CS5571_08 [CIRRUS]

±2.5 V / 5 V, 100 kSps, 16-bit, High-throughput ΔΣ ADC; 【 2.5 V / 5 V , 100 kSPS时, 16位,高通量ツヒADC
CS5571_08
型号: CS5571_08
厂家: CIRRUS LOGIC    CIRRUS LOGIC
描述:

±2.5 V / 5 V, 100 kSps, 16-bit, High-throughput ΔΣ ADC
【 2.5 V / 5 V , 100 kSPS时, 16位,高通量ツヒADC

文件: 总34页 (文件大小:604K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
3/25/08  
10:56  
CS5571  
±2.5 V / 5 V, 100 kSps, 16-bit, High-throughput ∆Σ ADC  
Features & Description  
General Description  
The CS5571 is a single-channel, 16-bit analog-to-digital  
converter capable of 100 kSps conversion rate. The input  
accepts a single-ended analog input signal. On-chip buff-  
ers provide high input impedance for both the AIN input  
and the VREF+ input. This significantly reduces the drive  
requirements of signal sources and reduces errors due to  
source impedances. The CS5571 is a delta-sigma convert-  
er capable of switching multiple input channels at a high  
rate with no loss in throughput. The ADC uses a low-laten-  
cy digital filter architecture. The filter is designed for fast  
settling and settles to full accuracy in one conversion. The  
converter's 16-bit data output is in serial format, with the  
serial port acting as either a master or a slave. The convert-  
er is designed to support bipolar, ground-referenced  
signals when operated from ±2.5V analog supplies.  
‰ Single-ended Analog Input  
‰ On-chip Buffers for High Input Impedance  
‰ Conversion Time = 10 µS  
‰ Settles in One Conversion  
‰ Linearity Error = 0.0008%  
‰ Signal-to-Noise = 92 dB  
‰ S/(N + D) = 91 dB  
‰ DNL = ±0.1 LSB Max.  
‰ Simple three/four-wire serial interface  
‰ Power Supply Configurations:  
- Analog: +5V/GND; IO: +1.8V to +3.3V  
The converter can operate from an analog supply of 0-5V  
or from ±2.5V. The digital interface supports standard logic  
operating from 1.8, 2.5, or 3.3 V.  
- Analog: ±2.5V; IO: +1.8V to +3.3V  
‰ Power Consumption:  
- ADC Input Buffers On: 85 mW  
ORDERING INFORMATION:  
- ADC Input Buffers Off: 60 mW  
See Ordering Information on page 34.  
V1+  
V2+  
VL  
CS5571  
VREF+  
VREF-  
SMODE  
CS  
SERIAL  
INTERFACE  
DIGITAL  
FILTER  
LOGIC  
SCLK  
ADC  
AIN  
SDO  
RDY  
ACOM  
DITHER  
RST  
BUFEN  
CONV  
DIGITAL CONTROL  
OSC/CLOCK  
GENERATOR  
BP/UP  
MCLK  
V2-  
TST  
VLR2  
VLR  
V1-  
DCR  
This document contains information for a new product.  
Cirrus Logic reserves the right to modify this product without notice.  
Preliminary Product Information  
MAR ‘08  
DS768PP1  
Copyright © Cirrus Logic, Inc. 2008  
http://www.cirrus.com  
(All Rights Reserved)  
3/25/08  
10:56  
CS5571  
TABLE OF CONTENTS  
1. CHARACTERISTICS AND SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
ANALOG CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
SWITCHING CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
DIGITAL CHARACTERISTICS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
GUARANTEED LOGIC LEVELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
RECOMMENDED OPERATING CONDITIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2. OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
3. THEORY OF OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
3.1 Converter Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
3.2 Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
3.3 Voltage Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3.4 Analog Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3.5 Output Coding Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
3.6 Typical Connection Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
3.7 AIN & VREF Sampling Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.8 Converter Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.9 DITHER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
3.10 Digital Filter Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
3.11 Serial Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
3.11.1 SSC Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
3.11.2 SEC Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
3.12 Power Supplies & Grounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
3.13 Using the CS5571 in Multiplexing Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
3.14 Synchronizing Multiple Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
4. PIN DESCRIPTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
5. PACKAGE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
6. ORDERING INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
7. ENVIRONMENTAL, MANUFACTURING, & HANDLING INFORMATION . . . . . . . . . . . . . . 34  
8. REVISION HISTORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
2
DS768PP1  
3/25/08  
10:56  
CS5571  
LIST OF FIGURES  
Figure 1. SSC Mode - Read Timing, CS remaining low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 2. SSC Mode - Read Timing, CS falling after RDY falls . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 3. SEC Mode - Continuous SCLK Read Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Figure 4. SEC Mode - Discontinuous SCLK Read Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 5. Voltage Reference Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 6. CS5571 Configured Using ±2.5V Analog Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Figure 7. CS5571 Configured for Unipolar Measurement Using a Single 5V Analog Supply. . . . 18  
Figure 8. CS5571 Configured for Bipolar Measurement Using a Single 5V Analog Supply . . . . . 19  
Figure 9. CS5571 DNL Plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 10. CS5581 DNL Error Plot with DNL Histogram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 11. Spectral Performance, 0 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 12. Spectral Performance, -6 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 13. Spectral Performance, -12 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 14. Spectral Performance, -80 dB Dither On . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 15. Spectral Performance, -80 dB Dither Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 16. Spectral Performance, -100 dB Dither On . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 17. Spectral Performance, -100 dB Dither Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 18. Spectral Performance, -116.3 dB Dither On . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 19. Spectral Plot of Noise with Shorted Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 20. Noise Histogram, 4096 Samples Dither On, Code Center. . . . . . . . . . . . . . . . . . . . . . 24  
Figure 21. Noise Histogram, 4096 Samples Dither Off, Code Center. . . . . . . . . . . . . . . . . . . . . . 24  
Figure 22. Noise Histogram, 4096 Samples Dither On, Input at Code Boundary. . . . . . . . . . . . . 24  
Figure 23. Noise Histogram, 4096 Samples Dither Off, Input at Code Boundary. . . . . . . . . . . . . 24  
Figure 24. CS5571 Digital Filter Response (DC to fs/2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 25. CS5571 Digital Filter Response (DC to 10 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 26. CS5571 Digital Filter Response (DC to 4fs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 27. Simple Multiplexing Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 28. More Complex Multiplexing Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
LIST OF TABLES  
Table 1. Output Coding, Two’s Complement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Table 2. Output Coding, Offset Binary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
DS768PP1  
3
3/25/08  
10:56  
CS5571  
1. CHARACTERISTICS AND SPECIFICATIONS  
Min / Max characteristics and specifications are guaranteed over the specified operating conditions.  
Typical characteristics and specifications are measured at nominal supply voltages and T = 25°C.  
A
VLR = 0 V. All voltages measured with respect to 0 V.  
ANALOG CHARACTERISTICS T = -40 to +85 °C; V1+ = V2+ = +2.5 V, ±5%; V1- = V2- = -2.5 V,  
A
±5%; VL -VLR = 3.3 V, ±5%; VREF = (VREF+) - (VREF-) = 4.096V; MCLK = 16 MHz; SMODE = VL. DITHER = VL  
unless otherwise stated; BUFEN = V1+ unless otherwise stated. Connected per Figure 6. Bipolar mode unless oth-  
erwise stated.  
Parameter  
Min  
Typ  
Max  
Unit  
Accuracy  
Linearity Error  
-
-
0.0008  
-
-
%FS  
Differential Linearity Error  
(Note 1)  
±0.1  
LSB  
16  
Positive Full-scale Error  
Negative Full-scale Error  
Full-scale Drift  
-
-
-
-
-
-
1.0  
1.0  
±1  
-
-
-
-
-
-
%FS  
%FS  
(Note 2, 3)  
(Note 2)  
LSB  
LSB  
LSB  
16  
16  
16  
Bipolar Offset  
±15  
±1  
Bipolar Offset Drift  
(Note 2, 3)  
(Note 4)  
Noise  
36  
µVrms  
Dynamic Performance  
Peak Harmonic or Spurious Noise  
1 kHz, -0.5 dB Input  
12 kHz, -0.5 dB Input  
-
-
-96  
-96  
-
-
dB  
dB  
Total Harmonic Distortion  
Signal-to-Noise  
1 kHz, -0.5 dB Input  
-
-94  
92  
-82  
-
dB  
dB  
91  
S/(N + D) Ratio  
-0.5 dB Input, 1 kHz  
-60 dB Input, 1 kHz  
-
-
91  
32  
-
-
dB  
dB  
-3 dB Input Bandwidth  
(Note 5)  
-
84  
-
kHz  
1. No missing codes is guaranteed at 16 bits resolution over the specified temperature range.  
2. One LSB is equivalent to VREF ÷ 216 or 4.096 ÷ 65536 = 62.5 µV.  
3. Total drift over specified temperature range after reset at power-up, at 25º C.  
4. With DITHER off the output will be dominated by quantization.  
5. Scales with MCLK.  
4
DS768PP1  
3/25/08  
10:56  
CS5571  
ANALOG CHARACTERISTICS (CONTINUED) T = -40 to +85 °C; V1+ = V2+ = +2.5 V, ±5%; V1- =  
A
V2- = -2.5 V, ±5%; VL -VLR = 3.3 V, ±5%; VREF = (VREF+) - (VREF-) = 4.096V; MCLK = 16 MHz; SMODE = VL.  
DITHER = VL unless otherwise stated; BUFEN = V1+ unless otherwise stated. Connected per Figure 6.  
Parameter  
Min  
Typ  
Max  
Unit  
Analog Input  
Analog Input Range  
Unipolar  
Bipolar  
0 to +VREF / 2  
±VREF / 2  
V
V
Input Capacitance  
-
10  
-
pF  
CVF Current (Note 6)  
AIN Buffer On (BUFEN = V+)  
AIN Buffer Off (BUFEN = V-)  
ACOM  
-
-
-
600  
130  
130  
-
-
-
nA  
µA  
µA  
Voltage Reference Input  
Voltage Reference Input Range  
(VREF+) – (VREF-)  
4.2  
-
(Note 7)  
2.4  
-
4.096  
10  
V
Input Capacitance  
CVF Current  
pF  
VREF+ Buffer On (BUFEN = V+)  
VREF+ Buffer Off (BUFEN = V-)  
VREF-  
-
-
-
3
1
1
-
-
-
µA  
mA  
mA  
Power Supplies  
DC Power Supply Currents  
I
I
I
-
-
-
-
-
-
18  
1.8  
0.6  
mA  
mA  
mA  
V1  
V2  
VL  
Power Consumption  
Normal Operation Buffers On  
Buffers Off  
-
-
85  
60  
101  
80  
mW  
mW  
Power Supply Rejection  
(Note 8) V1+ , V2+ Supplies  
V1-, V2- Supplies  
-
-
80  
80  
-
-
dB  
dB  
6. Measured using an input signal of 1 V DC.  
7. For optimum performance, VREF+ should always be less than (V+) - 0.2 volts to prevent saturation of the VREF+ input buffer.  
8. Tested with 100 mVp-p on any supply up to 1 kHz. V1+ and V2+ supplies at the same voltage potential, V1- and V2- supplies at  
the same voltage potential.  
DS768PP1  
5
3/25/08  
10:56  
CS5571  
SWITCHING CHARACTERISTICS  
T = -40 to +85 °C; V1+ = V2+ = +2.5 V, ±5%; V1- = V2- = -2.5 V, ±5%;  
A
VL - VLR = 3.3 V, ±5%, 2.5 V, ±5%, or 1.8 V, ±5%  
Input levels: Logic 0 = 0V = Low; Logic 1 = VD+ = High; CL = 15 pF.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Master Clock Frequency  
Internal Oscillator  
External Clock  
XIN  
12  
0.5  
14  
16  
16  
16.2  
MHz  
MHz  
f
clk  
Master Clock Duty Cycle  
Reset  
40  
-
60  
%
RST Low Time  
(Note 9)  
t
1
-
-
µs  
res  
RST rising to RDY falling  
Internal Oscillator  
External Clock  
t
-
-
120  
1536  
-
-
µs  
MCLKs  
wup  
Conversion  
CONV Pulse Width  
t
4
0
-
-
-
-
-
-
MCLKs  
ns  
cpw  
BP/UP setup to CONV falling  
(Note 10)  
t
scn  
scn  
bus  
CONV low to start of conversion  
t
-
2
-
MCLKs  
MCLKs  
Perform Single Conversion (CONV high before RDY falling)  
t
20  
Conversion Time  
(Note 11)  
Start of Conversion to RDY falling  
t
-
-
164  
MCLKs  
buh  
9. Reset must not be released until the power supplies and the voltage reference are within specification.  
10. BP/UP can be changed coincident to CONV falling. BP/UP must remain stable until RDY falls.  
11. If CONV is held low continuously, conversions occur every 160 MCLK cycles.  
If RDY is tied to CONV, conversions will occur every 162 MCLKs.  
If CONV is operated asynchronously to MCLK, a conversion may take up to 164 MCLKs.  
RDY falls at the end of conversion.  
6
DS768PP1  
3/25/08  
10:56  
CS5571  
SWITCHING CHARACTERISTICS (CONTINUED)  
T = -40 to +85 °C; V1+ = V2+ = +2.5 V, ±5%; V1- = V2- = -2.5 V, ±5%;  
A
VL - VLR = 3.3 V, ±5%, 2.5 V, ±5%, or 1.8 V, ±5%  
Input levels: Logic 0 = 0V = Low; Logic 1 = VD+ = High; CL = 15 pF.  
Parameter  
Serial Port Timing in SSC Mode (SMODE = VL)  
RDY falling to MSB stable  
Symbol  
Min  
Typ  
Max  
Unit  
t
t
-
-
-2  
-
-
MCLKs  
ns  
1
2
Data hold time after SCLK rising  
10  
Serial Clock (Out)  
(Note 12, 13)  
Pulse Width (low)  
Pulse Width (high)  
t
t
50  
50  
-
-
-
-
ns  
ns  
3
4
RDY rising after last SCLK rising  
t
-
8
-
MCLKs  
5
12. SDO and SCLK will be high impedance when CS is high. In some systems SCLK and SDO may require pull-down  
resistors.  
13. SCLK = MCLK/2.  
MCLK  
RDY  
t5  
t1  
CS  
t3  
t4  
t2  
SCLK(o)  
LSB  
LSB+1  
SDO  
MSB  
MSB1  
Figure 1. SSC Mode - Read Timing, CS remaining low (Not to Scale)  
DS768PP1  
7
3/25/08  
10:56  
CS5571  
SWITCHING CHARACTERISTICS (CONTINUED)  
T = -40 to +85 °C; V1+ = V2+ = +2.5 V, ±5%; V1- = V2- = -2.5 V, ±5%;  
A
VL - VLR = 3.3 V, ±5%, 2.5 V, ±5%, or 1.8 V, ±5%  
Input levels: Logic 0 = 0V = Low; Logic 1 = VD+ = High; CL = 15 pF.  
Parameter  
Serial Port Timing in SSC Mode (SMODE = VL)  
Data hold time after SCLK rising  
Symbol  
Min  
Typ  
Max  
Unit  
t
-
10  
-
ns  
7
Serial Clock (Out)  
(Note 14, 15)  
Pulse Width (low)  
Pulse Width (high)  
t
t
50  
50  
-
-
-
-
ns  
ns  
8
9
RDY rising after last SCLK rising  
CS falling to MSB stable  
t
-
-
8
10  
8
-
-
-
-
-
MCLKs  
ns  
10  
t
11  
12  
13  
14  
First SCLK rising after CS falling  
CS hold time (low) after SCLK rising  
SCLK, SDO tri-state after CS rising  
t
t
t
-
MCLKs  
ns  
10  
-
-
5
ns  
14. SDO and SCLK will be high impedance when CS is high. In some systems SCLK and SDO may require pull-down  
resistors.  
15. SCLK = MCLK/2.  
MCLK  
t10  
RDY  
t13  
CS  
t8  
t9  
t14  
t12  
t7  
SCLK(o)  
t11  
LSB  
LSB+1  
MSB  
MSB1  
SDO  
Figure 2. SSC Mode - Read Timing, CS falling after RDY falls (Not to Scale)  
8
DS768PP1  
3/25/08  
10:56  
CS5571  
SWITCHING CHARACTERISTICS (CONTINUED)  
T = -40 to +85 °C; V1+ = V2+ = +2.5 V, ±5%; V1- = V2- = -2.5 V, ±5%;  
A
VL - VLR = 3.3 V, ±5%, 2.5 V, ±5%, or 1.8 V, ±5%  
Input levels: Logic 0 = 0V = Low; Logic 1 = VD+ = High; CL = 15 pF.  
Parameter  
Serial Port Timing in SEC Mode (SMODE = VLR)  
SCLK(in) Pulse Width (High)  
Symbol  
Min  
Typ  
Max  
Unit  
-
-
30  
30  
10  
-
-
-
-
-
-
ns  
ns  
ns  
SCLK(in) Pulse Width (Low)  
CS hold time (high) after RDY falling  
t
t
t
t
t
15  
16  
17  
18  
19  
CS hold time (high) after SCLK rising  
CS low to SDO out of Hi-Z  
10  
-
-
-
-
-
-
ns  
ns  
ns  
ns  
(Note 16)  
10  
10  
-
Data hold time after SCLK rising  
Data setup time before SCLK rising  
-
10  
1
10  
t
t
CS hold time (low) after SCLK rising  
RDY rising after SCLK falling  
10  
-
-
ns  
ns  
20  
21  
SCLK  
10  
-
16. SDO will be high impedance when CS is high. In some systems SDO may require a pull-down resistor.  
MCLK  
t21  
RDY  
CS  
t15  
t20  
t16  
SCLK(i)  
SDO  
t17  
t18 t19  
MSB  
LSB  
Figure 3. SEC Mode - Continuous SCLK Read Timing (Not to Scale)  
DS768PP1  
9
3/25/08  
10:56  
CS5571  
MCLK  
t21  
RDY  
CS  
t15  
t20  
SCLK(i)  
SDO  
t17  
t18 t19  
MSB  
LSB  
Figure 4. SEC Mode - Discontinuous SCLK Read Timing (Not to Scale)  
DIGITAL CHARACTERISTICS  
TA = TMIN to TMAX; VL = 3.3V, ±5% or VL = 2.5V, ±5% or 1.8V, ±5%; VLR = 0V  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Input Leakage Current  
Iin  
-
-
2
-
µA  
Digital Input Pin Capacitance  
Digital Output Pin Capacitance  
Cin  
-
-
3
3
pF  
pF  
Cout  
-
10  
DS768PP1  
3/25/08  
10:56  
CS5571  
GUARANTEED LOGIC LEVELS  
TA = -40 to +85 °C; V1+ = V2+ = +2.5 V, ±5%; V1- = V2- = -2.5 V, ±5%;  
VL - VLR = 3.3 V, ±5%, 2.5 V, ±5%, or 1.8 V, ±5%  
Input levels: Logic 0 = 0V = Low; Logic 1 = VD+ = High; CL = 15 pF.  
Guaranteed Limits  
Parameter  
Sym  
VIH  
VL  
Min  
Typ  
Max  
Unit  
V
Conditions  
Logic Inputs  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
1.9  
1.6  
1.2  
Minimum High-level Input Voltage:  
Maximum Low-level Input Voltage:  
1.1  
0.95  
0.6  
VIL  
V
Logic Outputs  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
2.9  
2.1  
Minimum High-level Output Voltage:  
Maximum Low-level Output Voltage:  
IOH = -2 mA  
IOH = -2 mA  
VOH  
V
V
1.65  
0.36  
0.36  
0.44  
VOL  
DS768PP1  
11  
3/25/08  
10:56  
CS5571  
RECOMMENDED OPERATING CONDITIONS  
(VLR = 0V, see Note 17)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Single Analog Supply  
DC Power Supplies:  
(Note 17)  
V1+  
V1+  
V2-  
V1+  
V2-  
4.75  
4.75  
-
-
5.0  
5.0  
0
5.25  
5.25  
-
-
V
V
V
V
V2+  
V1-  
V2-  
0
Dual Analog Supplies  
DC Power Supplies:  
(Note 17)  
V1+  
V1+  
V2-  
V1+  
V2-  
+2.375  
+2.375  
-2.375  
-2.375  
+2.5  
+2.5  
-2.5  
-2.5  
+2.625  
+2.625  
-2.625  
-2.625  
V
V
V
V
V2+  
V1-  
V2-  
Analog Reference Voltage  
(Note 18)  
VREF  
2.4  
4.096  
4.2  
V
[VREF+] – [VREF-]  
17. The logic supply can be any value VL – VLR = +1.71 to +3.465 volts as long as VLR V2- and VL 3.465 V.  
18. The differential voltage reference magnitude is constrained by the V1+ or V1- supply magnitude.  
ABSOLUTE MAXIMUM RATINGS  
(VLR = 0V)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
DC Power Supplies:  
[V1+] – [V1-] (Note 19)  
VL + [ |V1-| ] (Note 20)  
-
-
0
0
-
-
5.5  
6.1  
V
V
Input Current, Any Pin Except Supplies  
Analog Input Voltage  
(Note 21)  
IIN  
-
-
-
-
-
±10  
(V1+) + 0.3  
VL + 0.3  
150  
mA  
V
(AIN and VREF pins)  
VINA  
VIND  
Tstg  
(V1-) – 0.3  
VLR – 0.3  
-65  
Digital Input Voltage  
V
Storage Temperature  
°C  
Notes: 19. V1+ = V2+; V1- = V2-  
20. V1- = V2-  
21. Transient currents of up to 100 mA will not cause SCR latch-up.  
WARNING:  
Recommended Operating Conditions indicate limits to which the device is functionally operational. Abso-  
lute Maximum Ratings indicate limits beyond which permanent damage to the device may occur. The  
Absolute Maximum Ratings are stress ratings only and the device should not be operated at these limits.  
Operation at conditions beyond the Recommended Operating Conditions may affect device reliability, and  
functional operation beyond Recommended Operating Conditions is not implied. Performance specifica-  
tions are intended for the conditions specified for each table in the Characteristics and Specifications sec-  
tion.  
12  
DS768PP1  
3/25/08  
10:56  
CS5571  
2. OVERVIEW  
The CS5571 is a 16-bit analog-to-digital converter capable of 100 kSps conversion rate. The analog input  
accepts a single-ended input with a magnitude of ±VREF / 2 volts. The device is capable of switching mul-  
tiple input channels at a high rate with no loss in throughput. The ADC uses a low-latency digital filter ar-  
chitecture. The filter is designed for fast settling and settles to full accuracy in one conversion.  
The converter is a serial output device. The serial port can be configured to function as either a master or  
a slave.  
The converter can operate from an analog supply of 5V or from ±2.5V. The digital interface supports stan-  
dard logic operating from 1.8, 2.5, or 3.3 V.  
The CS5571 may convert at rates up to 100 kSps when operating from a 16 MHz input clock.  
3. THEORY OF OPERATION  
The CS5571 converter provides high-performance measurement of DC or AC signals. The converter can  
be used to perform single conversions or continuous conversions upon command. Each conversion is in-  
dependent of previous conversions and settles to full specified accuracy, even with a full-scale input volt-  
age step. This is due to the converter architecture which uses a combination of a high-speed delta-sigma  
modulator and a low-latency filter architecture.  
Once power is established to the converter, a reset must be performed. A reset initializes the internal con-  
verter logic.  
If CONV is held low, the converter will convert continuously with RDY falling every 160 MCLKs. This is  
equivalent to 100 kSps if MCLK = 16.0 MHz. If CONV is tied to RDY, a conversion will occur every 162  
MCLKs. If CONV is operated asynchronously to MCLK, it may take up to 164 MCLKs from CONV falling  
to RDY falling.  
Multiple converters can operate synchronously if they are driven by the same MCLK source and CONV  
to each converter falls on the same MCLK falling edge. Alternately, CONV can be held low and all devices  
can be synchronized if they are reset with RST rising on the same falling edge of MCLK.  
The output coding of the conversion word is a function of the BP/UP pin.  
3.1 Converter Operation  
The converter should be reset after the power supplies and voltage reference are stable.  
The CS5571 converts at 100 kSps when synchronously operated (CONV = VLR) from a 16.0 MHz master  
clock. Conversion is initiated by taking CONV low. A conversion lasts 160 master clock cycles, but if  
CONV is asynchronous to MCLK there may be an uncertainty of 0-4 MCLK cycles after CONV falls to  
when a conversion actually begins. This may extend the throughput to 164 MCLKs per conversion.  
When the conversion is completed, the output word is placed into the serial port and RDY goes low. To  
convert continuously, CONV should be held low. In continuous conversion mode with CONV held low, a  
conversion is performed in 160 MCLK cycles. Alternately RDY can be tied to CONV and a conversion will  
occur every 162 MCLK cycles.  
To perform only one conversion, CONV should return high at least 20 master clock cycles before RDY  
falls.  
DS768PP1  
13  
3/25/08  
10:56  
CS5571  
Once a conversion is completed and RDY falls, RDY will return high when all the bits of the data word are  
emptied from the serial port or if the conversion data is not read and CS is held low, RDY will go high two  
MCLK cycles before the end of conversion. RDY will fall at the end of the next conversion when new data  
is put into the port register.  
See Serial Port on page 26 for information about reading conversion data.  
Conversion performance can be affected by several factors. These include the choice of clock source for  
the chip, the timing of CONV, the setting of the DITHER function, and the choice of the serial port mode.  
The converter can be operated from an internal oscillator. This clock source has greater jitter than an  
external crystal-based clock. Jitter may not be an issue when measuring DC signals, or very-low-fre-  
quency AC signals, but can become an issue for higher frequency AC signals. For maximum performance  
when digitizing AC signals, a low-jitter MCLK should be used.  
To achieve the highest resolution when measuring a DC signal with a single conversion the DITHER func-  
tion should be off. If averaging is to be performed with multiple conversions of a DC signal, DITHER  
should be on. To maximize performance, the CONV pin should be held low in the continuous conversion  
state to perform multiple conversions, or CONV should occur synchronous to MCLK, falling when MCLK  
falls.  
If the converter is operated at maximum throughput, the SSC serial port mode is less likely to cause in-  
terference to measurements as the SCLK output is synchronized to the MCLK. Alternately, any interfer-  
ence due to serial port clocking can also be minimized if data is read in the SEC serial port mode when a  
conversion is not in progress.  
3.2 Clock  
The CS5571 can be operated from its internal oscillator or from an external master clock. The state of  
MCLK determines which clock source will be used. If MCLK is tied low, the internal oscillator will start and  
be used as the clock source for the converter. If an external CMOS-compatible clock is input into MCLK,  
the converter will power down the internal oscillator and use the external clock. If the MCLK pin is held  
high, the internal oscillator will be held in the stopped state. The MCLK input can be held high to delete  
clock cycles to aid in synchronizing multiple converters in different phase relationships.  
The internal oscillator can be used if the signals to be measured are essentially DC. The internal oscillator  
exhibits jitter at about 500 picoseconds rms. If the CS5571 is used to digitize AC signals, an external  
low-jitter clock source should be used.  
If the internal oscillator is used as the clock for the CS5571, the maximum conversion rate will be dictated  
by the oscillator frequency.  
If driven from an external MCLK source, the fast rise and fall times of the MCLK signal can result in clock  
coupling from the internal bond wire of the IC to the analog input. Adding a 50 ohm resistor on the external  
MCLK source significantly reduces this effect.  
14  
DS768PP1  
3/25/08  
10:56  
CS5571  
3.3 Voltage Reference  
The voltage reference for the CS5571 can range from 2.4 volt to 4.2 volts. A 4.096 volt reference is re-  
quired to achieve the specified signal-to-noise performance. Figure 6 and Figure 7 illustrate the connec-  
tion of the voltage reference with either a single +5 V analog supply or with ±2.5 V.  
For optimum performance, the voltage reference device should be one that provides a capacitor connec-  
tion to provide a means of noise filtering, or the output should include some type of bandwidth-limiting fil-  
ter.  
Some 4.096 volt reference devices need only 5 volts total supply for operation and can be connected as  
shown in Figure 6 or Figure 7. The reference should have a local bypass capacitor and an appropriate  
output capacitor.  
Some older 4.096 voltage reference designs require more headroom and must operate from an input volt-  
age of 5.5 to 6.5 volts. If this type of voltage reference is used ensure that when power is applied to the  
system, the voltage reference rise time is slower than the rise time of the V1+ and V1- power supply volt-  
age to the converter. An example circuit to slow the output startup time of the reference is illustrated in  
Figure 5.  
5.5 to 15 V  
2k  
10µF  
VIN  
VOUT  
GND  
4.096 V  
Refer to V1- and VREF1 pins.  
Figure 5. Voltage Reference Circuit  
3.4 Analog Input  
The analog input of the converter is single-ended with a full-scale input of ±2.048 volts, relative to the  
ACOM pin.. This is illustrated in Figure 6 and Figure 7. These diagrams also illustrate a differential buffer  
amplifier configuration for driving the CS5571.  
The capacitors at the outputs of the amplifiers provide a charge reservoir for the dynamic current from the  
A/D inputs while the resistors isolate the dynamic current from the amplifier. The amplifiers can be pow-  
ered from higher supplies than those used by the A/D but precautions should be taken to ensure that the  
op-amp output voltage remains within the power supply limits of the A/D, especially under start-up condi-  
tions.  
DS768PP1  
15  
3/25/08  
10:56  
CS5571  
3.5 Output Coding Format  
The reference voltage directly defines the input voltage range in both the unipolar and bipolar configura-  
tions. In the unipolar configuration (BP/UP low), the first code transition occurs 0.5 LSB above zero, and  
the final code transition occurs 1.5 LSBs below VREF. In the bipolar configuration (BP/UP high), the first  
code transition occurs 0.5 LSB above -VREF and the last transition occurs 1.5 LSBs below +VREF. See  
Table 1 for the output coding of the converter.  
Table 1. Output Coding, Two’s Complement  
Two’s  
Bipolar Input Voltage  
Complement  
>(VREF-1.5 LSB)  
VREF-1.5 LSB  
7F FF  
7F FF  
7F FE  
00 00  
-0.5 LSB  
FF FF  
80 01  
-VREF+0.5 LSB  
80 00  
80 00  
<(-VREF+0.5 LSB)  
NOTE: VREF = [(VREF+) - (VREF-)] / 2  
Table 2. Output Coding, Offset Binary  
Offset  
Unipolar Input Voltage  
Binary  
>(VREF-1.5 LSB)  
FF FF  
FF FF  
VREF-1.5 LSB  
FF FE  
80 00  
(VREF/2)-0.5 LSB  
7F FF  
00 01  
+0.5 LSB  
00 00  
00 00  
<(+0.5 LSB)  
NOTE: VREF = [(VREF+) - (VREF-)] / 2  
16  
DS768PP1  
3/25/08  
10:56  
CS5571  
3.6 Typical Connection Diagrams  
The following figure depicts the CS5571 powered from bipolar analog supplies, +2.5 V and - 2.5 V.  
+2.048 V  
0 V  
CS5571  
-2.048 V  
49.9  
AIN  
150pF  
2k  
4700pF  
C0G  
SMODE  
CS  
5SCLK  
5SDO  
RDY  
ACOM  
(V+) Buffers On  
(V-) Buffers Off  
BUFEN  
VREF+  
CONV  
+2.5 V  
BP/UP  
DITHER  
+4.096  
Voltage  
Reference  
(NOTE 1)  
RST  
10 µF  
0.1 µF  
50  
MCLK  
TST  
VREF-  
-2.5 V  
+3.3 V to +1.8 V  
+2.5 V  
V1+  
V2+  
V2-  
VL  
10  
0.1 µF  
0.1 µF  
0.1 µF  
10  
0.1 µF  
X7R  
VLR2  
DCR  
V1-  
VLR  
-2.5 V  
NOTES  
1. See Section 3.3 Voltage Reference for information on required  
voltage reference performance criteria.  
2.Locate capacitors so as to minimize loop length.  
3. The ±2.5 V supplies should also be bypassed to ground at the converter.  
4. VLR and the power supply ground for the ±2.5 V should be  
connected to the same ground plane under the chip.  
5. SCLK and SDO may require pull-down resistors in some applications.  
Figure 6. CS5571 Configured Using ±2.5V Analog Supplies  
DS768PP1  
17  
3/25/08  
10:56  
CS5571  
The following figure depicts the CS5571 part powered from a single 5V analog supply and configured for  
unipolar measurement.  
0 V to +2.048 V  
CS5571  
49.9  
AIN  
SMODE  
CS  
4700pF  
C0G  
150pF  
2k  
4SCLK  
CS3003 / CS3004  
4SDO  
RDY  
ACOM  
(V+) Buffers On  
(V-) Buffers Off  
BUFEN  
CONV  
+5 V  
BP/UP  
DITHER  
RST  
VREF+  
VREF-  
+4.096  
Voltage  
Reference  
(NOTE 1)  
10 µF  
0.1 µF  
50  
MCLK  
TST  
+3.3 V to 1.8 V  
+5 V  
V1+  
V2+  
V2-  
VL  
10  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
X7R  
VLR2  
DCR  
V1-  
VLR  
NOTES  
1. See Section 3.3 Voltage Reference for information on  
required voltage reference performance criteria.  
2. Locate capacitors so as to minimize loop length.  
3. V1-, V2-, and VLR should be connected to the same  
ground plane under the chip.  
4. SCLK and SDO may require pull-down resistors in  
some applications.  
Figure 7. CS5571 Configured for Unipolar Measurement Using a Single 5V Analog Supply  
18  
DS768PP1  
3/25/08  
10:56  
CS5571  
The following figure depicts the CS5571 part powered from a single 5V analog supply and configured for  
bipolar measurement, referenced to a common mode voltage of 2.5 V.  
+4.548 V  
+2.5 V  
+0.452 V  
CS5571  
49.9  
AIN  
4700pF  
C0G  
150pF  
2k  
SMODE  
CS  
CS3003 / CS3004  
Common Mode Voltage  
(2.5 V Typ.)  
4SCLK  
49.9  
ACOM  
4700pF  
C0G  
150pF  
2k  
4SDO  
RDY  
CS3003 / CS3004  
(V+) Buffers On  
(V-) Buffers Off  
CONV  
CAL  
BUFEN  
VREF+  
+5 V  
BP/UP  
DITHER  
RST  
+4.096  
Voltage  
Reference  
(NOTE 1)  
10 µF  
0.1 µF  
50  
MCLK  
TST  
VREF-  
+3.3 V to 1.8 V  
+5 V  
V1+  
V2+  
V2-  
VL  
10  
0.1 µF  
0.1 µF  
0.1 µF  
0.1 µF  
X7R  
DCR  
V1-  
VLR2  
VLR  
NOTES  
1. See Section 3.3 Voltage Reference for information on  
required voltage reference performance criteria.  
2. Locate capacitors so as to minimize loop length.  
3. V1-, V2-, and VLR should be connected to the same  
ground plane under the chip.  
4. SCLK and SDO may require pull-down resistors in  
some applications.  
Figure 8. CS5571 Configured for Bipolar Measurement Using a Single 5V Analog Supply  
DS768PP1  
19  
3/25/08  
10:56  
CS5571  
3.7 AIN & VREF Sampling Structures  
The CS5571 uses on-chip buffers on the AIN and VREF+ inputs. Buffers provide much higher input im-  
pedance and therefore reduce the amount of drive current required from an external source. This helps  
minimize errors.  
The Buffer Enable (BUFEN) pin determines if the on-chip buffers are used or not. If the BUFEN pin is  
connected to the V1+ supply, the buffers will be enabled. If the BUFEN pin is connected to the V1- pin,  
the buffers are off. The converter will consume about 30 mW less power when the buffers are off, but the  
input impedances of AIN, ACOM and VREF+ will be significantly less than with the buffers enabled.  
3.8 Converter Performance  
The CS5571 achieves excellent differential nonlinearity (DNL) as shown in figures 9 and 10. Figure 9 il-  
lustrates the code widths on a typical scale of ±1 LSB. Figure 10 illustrates a zoom view of figure 9 on a  
scale of ±0.1 LSB. Figure 10 also includes a DNL error histogram that indicates that the errors are equally  
distributed about the perfect code size; and most codes are accurate within ±0.01 LSB.  
1.00  
0.75  
0.50  
0.25  
0.00  
-0.25  
-0.50  
-0.75  
-1.00  
1
65535  
Codes  
Figure 9. CS5571 DNL Plot  
+0.1  
+0.09  
+0.08  
+0.07  
+0.06  
+0.05  
+0.04  
+0.03  
+0.02  
+0.01  
0
+0.10  
+0.08  
+0.06  
+0.04  
+0.02  
0
-0.01  
-0.02  
-0.03  
-0.04  
-0.05  
-0.06  
-0.07  
-0.08  
-0.09  
-0.1  
-0.02  
-0.04  
-0.06  
-0.08  
-0.10  
16k  
12k  
8k  
4k  
0
1
65535  
18k  
14k  
10k  
6k  
2k  
Codes  
Counts per 0.01 LSB Error  
Figure 10. CS5581 DNL Error Plot with DNL Histogram  
20  
DS768PP1  
3/25/08  
10:56  
CS5571  
Figures 11, 12, and 13 indicate the spectral performance of the CS5571 with a 0 dB, -6 dB and - 12 dB  
5.55 kHz input signal. In each case, the captured data was windowed with a seven-term window function  
that exhibits 4.3 dB of attenuation before being processed by the FFT.  
0
-20  
0
-20  
5.55 kHz, -6 dB  
32k Samples @ 100 kSps  
5.55 kHz, 0 dB  
32k Samples @ 100 kSps  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
0
10k  
20k  
30k  
40k  
50k  
0
10k  
20k  
30k  
40k  
50k  
Frequency (Hz)  
Frequency (Hz)  
Figure 11. Spectral Performance, 0 dB  
Figure 12. Spectral Performance, -6 dB  
0
-20  
5.55 kHz, -12 dB  
32k Samples @ 100 kSps  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
0
10k  
20k  
30k  
40k  
50k  
Frequency (Hz)  
Figure 13. Spectral Performance, -12 dB  
DS768PP1  
21  
3/25/08  
10:56  
CS5571  
Figures 14 and 15 illustrate the small signal performance of the CS5571 with a 5.55 kHz signal at -80 dB  
down. Figure 14 is with DITHER on and Figure 15 is with DITHER off. At -80 dB the signal is 1/10,000  
of full scale, having a peak-to-peak magnitude of only a few codes. For small signals, DNL errors and  
quantization errors can introduce distortion because the error in the code size, or the quantization error  
without adequate dither, are a much greater percentage of the signal than with a full-scale input. Figure  
15, with DITHER off, illustrates that distortion components can be introduced when there is not adequate  
dither to randomize the quantization error.  
0
-20  
0
-20  
5.55 kHz, -80 dB  
32k Samples @ 100 kSps  
Dither On  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
0
10k  
20k  
30k  
40k  
50k  
0
10k  
20k  
30k  
40k  
50k  
Frequency (Hz)  
Frequency (Hz)  
Figure 14. Spectral Performance, -80 dB  
Dither On  
Figure 15. Spectral Performance, -80 dB  
Dither Off  
Figures 16 and 17 illustrate DITHER on and DITHER off with a 5.55 kHz input at -100 dB. At -100 dB the  
signal is only about 41 microvolts peak to peak. This is less than the one code width which is about  
62.5 microvolts.  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-100  
-120  
-140  
-160  
0
10k  
20k  
30k  
40k  
50k  
0
10k  
20k  
30k  
40k  
50k  
Frequency (Hz)  
Frequency (Hz)  
Figure 16. Spectral Performance, -100 dB  
Dither On  
Figure 17. Spectral Performance, -100 dB  
Dither Off  
22  
DS768PP1  
3/25/08  
10:56  
CS5571  
Figure 18 illustrates a test signal of 5.55 kHz, 116.3 dB down, which is only 6.3 microvolts peak to peak,  
or about 1/10 of a code width. The converter can reliably digitize this signal because of its excellent DNL  
and proper dither.  
0
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
0
10k  
20k  
30k  
40k  
50k  
Frequency (Hz)  
Figure 18. Spectral Performance, -116.3 dB  
Dither On  
Figure 19 is a spectral plot of the converter with its input grounded. The spectral information is on a log-  
arithmic frequency axis as this illustrates the very low frequency behavior of the converter. Figure 19 was  
produced from averaging the results of 16 FFT outputs using 2 million samples each. This plot also illus-  
trates that the converter noise floor is free of spurious components that may be present in other converters  
due to on-chip digital interference.  
0
-20  
Shorted Input  
2M Samples @ 100 kSps  
16 Averages  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
0.1  
1
10  
100  
1k  
10k  
50k  
Frequency (Hz)  
Figure 19. Spectral Plot of Noise with Shorted Input  
DS768PP1  
23  
3/25/08  
10:56  
CS5571  
Figure 20 illustrates a noise histogram of 4096 samples with the input signal adjusted to almost the exact  
center of a code with DITHER on. Figure 21 illustrates a noise histogram of 4096 samples with the input  
signal at the center of a code with DITHER off.  
Notice that with a signal at the center of a code that the converter outputs the same code over 96% of the  
time. Figures 22 and 23 illustrate the noise histogram, DITHER on and then DITHER off with the input  
signal at a code boundary. Notice that in the DITHER off case the converter only exhibits two codes of  
noise.  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
3940  
2624  
709  
-1  
751  
1
3
9
2
0
75  
-1  
81  
1
0
2
0
0
-2  
0
-2  
0
Output (Codes)  
Output (Codes)  
Figure 20. Noise Histogram, 4096 Samples  
Dither On, Code Center  
Figure 21. Noise Histogram, 4096 Samples  
Dither Off, Code Center  
4500  
4500  
4000  
3500  
3000  
2500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
2050  
2046  
1953  
2019  
2000  
1500  
1000  
500  
0
0
0
1
0
2
0
58  
-1  
66  
2
0
-2  
-1  
0
-2  
0
1
Output (Codes)  
Output (Codes)  
Figure 22. Noise Histogram, 4096 Samples  
Dither On, Input at Code Boundary  
Figure 23. Noise Histogram, 4096 Samples  
Dither Off, Input at Code Boundary  
3.9 DITHER  
From the performance plots, one should conclude that the best AC performance for small signals occurs  
with DITHER on. For capturing multiple samples and performing averaging, DITHER should also be on  
because the dither will randomize the quantization noise of the converter and provide improved accuracy.  
However, if only one conversion is to be taken on a DC input, DITHER should be set to off. With DITHER  
off, the converter exhibits only two codes of noise if the signal is at any point other than the exact center  
of a code. This means that with DITHER off the converter will nominally yield over 32,000 noise-free  
counts.  
24  
DS768PP1  
3/25/08  
10:56  
CS5571  
3.10 Digital Filter Characteristics  
The digital filter is designed for fast settling, therefore it exhibits very little in-band attenuation. The filter  
attenuation is 1.040 dB at 50 kHz when sampling at 100 kSps.  
0.00  
-0.0414 dB  
fs = 100 kSps  
-0.1660 dB  
-0.25  
-0.3740 dB  
-0.50  
-0.75  
-0.6660 dB  
-1.00  
-1.040 dB  
-1.25  
-1.50  
0
10k  
20k  
30k  
40k  
50k  
Frequency (Hz)  
Figure 24. CS5571 Digital Filter Response (DC to fs/2)  
0.00  
-0.001650 dB  
fs = 100 kSps  
-0.00700 dB  
-0.01  
-0.01490 dB  
-0.02  
-0.02643 dB  
-0.03  
-0.04  
-0.04140 dB  
-0.05  
0
2k  
4k  
6k  
8k  
10k  
Frequency (Hz)  
Figure 25. CS5571 Digital Filter Response (DC to 10 kHz)  
0
fs = 100 kSps  
-20  
-40  
-60  
-80  
-100  
-120  
0
100k  
200k  
300k  
400k  
Frequency (Hz)  
Figure 26. CS5571 Digital Filter Response (DC to 4fs)  
DS768PP1  
25  
3/25/08  
10:56  
CS5571  
3.11 Serial Port  
The serial port on the CS5571 can operate in two different modes: synchronous self clock (SSC) mode &  
synchronous external clock (SEC) mode. The serial port must be placed into the SEC mode if the offset  
and gain registers of the converter are to be read or written. The converter must be idle when reading or  
writing to the on-chip registers.  
3.11.1 SSC Mode  
If the SMODE pin is high (SMODE = VL), the serial port operates in the SSC (Synchronous Self Clock)  
mode. In the SSC mode the port shifts out conversion data words with SCLK as an output. SCLK is gen-  
erated inside the converter from MCLK. Data is output from the SDO (Serial Data Output) pin. If CS is  
high, the SDO and SCLK pins will stay in a high-impedance state. If CS is low when RDY falls, the con-  
version data word will be output from SDO MSB first. Data is output on the rising edge of SCLK and should  
be latched into the external logic on the subsequent rising edge of SCLK. When all bits of the conversion  
word are output from the port the RDY signal will return to high.  
3.11.2 SEC Mode  
If the SMODE pin is low (SMODE = VLR), the serial port operates in the SEC (Synchronous External  
Clock mode). In this mode, the user usually monitors RDY. When RDY falls at the end of a conversion,  
the conversion data word is placed into the output data register in the serial port. CS is then activated low  
to enable data output. Note that CS can be held low continuously if it is not necessary to have the SDO  
output operate in the high impedance state. When CS is taken low (after RDY falls) the conversion data  
word is then shifted out of the SDO pin by driving the SCLK pin from system logic external to the converter.  
Data bits are advanced on rising edges of SCLK and latched by the subsequent rising edge of SCLK.  
If CS is held low continuously, the RDY signal will fall at the end of a conversion and the conversion data  
will be placed into the serial port. If the user starts a read, the user will maintain control over the serial port  
until the port is empty. However, if SCLK is not toggled, the converter will overwrite the conversion data  
at the completion of the next conversion. If CS is held low and no read is performed, RDY will rise just  
prior to the end of the next conversion and then fall to signal that new data has been written into the serial  
port.  
3.12 Power Supplies & Grounding  
The CS5571 can be configured to operate with its analog supply operating from 5V, or with its analog sup-  
plies operating from ±2.5V. The digital interface supports digital logic operating from either 1.8V, 2.5V, or  
3.3V.  
Figure 6 on page 17 illustrates the device configured to operate from ±2.5V analog. Figure 7 on page 18  
illustrates the device configured to operate from 5V analog.  
To maximize converter performance, the analog ground and the logic ground for the converter should be  
connected at the converter. In the dual analog supply configuration, the analog ground for the ±2.5V sup-  
plies should be connected to the VLR pin at the converter with the converter placed entirely over the an-  
alog ground plane.  
In the single analog supply configuration (+5V), the ground for the +5V supply should be directly tied to  
the VLR pin of the converter with the converter placed entirely over the analog ground plane. Refer to  
Figure 7 on page 18.  
26  
DS768PP1  
3/25/08  
10:56  
CS5571  
3.13 Using the CS5571 in Multiplexing Applications  
The CS5571 is a delta-sigma A/D converter. Delta-sigma converters use oversampling as means to  
achieve high signal-to-noise performance. This means that once a conversion is started, the converter  
takes many samples to compute the resulting output word. The analog input for the signal to be converted  
must remain active during the entire conversion until RDY falls.  
The CS5571 can be used in multiplexing applications, but the system timing for changing the multiplexer  
channel and for starting a new conversion will depend upon the multiplexer system architecture.  
The simplest system is illustrated in Figure 27. Any time the multiplexer is changed, the analog signal  
presented to the converter must fully settle. After the signal has settled, the CONV signal is issued to the  
converter to start a conversion. Being a delta-sigma converter, the signal must remain present at the input  
of the converter until the conversion is completed. Once the conversion is completed, RDY falls. At this  
time the multiplexer can be changed to the next channel and the data can be read from the serial port.  
The CONV signal should be delayed until after the data is read and until the new analog signal has settled.  
In this configuration, the throughput of the converter will be dictated by the settling time of the analog input  
circuit and the conversion time of the converter. The conversion data can be read from the serial port after  
the multiplexer is changed to the new channel while the analog input signal is settling.  
CS5571  
CH1  
90  
AIN  
CH2  
CH3  
CH4  
150pF  
2k  
4700pF  
C0G  
ACOM  
Amplifier  
Settling Time  
Amplifier  
Settling Time  
Conversion Time  
CONV  
RDY  
CH1  
CH2  
Advance  
Mux  
Throughput  
Figure 27. Simple Multiplexing Scheme  
A more complex multiplexing scheme can be used to increase the throughput of the converter is illustrated  
in Figure 28. In this circuit, two banks of multiplexers are used.  
DS768PP1  
27  
3/25/08  
10:56  
CS5571  
At the same time the converter is performing a conversion on a channel from one bank of multiplexers,  
the second multiplexer bank is used to select the channel for the next conversion. This configuration al-  
lows the buffer amplifier for the second multiplexer bank to fully settle while a conversion is being per-  
formed on the channel from the first multiplexer bank. The multiplexer on the output of the buffer amplifier  
and the CONV signal can be changed at the same time in this configuration. This multiplexing architec-  
ture allows for maximum multiplexing throughput from the A/D converter. The following figure depicts the  
recommended analog input amplifier circuit.  
SW2  
CS5571  
CH1  
CH3  
A1  
A2  
90  
SW1  
150pF  
4700pF  
C0G  
AIN  
2k  
SW3  
CH2  
CH4  
90  
150pF  
4700pF  
C0G  
ACOM  
2k  
CONV  
SW1  
SW2  
SW3  
Select A1  
Select A2  
Select A1  
Select A2  
Select A1  
Select CH1  
Select CH2  
Select CH3  
Select CH1  
Select CH4  
Select CH2  
Convert on CH1  
Convert on CH2  
Convert on CH3  
Convert on CH4  
Convert on CH1  
Figure 28. More Complex Multiplexing Scheme  
28  
DS768PP1  
3/25/08  
10:56  
CS5571  
3.14 Synchronizing Multiple Converters  
Many measurement systems have multiple converters that need to operate synchronously. The convert-  
ers should all be driven from the same master clock. In this configuration, the converters will convert syn-  
chronously if the same CONV signal is used to drive all the converters, and CONV falls on a falling edge  
of MCLK. If CONV is held low continuously, reset (RST) can be used to synchronize multiple converters  
if RST is released on a falling edge of MCLK.  
DS768PP1  
29  
3/26/08  
14:22  
CS5571  
4. PIN DESCRIPTIONS  
1
2
3
4
24  
Chip Select  
CS  
TST  
SMODE  
AIN  
ACOM  
V1-  
V1+  
BUFEN  
VREF+  
VREF-  
BP/UP  
DITHER  
RDY  
SCLK  
SDO  
VL  
VLR  
MCLK  
V2-  
Ready  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
Factory Test  
Serial Mode Select  
Analog Input  
Serial Clock Input/Output  
Serial Data Output  
Logic Interface Power  
Logic Interface Return  
Master Clock  
Negative Voltage 2  
Positive Voltage 2  
Digital Core Regulator  
Convert  
5
6
7
8
Analog Return  
Negative Power 1  
Positive Power 1  
Buffer Enable  
V2+  
9
Voltage Reference Input  
Voltage Reference Input  
Bipolar/Unipolar Select  
Dither Select  
DCR  
CONV  
VLR2  
RST  
10  
11  
12  
Logic Interface Return  
Reset  
CS – Chip Select, Pin 1  
The Chip Select pin allows an external device to access the serial port. When held high, the  
SDO output will be held in a high-impedance output state.  
TST – Factory Test, Pin 2  
For factory use only. Connect to VLR.  
SMODE – Serial Mode Select, Pin 3  
The serial interface mode pin (SMODE) dictates whether the serial port behaves as a master or  
slave interface. If SMODE is tied high (to VL), the port will operate in the Synchronous  
Self-Clocking (SSC) mode. In SSC mode, the port acts as a master in which the converter out-  
puts both the SDO and SCLK signals. If SMODE is tied low (to VLR), the port will operate in the  
Synchronous External Clocking (SEC) mode. In SEC mode, the port acts as a slave in which  
the external logic or microcontroller generates the SCLK used to output the conversion data  
word from the SDO pin.  
AIN – Analog Input, Pin 4  
AIN is the single-ended input.  
ACOM – Analog Return, Pin 5  
ACOM is the analog return for the input signal.  
V1- – Negative Power 1, Pin 6  
The V1- and V2- pins provide a negative supply voltage to the core circuitry of the chip. These  
two pins should be decoupled as shown in the application block diagrams. V1- and V2- should  
be supplied from the same source voltage. For single-supply operation, these two voltages are  
nominally 0 V (Ground). For dual-supply operation, they are nominally -2.5 V.  
V1+ – Positive Power 1, Pin 7  
The V1+ and V2+ pins provide a positive supply voltage to the core circuitry of the chip. These  
two pins should be decoupled as shown in the application block diagrams. V1+ and V2+ should  
be supplied from the same source voltage. For single supply-operation, these two voltages are  
nominally +5 V. For dual-supply operation, they are nominally +2.5 V.  
BUFEN – Buffer Enable, Pin 8  
Buffers on input pins AIN and ACOM are enabled if BUFEN is connected to V1+ and disabled if  
connected to V1-.  
VREF+, VREF- – Voltage Reference Input, Pins 9, 10  
A differential voltage reference input on these pins functions as the voltage reference for the  
converter. The voltage between these pins can range between 2.4 volts and 4.2 volts, with  
4.096 volts being the nominal reference voltage value.  
30  
DS768PP1  
3/25/08  
10:56  
CS5571  
BP/UP – Bipolar/Unipolar Select, Pin 11  
The BP/UP pin determines the span and the output coding of the converter. When set high to  
select BP (bipolar), the input span of the converter is -2.048 volts to +2.048 volts (assuming the  
voltage reference is 4.096 volts) and output data is coded in two's complement format. When  
set low to select UP (unipolar), the input span is 0 to +2.048 and the output data is coded in  
binary format.  
DITHER – Dither Select, Pin 12  
When DITHER is high (DITHER = VL), output conversion words will be dithered. When DITHER  
is low (DITHER = VLR), output words will be dominated by quantization.  
RST – Reset, Pin 13  
Reset is necessary after power is initially applied to the converter. When the RST input is taken  
low, the logic in the converter will be reset. When RST is released to go high, certain portions of  
the analog circuitry are started. RDY falls when reset is complete.  
CONV – Convert, Pin 15  
The CONV pin initiates a conversion cycle if taken low, a previous conversion is in progress.  
When the conversion cycle is completed, the conversion word is output to the serial port register  
and the RDY signal goes low. If CONV is held low and remains low when RDY falls, another  
conversion cycle will be started.  
DCR – Digital Core Regulator, Pin 16  
DCR is the output of the on-chip regulator for the digital logic core. DCR should be bypassed  
with a capacitor to V2-. The DCR pin is not designed to power any external load.  
V2+ – Positive Power 2, Pin 17  
The V1+ and V2+ pins provide a positive supply voltage to the circuitry of the chip. These two  
pins should be decoupled as shown in the application block diagrams. V1+ and V2+ should be  
supplied from the same source voltage. For single-supply operation, these two voltages are  
nominally +5 V. For dual-supply operation, they are nominally +2.5 V.  
V2- – Negative Power 2, Pin 18  
The V1- and V2- pins provide a negative supply voltage to the circuitry of the chip. These two  
pins should be decoupled as shown in the application block diagrams. V1- and V2- should be  
supplied from the same source voltage. For single-supply operation, these two voltages are  
nominally 0 V (Ground). For dual-supply operation, they are nominally -2.5 V.  
MCLK – Master Clock, Pin 19  
The master clock pin (MCLK) is a multi-function pin. If tied low (MCLK = VLR), the on-chip oscil-  
lator will be enabled. If tied high (MCLK = VL), all clocks to the internal circuitry of the converter  
will stop. When MCLK is held high the internal oscillator will also be stopped. MCLK can also  
function as the input for an external CMOS-compatible clock that conforms to supply voltages  
on the VL and VLR pins.  
VLR2, VLR, VL – Logic Interface Power/Return, Pins 14, 20, 21  
VL and VLR are the supply voltages for the digital logic interface. VL and VLR can be config-  
ured with a wide range of common mode voltage. The following interface pins function from the  
VL/VLR supply: SMODE, CS, SCLK, TST, SDO, RDY, DITHER, CONV, RST, BP/UP, and  
MCLK.  
SDO – Serial Data Output, Pin 22  
SDO is the output pin for the serial output port. Data from this pin will be output at a rate deter-  
mined by SCLK and in a format determined by the BP/UP pin. Data is output MSB first and  
advances to the next data bit on the rising edges of SCLK. SDO will be in a high impedance  
state when CS is high.  
DS768PP1  
31  
3/25/08  
10:56  
CS5571  
SCLK – Serial Clock Input/Output, Pin 23  
The SMODE pin determines whether the SCLK signal is an input or an output signal. SCLK  
determines the rate at which data is clocked out of the SDO pin. If the converter is in SSC  
mode, the SCLK frequency will be determined by the master clock frequency of the converter  
(either MCLK or the internal oscillator). In SEC mode, the user determines the SCLK frequency.  
If SCLK is an output (SMODE = VL), it will be in a high-impedance state when CS is high.  
RDY – Ready, Pin 24  
If CONV is low the converter will immediately start a conversion and RDY will remain high until  
the conversion is completed. At the end of any conversion RDY falls to indicate that a conver-  
sion word has been placed into the serial port. RDY will return high after all data bits are shifted  
out of the serial port or two master clock cycles before new data becomes available if the CS pin  
is inactive (high); or two master clock cycles before new data becomes available if the user  
holds CS low but has not started reading the data from the converter when in SEC mode.  
32  
DS768PP1  
3/25/08  
10:56  
CS5571  
5. PACKAGE DIMENSIONS  
24L SSOP PACKAGE DRAWING  
N
D
E11  
A2  
A
E
A1  
b2  
e
L
END VIEW  
SEATING  
PLANE  
SIDE VIEW  
1
2 3  
TOP VIEW  
INCHES  
NOM  
--  
0.006  
0.068  
--  
0.323  
0.307  
0.209  
0.026  
0.03  
4°  
MILLIMETERS  
NOTE  
DIM  
A
A1  
A2  
b
D
E
E1  
e
L
MIN  
--  
MAX  
0.084  
0.010  
0.074  
0.015  
0.335  
0.323  
0.220  
0.030  
0.041  
8°  
MIN  
--  
NOM  
--  
0.13  
1.73  
--  
8.20  
7.80  
5.30  
0.65  
0.75  
4°  
MAX  
2.13  
0.25  
1.88  
0.38  
8.50  
8.20  
5.60  
0.75  
1.03  
8°  
0.002  
0.064  
0.009  
0.311  
0.291  
0.197  
0.022  
0.025  
0°  
0.05  
1.62  
0.22  
7.90  
7.40  
5.00  
0.55  
0.63  
0°  
2,3  
1
1
JEDEC #: MO-150  
Controlling Dimension is Millimeters.  
Notes: 1.“D” and “E1” are reference datums and do not included mold flash or protrusions, but do include mold mismatch and are measured  
at the parting line, mold flash or protrusions shall not exceed 0.20 mm per side.  
2.Dimension “b” does not include dambar protrusion/intrusion. Allowable dambar protrusion shall be 0.13 mm total in excess of “b”  
dimension at maximum material condition. Dambar intrusion shall not reduce dimension “b” by more than 0.07 mm at least  
material condition.  
3.These dimensions apply to the flat section of the lead between 0.10 and 0.25 mm from lead tips.  
DS768PP1  
33  
3/25/08  
10:56  
CS5571  
6. ORDERING INFORMATION  
Model  
Linearity  
Temperature  
Conversion Time  
Throughput  
Package  
CS5571-ISZ  
.0008%  
-40 to +85 °C  
10 µs  
100 kSps  
24-pin SSOP  
7. ENVIRONMENTAL, MANUFACTURING, & HANDLING INFORMATION  
Model Number  
Peak Reflow Temp  
MSL Rating*  
Max Floor Life  
7 Days  
CS5571-ISZ  
260 °C  
3
* MSL (Moisture Sensitivity Level) as specified by IPC/JEDEC J-STD-020.  
8. REVISION HISTORY  
Revision  
Date  
Changes  
PP1  
MAR 2008  
Preliminary release.  
Contacting Cirrus Logic Support  
For all product questions and inquiries contact a Cirrus Logic Sales Representative.  
To find the one nearest to you go to www.cirrus.com  
IMPORTANT NOTICE  
"Preliminary" product information describes products that are in production, but for which full characterization data is not yet available.  
Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject  
to change without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant  
information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale  
supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus  
for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third  
parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights,  
copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives con-  
sent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent  
does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROP-  
ERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE  
IN PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRIT-  
ICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK AND CIR-  
RUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND  
FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOM-  
ER'S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY  
INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING AT-  
TORNEYS' FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES.  
Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks  
or service marks of their respective owners.  
34  
DS768PP1  

相关型号:

CS5581

【2.5 V / 5 V, 200 kSps, 16-bit, High-throughput ツヒ ADC
CIRRUS

CS5581-ISZ

【2.5 V / 5 V, 200 kSps, 16-bit, High-throughput ツヒ ADC
CIRRUS

CS5581_08

±2.5 V / 5 V, 200 kSps, 16-bit, High-throughput ΔΣ ADC
CIRRUS

CS55AZ

Silicon Controlled Rectifier, 800mA I(T), 100V V(DRM)
CENTRAL

CS55B

RF COILS < SMD Type: CS Series>
SUMIDA

CS55B

SILICON CONTROLLED RECTIFIER 0.8 AMPS, 200 AND 400 VOLTS
CENTRAL

CS55BLEADFREE

Silicon Controlled Rectifier, 0.8A I(T)RMS, 200V V(DRM), 200V V(RRM), 1 Element, TO-92, TO-92, 3 PIN
CENTRAL

CS55BPBFREE

Silicon Controlled Rectifier,
CENTRAL

CS55BZ

SILICON CONTROLLED RECTIFIER 0.8 AMPS, 200 AND 400 VOLTS
CENTRAL

CS55BZPBFREE

暂无描述
CENTRAL

CS55D

SILICON CONTROLLED RECTIFIER 0.8 AMPS, 200 AND 400 VOLTS
CENTRAL