.75  
CC  
OH  
V
Output LOW Voltage  
= Min., I = 46 mA  
0.45  
V
OL  
OL  
= Min., I = 46 mA  
0.45  
OL  
V
V
V
V
V
Input HIGH Voltage  
(REF and FB inputs only)  
2.0  
V
V
1.35  
V
CC  
V
V
IH  
CC  
CC  
Input LOW Voltage  
(REF and FB inputs only)  
–0.5  
0.8  
–0.5  
1.35  
IL  
Three-Level Input HIGH  
Min. V Max.  
V
– 1V  
V
V
– 1V  
V
CC  
V
IHH  
IMM  
ILL  
CC  
CC  
CC  
CC  
[1]  
Voltage (Test, FS)  
Three-Level Input MID  
Min. V Max.  
V
/2 –  
V
/2 +  
V
/2 –  
V /2 +  
CC  
500 mV  
V
CC  
CC  
CC  
500 mV  
CC  
[1]  
Voltage (Test, FS)  
500 mV  
500 mV  
Three-Level Input LOW  
Min. V Max.  
0.0  
1.0  
0.0  
1.0  
V
CC  
[1]  
Voltage (Test, FS)  
I
I
I
I
I
Input HIGH Leakage Current  
(REF and FB inputs only)  
V
V
V
V
V
= Max., V = Max.  
10  
10  
µA  
µA  
µA  
µA  
µA  
IH  
CC  
CC  
IN  
Input LOW Leakage Current  
(REF and FB inputs only)  
= Max., V = 0.4V  
–500  
–50  
–500  
–50  
IL  
IN  
Input HIGH Current  
(Test, FS)  
= V  
CC  
200  
50  
200  
50  
IHH  
IMM  
ILL  
IN  
IN  
IN  
Input MID Current  
(Test, FS)  
= V /2  
CC  
Input LOW Current  
(Test, FS)  
= GND  
–200  
–200  
2
CY7B9910  
CY7B9920  
Electrical Characteristics Over the Operating Range (continued)  
CY7B9910  
Min. Max.  
CY7B9920  
Min. Max.  
Parameter  
Description  
Test Conditions  
= Max., V  
= GND (25°C only)  
Unit  
I
Output Short Circuit  
V
–250  
N/A  
mA  
OS  
CC  
OUT  
[2]  
Current  
I
I
Operating Current Used by  
Internal Circuitry  
V
=V  
CCQ  
=Max., Com’l  
Mil/Ind  
85  
90  
85  
90  
mA  
mA  
mW  
CCQ  
CCN  
All Input  
Selects Open  
Output Buffer Current per  
V
= V = Max.,  
CCQ  
= 0 mA  
14  
19  
CCN  
CCN  
[3]  
Output Pair  
I
OUT  
Input Selects Open, f  
MAX  
[5]  
PD  
Power Dissipation per  
V
= V  
= Max.,  
78  
104  
CCN  
CCQ  
[4]  
Output Pair  
I
= 0 mA  
OUT  
Input Selects Open, f  
MAX  
Capacitance[6]  
Parameter  
Description  
Test Conditions  
T = 25°C, f = 1 MHz, V = 5.0V  
Max.  
10  
Unit  
C
Input Capacitance  
pF  
IN  
A
CC  
Notes:  
1. These inputs are normally wired to VCC, GND, orleft unconnected (actual threshold voltages varyas a percentage of VCC). Internal termination resistors hold unconnected  
inputs at VCC/2. If these inputs are switched, the function and timing of the outputs may glitch and the PLL may require an additional tLOCK time before all data sheet limits are  
achieved.  
2. Tested one output at a time, output shorted for less than one second, less than 10% duty cycle. Room temperature only. CY7B9920 outputs are not short  
circuit protected.  
3. Total output current per output pair can be approximated by the following expression that includes device current plus load current:  
CY7B9910:  
I
CCN = [(4 + 0.11F) + [((835 – 3F)/Z) + (.0022FC)]N] x 1.1  
CY7B9920:  
CCN = [(3.5+ .17F) + [((1160 – 2.8F)/Z) + (.0025FC)]N] x 1.1  
I
Where  
F = frequency in MHz  
C = capacitive load in pF  
Z = line impedance in ohms  
N = number of loaded outputs; 0, 1, or 2  
FC = F < C  
4. Total power dissipation per output pair can be approximated by the following expression that includes device power dissipation plus power dissipation due to  
the load circuit:  
CY7B9910:  
PD = [(22 + 0.61F) + [((1550 – 2.7F)/Z) + (.0125FC)]N] x 1.1  
CY7B9920:  
PD = [(19.25+ 0.94F) + [((700 + 6F)/Z) + (.017FC)]N] x 1.1  
See note 3 for variable definition.  
5. CMOS output buffer current and power dissipation specified at 50-MHz reference frequency.  
6. Applies to REF and FB inputs only. Tested initially and after any design or process changes that may affect these parameters.  
AC Test Loads and Waveforms  
5V  
3.0V  
2.0V  
=1.5V  
0.8V  
0.0V  
2.0V  
=1.5V  
0.8V  
R1=130  
R2=91  
R1  
R2  
V
th  
V
th  
C = 50 pF (C = 30pF for 5 and – 2 devices)  
L
L
C
(Includes fixture and probe capacitance)  
L
1ns  
1ns  
7B9910–3  
7B9910–4  
TTL AC Test Load (CY7B9910)  
TTL Input Test Waveform (Cy7B9910)  
V
CC  
V
CC  
R1=100  
R2=100  
80%  
80%  
R1  
R2  
C = 50 pF (C =30 pF for 5 and – 2devices)  
V
th  
= V /2  
V
th  
= V /2  
L
L
CC  
CC  
(Includes fixture and probe capacitance)  
20%  
0.0V  
20%  
C
L
3ns  
3ns  
7B9910–5  
7B9910–6  
CMOS Input Test Waveform (CY7B9920)  
CMOS AC Test Load (CY7B9920)  
3
CY7B9910  
CY7B9920  
[7]  
Switching Characteristics Over the Operating Range  
[8]  
[8]  
CY7B9910–2  
CY7B9920–2  
Parameter  
Description  
FS = LOW  
Min.  
Typ.  
Max.  
Min.  
15  
Typ.  
Max.  
30  
Unit  
[9, 10]  
[9, 10]  
f
Operating Clock  
15  
25  
30  
50  
80  
MHz  
NOM  
Frequency in MHz  
FS = MID  
25  
50  
[9, 10, 11]  
[12]  
FS = HIGH  
40  
40  
80  
t
t
t
t
t
t
t
t
t
t
REF Pulse Width HIGH  
REF Pulse Width LOW  
5.0  
5.0  
5.0  
5.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ps  
ps  
RPWH  
RPWL  
SKEW  
DEV  
[13, 14]  
Zero Output Skew (All Outputs)  
0.1  
0.25  
0.75  
+0.25  
+0.65  
1.2  
0.1  
0.25  
0.75  
+0.25  
+0.65  
2.5  
[14, 15]  
Device-to-Device Skew  
Propagation Delay, REF Rise to FB Rise  
–0.25  
–0.65  
0.15  
0.0  
0.0  
1.0  
1.0  
–0.25  
–0.65  
0.5  
0.0  
0.0  
2.0  
2.0  
PD  
[16]  
Output Duty Cycle Variation  
ODCV  
ORISE  
OFALL  
LOCK  
JR  
[17, 18]  
Output Rise Time  
[17, 18]  
Output Fall Time  
0.15  
1.2  
0.5  
2.5  
[19]  
PLL Lock Time  
0.5  
0.5  
Cycle-to-Cycle Output Jitter Peak to Peak  
RMS  
200  
25  
200  
25  
CY7B9910–5  
Typ.  
CY7B9920–5  
Typ.  
Parameter  
Description  
Min.  
15  
Max.  
30  
Min.  
15  
Max.  
30  
Unit  
[9, 10]  
f
Operating Clock  
FS = LOW  
MHz  
NOM  
Frequency in MHz  
[9, 10]  
FS = MID  
25  
50  
25  
50  
[9, 10, 11]  
[12]  
FS = HIGH  
40  
80  
40  
80  
t
t
t
t
t
t
t
t
t
t
REF Pulse Width HIGH  
REF Pulse Width LOW  
5.0  
5.0  
5.0  
5.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ps  
ps  
RPWH  
RPWL  
SKEW  
DEV  
[13, 14]  
Zero Output Skew (All Outputs)  
0.25  
0.5  
1.0  
0.25  
0.5  
1.0  
[8, 15]  
Device-to-Device Skew  
Propagation Delay, REF Rise to FB Rise  
–0.5  
–1.0  
0.15  
0.15  
0.0  
0.0  
1.0  
1.0  
+0.5  
+1.0  
1.5  
–0.5  
–1.0  
0.5  
0.0  
0.0  
2.0  
2.0  
+0.5  
+1.0  
3.0  
PD  
[16]  
Output Duty Cycle Variation  
ODCV  
ORISE  
OFALL  
LOCK  
JR  
[17, 18]  
Output Rise Time  
[17, 18]  
Output Fall Time  
1.5  
0.5  
3.0  
[19]  
PLL Lock Time  
0.5  
0.5  
[8]  
Cycle-to-Cycle Output Jitter Peak to Peak  
200  
25  
200  
25  
[8]  
RMS  
Notes:  
7. Test measurement levels for the CY7B9910 are TTL levels (1.5V to 1.5V). Test measurement levels for the CY7B9920 are CMOS levels (VCC/2 to VCC/2). Test  
conditions assume signal transition times of 2ns or less and output loading as shown in the AC Test Loads and Waveforms unlessotherwise specified.  
8. Guaranteed by statistical correlation. Tested initially and after any design or process changes that may affect these parameters.  
9. For all three-state inputs, HIGH indicates a connection to VCC, LOW indicates a connection to GND, and MID indicates an open connection. Internal termination circuitry  
holds an unconnected input to VCC/2.  
10. The level to be set on FS is determined by the “normal” operating frequency (fNOM) of the VCO(see Logic Block Diagram). The frequency appearing at the REF and  
FB inputs will be fNOM when the output connected to FB is undivided. The frequency of the REF and FB inputs will be fNOM/X when the device is configured for a frequency  
multiplication by using external division in the feedback path of value X.  
11. When the FS pin is selected HIGH, the REF input must not transition upon power-up until VCC has reached 4.3V.  
12. Except as noted, all CY7B9920–2 and –5 timing parameters are specified to 80-MHz with a 30-pF load.  
13. tSKEW is defined as the time between the earliest and the latest output transition among all outputs when all are loaded with 50 pF and terminated with 50to  
2.06V (CY7B9910) or VCC/2 (CY7B9920).  
14.  
15. tDEV is the output-to-output skew between any two outputs on separate devices operating under the same conditions (VCC, ambient temperature, air flow, etc.).  
16. ODCV is the deviation of the output from a 50% duty cycle.  
tSKEW is defined as the skew between outputs.  
t
17. Specified with outputs loaded with 30 pF for the CY7B99X0–2 and –5 devices and 50 pF for the CY7B99X0–7 devices. Devices are terminated through 50Ω  
to 2.06V (CY7B9910) or VCC/2 (CY7B9920).  
18.  
tORISE and tOFALL measured between 0.8V and 2.0V for the CY7B9910 or 0.8VCC and 0.2VCC for the CY7B9920.  
19. tLOCK is the time that is required before synchronization is achieved. This specification is valid only after VCC is stable and within normal operating limits. This parameter is  
measured from the application of a new signal or frequency at REF or FB until tPD is within specified limits.  
4
CY7B9910  
CY7B9920  
[7]  
Switching Characteristics Over the Operating Range (continued)  
CY7B9910–7  
CY7B9920–7  
Parameter  
Description  
Min.  
Typ.  
Max.  
Min.  
Typ.  
Max.  
Unit  
[9, 10]  
f
Operating Clock  
FS = LOW  
15  
30  
15  
30  
MHz  
NOM  
Frequency in MHz  
[9, 10]  
FS = MID  
25  
40  
50  
80  
25  
40  
50  
[9, 10, 11]  
[12]  
FS = HIGH  
80  
t
t
t
t
t
t
t
t
t
t
t
REF Pulse Width HIGH  
5.0  
5.0  
5.0  
5.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ms  
ps  
ps  
RPWH  
RPWL  
SKEW  
DEV  
REF Pulse Width LOW  
[13, 14]  
Zero Output Skew (All Outputs)  
0.3  
0.75  
1.5  
0.3  
0.75  
1.5  
[8, 15]  
Device-to-Device Skew  
Propagation Delay, REF Rise to FB Rise  
–0.7  
–1.2  
0.15  
0.15  
0.0  
0.0  
1.5  
1.5  
+0.7  
+1.2  
2.5  
0.7  
1.2  
0.5  
0.0  
0.0  
3.0  
3.0  
+0.7  
+1.2  
5.0  
PD  
[16]  
Output Duty Cycle Variation  
ODCV  
ORISE  
OFALL  
LOCK  
JR  
[17, 18]  
Output Rise Time  
[17, 18]  
Output Fall Time  
2.5  
0.5  
5.0  
[19]  
PLL Lock Time  
0.5  
0.5  
[8]  
Cycle-to-Cycle Output Peak to Peak  
Jitter  
200  
25  
200  
25  
[8]  
RMS  
JR  
AC Timing Diagrams  
t
t
RPWL  
REF  
t
RPWH  
REF  
t
PD  
t
ODCV  
t
ODCV  
FB  
Q
t
JR  
t
SKEW  
t
SKEW  
OTHERQ  
7B9910–8  
5
CY7B9910  
CY7B9920  
REF  
LOAD  
Z
Z
0
FB  
SYSTEM  
CLOCK  
REF  
FS  
LOAD  
LOAD  
Q0  
Q1  
0
Q2  
Q3  
Q4  
Q5  
Z
0
Q6  
Q7  
LOAD  
TEST  
Z
0
7B9910–9  
Figure 1. Zero-Skew and/or Zero-Delay Clock Driver  
nated transmission lines (with impedances as low as 50  
ohms), allows efficient printed circuit board design.  
Operational Mode Descriptions  
Figure 1 shows the device configured as a zero-skew clock  
buffer. In this mode the 7B9910/9920 can be used as the basis  
for a low-skew clock distribution tree. The outputs are aligned  
and may each drive a terminated transmission line to an inde-  
pendent load. The FB input can be tied to any output and the  
operating frequency range is selected with the FS pin. The  
low-skew specification, coupled with the ability to drive termi-  
Figure 2 shows the CY7B9910/9920 connected in series to  
construct a zero-skew clock distribution tree between boards.  
Cascaded clock buffers will accumulate low-frequency jitter  
because of the non-ideal filtering characteristics of the PLL  
filter. It is not recommended that more than two clock buffers  
be connected in series.  
LOAD  
REF  
Z
0
FB  
LOAD  
LOAD  
SYSTEM  
CLOCK  
REF  
FS  
Z
0
Q0  
Q1  
Q2  
Q3  
Q4  
Q5  
Z
0
Q6  
Q7  
FB  
REF  
FS  
TEST  
LOAD  
Q0  
Q1  
Z
0
Q2  
Q3  
Q4  
Q5  
LOAD  
Q6  
Q7  
TEST  
7B9910–10  
Figure 2. Board-to-Board Clock Distribution  
6
CY7B9910  
CY7B9920  
Ordering Information  
Accuracy  
Package  
Name  
Operating  
(ps)  
Ordering Code  
Package Type  
24-Lead Small Outline IC  
24-Lead Small Outline IC  
24-Lead Small Outline IC  
24-Lead Small Outline IC  
24-Lead Small Outline IC  
24-Lead Small Outline IC  
24-Lead Small Outline IC  
24-Lead Small Outline IC  
24-Lead Small Outline IC  
24-Lead Small Outline IC  
Range  
250  
CY7B9910–2SC  
CY7B9920–2SC  
CY7B9910–5SC  
CY7B9910–5SI  
CY7B9920–5SC  
CY7B9920–5SI  
CY7B9910–7SC  
CY7B9910–7SI  
CY7B9920–7SC  
CY7B9920–7SI  
S13  
S13  
S13  
S13  
S13  
S13  
S13  
S13  
S13  
S13  
Commercial  
500  
750  
Commercial  
Industrial  
Commercial  
Industrial  
Commercial  
Industrial  
Commercial  
Industrial  
Document #: 38–00437–B  
Package Diagram  
24-Lead (300-Mil) Molded SOIC S13  
© Cypress Semiconductor Corporation, 1997. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use  
of anycircuitry other than circuitry embodied in a CypressSemiconductor product. Nor does it conveyor imply any license under patent or other rights. CypressSemiconductor does not authorize  
its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress  
Semiconductor products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress Semiconductor against all charges.  

相关型号:

CY7B9910-7SIT

PLL Based Clock Driver, 7B Series, 8 True Output(s), 0 Inverted Output(s), BICMOS, PDSO24, 0.300 INCH, MO-119, SOIC-24
CYPRESS

CY7B9910-7SI[20]

Low Skew Clock Buffer
CYPRESS

CY7B9910-7SXC

Low Skew Clock Buffer
CYPRESS

CY7B9910-7SXC

7B SERIES, PLL BASED CLOCK DRIVER, 8 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PDSO24, 0.300 INCH, LEAD FREE, MO-119, SOIC-24
ROCHESTER

CY7B9910-7SXCT

Low Skew Clock Buffer
CYPRESS

CY7B9910_07

Low Skew Clock Buffer
CYPRESS

CY7B9911

High-Speed Low-Voltage Programmable Skew Clock Buffer LV-PSCB
CYPRESS

CY7B9911-5JC

Programmable Skew Clock Buffer (PSCB)
CYPRESS

CY7B9911-5JCT

Programmable Skew Clock Buffer
CYPRESS

CY7B9911-7JC

Programmable Skew Clock Buffer (PSCB)
CYPRESS

CY7B9911-7JCT

PLL Based Clock Driver, 7B Series, 4 True Output(s), 0 Inverted Output(s), PQCC32, PLASTIC, LCC-32
CYPRESS

CY7B9911V

High-Speed Low-Voltage Programmable Skew Clock Buffer LV-PSCB
CYPRESS