CS5566_09 [CIRRUS]

±2.5 V / 5 V, 5 kSps, 24-bit ΔΣ ADC; ±2.5 V / 5 V , 5 kSPS时, 24位ΔΣ ADC
CS5566_09
型号: CS5566_09
厂家: CIRRUS LOGIC    CIRRUS LOGIC
描述:

±2.5 V / 5 V, 5 kSps, 24-bit ΔΣ ADC
±2.5 V / 5 V , 5 kSPS时, 24位ΔΣ ADC

文件: 总30页 (文件大小:485K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
5/4/09  
CS5566  
±2.5 V / 5 V, 5 kSps, 24-bit ΔΣ ADC  
Features & Description  
General Description  
The CS5566 is a single-channel, 24-bit analog-to-digital  
converter capable of 5 kSps conversion rate. The input  
accepts a fully differential analog input signal. On-chip  
buffers provide high input impedance for both the AIN in-  
puts and the VREF+ input. This significantly reduces the  
drive requirements of signal sources and reduces errors  
due to source impedances. The CS5566 is a delta-sigma  
converter capable of switching multiple input channels at  
a high rate with no loss in throughput. The ADC uses a  
low-latency digital filter architecture. The filter is designed  
for fast settling and settles to full accuracy in one conver-  
sion. The converter's 24-bit data output is in serial form,  
with the serial port acting as either a master or a slave. The  
converter is designed to support bipolar, ground-refer-  
enced signals when operated from ±2.5V analog supplies.  
Differential Analog Input  
On-chip Buffers for High Input Impedance  
Conversion Time = 200 μS  
Settles in One Conversion  
Linearity Error = 0.0005%  
Signal-to-Noise = 110 dB  
24 Bits, No Missing Codes  
Simple three/four-wire serial interface  
Power Supply Configurations:  
The converter can operate from an analog supply of 0-5V  
or from ±2.5V. The digital interface supports standard log-  
ic operating from 1.8, 2.5, or 3.3 V.  
- Analog: +5V/GND; IO: +1.8V to +3.3V  
- Analog: ±2.5V; IO: +1.8V to +3.3V  
Power Consumption: 20 mW @ 5 kSps  
ORDERING INFORMATION:  
See Ordering Information on page 30.  
V1+  
V2+  
VL  
CS5566  
VREF+  
VREF-  
SMODE  
CS  
SERIAL  
INTERFACE  
DIGITAL  
FILTER  
LOGIC  
SCLK  
ADC  
AIN+  
AI N-  
SDO  
RDY  
SLEEP  
RST  
BUFEN  
DIGITAL CONTROL  
CONV  
BP/UP  
OSC/CLOCK  
GENERATOR  
MCLK  
V2-  
DCR  
VLR2  
V1-  
TST  
VLR  
This document contains information for a new product.  
Cirrus Logic reserves the right to modify this product without notice.  
Preliminary Product Information  
MAY ‘09  
DS806PP2  
Copyright Cirrus Logic, Inc. 2009  
http://www.cirrus.com  
(All Rights Reserved)  
5/4/09  
CS5566  
TABLE OF CONTENTS  
1. CHARACTERISTICS AND SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
ANALOG CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
SWITCHING CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
DIGITAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
DIGITAL FILTER CHARACTERISTICS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
GUARANTEED LOGIC LEVELS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
RECOMMENDED OPERATING CONDITIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
ABSOLUTE MAXIMUM RATINGS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
2. OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
3. THEORY OF OPERATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
3.1 Converter Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
3.2 Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
3.3 Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
3.4 Voltage Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
3.5 Analog Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
3.6 Output Coding Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
3.7 Typical Connection Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
3.8 AIN & VREF Sampling Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.9 Converter Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
3.10 Digital Filter Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
3.11 Serial Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
3.11.1 SSC Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
3.11.2 SEC Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
3.12 Power Supplies & Grounding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
3.13 Using the CS5566 in Multiplexing Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
3.14 Synchronizing Multiple Converters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
4. PIN DESCRIPTIONS  
26  
5. PACKAGE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
6. ORDERING INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
7. ENVIRONMENTAL, MANUFACTURING, & HANDLING INFORMATION . . . . . . . . . . . . . . 30  
8. REVISION HISTORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
2
DS806PP2  
5/4/09  
CS5566  
LIST OF FIGURES  
Figure 1. Converter Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Figure 2. SSC Mode - Read Timing, CS remaining low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 3. SSC Mode - Read Timing, CS falling after RDY falls . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 4. SEC Mode - Continuous SCLK Read Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Figure 5. SEC Mode - Discontinuous SCLK Read Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Figure 6. Power Consumption vs. Conversion Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 7. Voltage Reference Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 8. CS5566 Configured Using ±2.5V Analog Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 9. CS5566 Configured Using a Single 5V Analog Supply . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 10. CS5566 DNL Plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 11. Spectral Performance, 0 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 12. Spectral Performance, -6 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 13. Spectral Performance, -12 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 14. Spectral Performance, -20 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 15. Spectral Performance, -80 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 16. Spectral Performance, -120 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 17. Spectral Performance, -130 dB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 19. Noise Histogram (4096 Samples) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 18. Spectral Plot of Noise with Shorted Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 20. Digital Filter Response (DC to 2.5 kHz). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
LIST OF TABLES  
Table 1. Output Coding, Two’s Complement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Table 2. Output Coding, Offset Binary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
DS806PP2  
3
5/4/09  
CS5566  
1. CHARACTERISTICS AND SPECIFICATIONS  
Min / Max characteristics and specifications are guaranteed over the specified operating conditions.  
Typical characteristics and specifications are measured at nominal supply voltages and T = 25°C.  
A
VLR = 0 V. All voltages with respect to 0 V.  
ANALOG CHARACTERISTICS T = -40 to +85 °C; V1+ = V2+ = +2.5 V, ±5%; V1- = V2- = -2.5 V,  
A
±5%; VL -VLR = 3.3 V, ±5%; VREF = (VREF+) - (VREF-) = 4.096V; MCLK = 8 MHz; SMODE = VL. BUFEN = V1+  
unless otherwise stated. Connected per Figure 8. Bipolar mode unless otherwise stated.  
Parameter  
Min  
Typ  
Max  
Unit  
Accuracy  
Linearity Error  
-
-
0.0005  
±0.1  
-
-
%FS  
Differential Linearity Error  
(Note 1)  
LSB  
24  
Positive Full-scale Error  
-
1.0  
-
%FS  
Negative Full-scale Error  
Full-scale Drift  
-
-
-
1.0  
1
-
-
-
%FS  
(Note 2)  
(Note 2)  
PPM / °C  
Bipolar Offset  
±500  
LSB  
24  
Bipolar Offset Drift  
Noise  
(Note 2)  
-
-
1
-
-
LSB / °C  
9.5  
μVrms  
Dynamic Performance  
Peak Harmonic or Spurious Noise  
Total Harmonic Distortion  
Signal-to-Noise  
200 Hz, -0.5 dB Input  
200 Hz, -0.5 dB Input  
-
-
-115  
-110  
110  
-
-100  
-
dB  
dB  
dB  
108  
S/(N + D) Ratio  
-0.5 dB Input, 200 Hz  
-60 dB Input, 200 Hz  
-
-
109  
50  
-
-
dB  
dB  
-3 dB Input Bandwidth  
Analog Input  
(Note 3)  
-
21  
-
kHz  
Analog Input Range (Differential)  
Unipolar  
Bipolar  
0 to +VREF  
±VREF  
V
V
Input Capacitance  
-
10  
-
pF  
CVF Current  
(Note 4)  
AIN Buffer On (BUFEN = V+)  
AIN Buffer Off (BUFEN = V-)  
-
-
600  
130  
-
-
nA  
μA  
Common Mode Rejection Ratio (DC to 2 kHz)  
-100  
-110  
-
dB  
1. No missing codes is guaranteed at 24 bits resolution over the specified temperature range.  
2. One LSB is equivalent to (2 x VREF) ÷ 224 or (2 x 4.096) ÷ 16,777,216 = 488 nV.  
3. Scales with MCLK.  
4. Measured using an input signal of 1 V DC.  
4
DS806PP2  
5/4/09  
CS5566  
ANALOG CHARACTERISTICS (CONTINUED) T = -40 to +85 °C; V1+ = V2+ = +2.5 V, ±5%; V1- =  
A
V2- = -2.5 V, ±5%; VL -VLR = 3.3 V, ±5%; VREF = (VREF+) - (VREF-) = 4.096V; MCLK = 8 MHz; SMODE = VL.;  
BUFEN = V1+ unless otherwise stated. Connected per Figure 8.  
Parameter  
Min  
Typ  
Max  
Unit  
Voltage Reference Input  
Voltage Reference Input Range  
(VREF+) – (VREF-)  
4.2  
-
(Note 5)  
2.4  
-
4.096  
10  
V
Input Capacitance  
CVF Current  
pF  
VREF+ Buffer On (BUFEN = V+)  
VREF+ Buffer Off (BUFEN = V-)  
VREF-  
-
-
-
3
1
1
-
-
-
μA  
mA  
mA  
Power Supplies  
Average DC Power Supply Currents (Note 6)  
I
I
I
-
-
-
-
-
-
5
0.6  
0.4  
mA  
mA  
mA  
V1  
V2  
VL  
Peak DC Power Supply Currents  
Average Power Consumption  
Power Supply Rejection  
(Note 6)  
I
I
I
-
-
-
-
-
-
9
1.2  
280  
mA  
mA  
μA  
V1  
V2  
VL  
Normal Operation Buffers On  
(Note 6)  
-
-
-
20  
15  
6
-
-
-
mW  
mW  
mW  
Buffers Off  
Sleep (SLEEP = 0)  
(Note 7) V1+ , V2+ Supplies  
V1-, V2- Supplies  
75  
75  
85  
85  
-
-
dB  
dB  
5. For optimum performance, VREF+ should always be less than (V+) - 0.2 volts to prevent saturation of the VREF+ input buffer.  
6. Specification is for MCLK = 8MHz and 5 kSps conversion rate. MCLK frequency and conversion rate affect power consumption.  
See Section 3.2 Power Consumption for more details.  
7. Tested with 100 mVP-P on any supply up to 2 kHz. V1+ and V2+ supplies at the same voltage potential, V1- and V2- supplies at  
the same voltage potential.  
DS806PP2  
5
5/4/09  
CS5566  
SWITCHING CHARACTERISTICS  
T = -40 to +85 °C; V1+ = V2+ = +2.5 V, ±5%; V1- = V2- = -2.5 V, ±5%;  
A
VL - VLR = 3.3 V, ±5%, 2.5 V, ±5%, or 1.8 V, ±5%  
Input levels: Logic 0 = 0V Low; Logic 1 = VD+ = High; CL = 15 pF.  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Master Clock Frequency  
Internal Oscillator  
External Clock  
XIN  
6
0.5  
7
8
8
8.1  
MHz  
MHz  
f
clk  
Master Clock Duty Cycle  
Reset  
40  
-
60  
%
RST Low Time  
t
1
-
-
µs  
res  
RST rising to RDY falling  
Internal Oscillator  
External Clock  
t
-
-
240  
3084  
-
-
µs  
MCLKs  
wup  
Conversion  
CONV Pulse Width  
t
4
0
-
-
MCLKs  
ns  
cpw  
BP/UP setup to CONV falling  
(Note 8)  
t
-
1182  
-
-
1186  
-
scn  
scn  
bus  
CONV low to start of conversion  
t
-
MCLKs  
MCLKs  
Perform Single Conversion (CONV high before RDY falling)  
t
20  
Conversion Time  
(Note 9)  
Start of Conversion to RDY falling  
t
-
-
1604  
MCLKs  
buh  
Sleep Mode  
SLEEP low to low-power state  
SLEEP high to device active (Note 10)  
t
t
-
-
50  
3083  
-
-
µs  
MCLKs  
con  
con  
8. BP/UP can be changed coincident CONV falling. BP/UP must remain stable until RDY falls.  
9. If CONV is held low continuously, conversions occur every 1600 MCLK cycles.  
If RDY is tied to CONV, conversions will occur every 1602 MCLKs.  
If CONV is operated asynchronously to MCLK, a conversion may take up to 1604 MCLKs.  
RDY falls at the end of conversion.  
10. RDY will fall when the device is fully operational when coming out of sleep mode.  
tbus  
CONVERT  
RDY  
Converter  
Status  
SDO  
ACTIVE  
IDLE  
CONVERT  
IDLE  
354 + 64 MCLKs  
1182 - 1186 MCLKs  
1600 - 1604 MCLKs  
Figure 1. Converter Status (Not to scale)  
6
DS806PP2  
5/4/09  
CS5566  
SWITCHING CHARACTERISTICS (CONTINUED)  
TA = -40 to +85 °C; V1+ = V2+ = +2.5 V, ±5%; V1- = V2- = -2.5 V, ±5%;  
VL - VLR = 3.3 V, ±5%, 2.5 V, ±5%, or 1.8 V, ±5%  
Input levels: Logic 0 = 0V Low; Logic 1 = VD+ = High; CL = 15 pF.  
Parameter  
Serial Port Timing in SSC Mode (SMODE = VL)  
RDY falling to MSB stable  
Symbol  
Min  
Typ  
Max  
Unit  
t1  
t2  
-
-
-2  
-
-
MCLKs  
ns  
Data hold time after SCLK rising  
10  
Serial Clock (Out)  
(Note 11, 12)  
Pulse Width (low)  
Pulse Width (high)  
t3  
t4  
100  
100  
-
-
-
-
ns  
ns  
RDY rising after last SCLK rising  
t5  
-
8
-
MCLKs  
11. SDO and SCLK will be high impedance when CS is high. In some systems it may require a pull-down resistor.  
12. SCLK = MCLK/2.  
MCLK  
RDY  
t5  
t1  
CS  
t3  
t4  
t2  
SCLK(o)  
LSB  
LSB+1  
SDO  
MSB  
MSB1  
Figure 2. SSC Mode - Read Timing, CS remaining low (Not to Scale)  
DS806PP2  
7
5/4/09  
CS5566  
SWITCHING CHARACTERISTICS (CONTINUED)  
TA = -40 to +85 °C; V1+ = V2+ = +2.5 V, ±5%; V1- = V2- = -2.5 V, ±5%;  
VL - VLR = 3.3 V, ±5%, 2.5 V, ±5%, or 1.8 V, ±5%  
Input levels: Logic 0 = 0V Low; Logic 1 = VD+ = High; CL = 15 pF.  
Parameter  
Serial Port Timing in SSC Mode (SMODE = VL)  
Data hold time after SCLK rising  
Symbol  
Min  
Typ  
Max  
Unit  
t7  
-
10  
-
ns  
Serial Clock (Out)  
(Note 13, 14)  
Pulse Width (low)  
Pulse Width (high)  
t8  
t9  
100  
100  
-
-
-
-
ns  
ns  
RDY rising after last SCLK rising  
CS falling to MSB stable  
t10  
t11  
t12  
t13  
t14  
-
-
8
10  
8
-
-
-
-
-
MCLKs  
ns  
First SCLK rising after CS falling  
CS hold time (low) after SCLK rising  
SCLK, SDO tri-state after CS rising  
-
MCLKs  
ns  
10  
-
-
5
ns  
13. SDO and SCLK will be high impedance when CS is high. In some systems SCLK and SDO may require pull-down  
resistors.  
14. SCLK = MCLK/2.  
MCLK  
t10  
RDY  
t13  
CS  
t8  
t9  
t14  
t12  
t7  
SCLK(o)  
t11  
LSB  
LSB+1  
MSB  
MSB1  
SDO  
Figure 3. SSC Mode - Read Timing, CS falling after RDY falls (Not to Scale)  
8
DS806PP2  
5/4/09  
CS5566  
SWITCHING CHARACTERISTICS (CONTINUED)  
TA = -40 to +85 °C; V1+ = V2+ = +2.5 V, ±5%; V1- = V2- = -2.5 V, ±5%;  
VL - VLR = 3.3 V, ±5%, 2.5 V, ±5%, or 1.8 V, ±5%  
Input levels: Logic 0 = 0V Low; Logic 1 = VD+ = High; CL = 15 pF.  
Parameter  
Serial Port Timing in SEC Mode (SMODE = VLR)  
SCLK(in) Pulse Width (High)  
Symbol  
Min  
Typ  
Max  
Unit  
-
-
30  
30  
10  
-
-
-
-
-
-
ns  
ns  
ns  
SCLK(in) Pulse Width (Low)  
CS hold time (high) after RDY falling  
t15  
t16  
t17  
t18  
t19  
CS hold time (high) after SCLK rising  
CS low to SDO out of Hi-Z  
10  
-
-
-
-
-
-
ns  
ns  
ns  
ns  
(Note 15)  
10  
10  
-
Data hold time after SCLK rising  
Data setup time before SCLK rising  
-
10  
1
10  
t20  
t21  
CS hold time (low) after SCLK rising  
RDY rising after SCLK falling  
10  
-
-
ns  
ns  
SCLK  
10  
-
15. SDO will be high impedance when CS is high. In some systems SDO may require a pull-down resistor.  
MCLK  
t21  
RDY  
CS  
t15  
t20  
t16  
SCLK(i)  
SDO  
t17  
t18 t19  
MSB  
LSB  
Figure 4. SEC Mode - Continuous SCLK Read Timing (Not to Scale)  
DS806PP2  
9
5/4/09  
CS5566  
MCLK  
t21  
RDY  
CS  
t15  
t20  
SCLK(i)  
SDO  
t17  
t18 t19  
MSB  
LSB  
Figure 5. SEC Mode - Discontinuous SCLK Read Timing (Not to Scale)  
DIGITAL CHARACTERISTICS  
TA = TMIN to TMAX; VL = 3.3V, ±5% or VL = 2.5V, ±5% or 1.8V, ±5%; VLR = 0V  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Input Leakage Current  
Iin  
-
-
2
-
µA  
Digital Input Pin Capacitance  
Digital Output Pin Capacitance  
Cin  
-
-
3
3
pF  
pF  
Cout  
-
DIGITAL FILTER CHARACTERISTICS  
TA = TMIN to TMAX; VL = 3.3V, ±5% or VL = 2.5V, ±5% or 1.8V, ±5%; VLR = 0V  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Group Delay  
(Note 16)  
-
-
160  
-
MCLKs  
16. See Figure 4 to understand conversion timing. The 160 MCLK group delay occurs during the 354 MCLK high-power period of a  
conversion cycle. See Section 3.2 Power Consumption for more detail.  
10  
DS806PP2  
5/4/09  
CS5566  
GUARANTEED LOGIC LEVELS  
TA = -40 to +85 °C; V1+ = V2+ = +2.5 V, ±5%; V1- = V2- = -2.5 V, ±5%;  
VL - VLR = 3.3 V, ±5%, 2.5 V, ±5%, or 1.8 V, ±5%  
Input levels: Logic 0 = 0V Low; Logic 1 = VD+ = High; CL = 15 pF.  
Guaranteed Limits  
Parameter  
Sym  
VIH  
VL  
Min  
Typ  
Max  
Unit  
V
Conditions  
Logic Inputs  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
1.9  
1.6  
1.2  
Minimum High-level Input Voltage:  
Maximum Low-level Input Voltage:  
1.1  
0.95  
0.6  
VIL  
V
Logic Outputs  
3.3  
2.5  
1.8  
3.3  
2.5  
1.8  
2.9  
2.1  
Minimum High-level Output Voltage:  
Maximum Low-level Output Voltage:  
IOH = -2 mA  
IOH = -2 mA  
VOH  
V
V
1.65  
0.36  
0.36  
0.44  
VOL  
DS806PP2  
11  
5/4/09  
CS5566  
RECOMMENDED OPERATING CONDITIONS  
(VLR = 0V, see Note 17)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Single Analog Supply  
DC Power Supplies:  
(Note 17)  
V1+  
V1+  
V2-  
V1+  
V2-  
4.75  
4.75  
-
-
5.0  
5.0  
0
5.25  
5.25  
-
-
V
V
V
V
V2+  
V1-  
V2-  
0
Dual Analog Supplies  
DC Power Supplies:  
(Note 17)  
V1+  
V1+  
V2-  
V1+  
V2-  
+2.375  
+2.375  
-2.375  
-2.375  
+2.5  
+2.5  
-2.5  
-2.5  
+2.625  
+2.625  
-2.625  
-2.625  
V
V
V
V
V2+  
V1-  
V2-  
Analog Reference Voltage  
(Note 18)  
VREF  
2.4  
4.096  
4.2  
V
[VREF+] – [VREF-]  
17. The logic supply can be any value VL – VLR = +1.71 to +3.465 volts as long as VLR V2- and VL 3.465 V.  
18. The differential voltage reference magnitude is constrained by the V1+ or V1- supply magnitude.  
ABSOLUTE MAXIMUM RATINGS  
(VLR = 0V)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
DC Power Supplies:  
[V1+] – [V1-] (Note 19)  
VL + [ |V1-| ] (Note 20)  
-
-
0
0
-
-
5.5  
6.1  
V
V
Input Current, Any Pin Except Supplies  
Analog Input Voltage  
(Note 21)  
IIN  
-
-
-
-
-
±10  
(V1+) + 0.3  
VL + 0.3  
150  
mA  
V
(AIN and VREF pins)  
VINA  
VIND  
Tstg  
(V1-) – 0.3  
VLR – 0.3  
-65  
Digital Input Voltage  
V
Storage Temperature  
°C  
Notes: 19. V1+ = V2+; V1- = V2-  
20. V1- = V2-  
21. Transient currents of up to 100 mA will not cause SCR latch-up.  
WARNING:  
Recommended Operating Conditions indicate limits to which the device is functionally operational. Abso-  
lute Maximum Ratings indicate limits beyond which permanent damage to the device may occur. The Ab-  
solute Maximum Ratings are stress ratings only and the device should not be operated at these limits.  
Operation at conditions beyond the Recommended Operating Conditions may affect device reliability, and  
functional operation beyond Recommended Operating Conditions is not implied. Performance specifica-  
tions are intended for the conditions specified for each table in the Characteristics and Specifications sec-  
tion.  
12  
DS806PP2  
5/4/09  
CS5566  
2. OVERVIEW  
The CS5566 is a 24-bit analog-to-digital converter capable of 5 kSps conversion rate. The device is ca-  
pable of switching multiple input channels at a high rate with no loss in throughput. The ADC uses a  
low-latency digital filter architecture. The filter is designed for fast settling and settles to full accuracy in  
one conversion.  
The converter is a serial output device. The serial port can be configured to function as either a master or  
a slave.  
The converter can operate from an analog supply of 5V or from ±2.5V. The digital interface supports stan-  
dard logic operating from 1.8, 2.5, or 3.3 V.  
The CS5566 converts at 5 kSps when operating from a 8 MHz input clock.  
3. THEORY OF OPERATION  
The CS5566 converter provides high-performance measurement of DC or AC signals. The converter can  
be used to perform single conversions or continuous conversions upon command. Each conversion is in-  
dependent of previous conversions and can settle to full specified accuracy, even with a full-scale input  
voltage step. This is due to the converter architecture which uses a combination of a high-speed delta-sig-  
ma modulator and a low-latency filter architecture.  
Once power is established to the converter, a reset must be performed. A reset initializes the internal con-  
verter logic.  
If CONV is held low then the converter will convert continuously with RDY falling every 1600 MCLKs. This  
is equivalent to 5 kSps if MCLK = 8.0 MHz. If CONV is tied to RDY, a conversion will occur every  
1602 MCLKs. If CONV is operated asynchronously to MCLK, it may take up to 1604 MCLKs from CONV  
falling to RDY falling.  
Multiple converters can operate synchronously if they are driven by the same MCLK source and CONV  
to each converter falls on the same MCLK falling edge. Alternately, CONV can be held low and all devices  
are reset with RST rising on the same falling edge of MCLK.  
The output coding of the conversion word is a function of the BP/UP pin.  
The active-low SLEEP signal causes the device to enter a low-power state. When exiting sleep, the con-  
verter will take 3083 MCLK cycles before conversions can be performed. RST should remain inactive  
(high) when SLEEP is asserted (low).  
DS806PP2  
13  
5/4/09  
CS5566  
3.1 Converter Operation  
The converter should be reset after the power supplies and voltage reference are stable.  
The CS5566 converts at 5 kSps when synchronously operated (CONV = VLR) from a 8.0 MHz master  
clock. Conversion is initiated by taking CONV low. A conversion lasts 1600 master clock cycles, but if  
CONV is asynchronous to MCLK there may be an uncertainty of 0-4 MCLK cycles after CONV falls to  
when a conversion actually begins. This may extend the throughput to 1604 MCLKs  
When the conversion is completed, the output word is placed into the serial port and RDY goes low. To  
convert continuously, CONV should be held low. In continuous conversion mode with CONV held low, a  
conversion is performed in 1600 MCLK cycles. Alternately RDY can be tied to CONV and a conversion  
will occur every 1602 MCLK cycles.  
To perform only one conversion, CONV should return high at least 20 master clock cycles before RDY  
falls.  
Once a conversion is completed and RDY falls, RDY will return high when all the bits of the data word are  
emptied from the serial port or if the conversion data is not read and CS is held low, RDY will go high two  
MCLK cycles before the end of conversion. RDY will fall at the end of the next conversion when new data  
is put into the port register.  
See Section 3.11 Serial Port for information about reading conversion data.  
Conversion performance can be affected by several factors. These include the choice of clock source for  
the chip, the timing of CONV, and the choice of the serial port mode.  
The converter can be operated from an internal oscillator. This clock source has greater jitter than an ex-  
ternal crystal-based clock. Jitter may not be an issue when measuring DC signals, or very-low-frequency  
AC signals, but can become an issue for higher frequency AC signals. For maximum performance when  
digitizing AC signals, a low-jitter MCLK should be used.  
To maximize performance, the CONV pin should be held low in the continuous conversion state to per-  
form multiple conversions, or CONV should occur synchronous to MCLK, falling when MCLK falls.  
If the converter is operated at maximum throughput, the SSC serial port mode is less likely to cause in-  
terference to measurements as the SCLK output is synchronized to the MCLK. Alternately, any interfer-  
ence due to serial port clocking can also be minimized if data is read in the SEC serial port mode when a  
conversion is not in progress.  
14  
DS806PP2  
5/4/09  
CS5566  
3.2 Power Consumption  
The power consumption of the CS5566 converter is a function of the conversion rate. Figure 6 illustrates  
the typical power consumption of the converter when operating from either MCLK = 8 MHz or  
MCLK = 4 MHz. The rate at which conversions are performed directly affects the power consumption.  
When the converter is powered but not converting, it is in an idle state where its power consumption is  
about 11 mW. When the CONV signal goes low to start a conversion, the converter delays the actual start  
of conversion for 1182 to 1186 MCLK cycles, depending upon how CONV is controlled. The timing for the  
conversion sequence is shown in Figure 1 on page 6. After the 1182 - 1186 MCLK delay from when  
CONV goes low, the converter enters a higher-power state for 354 MCLK cycles and then returns to a  
lower-power state for 64 MCLK cycles, after which the RDY signal falls to indicate the completion of a  
conversion. Since the peak operating current for the converter occurs during the 354 MCLK, higher-pow-  
er state, it is recommended that a large capacitor be used on the supply to the converter (as shown in  
Figures 9 and 10). This capacitor filters the peak current demand from the power supply. The average  
power consumption for the converter will depend upon the frequency of MCLK and the rate at which con-  
versions are performed as illustrated in Figure 1 on page 6.  
20  
17.5  
MCLK = 4MHz  
MCLK = 8MHz  
15  
12.5  
10  
7.5  
0
500 1k 1.5 2k 2.5k 3k 3.5k 4k 4.5k 5k  
Word Rate (Sps)  
Figure 6. Power Consumption vs. Conversion Rate  
DS806PP2  
15  
5/4/09  
CS5566  
3.3 Clock  
The CS5566 can be operated from its internal oscillator or from an external master clock. The state of  
MCLK determines which clock source will be used. If MCLK is tied low, the internal oscillator will start and  
be used as the clock source for the converter. If an external CMOS-compatible clock is input into MCLK  
the converter will power down the internal oscillator and use the external clock. If the MCLK pin is held  
high, the internal oscillator will be held in the stopped state. The MCLK input can be held high to delete  
clock cycles to aid in operating multiple converters in different phase relationships.  
The internal oscillator can be used if the signals to be measured are essentially DC. The internal oscillator  
exhibits jitter at about 500 picoseconds rms. If the CS5566 is used to digitize AC signals, an external  
low-jitter clock source should be used.  
If the internal oscillator is used as the clock for the CS5566, the maximum conversion rate will be dictated  
by the oscillator frequency.  
If driven from an external MCLK source, the fast rise and fall times of the MCLK signal can result in clock  
coupling from the internal bond wire of the IC to the analog input. Adding a 50 ohm resistor on the external  
MCLK source significantly reduces this effect.  
3.4 Voltage Reference  
The voltage reference for the CS5566 can range from 2.4 volts to 4.2 volts. A 4.096 volt reference is re-  
quired to achieve the specified performance. Figure 8 and Figure 9 illustrate the connection of the voltage  
reference with either a single +5 V analog supply or with ±2.5 V.  
For optimum performance, the voltage reference device should be one that provides a capacitor connec-  
tion to provide a means of noise filtering, or the output should include some type of bandwidth-limiting fil-  
ter. Some 4.096 volt reference devices need only 5 volts total supply for operation and can be connected  
as shown in Figure 8 or Figure 9. The reference should have a local bypass capacitor and an appropriate  
output capacitor.  
Some older 4.096 voltage reference designs require more headroom and must operate from an input volt-  
age of 5.5 to 6.5 volts. If this type of voltage reference is used ensure that when power is applied to the  
system, the voltage reference rise time is slower than the rise time of the V1+ and V1- power supply volt-  
age to the converter. An example circuit to slow the output startup time of the reference is illustrated in  
Figure 7.  
5.5 to 15 V  
2k  
10μF  
VIN  
VOUT  
GND  
4.096 V  
Refer to V1- and VREF1 pins.  
Figure 7. Voltage Reference Circuit  
16  
DS806PP2  
5/4/09  
CS5566  
3.5 Analog Input  
The analog input of the converter is fully differential with a peak-to-peak input of 4.096 volts on each input.  
Therefore, the differential, peak-to-peak input is 8.192 volts. This is illustrated in Figure 8 and Figure 9.  
These diagrams also illustrate a differential buffer amplifier configuration for driving the CS5566.  
The capacitors at the outputs of the amplifiers provide a charge reservoir for the dynamic current from the  
A/D inputs while the resistors isolate the dynamic current from the amplifier. The amplifiers can be pow-  
ered from higher supplies than those used by the A/D but precautions should be taken to ensure that the  
opamp output voltage remains within the power supply limits of the A/D, especially under start-up condi-  
tions.  
3.6 Output Coding Format  
The reference voltage directly defines the input voltage range in both the unipolar and bipolar configura-  
tions. In the unipolar configuration (BP/UP low), the first code transition occurs 0.5 LSB above zero, and  
the final code transition occurs 1.5 LSBs below VREF. In the bipolar configuration (BP/UP high), the first  
code transition occurs 0.5 LSB above -VREF and the last transition occurs 1.5 LSBs below +VREF. See  
Table 1 for the output coding of the converter.  
Table 1. Output Coding, Two’s Complement  
Two’s  
Bipolar Input Voltage  
Complement  
>(VREF-1.5 LSB)  
VREF-1.5 LSB  
7F FF FF  
7F FF FF  
7F FF FE  
00 00 00  
-0.5 LSB  
FF FF FF  
80 00 01  
-VREF+0.5 LSB  
80 00 00  
80 00 00  
<(-VREF+0.5 LSB)  
NOTE: VREF = (VREF+) - (VREF-)  
Table 2. Output Coding, Offset Binary  
Offset  
Unipolar Input Voltage  
Binary  
>(VREF-1.5 LSB)  
FF FF FF  
FF FF FF  
VREF-1.5 LSB  
FF FF FE  
80 00 00  
(VREF/2)-0.5 LSB  
7F FF FF  
00 00 01  
+0.5 LSB  
00 00 00  
00 00 00  
<(+0.5 LSB)  
NOTE: VREF = (VREF+) - (VREF-)  
DS806PP2  
17  
5/4/09  
CS5566  
3.7 Typical Connection Diagrams  
The following figure depicts the CS5566 powered from bipolar analog supplies, +2.5 V and - 2.5 V.  
4700pF  
C0G  
R1  
49.9  
CS5566  
C1  
AIN+  
47pF  
+2.048 V  
0 V  
-2.048 V  
4.99k  
SMODE  
CS  
5SCLK  
4.99k  
49.9  
+2.048 V  
0 V  
-2.048 V  
R1  
C1  
AIN-  
47pF  
4.99k  
5SDO  
RDY  
4700pF  
C0G  
4.99k  
(V+) Buffers On  
CONV  
BUFEN  
VREF+  
+2.5 V  
BP/UP  
SLEEP  
(V-) Buffers Off  
+4.096  
Voltage  
Reference  
(NOTE 1)  
RST  
10 µF  
0.1 µF  
50  
MCLK  
TST  
VREF-  
-2.5 V  
+3.3 V to +1.8 V  
+2.5 V  
V1+  
V2+  
V2-  
VL  
10  
0.1 µF  
47 µF  
0.1 µF  
0.1 µF  
10  
0.1 µF  
X7R  
VLR2  
DCR  
V1-  
VLR  
-2.5 V  
NOTES  
1. See Section 3.3 Voltage Reference for information on required  
voltage reference performance criteria.  
2.Locate capacitors so as to minimize loop length.  
3. The ±2.5 V supplies should also be bypassed to ground at the converter.  
4. VLR and the power supply ground for the ±2.5 V should be  
connected to the same ground plane under the chip.  
5. SCLK and SDO may require pull-down resistors in some applications.  
6. An RC input filter can be used to band limit the input to reduce noise.  
Select R to be equal to the parallel combination of the feedback of the  
feedback resistors 4.99k || 4.99k = 2.5k0 0  
Figure 8. CS5566 Configured Using ±2.5V Analog Supplies  
18  
DS806PP2  
5/4/09  
CS5566  
The following figure depicts the CS5566 device powered from a single 5V analog supply.  
4700pF  
C0G  
49.9  
2.048 V  
AIN+  
CS5566  
47pF  
4.99k  
4.548 V  
2.5 V  
+0.452 V  
SMODE  
CS  
+4.548 V  
2.5 V  
+0.452 V  
4SCLK  
49.9  
AIN-  
4.096 V  
47pF  
4.99k  
4700pF  
C0G  
4SDO  
RDY  
(V+) Buffers On  
(V-) Buffers Off  
CONV  
BUFEN  
VREF+  
+5 V  
BP/UP  
SLEEP  
RST  
+4.096  
Voltage  
Reference  
(NOTE 1)  
10 µF  
0.1 µF  
50  
MCLK  
TST  
VREF-  
+3.3 V to 1.8 V  
+5 V  
V1+  
VL  
10  
0.1 µF  
V2+  
V2-  
47 µF  
0.1 µF  
0.1 µF  
0.1 µF  
X7R  
VLR2  
VLR  
DCR  
V1-  
NOTES  
1. See Section 3.3 Voltage Reference for information on  
required voltage reference performance criteria.  
2. Locate capacitors so as to minimize loop length.  
3. V1-, V2-, and VLR should be connected to the same  
ground plane under the chip.  
4. SCLK and SDO may require pull-down resistors in  
some applications.  
Figure 9. CS5566 Configured Using a Single 5V Analog Supply  
DS806PP2  
19  
5/4/09  
CS5566  
3.8 AIN & VREF Sampling Structures  
The CS5566 uses on-chip buffers on the AIN+, AIN-, and the VREF+ inputs. Buffers provide much higher  
input impedance and therefore reduce the amount of drive current required from an external source. This  
helps minimize errors.  
The Buffer Enable (BUFEN) pin determines if the on-chip buffers are used or not. If the BUFEN pin is con-  
nected to the V1+ supply, the buffers will be enabled. If the BUFEN pin is connected to the V1- pin, the  
buffers are off. The converter will consume about 5 mW less power when the buffers are off, but the input  
impedances of AIN+, AIN- and VREF+ will be significantly less than with the buffers enabled.  
3.9 Converter Performance  
The CS5566 achieves excellent differential nonlinearity (DNL). Figure 10 illustrates the code widths on  
the typical scale of ±1 LSB and on a zoomed scale of ±0.2 LSB.  
(Zoom View)  
Figure 10. CS5566 DNL Plot  
20  
DS806PP2  
5/4/09  
CS5566  
Figure 11 through Figure 16 illustrate the performance of the converter with various input signal magni-  
tudes.  
0
-20  
0
-20  
277 Hz, 0 dB  
32k Samples @ 5 kSps  
277 Hz, -6 dB  
32k Samples @ 5 kSps  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-100  
-120  
-140  
-160  
-180  
0
500  
1k  
1.5k  
2k  
2.5k  
0
500  
1k  
1.5k  
2k  
2.5k  
Frequency (Hz)  
Frequency (Hz)  
Figure 11. Spectral Performance, 0 dB  
Figure 12. Spectral Performance, -6 dB  
0
0
-20  
277 Hz, -20 dB  
32k Samples @ 5 kSps  
277 Hz, -12 dB  
32k Samples @ 5 kSps  
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-100  
-120  
-140  
-160  
-180  
0
500  
1k  
1.5k  
2k  
2.5k  
0
500  
1k  
1.5k  
2k  
2.5k  
Frequency (Hz)  
Frequency (Hz)  
Figure 13. Spectral Performance, -12 dB  
Figure 14. Spectral Performance, -20 dB  
0
0
277 Hz, -120 dB  
32k Samples @ 5 kSps  
277 Hz, -80 dB  
32k Samples @ 5 kSps  
-20  
-20  
-40  
-60  
-40  
-60  
-80  
-80  
-100  
-120  
-140  
-160  
-180  
-100  
-120  
-140  
-160  
-180  
0
500  
1k  
1.5k  
2k  
2.5k  
0
500  
1k  
1.5k  
2k  
2.5k  
Frequency (Hz)  
Frequency (Hz)  
Figure 15. Spectral Performance, -80 dB  
Figure 16. Spectral Performance, -120 dB  
DS806PP2  
21  
5/4/09  
CS5566  
Figure 16 illustrates the device with a small signal 1/1,000,000 of full scale. The signal input for Figure 16  
is about 8.2 microvolts peak to peak, or about 17 codes peak to peak. Figure 17 illustrates the converter  
with a signal at about 2.6 microvolts peak to peak, or about 5 codes peak to peak. The CS5566 achieves  
superb performance with this small signal.  
Figure 18 illustrates the noise floor of the converter from 0.1 Hz to 2.5 kHz. The plot is entirely free of spu-  
rious frequency content due to digital activity inside the chip.  
Figure 19 illustrates a noise histogram of the converter constructed from 4096 samples.  
0
277 Hz, -130 dB  
32k Samples @ 5 kSps  
-20  
-40  
-60  
-80  
-100  
-120  
-140  
-160  
-180  
0
500  
1k  
1.5k  
2k  
2.5k  
Frequency (Hz)  
Figure 17. Spectral Performance, -130 dB  
-60  
-80  
Shorted Input  
2M Samples @ 5 kSps  
16 Averages  
-100  
-120  
-140  
-160  
-180  
0.1  
1
10  
100  
1k  
2.5k  
Frequency (Hz)  
Figure 18. Spectral Plot of Noise with Shorted Input  
100  
4096 Samples  
90  
80  
70  
Mean = 96.32  
Std. Dev. = 21.3  
Max - Min = 150  
60  
50  
40  
30  
20  
10  
0
Output Codes  
Figure 19. Noise Histogram (4096 Samples)  
22  
DS806PP2  
5/4/09  
CS5566  
3.10 Digital Filter Characteristics  
The digital filter is designed for fast settling, therefore it exhibits very little in-band attenuation. The filter  
attenuation is -0.0414 dB at 2.5 kHz when sampling at 5 kSps.  
-0.001646 dB  
fs = 5 kSps  
-0.00663 dB  
-0.0149 dB  
-0.0262 dB  
-0.0414 dB  
Frequency (Hz)  
Figure 20. Digital Filter Response (DC to 2.5 kHz)  
DS806PP2  
23  
5/4/09  
CS5566  
3.11 Serial Port  
The serial port on the CS5566 can operate in two different modes: synchronous self clock (SSC) mode &  
synchronous external clock (SEC) mode. The serial port must be placed into the SEC mode if the offset  
and gain registers of the converter are to be read or written. The converter must be idle when reading or  
writing to the on-chip registers.  
3.11.1 SSC Mode  
If the SMODE pin is high (SMODE = VL), the serial port operates in the SSC (Synchronous Self Clock)  
mode. In the SSC mode the port shifts out conversion data words with SCLK as an output. SCLK is gen-  
erated inside the converter from MCLK. Data is output from the SDO (Serial Data Output) pin. If CS is  
high, the SDO and SCLK pins will stay in a high-impedance state. If CS is low when RDY falls, the con-  
version data word will be output from SDO MSB first. Data is output on the rising edge of SCLK and should  
be latched into the external logic on the subsequent rising edge of SCLK. When all bits of the conversion  
word are output from the port the RDY signal will return to high.  
3.11.2 SEC Mode  
If the SMODE pin is low (SMODE = VLR), the serial port operates in the SEC (Synchronous External  
Clock mode). In this mode, the user usually monitors RDY. When RDY falls at the end of a conversion,  
the conversion data word is placed into the output data register in the serial port. CS is then activated low  
to enable data output. Note that CS can be held low continuously if it is not necessary to have the SDO  
output operate in the high impedance state. When CS is taken low (after RDY falls) the conversion data  
word is then shifted out of the SDO pin by driving the SCLK pin from system logic external to the converter.  
Data bits are advanced on rising edges of SCLK and latched by the subsequent rising edge of SCLK.  
If CS is held low continuously, the RDY signal will fall at the end of a conversion and the conversion data  
will be placed into the serial port. If the user starts a read, the user will maintain control over the serial port  
until the port is empty. However, if SCLK is not toggled, the converter will overwrite the conversion data  
at the completion of the next conversion. If CS is held low and no read is performed, RDY will rise just  
prior to the end of the next conversion and then fall to signal that new data has been written into the serial  
port.  
24  
DS806PP2  
5/4/09  
CS5566  
3.12 Power Supplies & Grounding  
The CS5566 can be configured to operate with its analog supply operating from 5V, or with its analog sup-  
plies operating from ±2.5V. The digital interface supports digital logic operating from either 1.8V, 2.5V, or  
3.3V.  
Figure 8 on page 18 illustrates the device configured to operate from ±2.5V analog. Figure 9 on page 19  
illustrates the device configured to operate from 5V analog. Note that the schematic indicates a 47 μF ca-  
pacitor between V1+ and V1-. This capacitor is necessary to reduce the peak current required from the  
power supply during conversion. See Power Consumption on page 16 for a more detailed discussion.  
To maximize converter performance, the analog ground and the logic ground for the converter should be  
connected at the converter. In the dual analog supply configuration, the analog ground for the ±2.5V sup-  
plies should be connected to the VLR pin at the converter with the converter placed entirely over the an-  
alog ground plane.  
In the single analog supply configuration (+5V), the ground for the +5V supply should be directly tied to  
the VLR pin of the converter with the converter placed entirely over the analog ground plane. Refer to  
Figure 9 on page 19.  
3.13 Using the CS5566 in Multiplexing Applications  
The actual conversion process inside the CS5566 begins 1182 MCLK cycles after the CONV signal is tak-  
en low. This would be over 147 microseconds when MCLK = 8 MHz. If the input channel of an external  
multiplexer is changed coincident with CONV going low, the 1182 MCLK delay should be more than an  
adequate time for settling. If there is an operational amplifier between the multiplexer and the converter,  
one should be certain that the amplifier can settle within the 1182 MCLK delay period. If not, the multiplex-  
er will need to be switched some time prior to CONV going low.  
3.14 Synchronizing Multiple Converters  
Many measurement systems have multiple converters that need to operate synchronously. The convert-  
ers should all be driven from the same master clock. In this configuration, the converters will convert syn-  
chronously if the same CONV signal is used to drive all the converters, and CONV falls on a falling edge  
of MCLK. If CONV is held low continuously, reset (RST) can be used to synchronize multiple converters  
if RST is released on a falling edge of MCLK.  
DS806PP2  
25  
5/4/09  
CS5566  
4. PIN DESCRIPTIONS  
Chip Select  
Factory Test  
Serial Mode Select SMODE  
CS  
TST  
1
2
3
4
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
RDY  
SCLK  
SDO  
VL  
Ready  
Serial Clock Input/Output  
Serial Data Output  
Logic Interface Power  
Logic Interface Return  
Differential Analog Input  
Differential Analog Input  
Negative Power 1  
Positive Power 1  
Buffer Enable BUFEN  
Voltage Reference Input  
Voltage Reference Input  
Bipolar/Unipolar Select  
Sleep Mode Select  
AIN+  
AIN-  
V1-  
5
6
7
8
VLR  
MCLK Master Clock  
V2-  
V2+  
DCR  
V1+  
Negative Voltage 2  
Positive Voltage 2  
Digital Core Regulator  
VREF+  
VREF-  
BP/UP  
SLEEP  
9
10  
11  
12  
CONV Convert  
VLR2  
RST  
Logic Interface Return  
Reset  
CS – Chip Select, Pin 1  
The Chip Select pin allows an external device to access the serial port. If SMODE = VL (SSC  
Mode) and CS is held high, the SDO output and the SCLK output will be held in a  
high-impedance output state.  
TST – Factory Test, Pin 2  
Factory test only. Connect to VLR.  
SMODE – Serial Mode Select, Pin 3  
The serial interface mode pin (SMODE) dictates whether the serial port behaves as a master or  
slave interface. If SMODE is tied high (to VL), the port will operate in the Synchronous  
Self-Clocking (SSC) mode. In SSC mode, the port acts as a master in which the converter out-  
puts both the SDO and SCLK signals. If SMODE is tied low (to VLR), the port will operate in the  
Synchronous External Clocking (SEC) mode. In SEC mode, the port acts as a slave in which  
the external logic or microcontroller generates the SCLK used to output the conversion data  
word from the SDO pin.  
AIN+, AIN- – Differential Analog Input, Pin 4, 5  
AIN+ and AIN- are differential inputs for the converter.  
V1- – Negative Power 1, Pin 6  
The V1- and V2- pins provide a negative supply voltage to the core circuitry of the chip. These  
two pins should be decoupled as shown in the application block diagrams. V1- and V2- should  
be supplied from the same source voltage. For single-supply operation, these two voltages are  
nominally 0 V (Ground). For dual-supply operation, they are nominally -2.5 V.  
V1+ – Positive Power 1, Pin 7  
The V1+ and V2+ pins provide a positive supply voltage to the core circuitry of the chip. These  
two pins should be decoupled as shown in the application block diagrams. V1+ and V2+ should  
be supplied from the same source voltage. For single supply-operation, these two voltages are  
nominally +5 V. For dual-supply operation, they are nominally +2.5 V.  
BUFEN – Buffer Enable, Pin 8  
Buffers on input pins AIN+ and AIN- are enabled if BUFEN is connected to V1+ and disabled if  
connected to V1-.  
VREF+, VREF- – Voltage Reference Input, Pin 9, 10  
A differential voltage reference input on these pins functions as the voltage reference for the  
converter. The voltage between these pins can range between 2.4 volts and 4.2 volts, with  
4.096 volts being the nominal reference voltage value.  
26  
DS806PP2  
5/4/09  
CS5566  
BP/UP – Bipolar/Unipolar Select, Pin 11  
The BP/UP pin determines the span and the output coding of the converter. When set high to  
select BP (bipolar), the input span of the converter is -4.096 volts to +4.096 volts fully differential  
(assuming the voltage reference is 4.096 volts) and output data is coded in two's complement  
format. When set low to select UP (unipolar), the input span is 0 to +4.096 fully differential and  
the output data is coded in binary format.  
SLEEP – Sleep Mode Select, Pin 12  
When taken low, the SLEEP pin will cause the converter to enter into a low-power state. SLEEP  
will stop the internal oscillator and power down all internal analog circuitry.  
RST – Reset, Pin 13  
Reset is necessary after power is initially applied to the converter. When the RST input is taken  
low, the logic in the converter will be reset. When RST is released to go high, certain portions of  
the analog circuitry are started. RDY falls when reset is complete.  
CONV – Convert, Pin 15  
The CONV pin initiates a conversion cycle if taken low, unless a previous conversion is in  
progress. When the conversion cycle is completed, the conversion word is output to the serial  
port register and the RDY signal goes low. If CONV is held low and remains low when RDY  
falls, another conversion cycle will be started.  
DCR – Digital Core Regulator, Pin 16  
DCR is the output of the on-chip regulator for the digital logic core. DCR should be bypassed  
with a capacitor to V2-. The DCR pin is not designed to power any external load.  
V2+ – Positive Power 2, Pin 17  
The V1+ and V2+ pins provide a positive supply voltage to the circuitry of the chip. These two  
pins should be decoupled as shown in the application block diagrams. V1+ and V2+ should be  
supplied from the same source voltage. For single-supply operation, these two voltages are  
nominally +5 V. For dual-supply operation, they are nominally +2.5 V.  
V2- – Negative Power 2, Pin 18  
The V1- and V2- pins provide a negative supply voltage to the circuitry of the chip. These two  
pins should be decoupled as shown in the application block diagrams. V1- and V2- should be  
supplied from the same source voltage. For single-supply operation, these two voltages are  
nominally 0 V (Ground). For dual-supply operation, they are nominally -2.5 V.  
MCLK – Master Clock, Pin 19  
The master clock pin (MCLK) is a multi-function pin. If tied low (MCLK = VLR), the on-chip oscil-  
lator will be enabled. If tied high (MCLK = VL), all clocks to the internal circuitry of the converter  
will stop. When MCLK is held high the internal oscillator will also be stopped. MCLK can also  
function as the input for an external CMOS-compatible clock that conforms to supply voltages  
on the VL and VLR pins.  
VLR2, VLR, VL – Logic Interface Power/Return, Pins 14, 20, 21  
VL and VLR are the supply voltages for the digital logic interface. VL and VLR can be config-  
ured with a wide range of common mode voltage. The following interface pins function from the  
VL/VLR supply: SMODE, CS, SCLK, SDO, RDY, SLEEP, CONV, RST, BP/UP, and MCLK.  
SDO – Serial Data Output, Pin 22  
SDO is the output pin for the serial output port. Data from this pin will be output at a rate deter-  
mined by SCLK and in a format determined by the BP/UP pin. Data is output MSB first and  
advances to the next data bit on the rising edges of SCLK. SDO will be in a high impedance  
state when CS is high.  
DS806PP2  
27  
5/4/09  
CS5566  
SCLK – Serial Clock Input/Output, Pin 23  
The SMODE pin determines whether the SCLK signal is an input or an output signal. SCLK  
determines the rate at which data is clocked out of the SDO pin. If the converter is in SSC  
mode, the SCLK frequency will be determined by the master clock frequency of the converter  
(either MCLK or the internal oscillator). In SEC mode, the user determines the SCLK frequency.  
If SMODE = VL (SSC Mode), SCLK will be in a high-impedance state when CS is high.  
RDY – Ready, Pin 24  
If CONV is low the converter will immediately start a conversion and RDY will remain high until  
the conversion is completed. At the end of any conversion RDY falls to indicate that a conver-  
sion word has been placed into the serial port. RDY will return high after all data bits are shifted  
out of the serial port or two master clock cycles before new data becomes available if the CS pin  
is inactive (high); or two master clock cycles before new data becomes available if the user  
holds CS low but has not started reading the data from the converter when in SEC mode.  
28  
DS806PP2  
5/4/09  
CS5566  
5. PACKAGE DIMENSIONS  
24L SSOP PACKAGE DRAWING  
N
D
E11  
A2  
A
E
A1  
b2  
e
L
END VIEW  
SEATING  
PLANE  
SIDE VIEW  
1
2 3  
TOP VIEW  
INCHES  
NOM  
--  
0.006  
0.068  
--  
0.323  
0.307  
0.209  
0.026  
0.03  
4°  
MILLIMETERS  
NOTE  
DIM  
A
A1  
A2  
b
D
E
E1  
e
L
MIN  
--  
MAX  
0.084  
0.010  
0.074  
0.015  
0.335  
0.323  
0.220  
0.030  
0.041  
8°  
MIN  
--  
NOM  
--  
0.13  
1.73  
--  
8.20  
7.80  
5.30  
0.65  
0.75  
4°  
MAX  
2.13  
0.25  
1.88  
0.38  
8.50  
8.20  
5.60  
0.75  
1.03  
8°  
0.002  
0.064  
0.009  
0.311  
0.291  
0.197  
0.022  
0.025  
0°  
0.05  
1.62  
0.22  
7.90  
7.40  
5.00  
0.55  
0.63  
0°  
2,3  
1
1
JEDEC #: MO-150  
Controlling Dimension is Millimeters.  
Notes: 1.“D” and “E1” are reference datums and do not included mold flash or protrusions, but do include mold mismatch and are measured  
at the parting line, mold flash or protrusions shall not exceed 0.20 mm per side.  
2.Dimension “b” does not include dambar protrusion/intrusion. Allowable dambar protrusion shall be 0.13 mm total in excess of “b”  
dimension at maximum material condition. Dambar intrusion shall not reduce dimension “b” by more than 0.07 mm at least  
material condition.  
3.These dimensions apply to the flat section of the lead between 0.10 and 0.25 mm from lead tips.  
DS806PP2  
29  
5/4/09  
CS5566  
6. ORDERING INFORMATION  
Model  
Linearity  
Temperature  
Conversion Time  
Throughput  
Package  
CS5566-ISZ  
0.0005%  
-40 to +85 °C  
200 μs  
5 kSps  
24-pin SSOP  
7. ENVIRONMENTAL, MANUFACTURING, & HANDLING INFORMATION  
Model Number  
Peak Reflow Temp  
MSL Rating*  
Max Floor Life  
7 Days  
CS5566-ISZ  
260 °C  
3
* MSL (Moisture Sensitivity Level) as specified by IPC/JEDEC J-STD-020.  
8. REVISION HISTORY  
Revision  
PP1  
Date  
Changes  
MAR 2008  
MAY 2009  
Preliminary release.  
Corrected cross reference on page 22.  
PP2  
Contacting Cirrus Logic Support  
For all product questions and inquiries contact a Cirrus Logic Sales Representative.  
To find the one nearest to you go to www.cirrus.com  
IMPORTANT NOTICE  
"Preliminary" product information describes products that are in production, but for which full characterization data is not yet available.  
Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject  
to change without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant  
information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale  
supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus  
for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third  
parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights,  
copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives con-  
sent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent  
does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROP-  
ERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE  
IN PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRIT-  
ICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK AND CIR-  
RUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND  
FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUSTOM-  
ER'S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY  
INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING AT-  
TORNEYS' FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES.  
Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks  
or service marks of their respective owners.  
30  
DS806PP2  

相关型号:

CS5571

【2.5 V / 5 V, 100 kSps, 16-bit, High-throughput ツヒ ADC
CIRRUS

CS5571-ISZ

【2.5 V / 5 V, 100 kSps, 16-bit, High-throughput ツヒ ADC
CIRRUS

CS5571_08

±2.5 V / 5 V, 100 kSps, 16-bit, High-throughput ΔΣ ADC
CIRRUS

CS5581

【2.5 V / 5 V, 200 kSps, 16-bit, High-throughput ツヒ ADC
CIRRUS

CS5581-ISZ

【2.5 V / 5 V, 200 kSps, 16-bit, High-throughput ツヒ ADC
CIRRUS

CS5581_08

±2.5 V / 5 V, 200 kSps, 16-bit, High-throughput ΔΣ ADC
CIRRUS

CS55AZ

Silicon Controlled Rectifier, 800mA I(T), 100V V(DRM)
CENTRAL

CS55B

RF COILS < SMD Type: CS Series>
SUMIDA

CS55B

SILICON CONTROLLED RECTIFIER 0.8 AMPS, 200 AND 400 VOLTS
CENTRAL

CS55BLEADFREE

Silicon Controlled Rectifier, 0.8A I(T)RMS, 200V V(DRM), 200V V(RRM), 1 Element, TO-92, TO-92, 3 PIN
CENTRAL

CS55BPBFREE

Silicon Controlled Rectifier,
CENTRAL