CS5560-ISZ [CIRRUS]

【2.5 V / 5 V, 50 kSps, 24-bit, High-throughput ツヒ ADC; 【 2.5 V / 5 V , 50 kSPS时, 24位,高通量ツヒADC
CS5560-ISZ
型号: CS5560-ISZ
厂家: CIRRUS LOGIC    CIRRUS LOGIC
描述:

【2.5 V / 5 V, 50 kSps, 24-bit, High-throughput ツヒ ADC
【 2.5 V / 5 V , 50 kSPS时, 24位,高通量ツヒADC

转换器 模数转换器 光电二极管
文件: 总32页 (文件大小:559K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
7/31/07  
CS5560  
±2.5 V / 5 V, 50 kSps, 24-bit, High-throughput ∆Σ ADC  
Features & Description  
General Description  
The CS5560 is a single-channel, 24-bit analog-to-digital  
converter capable of 50 kSps conversion rate. The input  
accepts a fully differential analog input signal. On-chip  
buffers provide high input impedance for both the AIN in-  
puts and the VREF+ input. This significantly reduces the  
drive requirements of signal sources and reduces errors  
due to source impedances. The CS5560 is a delta-sigma  
converter capable of switching multiple input channels at  
a high rate with no loss in throughput. The ADC uses a  
low-latency digital filter architecture. The filter is designed  
for fast settling and settles to full accuracy in one conver-  
sion. The converter's 24-bit data output is in serial form,  
with the serial port acting as either a master or a slave. The  
converter is designed to support bipolar, ground-refer-  
enced signals when operated from ±2.5V analog supplies.  
‰ Differential Analog Input  
‰ On-chip Buffers for High Input Impedance  
‰ Conversion Time = 20 µS  
‰ Settles in One Conversion  
‰ Linearity Error = 0.0007%  
‰ Signal-to-Noise = 110 dB  
‰ 24 Bits, No Missing Codes  
‰ Self-calibration:  
- Maintains accuracy over time & temperature.  
‰ Simple three/four-wire serial interface  
‰ Power Supply Configurations:  
The CS5560 uses self-calibration to achieve low offset and  
gain errors. The converter achieves a S/N of 110 dB. Lin-  
earity is ±0.0007% of full scale.  
- Analog: +5V/GND; IO: +1.8V to +3.3V  
- Analog: ±2.5V; IO: +1.8V to +3.3V  
‰ Power Consumption:  
The converter can operate from an analog supply of 0-5V  
or from ±2.5V. The digital interface supports standard log-  
ic operating from 1.8, 2.5, or 3.3 V.  
- ADC Input Buffers On: 85 mW  
- ADC Input Buffers Off: 70 mW  
ORDERING INFORMATION:  
See Ordering Information on page 32.  
V1+  
V2+  
VL  
CS5560  
VREF+  
VREF-  
SMODE  
CS  
SERIAL  
INTERFACE  
DIGITAL  
FILTER  
LOGIC  
SCLK  
SDI  
ADC  
AIN+  
AI N-  
SDO  
RDY  
SLEEP  
BUFEN  
RST  
CALIBRATION  
MICROCONTROLLER  
CONV  
CAL  
OSC/CLOCK  
GENERATOR  
BP/UP  
MCLK  
V2-  
VLR  
V1-  
DCR  
This document contains information for a new product.  
Cirrus Logic reserves the right to modify this product without notice.  
Advance Product Information  
AUG ‘07  
DS713A5  
Copyright © Cirrus Logic, Inc. 2007  
http://www.cirrus.com  
(All Rights Reserved)  
7/31/07  
CS5560  
TABLE OF CONTENTS  
1. CHARACTERISTICS AND SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
ANALOG CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
SWITCHING CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
DIGITAL CHARACTERISTICS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
DIGITAL FILTER CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
GUARANTEED LOGIC LEVELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
RECOMMENDED OPERATING CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
2. OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3. THEORY OF OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3.1 Reset and Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3.1.1 Offset Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
3.1.2 Gain Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
3.2 Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
3.3 Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
3.4 Voltage Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
3.5 Analog Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
3.6 Output Coding Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
3.7 Typical Connection Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.8 AIN & VREF Sampling Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
3.9 Converter Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
3.10 Digital Filter Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
3.11 Serial Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
3.11.1 SSC Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
3.11.2 SEC Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
3.12 Power Supplies & Grounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
3.13 Using the CS5560 in Multiplexing Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
3.14 Synchronizing Multiple Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
4. PIN DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
5. PACKAGE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
6. ORDERING INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
7. ENVIRONMENTAL, MANUFACTURING, & HANDLING INFORMATION . . . . . . . . . . . . . . 32  
REVISION HISTORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
2
DS713A5  
7/31/07  
CS5560  
LIST OF FIGURES  
Figure 1. SSC Mode - Read Timing, CS remaining low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 2. SSC Mode - Read Timing, CS falling after RDY falls . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 3. SEC Mode - Read Timing (Not to Scale). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Figure 4. SEC Mode - Calibration Register Read Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 5. SEC Mode - Write Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Figure 6. Voltage Reference Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 7. CS5560 Configured Using ±2.5V Analog Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 8. CS5560 Configured Using a Single 5V Analog Supply . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 9. CS5560 DNL Plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 10. CS5560 Spectral Response (DC to fs/2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 11. CS5560 Spectral Response (DC to 5 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 12. CS5560 Spectral Response (DC to 4fs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 13. Simple Multiplexing Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 14. More Complex Multiplexing Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
LIST OF TABLES  
Table 1. Offset & Gain Calibration Register Read/Write Commands . . . . . . . . . . . . . . . . . . . . . . 16  
Table 2. Output Coding, Two’s Complement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Table 3. Output Coding, Offset Binary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
DS713A5  
3
7/31/07  
CS5560  
1. CHARACTERISTICS AND SPECIFICATIONS  
Min / Max characteristics and specifications are guaranteed over the specified operating conditions.  
Typical characteristics and specifications are measured at nominal supply voltages and T = 25°C.  
A
VLR = 0 V. All voltages with respect to 0 V.  
ANALOG CHARACTERISTICS T = -40 to +85 °C; V1+ = V2+ = +2.5 V, ±5%; V1- = V2- = -2.5 V,  
A
±5%; VL -VLR = 3.3 V, ±5%; VREF = (VREF+) - (VREF-) = 4.096V; MCLK = 16 MHz; SMODE = VL.  
BUFEN = V1+ unless otherwise stated. Connected per Figure 7. Bipolar mode unless otherwise stated.  
Parameter  
Min  
Typ  
Max  
Unit  
Accuracy  
Linearity Error  
(Note 1)  
-
-
0.0003  
±0.1  
-
-
%FS  
Differential Linearity Error  
(Note 2)  
LSB  
24  
Positive Full-scale Error  
After Reset  
After Calibration (Note 1)  
-
-
1.0  
0.01  
-
-
-
%FS  
%FS  
Negative Full-scale Error  
After Reset  
After Calibration (Note 1)  
-
-
1.0  
0.01  
Full-scale Drift  
Unipolar Offset  
(Note 3)  
(Note 3)  
(Note 3)  
-
LSB  
LSB  
LSB  
LSB  
LSB  
24  
24  
24  
24  
24  
After Reset  
After Calibration (Note 1)  
-
-
±2000  
±400  
-
-
Unipolar Offset Drift  
Bipolar Offset  
-
-
After Reset  
After Calibration (Note 1)  
-
-
±1000  
±200  
-
-
Bipolar Offset Drift  
-
-
-
-
Noise  
9.5  
µVrms  
Dynamic Performance  
Peak Harmonic or Spurious Noise  
Total Harmonic Distortion  
Signal-to-Noise  
1 kHz, -0.5 dB Input  
1 kHz, -0.5 dB Input  
-
-
-
-110  
-110  
110  
-
-
-
dB  
dB  
dB  
S/(N + D) Ratio  
-0.5 dB Input, 1 kHz  
-60 dB Input, 1 kHz  
-
-
107  
48  
-
-
dB  
dB  
-3 dB Input Bandwidth  
(Note 4)  
-
42  
-
kHz  
1. Applies after calibration at any temperature within -40 °C to +85 °C.  
2. No missing codes is guaranteed at 24 bits resolution over the specified temperature range.  
3. Total drift over specified temperature range after calibration at power-up, at 25º C.  
4. Scales with MCLK.  
4
DS713A5  
7/31/07  
CS5560  
ANALOG CHARACTERISTICS (CONTINUED) T = -40 to +85 °C; V1+ = V2+ = +2.5 V, ±5%; V1- =  
A
V2- = -2.5 V, ±5%; VL -VLR = 3.3 V, ±5%; VREF = (VREF+) - (VREF-) = 4.096V; MCLK = 16 MHz; SMODE = VL.;  
BUFEN = V1+ unless otherwise stated. Connected per Figure 7.  
Parameter  
Min  
Typ  
Max  
Unit  
Analog Input  
Analog Input Range  
Unipolar  
Bipolar  
0 to +VREF  
±VREF  
V
V
Input Capacitance  
-
10  
-
pF  
CVF Current (Note 5)  
AIN Buffer On (BUFEN = V+)  
AIN Buffer Off (BUFEN = V-)  
ACOM  
-
-
-
600  
130  
130  
-
-
-
nA  
µA  
µA  
Voltage Reference Input  
Voltage Reference Input Range  
(VREF+) – (VREF-)  
4.2  
-
(Note 6)  
2.4  
-
4.096  
10  
V
Input Capacitance  
CVF Current  
pF  
VREF+ Buffer On (BUFEN = V+)  
VREF+ Buffer Off (BUFEN = V-)  
VREF-  
-
-
-
3
1
1
-
-
-
µA  
mA  
mA  
Power Supplies  
DC Power Supply Currents  
I
I
I
-
-
-
-
-
-
18  
1.8  
0.5  
mA  
mA  
mA  
V1  
V2  
VL  
Power Consumption  
Normal Operation Buffers On  
Buffers Off  
-
-
85  
70  
105  
90  
mW  
mW  
Power Supply Rejection  
(Note 7) V1+ , V2+ Supplies  
V1-, V2- Supplies  
90  
90  
110  
110  
-
-
dB  
dB  
5. Measured using an input signal of 1 V DC.  
6. For optimum performance, VREF+ should always be less than (V+) - 0.2 volts to prevent saturation of the VREF+ input buffer.  
7. Tested with 100 mVP-P on any supply up to 1 kHz. V1+ and V2+ supplies at the same voltage potential, V1- and V2- supplies at  
the same voltage potential.  
DS713A5  
5
7/31/07  
CS5560  
SWITCHING CHARACTERISTICS  
T = -40 to +85 °C; V1+ = V2+ = +2.5 V, ±5%; V1- = V2- = -2.5 V, ±5%;  
A
VL - VLR = 3.3 V, ±5%, 2.5 V, ±5%, or 1.8 V, ±5%  
Input levels: Logic 0 = 0V; Logic 1 = VD+; CL = 15 pF.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Master Clock Frequency  
Internal Oscillator  
External Clock  
XIN  
12  
0.5  
14  
16  
16  
16.2  
MHz  
MHz  
f
clk  
Master Clock Duty Cycle  
Reset  
40  
-
60  
%
RST Low Time  
t
1
-
-
µs  
res  
RST rising to RDY falling  
Internal Oscillator  
External Clock  
t
-
-
120  
1536  
-
-
µs  
MCLKs  
wup  
Calibration  
CAL pulse width  
(Note 8)  
(Note 8)  
t
4
0
-
-
-
-
MCLKs  
ns  
pw  
CAL high setup time to RST rising  
t
ccw  
Calibration Time  
t
scl  
RST rising (CAL high) to RDY falling  
-
-
331458  
331458  
-
-
MCLKs  
MCLKs  
Calibration Time  
CAL rising (RST high) to RDY falling  
t
cal  
Conversion  
CONV Pulse Width  
t
4
0
-
-
-
-
-
-
MCLKs  
ns  
cpw  
BP/UP setup to CONV falling  
(Note 9)  
t
scn  
scn  
bus  
CONV low to start of conversion  
t
-
2
-
MCLKs  
MCLKs  
Perform Single Conversion (CONV high before RDY falling)  
t
20  
Conversion Time  
(Note 10)  
Start of Conversion to RDY falling  
t
-
-
324  
MCLKs  
buh  
Sleep Mode  
SLEEP low to low-power state  
SLEEP high to device active (Note 11)  
t
t
-
-
50  
3083  
-
-
µs  
MCLKs  
con  
con  
8. CAL can be controlled by the same signal used for RST. If CAL goes high simultaneously with RST, a calibration  
will be performed, but CAL must remain high until RDY falls.  
9. BP/UP can be changed coincident CONV falling. BP/UP must remain stable until RDY falls.  
10. If CONV is held low continuously, conversions occur every 320 MCLK cycles.  
If RDY is tied to CONV, conversions will occur every 322 MCLKs.  
If CONV is operated asynchronously to MCLK, a conversion may take up to 324 MCLKs.  
RDY falls at the end of conversion.  
11. RDY will fall when the device is fully operational when coming out of sleep mode.  
6
DS713A5  
7/31/07  
CS5560  
SWITCHING CHARACTERISTICS (CONTINUED)  
T = -40 to +85 °C; V1+ = V2+ = +2.5 V, ±5%; V1- = V2- = -2.5 V, ±5%;  
A
VL - VLR = 3.3 V, ±5%, 2.5 V, ±5%, or 1.8 V, ±5%  
Input levels: Logic 0 = 0V; Logic 1 = VD+; CL = 15 pF.  
Parameter  
Serial Port Timing in SSC Mode (SMODE = VL)  
RDY falling to MSB stable  
Symbol  
Min  
Typ  
Max  
Unit  
t
t
-
-
-2  
-
-
MCLKs  
ns  
1
2
Data hold time after SCLK rising  
10  
Serial Clock (Out)  
(Note 12, 13)  
Pulse Width (low)  
Pulse Width (high)  
t
t
50  
50  
-
-
-
-
ns  
ns  
3
4
RDY rising after last SCLK rising  
t
-
8
-
MCLKs  
5
12. SDO and SCLK will be high impedance when CS is high. In some systems it may require a pull-down resister.  
13. SCLK = MCLK/2.  
MCLK  
RDY  
t5  
t1  
CS  
t3  
t4  
t2  
SCLK(o)  
LSB  
LSB+1  
SDO  
MSB  
MSB1  
Figure 1. SSC Mode - Read Timing, CS remaining low (Not to Scale)  
DS713A5  
7
7/31/07  
CS5560  
SWITCHING CHARACTERISTICS (CONTINUED)  
T = -40 to +85 °C; V1+ = V2+ = +2.5 V, ±5%; V1- = V2- = -2.5 V, ±5%;  
A
VL - VLR = 3.3 V, ±5%, 2.5 V, ±5%, or 1.8 V, ±5%  
Input levels: Logic 0 = 0V; Logic 1 = VD+; CL = 15 pF.  
Parameter  
Serial Port Timing in SSC Mode (SMODE = VL)  
Data hold time after SCLK rising  
Symbol  
Min  
Typ  
Max  
Unit  
t
-
10  
-
ns  
7
Serial Clock (Out)  
(Note 14, 15)  
Pulse Width (low)  
Pulse Width (high)  
t
t
50  
50  
-
-
-
-
ns  
ns  
8
9
RDY rising after last SCLK rising  
CS falling to MSB stable  
t
-
-
8
10  
8
-
-
-
-
-
MCLKs  
ns  
10  
t
11  
12  
13  
14  
First SCLK rising after CS falling  
CS hold time (low) after SCLK rising  
SCLK, SDO tristate after CS rising  
t
t
t
-
MCLKs  
ns  
10  
-
-
5
ns  
14. SDO and SCLK will be high impedance when CS is high. In some systems it may require a pull-down resister.  
15. SCLK = MCLK/2.  
MCLK  
t10  
RDY  
t13  
CS  
t8  
t9  
t14  
t12  
t7  
SCLK(o)  
t11  
LSB  
LSB+1  
MSB  
MSB1  
SDO  
Figure 2. SSC Mode - Read Timing, CS falling after RDY falls (Not to Scale)  
8
DS713A5  
7/31/07  
CS5560  
SWITCHING CHARACTERISTICS (CONTINUED)  
T = -40 to +85 °C; V1+ = V2+ = +2.5 V, ±5%; V1- = V2- = -2.5 V, ±5%;  
A
VL - VLR = 3.3 V, ±5%, 2.5 V, ±5%, or 1.8 V, ±5%  
Input levels: Logic 0 = 0V; Logic 1 = VD+; CL = 15 pF.  
Parameter  
Serial Port Timing in SEC Mode (SMODE = VLR)  
SCLK(in) Pulse Width (High)  
Symbol  
Min  
Typ  
Max  
Unit  
-
-
30  
30  
10  
-
-
-
-
-
-
ns  
ns  
ns  
SCLK(in) Pulse Width (Low)  
CS hold time (high) after RDY falling  
t
t
t
t
t
t
t
15  
16  
17  
18  
19  
20  
21  
CS hold time (high) after SCLK rising  
CS low to SDO out of Hi-Z  
10  
-
-
10  
10  
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
(Note 16)  
Data hold time after SCLK rising  
Data setup time before SCLK rising  
CS hold time (low) after SCLK rising  
RDY rising after SCLK falling  
-
10  
10  
-
-
10  
16. SDO will be high impedance when CS is high. In some systems it may require a pull-down resistor.  
MCLK  
t21  
RDY  
CS  
t15  
t20  
t16  
SCLK(i)  
SDO  
t17  
t18  
t19  
MSB  
LSB  
Figure 3. SEC Mode - Read Timing (Not to Scale)  
DS713A5  
9
7/31/07  
CS5560  
SWITCHING CHARACTERISTICS (CONTINUED)  
TA = -40 to +85 °C; V1+ = V2+ = +2.5 V, ±5%; V1- = V2- = -2.5 V, ±5%;  
VL - VLR = 3.3 V, ±5%, 2.5 V, ±5%, or 1.8 V, ±5%  
Input levels: Logic 0 = 0V; Logic 1 = VD+; CL = 15 pF.  
Parameter  
Calibration Register Read Timing  
CS hold time (high) after SCLK rising  
Symbol  
Min  
Typ  
Max  
Unit  
t22  
t23  
t24  
t25  
t26  
t27  
t28  
10  
10  
10  
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Data setup time before SCLK rising  
Data hold time after SCLK rising  
SCLK rising to data stable  
-
-
-
-
-
-
-
10  
10  
-
Data hold time after SCLK rising  
SCLK rising to CS rising  
-
10  
-
SDO tristate after CS rising  
5
CS  
t22  
t27  
SCLK(i)  
t23  
t24  
SDI  
MSB  
LSB  
Command Time  
8 SCLKs  
t28  
t25  
t26  
SDO  
MSB  
LSB  
Data Time  
24 SCLKs  
Figure 4. SEC Mode - Calibration Register Read Timing (Not to Scale)  
10  
DS713A5  
7/31/07  
CS5560  
SWITCHING CHARACTERISTICS (CONTINUED)  
TA = -40 to +85 °C; V1+ = V2+ = +2.5 V, ±5%; V1- = V2- = -2.5 V, ±5%;  
VL - VLR = 3.3 V, ±5%, 2.5 V, ±5%, or 1.8 V, ±5%  
Input levels: Logic 0 = 0V; Logic 1 = VD+; CL = 15 pF.  
Parameter  
Calibration Register Write Timing  
Data setup time before SCLK rising  
Symbol  
Min  
Typ  
Max  
Unit  
t29  
t30  
t31  
10  
10  
10  
-
-
-
-
-
-
ns  
ns  
ns  
Data hold time after SCLK rising  
SCLK rising to CS rising  
17. SDO will be high impedance when CS is high. In some systems it may require a pull-down resister.  
CS  
t31  
SCLK(i)  
SDI  
t29  
t30  
LSB  
MSB  
LSB  
MSB  
Command Time  
8 SCLKs  
Data Time  
24 SCLKs  
Figure 5. SEC Mode - Write Timing (Not to Scale)  
DS713A5  
11  
7/31/07  
CS5560  
DIGITAL CHARACTERISTICS  
TA = TMIN to TMAX; VL = 3.3V, ±5% or VL = 2.5V, ±5% or 1.8V, ±5%; VLR = 0V  
Parameter  
Calibration Memory Retention  
Symbol  
Min  
Typ  
Max  
Unit  
(Note 18)  
Power Supply Voltage [V1+ = V2+] – [V1- = V2-]  
VMR  
Iin  
4.0  
-
-
-
2
-
V
Input Leakage Current  
-
-
-
µA  
pF  
pF  
Digital Input Pin Capacitance  
Cin  
3
3
Digital Output Pin Capacitance  
Cout  
-
18. VA- and VD- can be any value from 0 to +5V for memory retention. Neither VA- nor VD- should be allowed to go positive. AIN1,  
AIN2, or VREF must not be greater than VA+ or VD+. This parameter is guaranteed by characterization.  
DIGITAL FILTER CHARACTERISTICS  
TA = TMIN to TMAX; VL = 3.3V, ±5% or VL = 2.5V, ±5% or 1.8V, ±5%; VLR = 0V  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Group Delay  
-
-
160  
-
MCLKs  
12  
DS713A5  
7/31/07  
CS5560  
GUARANTEED LOGIC LEVELS  
TA = -40 to +85 °C; V1+ = V2+ = +2.5 V, ±5%; V1- = V2- = -2.5 V, ±5%;  
VL - VLR = 3.3 V, ±5%, 2.5 V, ±5%, or 1.8 V, ±5%  
Input levels: Logic 0 = 0V; Logic 1 = VD+; CL = 15 pF.  
Guaranteed Limits  
Parameter  
Sym  
VIH  
VL  
Min  
Typ  
Max  
Unit  
V
Conditions  
Logic Inputs  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
1.9  
1.6  
1.2  
Minimum High-level Input Voltage:  
Maximum Low-level Input Voltage:  
1.1  
0.95  
0.6  
VIL  
V
Logic Outputs  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
2.9  
2.1  
Minimum High-level Output Voltage:  
Maximum Low-level Output Voltage:  
IOH = -2 mA  
IOH = -2 mA  
VOH  
V
V
1.65  
0.36  
0.36  
0.44  
VOL  
DS713A5  
13  
7/31/07  
CS5560  
RECOMMENDED OPERATING CONDITIONS  
(VLR = 0V, see Note 19)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Single Analog Supply  
DC Power Supplies:  
(Note 19)  
V1+  
V1+  
V2-  
V1+  
V2-  
4.75  
4.75  
-
-
5.0  
5.0  
0
5.25  
5.25  
-
-
V
V
V
V
V2+  
V1-  
V2-  
0
Dual Analog Supplies  
DC Power Supplies:  
(Note 19)  
V1+  
V1+  
V2-  
V1+  
V2-  
+2.375  
+2.375  
-2.375  
-2.375  
+2.5  
+2.5  
-2.5  
-2.5  
+2.625  
+2.625  
-2.625  
-2.625  
V
V
V
V
V2+  
V1-  
V2-  
Analog Reference Voltage  
(Note 20)  
VREF  
2.4  
4.096  
4.2  
V
[VREF+] – [VREF-]  
19. The logic supply can be any value VL – VLR = +1.6 to +3.6 volts as long as VLR V2- and VL 3.6 V.  
20. The differential voltage reference magnitude is constrained by the V1+ or V1- supply magnitude.  
ABSOLUTE MAXIMUM RATINGS  
(VLR = 0V)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
DC Power Supplies:  
[V1+] – [V1-] (Note 21)  
VL + [ |V1-| ] (Note 22)  
-
-
0
0
-
-
5.5  
6.3  
V
V
Input Current, Any Pin Except Supplies  
Analog Input Voltage  
(Note 23)  
IIN  
-
-
-
-
-
±10  
(V1+) + 0.3  
VL + 0.3  
150  
mA  
V
(AIN and VREF pins)  
VINA  
VIND  
Tstg  
(V1-) – 0.3  
VLR – 0.3  
-65  
Digital Input Voltage  
V
Storage Temperature  
°C  
Notes: 21. V1+ = V2+; V1- = V2-  
22. V1- = V2-  
23. Transient currents of up to 100 mA will not cause SCR latch-up.  
WARNING: Operation beyond these limits may result in permanent damage to the device.  
14  
DS713A5  
7/31/07  
CS5560  
2. OVERVIEW  
The CS5560 is a 24-bit analog-to-digital converter capable of 50 kSps conversion rate. The device is ca-  
pable of switching multiple input channels at a high rate with no loss in throughput. The ADC uses a  
low-latency digital filter architecture. The filter is designed for fast settling and settles to full accuracy in  
one conversion.  
The converter is a serial output device. The serial port can be configured to function as either a master or  
a slave.  
The CS5560 provides self-calibration circuitry to achieve low offset and gain errors.  
The converter can operate from an analog supply of 5V or from ±2.5V. The digital interface supports stan-  
dard logic operating from 1.8, 2.5, or 3.3 V.  
The CS5560 converts at 50 kSps when operating from a 16 MHz input clock.  
3. THEORY OF OPERATION  
The CS5560 converter provides high-performance measurement of DC or AC signals. The converter in-  
cludes on-chip calibration circuitry to minimize offset and gain errors. The converter can be used to per-  
form single conversions or continuous conversions upon command. Each conversion is independent of  
previous conversions and can settle to full specified accuracy, even with a full-scale input voltage step.  
This is due to the converter architecture which uses a combination of a high-speed delta-sigma modulator  
and a low-latency filter architecture.  
Once power is established to the converter, a reset must be performed. A reset initializes the internal con-  
verter logic and sets the offset register to zero and the gain register to a decimal value of 1.0. If the CAL  
pin is low when RST transitions from low to high, no calibration will be performed. If CAL is high when RST  
goes high, the converter’s offset & gain slope will be calibrated.  
If CONV is held low then the converter will convert continuously with RDY falling every 320 MCLKs. This  
is equivalent to 50 kSps if MCLK = 16.0 MHz. If CONV is tied to RDY, a conversion will occur every 322  
MCLKs. If CONV is operated asynchronously to MCLK, it may take up to 324 MCLKs from CONV falling  
to RDY falling.  
Multiple converters can operate synchronously if they are driven by the same MCLK source and CONV  
to each converter falls on the same MCLK falling edge. Alternately, CONV can be held low and all devices  
are reset with RST rising on the same falling edge of MCLK.  
The output coding of the conversion word is a function of the BP/UP pin.  
The active-low SLEEP signal causes the device to enter a low-power state. The calibration register con-  
tents are preserved during sleep. When exiting sleep, the converter will take 3083 MCLK cycles before  
conversions can be performed. RST should remain inactive (high) when SLEEP is asserted (low).  
3.1 Reset and Calibration  
After the power supplies and the voltage reference are stable, the converter must be reset. The reset func-  
tion initializes the internal logic in the converter, but does not initiate calibration. After reset has been per-  
formed, the converter can be used uncalibrated, or calibration can be performed. Calibration minimizes  
offset and gain errors inside the converter. If the device is used without calibration, conversions will in-  
clude the offset and gain errors of the uncalibrated converter, but the converter will maintain its differential  
and integral linearity. Calibration of offset and gain can be performed upon command.  
DS713A5  
15  
7/31/07  
CS5560  
Calibration can be initiated in either of two ways. If CAL is high when RST transitions from low to high, a  
calibration cycle will be performed. When calibration is performed, the offset and full-scale points of the  
converter are calibrated. A calibration cycle takes 327,680 MCLK cycles. The RDY signal falls upon com-  
pletion of reset and calibration sequence. If CAL is held low when RST transitions from low to high, no  
calibration will be performed. Calibrations can be initiated any time the converter is idle by taking the CAL  
input high. RDY will fall at the end of the calibration cycle. The CAL pin should be returned low when not  
being used.  
A calibration cycle calibrates the offset and full-scale points of the converter transfer function. When the  
offset portion of the calibration is performed, the AIN+ and AIN- pins are disconnected from the input and  
shorted internally. The offset of the converter is then measured and a correction factor is stored in the  
offset calibration register. Then the voltage reference is internally connected to act as the input signal to  
the converter and a gain calibration is performed. The gain correction results are placed in the gain cali-  
bration register. The contents of the 24-bit offset and gain registers are used to map the conversion data  
prior to its output from the converter. The offset and gain calibration registers can be read and written if  
desired. To read or write the calibration registers inside of the converter, the converter must be idle, and  
the serial port must be in the SEC mode (SMODE = VLR). Table 1 depicts the commands necessary to  
read or write the calibration registers.  
Table 1. Offset & Gain Calibration Register Read/Write Commands  
Register  
Read Command  
0x40  
Write Command  
0xC0  
Offset Register  
Gain Register  
0x20  
0XA0  
3.1.1 Offset Register  
MSB  
Sign  
0
D22  
2-2  
0
D21  
D20  
0
D19  
0
D18  
0
D17  
D16  
0
D15  
D14  
0
D13  
0
D12  
2-12  
0
0
0
D5  
0
0
D3  
0
D11  
2-11  
0
D10  
D9  
0
D8  
0
D7  
0
D6  
0
D4  
0
D2  
0
D1  
0
LSB  
2-24  
0
0
The offset register maps one for one with the conversion word when the gain register is set to 1 decimal.  
After reset all bits are zero.  
3.1.2 Gain Register  
MSB  
22  
0
D23  
21  
0
D22  
20  
1
D21  
2-1  
0
D20  
2-2  
0
D19  
2-3  
0
D18  
2-4  
0
D17  
2-5  
0
D16  
2-6  
0
D15  
2-7  
0
D14  
2-8  
0
D13  
2-9  
0
D12  
2-10  
0
D11  
2-11  
0
D10  
2-12  
0
D9  
2-13  
0
D8  
2-14  
0
D7  
2-15  
0
D6  
2-16  
0
D5  
2-17  
0
D4  
2-18  
0
D3  
2-19  
0
D2  
2-20  
0
LSB  
2-21  
0
The gain register spans from 0 to (8 - 2-21). After reset, bit D22 is 1, all others are 0. This results in a dec-  
imal gain value of 1.000....000.  
16  
DS713A5  
7/31/07  
CS5560  
The on-chip calibration registers can be read or written via the serial port. Reading or writing into the cal-  
ibration registers requires that the serial port be in the SEC mode. To write into the offset or gain register,  
the appropriate 8-bit command (see Table 1 on page 16) is first shifted into the SDI pin. Rising edges of  
SCLK latch the bits. To perform a write, the 8-bit command is immediately followed by the 24 bit data word  
to be written. When a read command is used, the 24 bit data word from the register will be output from  
the SDO pin. The data bits will be output on rising edges of SCLK. The data bits have sufficient hold time  
to be latched externally by the next rising edge of SCLK.  
3.2 Conversion  
The CS5560 converts at 50 kSps when synchronously operated (CONV = VLR) from a 16.0 MHz master  
clock. Conversion is initiated by taking CONV low. A conversion lasts 320 master clock cycles, but if  
CONV is asynchronous to MCLK there may be an uncertainty of 0-4 MCLK cycles after CONV falls to  
when a conversion actually begins. This may extend the throughput to 324 MCLKs  
When the conversion is completed, the output word is placed into the serial port and RDY goes low. To  
convert continuously, CONV should be held low. In continuous conversion mode with CONV held low, a  
conversion is performed in 320 MCLK cycles. Alternately RDY can be tied to CONV and a conversion will  
occur every 322 MCLK cycles.  
To perform only one conversion, CONV should return high at least 20 master clock cycles before RDY  
falls.  
Once a conversion is completed and RDY falls, RDY will return high when all the bits of the data word are  
emptied from the serial port or if the conversion data is not read and CS is held low, RDY will go high two  
MCLK cycles before the end of conversion. RDY will fall at the end of the next conversion when new data  
is put into the port register.  
See Serial Port on page 24 for information about reading conversion data.  
Conversion performance can be affected by several factors. These include the choice of clock source for  
the chip, the timing of CONV, and the choice of the serial port mode.  
The converter can be operated from an internal oscillator. This clock source has greater jitter than an  
external crystal-based clock. Jitter may not be an issue when measuring DC signals, or very-low-fre-  
quency AC signals, but can become an issue for higher frequency AC signals. For maximum performance  
when digitizing AC signals, a low-jitter MCLK should be used.  
To maximize performance, the CONV pin should be held low in the continuous conversion state to per-  
form multiple conversions, or CONV should occur synchronous to MCLK, falling when MCLK falls.  
If the converter is operated at maximum throughput, the SSC serial port mode is less likely to cause in-  
terference to measurements as the SCLK output is synchronized to the MCLK. Alternately, any interfer-  
ence due to serial port clocking can also be minimized if data is read in the SEC serial port mode when a  
conversion is not is progress.  
3.3 Clock  
The CS5560 can be operated from its internal oscillator or from an external master clock. The state of  
MCLK determines which clock source will be used. If MCLK is tied low, the internal oscillator will start and  
be used as the clock source for the converter. If an external CMOS-compatible clock is input into MCLK  
the converter will power down the internal oscillator and use the external clock. If the MCLK pin is held  
high, the internal oscillator will be held in the stopped state. The MCLK input can be held high to delete  
clock cycles to aid in operating multiple converters in different phase relationships.  
DS713A5  
17  
7/31/07  
CS5560  
The internal oscillator can be used if the signals to be measured are essentially DC. The internal oscillator  
exhibits jitter at about 500 picoseconds rms. If the CS5560 is used to digitize AC signals, an external  
low-jitter clock source should be used.  
If the internal oscillator is used as the clock for the CS5560, the maximum conversion rate will be dictated  
by the oscillator frequency.  
3.4 Voltage Reference  
The voltage reference for the CS5560 can range from 2.4 volts to 4.2 volts. A 4.096 volt reference is re-  
quired to achieve the specified performance. Figure 7 and Figure 8 illustrate the connection of the voltage  
reference with either a single +5 V analog supply or with ±2.5 V.  
For optimum performance, the voltage reference device should be one that provides a capacitor connec-  
tion to provide a means of noise filtering, or the output should include some type of bandwidth-limiting fil-  
ter. Some 4.096 volt reference devices need only 5 volts total supply for operation and can be connected  
as shown in Figure 7 or Figure 8. The reference should have a local bypass capacitor and an appropriate  
output capacitor.  
Some older 4.096 voltage reference designs require more headroom and must operate from an input volt-  
age of 5.5 to 6.5 volts. If this type of voltage reference is used ensure that when power is applied to the  
system, the voltage reference rise time is slower than the rise time of the V1+ and V1- power supply volt-  
age to the converter. An example circuit to slow the output startup time of the reference is illustrated in  
Figure 6.  
5.5 to 15 V  
2k  
10µF  
VIN  
VOUT  
GND  
4.096 V  
Refer to V1- and VREF1 pins.  
Figure 6. Voltage Reference Circuit  
3.5 Analog Input  
The analog input of the converter is fully differential with a peak input of 4.096 volts on each input. This is  
illustrated in Figure 7 and Figure 8. These diagrams also illustrate a differential buffer amplifier configura-  
tion for driving the CS5560.  
The capacitors at the outputs of the amplifiers provide a charge reservoir for the dynamic current from the  
A/D inputs while the resistors isolate the dynamic current from the amplifier. The amplifiers can be pow-  
ered from higher supplies than those used by the A/D but precautions should be taken to ensure that the  
op amp output voltage remains within the power supply limits of the A/D, especially under start-up condi-  
tions.  
18  
DS713A5  
7/31/07  
CS5560  
3.6 Output Coding Format  
The reference voltage directly defines the input voltage range in both the unipolar and bipolar configura-  
tions. In the unipolar configuration (BP/UP low), the first code transition occurs 0.5 LSB above zero, and  
the final code transition occurs 1.5 LSBs below VREF. In the bipolar configuration (BP/UP high), the first  
code transition occurs 0.5 LSB above -VREF and the last transition occurs 1.5 LSBs below +VREF. See  
Table 2 for the output coding of the converter.  
Table 2. Output Coding, Two’s Complement  
Two’s  
Bipolar Input Voltage  
Complement  
>(VREF-1.5 LSB)  
VREF-1.5 LSB  
7F FF FF  
7F FF FF  
7F FF FE  
00 00 00  
-0.5 LSB  
FF FF FF  
80 00 01  
-VREF+0.5 LSB  
80 00 00  
80 00 00  
<(-VREF+0.5 LSB)  
NOTE: VREF = (VREF+) - (VREF-)  
Table 3. Output Coding, Offset Binary  
Offset  
Unipolar Input Voltage  
Binary  
>(VREF-1.5 LSB)  
FF FF FF  
FF FF FF  
VREF-1.5 LSB  
FF FF FE  
80 00 00  
(VREF/2)-0.5 LSB  
7F FF FF  
00 00 01  
+0.5 LSB  
00 00 00  
00 00 00  
<(+0.5 LSB)  
NOTE: VREF = (VREF+) - (VREF-)  
DS713A5  
19  
7/31/07  
CS5560  
3.7 Typical Connection Diagrams  
The following figure depicts the CS5560 powered from bipolar analog supplies, +2.5 V and - 2.5 V.  
4700pF  
C0G  
R1  
49.9  
CS5560  
C1  
AIN+  
60pF  
+2.048 V  
0 V  
-2.048 V  
4.99k  
SMODE  
CS  
4SCLK  
4.99k  
49.9  
+2.048 V  
0 V  
-2.048 V  
R1  
C1  
AIN-  
60pF  
4.99k  
4SDO  
RDY  
4700pF  
C0G  
4.99k  
(V+) Buffers On  
CONV  
CAL  
BUFEN  
VREF+  
+2.5 V  
BP/UP  
SLEEP  
(V-) Buffers Off  
+4.096  
RST  
Voltage  
Reference  
(NOTE 1)  
10 µF  
0.1 µF  
MCLK  
TST  
VREF-  
-2.5 V  
+3.3 V to +1.8 V  
+2.5 V  
V1+  
V2+  
V2-  
VL  
10  
0.1 µF  
0.1 µF  
0.1 µF  
10  
0.1 µF  
X7R  
DCR  
V1-  
VLR  
-2.5 V  
NOTES  
1. See Section 3.4 Voltage Reference for information on required  
voltage reference performance criteria.  
2.Locate capacitors so as to minimize loop length.  
3. The ±2.5 V supplies should also be bypassed to ground at the converter.  
4. VLR and the power supply ground for the ±2.5 V should be  
connected to the same ground plane under the chip.  
5. SCLK and SDO may require pull-down resistors in some applications.  
6. An RC input filter can be used to band limit the input to reduce noise.  
Select R to be equal to the parallel combination of the feedback of the  
feedback resistors 4.99k || 4.99k = 2.5k⎠ ⎠  
Figure 7. CS5560 Configured Using ±2.5V Analog Supplies  
20  
DS713A5  
7/31/07  
CS5560  
The following figure depicts the CS5560 device powered from a single 5V analog supply.  
4700pF  
C0G  
49.9  
2.048 V  
AIN+  
CS5560  
47pF  
4.99k  
4.548 V  
2.5 V  
-0.452 V  
SMODE  
CS  
+4.548 V  
2.5 V  
-0.452 V  
3SCLK  
49.9  
AIN-  
4.096 V  
47pF  
4.99k  
4700pF  
C0G  
3SDO  
RDY  
(V+) Buffers On  
(V-) Buffers Off  
CONV  
CAL  
BUFEN  
VREF+  
+5 V  
BP/UP  
SLEEP  
RST  
+4.096  
Voltage  
Reference  
(NOTE 1)  
10 µF  
0.1 µF  
MCLK  
TST  
VREF-  
+3.3 V to 1.8 V  
+5 V  
V1+  
VL  
10  
0.1 µF  
V2+  
V2-  
0.1 µF  
0.1 µF  
0.1 µF  
X7R  
DCR  
V1-  
VLR  
NOTES  
1. See Section 3.4 Voltage Reference for information on  
required voltage reference performance criteria.  
2. Locate capacitors so as to minimize loop length.  
3. V1-, V2-, and VLR should be connected to the same  
ground plane under the chip.  
4. SCLK and SDO may require pull-down resistors in  
some applications.  
Figure 8. CS5560 Configured Using a Single 5V Analog Supply  
DS713A5  
21  
7/31/07  
CS5560  
3.8 AIN & VREF Sampling Structures  
The CS5560 uses on-chip buffers on the AIN+, AIN-, and the VREF+ inputs. Buffers provide much higher  
input impedance and therefore reduce the amount of drive current required from an external source. This  
helps minimize errors.  
The Buffer Enable (BUFEN) pin determines if the on-chip buffers are used or not. If the BUFEN pin is  
connected to the V1+ supply the buffers will be enabled. If the BUFEN pin is connected to the V1- pin  
the buffers are off. The converter will consume about 30 mW less power when the buffers are off, but the  
input impedances of AIN+, AIN- and VREF+ will be significantly less than with the buffers enabled.  
3.9 Converter Performance  
The CS5560 achieves excellent differential nonlinearity (DNL) as shown in Figure 9. Figure 9 illustrates  
the code widths on the typical scale of ±1 LSB and on a zoomed scale of ±0.2 LSB.  
(Zoom View)  
Figure 9. CS5560 DNL Plot  
22  
DS713A5  
7/31/07  
CS5560  
3.10 Digital Filter Characteristics  
The digital filter is designed for fast settling, therefore it exhibits very little in-band attenuation. The filter  
attenuation is 1.040 dB at 25 kHz when sampling at 50 kSps.  
0.0  
-0.0414 dB  
fs = 50 kSps  
-0.2  
-0.4  
-0.6  
-0.8  
-1.0  
-1.2  
-0.166 dB  
-0.3725 dB  
-0.664 dB  
-1.040 dB  
0
5k  
10k  
15k  
20k  
25k  
Frequency (Hz)  
Figure 10. CS5560 Spectral Response (DC to fs/2)  
-0.001646 dB  
fs = 50 kSps  
-0.00663 dB  
-0.0149 dB  
-0.0262 dB  
-0.0414 dB  
Frequency (Hz)  
Figure 11. CS5560 Spectral Response (DC to 5 kHz)  
fs = 50 kSps  
Figure 12. CS5560 Spectral Response (DC to 4fs)  
DS713A5  
23  
7/31/07  
CS5560  
3.11 Serial Port  
The serial port on the CS5560 can operate in two different modes: synchronous self clock (SSC) mode &  
synchronous external clock (SEC) mode. The serial port must be placed into the SEC mode if the offset  
and gain registers of the converter are to be read or written. The converter must be idle when reading or  
writing to the on-chip registers.  
3.11.1 SSC Mode  
If the SMODE pin is high (SMODE = VL), the serial port operates in the SSC (Synchronous Self Clock)  
mode. In the SSC mode the port shifts out conversion data words with SCLK as an output. SCLK is gen-  
erated inside the converter from MCLK. Data is output from the SDO (Serial Data Output) pin. If CS is  
high, the SDO and SCLK pins will stay in a high-impedance state. If CS is low when RDY falls, the con-  
version data word will be output from SDO MSB first. Data is output on the rising edge of SCLK and should  
be latched into the external logic on the subsequent rising edge of SCLK. When all bits of the conversion  
word are output from the port the RDY signal will return to high.  
3.11.2 SEC Mode  
If the SMODE pin is low (SMODE = VLR), the serial port operates in the SEC (Synchronous External  
Clock mode). In this mode, the user usually monitors RDY. When RDY falls at the end of a conversion,  
the conversion data word is placed into the output data register in the serial port. CS is then activated low  
to enable data output. Note that CS can be held low continuously if it is not necessary to have the SDO  
output operate in the high impedance state. When CS is taken low (after RDY falls) the conversion data  
word is then shifted out of the SDO pin by driving the SCLK pin from system logic external to the converter.  
The SDI input must be held low when reading conversion word data. Data bits are advanced on rising  
edges of SCLK and latched by the subsequent rising edge of SCLK.  
If CS is held low continuously, the RDY signal will fall at the end of a conversion and the conversion data  
will be placed into the serial port. If the user starts a read, the user will maintain control over the serial port  
until the port is empty. However, if SCLK is not toggled, the converter will overwrite the conversion data  
at the completion of the next conversion. If CS is held low and no read is performed, RDY will rise just  
prior to the end of the next conversion and then fall to signal that new data has been written into the serial  
port.  
24  
DS713A5  
7/31/07  
CS5560  
3.12 Power Supplies & Grounding  
The CS5560 can be configured to operate with its analog supply operating from 5V, or with its analog sup-  
plies operating from ±2.5V. The digital interface supports digital logic operating from either 1.8V, 2.5V, or  
3.3V.  
Figure 7 on page 20 illustrates the device configured to operate from ±2.5V analog. Figure 8 on page 21  
illustrates the device configured to operate from 5V analog.  
To maximize converter performance, the analog ground and the logic ground for the converter should be  
connected at the converter. In the dual analog supply configuration, the analog ground for the ±2.5V sup-  
plies should be connected to the VLR pin at the converter with the converter placed entirely over the an-  
alog ground plane.  
In the single analog supply configuration (+5V), the ground for the +5V supply should be directly tied to  
the VLR pin of the converter with the converter placed entirely over the analog ground plane. Refer to  
Figure 8 on page 21.  
DS713A5  
25  
7/31/07  
CS5560  
3.13 Using the CS5560 in Multiplexing Applications  
The CS5560 is a delta-sigma A/D converter. Delta-sigma converters use oversampling as means to  
achieve high signal to noise. This means that once a conversion is started the converter takes many sam-  
ples to compute the resulting output word. The analog input for the signal to be converted must remain  
active during the entire conversion until RDY falls.  
The CS5560 can be used in multiplexing applications, but the system timing for changing the multiplexer  
channel and for starting a new conversion will depend upon the multiplexer system architecture.  
The simplest system is illustrated in Figure 13. Any time the multiplexer is changed, the analog signal  
presented to the converter must fully settle. After the signal has settled, the CONV signal is issued to the  
converter to start a conversion. Being a delta-sigma converter, the signal must remain present at the input  
of the converter until the conversion is completed. Once the conversion is completed, RDY falls. At this  
time the multiplexer can be changed to the next channel and the data can be read from the serial port.  
The CONV signal should be delayed until after the data is read and until the new analog signal has settled.  
In this configuration, the throughput of the converter will be dictated by the settling time of the analog input  
circuit and the conversion time of the converter. The conversion data can be read from the serial port after  
the multiplexer is changed to the new channel while the analog input signal is settling.  
CS556x  
4700pF  
C0G  
CH1+  
49.9  
AIN+  
AIN-  
CH2+  
CH3+  
CH4+  
60pF  
4.99k  
CH1-  
CH2-  
CH3-  
CH4-  
49.9  
60pF  
4.99k  
4700pF  
C0G  
Amplifier  
Settling Time  
Amplifier  
Settling Time  
Conversion Time  
CONV  
RDY  
CH1  
CH2  
Advance  
Mux  
Throughput  
Figure 13. Simple Multiplexing Scheme  
A more complex multiplexing scheme can be used to increase the throughput of the converter is illustrated  
in Figure 14. In this circuit, two banks of multiplexers are used.  
26  
DS713A5  
7/31/07  
CS5560  
At the same time the converter is performing a conversion on a channel from one bank of multiplexers,  
the second multiplexer bank is used to select the channel for the next conversion. This configuration al-  
lows the buffer amplifier for the second multiplexer bank to fully settle while a conversion is being per-  
formed on the channel from the first multiplexer bank. The multiplexer on the output of the buffer amplifier  
and the CONV signal can be changed at the same time in this configuration. This multiplexing architec-  
ture allows for maximum multiplexing throughput from the A/D converter.The following figure depicts the  
recommended analog input amplifier circuit.  
CH1  
4700pF  
C0G  
B1+  
B2+  
49.9  
60pF  
SW2  
4.99k  
B1-  
CS556x  
B2-  
49.9  
CH2  
CH3  
60pF  
4.99k  
A1+  
A2+  
4700pF  
C0G  
AIN+  
4700pF  
C0G  
C1+  
C2+  
SW1  
49.9  
A1-  
A2-  
60pF  
SW3  
4.99k  
C1-  
C2-  
AIN-  
49.9  
CH4  
60pF  
4.99k  
4700pF  
C0G  
CONV  
SW1  
Select A1  
Select A2  
Select A1  
Select C2  
Select A2  
Select A1  
SW2  
SW3  
Select B1  
Select C1  
Select B2  
Select B1  
Select C1  
Convert on CH1  
Convert on CH3  
Convert on CH2  
Convert on CH4  
Convert on CH1  
Figure 14. More Complex Multiplexing Scheme  
3.14 Synchronizing Multiple Converters  
Many measurement systems have multiple converters that need to operate synchronously. The convert-  
ers should all be driven from the same master clock. In this configuration, the converters will convert syn-  
chronously if the same CONV signal is used to drive all the converters, and CONV falls on a falling edge  
of MCLK. If CONV is held low continuously, reset (RST) can be used to synchronize multiple converters  
if RST is released on a falling edge of MCLK.  
DS713A5  
27  
7/31/07  
CS5560  
4. PIN DESCRIPTIONS  
Chip Select  
Serial Data Input  
Serial Mode Select SMODE  
CS  
SDI  
1
2
3
4
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
RDY  
Ready  
SCLK Serial Clock Input/Output  
SDO  
VL  
Serial Data Output  
Logic Interface Power  
Logic Interface Return  
Differential Analog Input  
Differential Analog Input  
Negative Power 1  
Positive Power 1  
Buffer Enable BUFEN  
Voltage Reference Input  
Voltage Reference Input  
Bipolar/Unipolar Select  
Sleep Mode Select  
AIN+  
AIN-  
V1-  
5
6
7
8
VLR  
MCLK Master Clock  
V2-  
V2+  
DCR  
CONV Convert  
V1+  
Negative Voltage 2  
Positive Voltage 2  
Digital Core Regulator  
VREF+  
VREF-  
BP/UP  
SLEEP  
9
10  
11  
12  
CAL  
RST  
Calibrate  
Reset  
CS – Chip Select, Pin 1  
The Chip Select pin allows an external device to access the serial port. If SMODE = VL (SSC  
Mode) and CS is held high, the SDO output and the SCLK output will be held in a  
high-impedance output state.  
SDI – Serial Data Input, Pin 2  
SDI is the input pin for reading and writing calibration registers via the serial port. SDI is only  
accessible when SMODE is set to enable the SEC serial mode. Data is shifted into this pin by  
SCLK. SDI should be held low when the serial port is in SSC mode.  
SMODE – Serial Mode Select, Pin 3  
The serial interface mode pin (SMODE) dictates whether the serial port behaves as a master or  
slave interface.If SMODE is tied high (to VL), the port will operate in the Synchronous  
Self-Clocking (SSC) mode. In SSC mode the port acts as a master in which the converter out-  
puts both the SDO and SCLK signals. If SMODE is tied low (to VLR) the port will operate in the  
Synchronous External Clocking (SEC) mode. In SEC mode, the port acts as a slave in which  
the external logic or microcontroller generates the SCLK used to output the conversion data  
word from the SDO pin.  
AIN+, AIN- – Differential Analog Input, Pin 4, 5  
AIN+ and AIN- are differential inputs for the converter.  
V1- – Negative Power 1, Pin 6  
The V1- and V2- pins provide a negative supply voltage to the core circuitry of the chip. These  
two pins should be decoupled as shown in the application block diagrams. V1- and V2- should  
be supplied from the same source voltage. For single supply operation these two voltages are  
nominally 0 V (Ground). For dual supply operation they are nominally -2.5 V.  
V1+ – Positive Power 1, Pin 7  
The V1+ and V2+ pins provide a positive supply voltage to the core circuitry of the chip. These  
two pins should be decoupled as shown in the application block diagrams. V1+ and V2+ should  
be supplied from the same source voltage. For single supply operation these two voltages are  
nominally +5 V. For dual supply operation they are nominally +2.5 V.  
BUFEN – Buffer Enable, Pin 8  
Buffers on input pins AIN+ and AIN- are enabled if BUFEN is connected to V1+ and disabled if  
connected to V1-.  
28  
DS713A5  
7/31/07  
CS5560  
VREF+, VREF- – Voltage Reference Input, Pin 9, 10  
A differential voltage reference input on these pins functions as the voltage reference for the  
converter. The voltage between these pins can range between 2.4 volts and 4.2 volts, with  
4.096 volts being the nominal reference voltage value.  
BP/UP – Bipolar/Unipolar Select, Pin 11  
The BP/UP pin determines the span and the output coding of the converter. When set high to  
select BP (bipolar), the input span of the converter is -4.096 volts to +4.096 volts fully differential  
(assuming the voltage reference is 4.096 volts) and outputs data is coded in two's complement  
format. When set low to select UP (unipolar), the input span is 0 to +4.096 fully differential and  
the output data is coded in binary format.  
SLEEP – Sleep Mode Select, Pin 12  
When taken low, the SLEEP pin will cause the converter to enter into a low-power state. SLEEP  
will stop the internal oscillator and power down all internal analog circuitry.  
RST – Reset, Pin 13  
Reset is necessary after power is initially applied to the converter. When the RST input is taken  
low, the logic in the converter will be reset. When RST is released to go high, certain portions of  
the analog circuitry are started. RDY falls when reset is complete.  
CAL – Calibrate, Pin 14  
After power is applied, a reset should be performed prior to calibration. After an initial reset, cal-  
ibration can be performed at any time. Calibration can be initiated in either of two ways. If CAL  
is high when coming out of reset, (RST going high), a calibration will be performed. If RST is  
taken high with CAL low, a calibration is not performed, but calibration can be initiated by taking  
CAL high at any time the converter is idle. RDY will also fall when calibration is completed.  
CONV – Convert, Pin 15  
The CONV pin initiates a conversion cycle if taken low, unless a calibration cycle or a previous  
conversion is in progress. When the conversion cycle is completed, the conversion word is out-  
put to the serial port register and the RDY signal goes low. If CONV is held low and remains low  
when RDY falls another conversion cycle will be started.  
DCR – Digital Core Regulator, Pin 16  
DCR is the output of the on-chip regulator for the digital logic core. DCR should be bypassed  
with a capacitor to V2-. The DCR pin is not designed to power any external load.  
V2+ – Positive Power 2, Pin 17  
The V1+ and V2+ pins provide a positive supply voltage to the circuitry of the chip. These two  
pins should be decoupled as shown in the application block diagrams. V1+ and V2+ should be  
supplied from the same source voltage. For single supply operation these two voltages are  
nominally +5 V. For dual supply operation they are nominally +2.5 V.  
V2- – Negative Power 2, Pin 18  
The V1- and V2- pins provide a negative supply voltage to the circuitry of the chip. These two  
pins should be decoupled as shown in the application block diagrams. V1- and V2- should be  
supplied from the same source voltage. For single supply operation these two voltages are  
nominally 0 V (Ground). For dual supply operation they are nominally -2.5 V.  
MCLK – Master Clock, Pin 19  
The master clock pin (MCLK) is a multi-function pin. If tied low (MCLK = VLR) the on-chip oscil-  
lator will be enabled. If tied high (MCLK = VL), all clocks to the internal circuitry of the converter  
will stop. When MCLK is held high the internal oscillator will also be stopped. MCLK can also  
function as the input for an external CMOS-compatible clock that conforms to supply voltages  
on the VL and VLR pins.  
DS713A5  
29  
7/31/07  
CS5560  
VLR, VL – Logic Interface Power/Return, Pin 20, 21  
VL and VLR are the supply voltages for the digital logic interface. VL and VLR can be config-  
ured with a wide range of common mode voltage. The following interface pins function from the  
VL/VLR supply: SMODE, CS, SCLK, SDI, SDO, RDY, SLEEP, CONV, RST, CONV, CAL,  
BP/UP, and MCLK.  
SDO – Serial Data Output, Pin 22  
SDO is the output pin for the serial output port. Data from this pin will be output at a rate deter-  
mined by SCLK and in a format determined by the BP/UP pin. Data is output MSB first and  
advances to the next data bit on the rising edges of SCLK. SDO will be in a high impedance  
state when CS is high.  
SCLK – Serial Clock Input/Output, Pin 23  
The SMODE pin determines whether the SCLK signal is an input or an output signal. SCLK  
determines the rate at which data is clocked out of the SDO pin. If the converter is in SSC  
mode, the SCLK frequency will be determined by the master clock frequency of the converter  
(either MCLK or the internal oscillator). In SEC mode, the user determines the SCLK frequency.  
If SMODE = VL (SSC Mode), SCLK will be in a high-impedance state when CS is high.  
RDY – Ready, Pin 24  
The RDY signal rises when a calibration is initiated. When the calibration is near completion the  
state of CONV is examined. If CONV is high, the RDY signal will fall upon the completion of cal-  
ibration. If CONV is low the converter will immediately start a conversion and RDY will remain  
high until the conversion is completed. At the end of any conversion RDY falls to indicate that a  
conversion word has been placed into the serial port. RDY will return high after all data bits are  
shifted out of the serial port or two master clock cycles before new data becomes available if the  
CS pin is inactive (high); or two master clock cycles before new data becomes available if the  
user holds CS low but has not started reading the data from the converter when in SEC mode.  
30  
DS713A5  
7/31/07  
CS5560  
5. PACKAGE DIMENSIONS  
24L SSOP PACKAGE DRAWING  
N
D
E11  
A2  
A
E
A1  
b2  
e
L
END VIEW  
SEATING  
PLANE  
SIDE VIEW  
1
2 3  
TOP VIEW  
INCHES  
NOM  
--  
0.006  
0.068  
--  
0.323  
0.307  
0.209  
0.026  
0.03  
4°  
MILLIMETERS  
NOTE  
DIM  
A
A1  
A2  
b
D
E
E1  
e
L
MIN  
--  
MAX  
0.084  
0.010  
0.074  
0.015  
0.335  
0.323  
0.220  
0.030  
0.041  
8°  
MIN  
--  
NOM  
--  
0.13  
1.73  
--  
8.20  
7.80  
5.30  
0.65  
0.75  
4°  
MAX  
2.13  
0.25  
1.88  
0.38  
8.50  
8.20  
5.60  
0.75  
1.03  
8°  
0.002  
0.064  
0.009  
0.311  
0.291  
0.197  
0.022  
0.025  
0°  
0.05  
1.62  
0.22  
7.90  
7.40  
5.00  
0.55  
0.63  
0°  
2,3  
1
1
JEDEC #: MO-150  
Controlling Dimension is Millimeters.  
Notes: 1.“D” and “E1” are reference datums and do not included mold flash or protrusions, but do include mold mismatch and are measured  
at the parting line, mold flash or protrusions shall not exceed 0.20 mm per side.  
2.Dimension “b” does not include dambar protrusion/intrusion. Allowable dambar protrusion shall be 0.13 mm total in excess of “b”  
dimension at maximum material condition. Dambar intrusion shall not reduce dimension “b” by more than 0.07 mm at least  
material condition.  
3.These dimensions apply to the flat section of the lead between 0.10 and 0.25 mm from lead tips.  
DS713A5  
31  
7/31/07  
CS5560  
6. ORDERING INFORMATION  
Model  
CS5560-ISZ  
Linearity  
Temperature  
-40 to +85 °C  
Conversion Time  
Throughput  
Package  
0.0007%  
20 µs  
50 kSps  
24-pin SSOP  
7. ENVIRONMENTAL, MANUFACTURING, & HANDLING INFORMATION  
Model Number  
CS5560-ISZ  
Peak Reflow Temp  
MSL Rating*  
Max Floor Life  
7 Days  
260 °C  
3
* MSL (Moisture Sensitivity Level) as specified by IPC/JEDEC J-STD-020.  
8. REVISION HISTORY  
Revision  
A1  
Date  
Changes  
MAY 2007  
JUN 2007  
JUN 2007  
JUN 2007  
AUG 2007  
Advance release.  
A2  
Updated serial interface timing parameters.  
Added DNL plot.  
A3  
A4  
Updated Typical Connection diagram.  
Corrected liearity spec. in Ordering Information section.  
A5  
Contacting Cirrus Logic Support  
For all product questions and inquiries contact a Cirrus Logic Sales Representative.  
To find the one nearest to you go to www.cirrus.com  
IMPORTANT NOTICE  
"Advance" product information describes products that are in development and subject to development changes.  
Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject  
to change without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant  
information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale  
supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus  
for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third  
parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights,  
copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives con-  
sent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent  
does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROP-  
ERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE  
IN AIRCRAFT SYSTEMS, MILITARY APPLICATIONS, PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DE-  
VICES, LIFE SUPPORT PRODUCTS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD  
TO BE FULLY AT THE CUSTOMER'S RISK AND CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE  
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN  
SUCH A MANNER. IF THE CUSTOMER OR CUSTOMER'S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS,  
CUSTOMER AGREES, BY SUCH USE, TO FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS  
FROM ANY AND ALL LIABILITY, INCLUDING ATTORNEYS' FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES.  
Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks  
or service marks of their respective owners.  
32  
DS713A5  

相关型号:

CS5560_08

±2.5 V / 5 V, 50 kSps, 24-bit, High-throughput ΔΣ ADC
CIRRUS

CS5560_09

±2.5 V / 5 V, 50 kSps, 24-bit, High-throughput ΔΣ ADC
CIRRUS

CS5566

±2.5 V / 5 V, 5 kSps, 24-bit ΔΣ ADC
CIRRUS

CS5566-ISZ

±2.5 V / 5 V, 5 kSps, 24-bit ΔΣ ADC
CIRRUS

CS5566_09

±2.5 V / 5 V, 5 kSps, 24-bit ΔΣ ADC
CIRRUS

CS5571

【2.5 V / 5 V, 100 kSps, 16-bit, High-throughput ツヒ ADC
CIRRUS

CS5571-ISZ

【2.5 V / 5 V, 100 kSps, 16-bit, High-throughput ツヒ ADC
CIRRUS

CS5571_08

±2.5 V / 5 V, 100 kSps, 16-bit, High-throughput ΔΣ ADC
CIRRUS

CS5581

【2.5 V / 5 V, 200 kSps, 16-bit, High-throughput ツヒ ADC
CIRRUS

CS5581-ISZ

【2.5 V / 5 V, 200 kSps, 16-bit, High-throughput ツヒ ADC
CIRRUS

CS5581_08

±2.5 V / 5 V, 200 kSps, 16-bit, High-throughput ΔΣ ADC
CIRRUS

CS55AZ

Silicon Controlled Rectifier, 800mA I(T), 100V V(DRM)
CENTRAL