FX623P [CMLMICRO]

Call Progress Tone Decoder; 呼叫进程音解码器
FX623P
型号: FX623P
厂家: CML MICROCIRCUITS    CML MICROCIRCUITS
描述:

Call Progress Tone Decoder
呼叫进程音解码器

解码器 电信集成电路 电信信令电路 电信电路 光电二极管
文件: 总6页 (文件大小:50K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CML Semiconductor Products  
PRODUCT INFORMATION  
Call Progress Tone Decoder  
FX623  
Publication D/623/3 July 1994  
Provisional Issue  
Features  
Measures Call Progress Tone  
Custom Tone Decoder  
[13 Call-Progress Frequencies  
Recognized]  
Frequencies  
[‘Busy’, ‘Dial’, ‘Fax-Tone’ etc.]  
Telephone, PABX, Fax and  
Dial-Up Modem Applications  
Operates to a 3.579545MHz  
Telephone System Clock  
Low-Power Requirement  
(600µA at 3.3 VoltsTYP)  
for Line-Powered Applications  
Operates Under Simple Logic  
or µProcessor System Control  
V
DD  
SIGNAL IN  
MEASUREMENT  
DIGITAL  
FILTER  
AND  
DECODE  
V
SS  
LIMITER  
CHIP SELECT  
XTAL/CLOCK  
DATA  
CHANGE  
Clocks  
XTAL/CLOCK  
OSCILLATOR  
Clocks  
FX623  
XTAL  
DATA  
OUTPUTS  
HOLD  
Q0  
CONTROL  
CIRCUITRY  
OUTPUT  
LATCHES  
Q1  
Q2  
Q3  
TIMER  
PURS  
IRQ  
Fig.1 Functional Block Diagram  
Brief Description  
This information can then be employed in telephone  
applications (simple or complex) to control telephone  
operations. The data output will require a suitable  
software format to analyze the frequency information  
from the FX623.  
The FX623 is a low-power decoding microcircuit that  
measures the frequency of telephone system call  
progress tones.  
With progress signals input from the telephone line,  
this single-chip product is programmed to recognize up  
to thirteen of the World's most commonly used  
call-progress frequencies, analyze signal quality and  
present the measured result as a 4-bit parallel data  
word at the tri-state Data Output.  
Requiring only a single 3.0[MIN] volt power supply, the  
FX623 may be line-powered and will operate under  
simple logic or system µProcessor control using the  
'Data-Change, 'Hold' and 'Chip-Select' functions.  
Using the parallel information from the FX623, the  
host system suitably configured, can recognize such  
call progress information as: ‘Dial’, ‘Busy’, ‘Number  
Unobtainable’, ‘Ringing’ and Fax/Modem system  
signals.  
The FX623, whose small size and low power  
consumption makes it ideal for remote applications,  
requires a 3.579545MHz telephone system clock or Xtal  
input, is available in a 16-pin plastic DIL package.  
Pin Number  
Function  
FX623P  
Q3:  
1
2
3
4
Data Outputs: A 4-bit parallel data word, forming a HEX character representing the  
decoded tone frequency. This word is output after a successful decode. Table 1 details the  
Hex character output codes for the relevant decoded tone frequencies. Upon power-up this  
output is set to ‘EH’, but no Data Change pulse generated. These are tri-state outputs.  
Q2:  
Q1:  
Q0:  
VDD: Positive supply rail. A minimum supply voltage of 3.0 volts is required. Levels and voltages within  
this decoder are dependent upon this supply.  
5
6
Signal In: The composite audio input. Signals to this pin should be a.c. coupled. The d.c. bias of the  
limiter section is set internally; this pin should not be loaded with any other circuitry.  
No internal connection. Leave open circuit.  
Xtal: The output of the on-chip clock oscillator inverter.  
No internal connection. Leave open circuit.  
7
8
9
Xtal/Clock: The input to the clock oscillator inverter. A 3.579545MHz Xtal or externally derived clock  
10  
should be connected here (see Figure 2).  
VSS: Negative supply rail (GND).  
11  
12  
Hold: An input to control the Output Latch condition; employed in combination with the Data Change  
output to facilitate, if required, Interrupt and/or handshake operations with a µProcessor.  
With Hold placed “Low”, with a tone input, the Data Change output will be held “High” at the next data  
change, and the current output code is locked in the Output Latches regardless of any changes to the  
input signal.  
The output code remains as held until this input is returned “High” (see Figure 3). Whilst this input is  
“High” the output data, Q0 - Q3, cycles normally with the input audio.  
This pin has an internal 1.0Mpullup resistor.  
PURS: Power-Up ReSet. To reset internal circuitry at power-up; a logic “1” level is required at this pin  
for a duration of at least 2.5mS after the Xtal/Clock input and full VDD levels are applied.  
The component configuration shown in Figure 2 is recommended; for slow-rising power supplies the  
time constant of components should be increased accordingly.  
13  
14  
IRQ: Interrupt Request. An output for µProcessor operation; normally “High” this output is latched  
“Low” when an internal data change occurs if the Chip Select input is “High”. This output is reset  
(“High”) the when Chip Select line is taken “Low”.  
To permit “wire-OR” connection with other peripherals, this output has a low-impedance when “Low”  
and a high-impedance when “High”.  
CS: Chip Select- A controlling function. When held “High” the Data Outputs Q0, Q1, Q2 and Q3 and  
the Data Change output are disabled.  
When taken “Low” the Data Outputs Q0, Q1, Q2 and Q3 and the Data Change output are enabled;  
the Interrupt Request (IRQ) is reset (“High”) when CS is taken “Low”. See Figures 3 and 4.  
15  
16  
Data Change: A positive-going pulse is generated at this output when the data changes (Tone or  
NOTONE). New tone-data is presented to the Q0, Q1, Q2 and Q3 Data Outputs if the Hold input is set  
“High”. This is a tri-state output.  
2
Application Information  
V
DD  
C
5
V
SS  
DATA CHANGE  
CS  
Q3  
Q2  
Q1  
Q0  
1
2
3
4
5
6
7
8
DATA OUTPUTS  
16  
15  
14  
13  
12  
11  
10  
9
C
1
A HEX Code  
Output representing  
the decoded tone  
frequency  
IRQ  
See Table 1  
P U R S  
HOLD  
FX623P  
V
DD  
V
COMPOSITE SIGNAL IN  
SIGNAL IN  
SS  
C
XTAL/CLOCK  
2
XTAL  
R
1
X
1
R
2
C
C
3
4
V
SS  
Fig.2 Recommended External Components  
Band Edges (Hz) Nominal  
Component  
Value  
Hex  
Output Code Lower  
Upper  
Edge  
Centre  
Freq.  
R1  
R2  
C1  
C2  
C3  
C4  
C5  
X1  
1.0M  
1.0MΩ  
Character Q3 Q2 Q1 Q0  
Edge  
0
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
364  
488  
386  
520  
375  
500  
47.0nF  
4.7nF  
2
3
520  
580  
580  
618  
550  
600  
33.0pF  
33.0pF  
4
5
386  
412  
412  
436  
400  
425  
1.0µF  
6
436  
463  
450  
3.579545MHz  
7
8
463  
900  
487  
475  
950  
Tolerances R = ±10%  
C = ±20%  
1008  
1325  
1455  
1855  
2140  
9
1273  
1350  
1750  
2062  
1300  
1400  
1800  
2100  
A
B
C
D
E
F
frequency not guaranteed  
frequency not guaranteed  
NOTONE  
Table 1 Tone Decode Frequencies  
Timing Information  
With CS Low - Figure 3.  
After initial power-up and the Hold input inactive  
(High), as frequencies are input, with the Data Change  
output as an active (High) indicator, the data is  
presented at the Data Outputs.  
With the Hold input held High - Figure 4.  
As frequencies are input a correct decode will  
produce an active (Low) interrupt level.  
This interrupt (IRQ) is serviced and reset by an  
active (Low) CS input.  
If/when the Hold input is placed active (Low), the  
data at the Data Outputs is frozen and the Data  
Change output held High at its next active excursion -  
until the Hold input is returned High.  
Note the ‘valid data’ period at the Data Outputs.  
3
Application Information  
Decoder Timing  
VDD  
tPURS  
PURS  
NOTONE  
SIGNAL IN NOTONE  
Tone 1  
Tone 2  
Tone 3  
Tone ’N’  
tNT  
tDE  
tRESP  
OUTPUTS  
Q0 to Q3  
’N’  
t DC  
t PUL  
DATA CHANGE  
HOLD  
t HOLD  
t NORM  
Fig.3 Timing with the Chip Select Input Held “Low”; CS and IRQ are not used  
VDD  
tPURS  
PURS  
SIGNAL IN  
NOTONE  
Tone 1  
OUTPUTS  
Q0 - Q3  
E
F
1
(INTERNAL)  
DATA CHANGE  
t RIRQ  
IRQ  
t IR  
CS  
tHIZ  
tACS  
DATA OUT Q0 - Q3  
TRI-STATE  
TRI-STATE  
VALID DATA  
(READ DATA)  
VALID DATA  
(READ DATA)  
Fig.4 Timing with the HOLD Input Held “High”; CS and IRQ are used  
4
Specification  
Absolute Maximum Ratings  
Exceeding the maximum rating can result in device damage. Operation of the device outside the operating limits  
is not implied.  
Supply voltage  
-0.3 to 7.0V  
Input voltage at any pin (ref VSS = 0V)  
-0.3 to (VDD + 0.3V)  
Sink/source current (supply pins)  
(other pins)  
+/- 30mA  
+/- 20mA  
Total device dissipation @ TAMB 25°C  
Derating  
800mW Max.  
10mW/°C  
Storage temperature range:  
FX623P  
-40°C to +85°C (plastic)  
Operating Limits ......  
Supply Voltage (VDD)  
Min.  
3.0  
Max.  
5.5  
Unit  
V
at 25°C  
Operating Temperature ......  
-40  
+85  
°C  
All device characteristics are measured under the following conditions unless otherwise specified:  
VDD = 3.3V, TOP = -40 to +85 °C. Audio Level 0dB ref: = 775mVrms. Xtal/Clock Frequency = 3.579545MHz  
Characteristics  
See Note  
Min.  
Typ.  
Max.  
Unit  
Static Values  
Supply Current  
Input Logic “1”  
Input Logic “0”  
Output Logic “1”  
-
0.7  
-
0.8  
-
0.6  
1.0  
-
0.3  
mA  
-
-
-
-
%VDD  
%VDD  
%VDD  
%VDD  
-
Output Logic “0”  
0.2  
Impedance  
CS and PURS Input  
Hold Input  
Signal Input  
IRQ Output (logic “1”)  
IRQ Output (logic “0”)  
Q0 - Q3 & Data-Change Outputs (logic “1”)  
Q0 - Q3 & Data-Change Outputs (logic “0”)  
Q0 - Q3 & Data-Change Outputs (high Z)  
Dynamic Values  
10.0  
0.5  
0.1  
-
-
-
-
-
-
-
-
-
-
MΩ  
MΩ  
MΩ  
kΩ  
kΩ  
MΩ  
1
30.0  
175  
0.7  
175  
-
100  
500  
2.0  
500  
-
1.0  
Signal Input Range  
Decode Bandedge Tolerance  
Xtal Inverter  
2, 5  
3
35.0  
-1.0  
1,166  
1.0  
mVrms  
%
-
Voltage Gain  
Input Impedance  
Output Impedance  
20.0  
10.0  
-
-
-
-
-
-
V/V  
MΩ  
kΩ  
160  
Decoder Timing - Figures 3 and 4  
Power Up Reset Time  
Data 'E' Time  
tPURS  
tDE  
tRESP  
tNT  
2.5  
31.0  
-
-
-
-
-
-
ms  
ms  
ms  
ms  
ms  
ms  
µs  
µs  
ms  
ns  
NOTONE to Tone Response Time  
Tone to NOTONE Response Time  
Data to Data-Change Pulse Time  
Data-Change Pulse Width  
Hold to Data-Change Rise Time  
HOLD to Data-Change Fall Time  
IRQ Tone Response Time  
IRQ Reset Time  
4
4
27.0  
-
-
1.25  
-
-
50.0  
60.0  
1.15  
-
tDC  
0.625  
tPUL  
tHOLD  
tNORM  
tRIRQ  
tIR  
-
63.0  
-
-
-
-
-
-
150  
52.0  
250  
250  
100  
29.0  
-
-
-
Data Access Time  
CS High to Output Tri-State Time tHIZ  
tACS  
ns  
ns  
Notes  
1. This pin has an on-chip 1.0Mpullup resistor.  
2. An a.c. coupled sine or squarewave.  
3. See Table 1, Tone Decode Frequencies.  
4. Delay between the change of input (Tone/NOTONE) and the change at the Q0 - Q3 outputs.  
5. The signal input maximum value is determined by the formula VDD/2.83.  
5
Package Outlines  
The FX623 is available in the package styles outlined  
below. Mechanical package diagrams and specifications  
are detailed in Section 10 of this document.  
Handling Precautions  
The FX623 is a CMOS LSI circuit which includes input  
protection. However precautions should be taken to  
prevent static discharges which may cause damage.  
Pin 1 identification marking is shown on the relevant  
diagram and pins on all package styles number  
anti-clockwise when viewed from the top.  
FX623P  
16-pin plastic DIL  
(P3)  
NOT TO SCALE  
Max. Body Length 20.57mm  
Max. Body Width  
6.60mm  
Ordering Information  
FX623P  
16-pin plastic DIL  
(P3)  
CML does not assume any responsibility for the use of any circuitry described. No circuit patent licences are implied  
and CML reserves the right at any time without notice to change the said circuitry.  

相关型号:

FX629

Delta Modulation Codec
CMLMICRO

FX629J

Delta Modulation Codec
CMLMICRO

FX629M1

Telecommunication IC
ETC

FX631

Low-Voltage SPM Detector
CMLMICRO

FX631D5

Low-Voltage SPM Detector
CMLMICRO

FX631DW

Low-Voltage SPM Detector
CMLMICRO

FX631P

Low-Voltage SPM Detector
CMLMICRO

FX633

Call Progress Tone Detector
CMLMICRO

FX633D4

Call Progress Tone Detector
CMLMICRO

FX633P1

Call Progress Tone Detector
CMLMICRO

FX641

Dual Subscriber Private Metering (SPM) Detector
CMLMICRO

FX641D2

Dual Subscriber Private Metering (SPM) Detector
CMLMICRO