CS5339-KS [CIRRUS]

16-Bit, Stereo A/D Converters for Digital Audio; 16位数字音频立体声A / D转换器
CS5339-KS
型号: CS5339-KS
厂家: CIRRUS LOGIC    CIRRUS LOGIC
描述:

16-Bit, Stereo A/D Converters for Digital Audio
16位数字音频立体声A / D转换器

转换器
文件: 总34页 (文件大小:681K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CS5336 CS5338 CS5339  
16-Bit, Stereo A/D Converters for Digital Audio  
Semiconductor Corporation  
Features  
General Description  
The CS5336, CS5338 & CS5339 are complete analog-  
to-digital converters for stereo digital audio systems.  
They perform sampling, analog-to-digital conversion and  
anti-aliasing filtering, generating 16-bit values for both  
left and right inputs in serial form. The output word rate  
can be up to 50 kHz per channel.  
Complete CMOS Stereo A/D System  
Delta-Sigma A/D Converters  
Digital Anti-Alias Filtering  
S/H Circuitry and Voltage Reference  
Adjustable System Sampling Rates  
including 32kHz, 44.1 kHz & 48kHz  
The ADCs use delta-sigma modulation with 64X over-  
sampling, followed by digital filtering and decimation,  
which removes the need for an external anti-alias filter.  
Low Noise and Distortion  
>90 dB S/(N+D)  
The CS5336 & CS5338 have an SCLK which clocks out  
data on rising edges. The CS5339 has an SCLK which  
clocks out data on falling edges.  
Internal 64X Oversampling  
The CS5336 has a filter passband of dc to 22kHz. The  
CS5338 & CS5339 have a filter passband of dc to 24  
kHz. The filters have linear phase, 0.01 dB passband  
ripple, and >80 dB stopband rejection.  
Linear Phase Digital Anti-Alias Filtering  
0.01dB Passband Ripple  
80dB Stopband Rejection  
The ADC’s are housed in a 0.6" wide 28-pin plastic DIP,  
and also in a 0.3" wide 28-pin SOIC surface mount  
package. Extended temperature range versions of the  
CS5336 are also available.  
Low Power Dissipation: 400 mW  
Power-Down Mode for Portable  
Applications  
Evaluation Board Available  
ORDERING INFORMATION:  
See Page 3-59  
S C LK  
15  
L/R  
14  
IC LK A  
23  
APD  
6
A C A L  
7
O C LK D IC LKD  
21 20  
F SYN C  
17  
16  
28  
SD ATA  
VREF  
Voltage Reference  
12  
13  
Serial O utput Interface  
CM O D E  
SM O D E  
2
3
A IN L  
LP Filter  
ZER O L  
Digital Decim ation  
Filter  
S/H  
Com parator  
11  
D AC  
T S T  
27  
26  
AIN R  
Digital Decim ation  
Filter  
LP Filter  
Z ER O R  
8
S/H  
N C  
N C  
Com parator  
1
Calibration  
Microcontroller  
Calibration  
S R A M  
A GN D  
22  
D AC  
4
5
25  
VL+  
24  
LG N D  
9
10  
18  
V D +  
19  
VA+  
VA-  
D C A L D P D  
D GN D  
Crystal Semiconductor Corporation  
P.O. Box 17847, Austin, TX 78760  
(512) 445-7222 FAX: (512) 445-7581  
AUG ’93  
DS23F1  
3-39  
CS5336, CS5338, CS5339  
ANALOG CHARACTERISTICS (Logic 0 = GND; Logic 1 = VD+; K grade: T = 25°C; B and T  
A
grades: T = T  
to T  
; VA+, VL+,VD+ = 5V; VA- = -5V; Full-Scale Input Sinewave, 1kHz; Output word  
MAX  
A
MIN  
rate = 48 kHz; SCLK = 3.072 MHz; Source Impedance = 50with 10 nF to AGND; Measurement Bandwidth is  
10 Hz to 20 kHz; unless otherwise specified.)  
CS5336,8,9-K  
CS5336-B  
CS5336-T  
Parameter  
Symbol Min Typ Max Min Typ Max Min Typ Max Units  
Specified Temperature Range  
Resolution  
T
A
0
to  
-
70 -40 to +85 -55 to +125 °C  
16  
-
16  
-
-
16  
-
-
Bits  
Dynamic Performance  
Dynamic Range  
92.7 95.7  
S/(N+D) 90.7 92.7  
96  
THD .0025 .001  
.0001  
100 106  
-
-
-
-
-
-
90 93.5  
85 89  
-
-
-
-
-
-
84 92  
82 86  
-
-
-
-
-
-
dB  
dB  
dB  
%
Signal-to-(Noise + Distortion); THD+N  
Signal to Peak Noise  
-
-
95  
.005 .001  
.0001  
90 106  
-
94  
.013 .005  
.0001  
83 96  
Total Harmonic Distortion  
Interchannel Phase Deviation  
-
-
-
°
Interchannel Isolation  
dc Accuracy  
(dc to 20 kHz)  
dB  
Interchannel Gain Mismatch  
-
-
-
-
-
0.01 0.05  
-
-
-
-
-
.01 .05  
-
-
-
-
-
.01 0.1  
dB  
%
Gain Error  
Gain Drift  
(includes Vref tolerance)  
(includes Vref drift, Note 1)  
±1 ±5  
±2 ±5  
±3 ±6  
25  
-
70  
-
70  
-
ppm/°C  
Bipolar Offset Error  
(Note 2)  
(Note1)  
±5 ±15  
±10 ±30  
±16 ±65 LSB  
Offset Drift  
15  
-
20  
-
20  
-
ppm/°C  
Analog Input  
Input Voltage Range  
Input Impedance  
Power Supplies  
(±Full Scale)  
VIN  
ZIN  
±3.5 ±3.68  
-
-
±-3.5±3.68  
-
-
±3.5 ±3.68  
-
-
V
-
65  
-
65  
-
65  
kΩ  
Power Supply Current  
with APD, DPD low  
(Normal Operation)  
(VA+)+(VL+)  
VA-  
IA+  
IA-  
ID+  
-
-
-
25 35  
-25 -35  
30 45  
-
-
-
25 35  
-25 -35  
30 45  
-
-
-
25 35  
-25 -35  
30 50  
mA  
mA  
mA  
VD+  
Power Supply Current  
with APD, DPD high  
(Power-Down Mode)  
(VA+)+(VL+)  
VA-  
IA+  
IA-  
ID+  
-
-
-
10 50  
-10 -50  
10 400  
-
-
-
10 50  
-10 -50  
10 400  
-
-
-
10 50  
-10 -50  
10 400  
µA  
µA  
µA  
VD+  
Power Consumption  
(APD, DPD Low) PDN  
(APD, DPD High) PDS  
-
-
400 575  
0.15 2.5  
-
-
400 575  
0.15 2.5  
-
-
400 600 mW  
0.15 2.5 mW  
Power Supply  
Rejection Ratio  
(dc to 26 kHz)  
PSRR  
-
-
54  
100  
-
-
-
-
54  
100  
-
-
-
-
54  
100  
-
-
dB  
dB  
(26 kHz to 3.046 MHz)  
Notes: 1. This parameter is guaranteed by design and/or characterization.  
2. After calibration with DCAL connected to ACAL, and ZEROL & ZEROR terminated to AGND with an  
impedance matched to the AINR & AINL source impedance. Executing a calibration with ACAL tied  
low (See Power Down and Offset Calibration section) will yield an offset error of typically less than  
± 5LSB.  
Specifications are subject to change without notice.  
3-40  
DS23F1  
CS5336, CS5338, CS5339  
DIGITAL FILTER CHARACTERISTICS  
(T = 25 ° C; VA+, VL+ ,VD+ = 5V ± 5%; VA- = -5V ± 5%; Output word rate of 48 kHz)  
A
Units  
Parameter  
Symbol  
Min  
Max  
Typ  
Passband  
(-3 dB) CS5336  
(-3 dB) CS5338, CS5339  
0
0
kHz  
kHz  
22  
24  
to  
to  
(-0.01 dB)  
(-0.01 dB)  
CS5336  
CS5338, CS5339  
0
0
kHz  
kHz  
20  
22  
to  
to  
Passband Ripple  
Stopband  
_+  
-
-
dB  
0.01  
CS5336  
CS5338, CS5339  
26  
28  
3046  
3044  
kHz  
kHz  
to  
to  
(Note 3)  
Stopband Attenuation  
80  
-
-
-
dB  
s
Group Delay (OWR = Output Word Rate)  
Group Delay Variation vs. Frequency  
t
18/OWR  
-
-
gd  
t
0.0  
us  
-
gd  
Notes: 3. The analog modulator samples the input at 3.072MHz for an output word rate of 48 kHz. There is  
no rejection of input signals which are multiples of the sampling frequency (that is: there is  
no rejection for n x 3.072MHz ±22kHz for the CS5338 & CS5339, or n x 3.072MHz ±20.0kHz for the  
CS5336, where n = 0,1,2,3...).  
DIGITAL CHARACTERISTICS  
(T = 25 °C; VA+, VL+ ,VD+ = 5V ± 5%; VA- = -5V ± 5%)  
A
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
V
70%VD+  
High-Level Input Voltage  
IH  
-
-
V
V
V
V
30% VD+  
Low-Level Input Voltage  
IL  
-
-
-
V
V
High-Level Output Voltage at Io = -20uA  
Low-Level Output Voltage at Io = 20uA  
OH  
4.4  
-
OL  
-
-
-
0.1  
-
V
Iin  
uA  
Input Leakage Current  
1.0  
ABSOLUTE MAXIMUM RATINGS (AGND, LGND, DGND = 0V, all voltages with respect to GND)  
Min  
-0.3  
+0.3  
-0.3  
-0.3  
Max  
Units  
Parameter  
Symbol  
+6.0  
V
V
V
V
Positive Analog  
Negative Analog  
VA+  
VA-  
DC Power Supplies:  
-6.0  
(VA+) + 0.3  
Positive Logic  
Positive Digital  
VL+  
VD+  
+6.0  
_+  
-
mA  
V
I in  
10  
Input Current, Any Pin Except Supplies  
Analog Input Voltage (AIN and ZERO pins)  
Digital Input Voltage  
(VA- )- 0.3  
(VA+ )+ 0.3  
(VD+) + 0.3  
+125  
VINA  
VIND  
V
-0.3  
-55  
-65  
C
Ambient Temperature (power applied)  
Storage Temperature  
T
A
+150  
C
T
stg  
WARNING: Operation at or beyond these limits may result in permanent damage to the device.  
Normal operation is not guaranteed at these extremes.  
DS23F1  
3-41  
CS5336, CS5338, CS5339  
SWITCHING CHARACTERISTICS  
(T = 25 °C; VA+, VL+, VD+ = 5V ± 5%; VA- = -5V ± 5%; Inputs: Logic 0 = 0V, Logic 1 = VD+; C = 20 pF)  
A
L
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
ICLKD Period (CMODE low)  
ICLKD Low (CMODE low)  
(Note 6)  
t
78  
-
3906  
-
ns  
ns  
clkw1  
t
31  
-
clkl1  
ICLKD High (CMODE low)  
t
31  
-
-
ns  
clkh1  
ICLKD rising to OCLKD rising (CMODE low)  
ICLKD Period (CMODE high)  
ICLKD Low (CMODE high)  
t
5
-
40  
2604  
-
ns  
ns  
ns  
io1  
t
52  
-
clkw2  
t
20  
-
clkl2  
ICLKD High (CMODE high)  
t
20  
-
-
ns  
clkh2  
ICLKD rising or falling to OCLKD rising (CMODE high, Note 4)  
ICLKD rising to L/R edge (CMODE low, MASTER mode)  
ICLKD rising to FSYNC edge (CMODE low, MASTER mode)  
ICLKD rising to SCLK edge (CMODE low, MASTER mode)  
ICLKD falling to L/R edge (CMODE high, MASTER mode)  
ICLKD falling to FSYNC edge (CMODE high, MASTER mode)  
ICLKD falling to SCLK edge (CMODE high, MASTER mode)  
SCLK rising to SDATA valid (MASTER mode, Note 5)  
SCLK duty cycle (MASTER mode)  
t
5
-
45  
50  
50  
50  
50  
50  
50  
50  
60  
20  
20  
-
ns  
ns  
ns  
io2  
t
5
-
ilr1  
t
5
-
ifs1  
t
5
-
ns  
isclk1  
t
5
-
ns  
ns  
ilr2  
t
5
-
ifs2  
t
5
-
ns  
isclk2  
t
0
-
ns  
%
sdo  
40  
50  
SCLK rising to L/R (MASTER mode, Note 5)  
t
-20  
-
ns  
mslr  
SCLK rising to FSYNC (MASTER mode, Note 5)  
SCLK Period (SLAVE mode)  
t
-20  
-
ns  
ns  
msfs  
t
155  
-
sclkw  
SCLK Pulse Width Low (SLAVE mode)  
t
60  
-
-
ns  
sclkl  
SCLK Pulse Width High (SLAVE mode)  
t
60  
-
-
ns  
sclkh  
SCLK rising to SDATA valid (SLAVE mode, Note 5)  
L/R edge to MSB valid (SLAVE mode)  
t
-
-
50  
50  
-
ns  
dss  
t
-
-
ns  
ns  
lrdss  
Falling SCLK to L/R edge delay (SLAVE mode, Note 5)  
L/R edge to falling SCLK setup time (SLAVE mode, Note 5)  
Falling SCLK to rising FSYNC delay (SLAVE mode, Note 5)  
Rising FSYNC to falling SCLK setup time (SLAVE mode, Note 5)  
DPD pulse width  
t
30  
-
slr1  
t
30  
-
-
ns  
slr2  
t
30  
-
-
ns  
ns  
ns  
ns  
1/OWR  
sfs1  
t
30  
-
-
sfs2  
t
2 x tclkw  
-
-
-
pdw  
DPD rising to DCAL rising  
t
-
-
50  
-
pcr  
DPD falling to DCAL falling (OWR = Output Word Rate)  
t
4096  
pcf  
Notes: 4. ICLKD rising or falling depends on DPD to L/R timing (see Figure 2).  
5. SCLK is shown for CS5336, CS5338. SCLK is inverted for CS5339.  
6. Specifies minimum output word rate (OWR) of 1 kHz.  
3-42  
DS23F1  
CS5336, CS5338, CS5339  
t
t
clkl2  
t
t
clkl  
clkh2  
clkh  
ICLKD  
ICLKD  
t
t
clkw1  
t
clkw2  
t
OCLKD  
OCLKD  
(CMODE low)  
(CMODE high)  
io1  
io2  
L/R output  
L/R output  
(MASTER mode)  
(MASTER mode)  
t
t
t
t
t
ilr1  
ilr2  
FSYNC output  
FSYNC output  
(MASTER mode)  
(MASTER mode)  
ifs1  
ifs2  
SCLK output  
SCLK output  
(MASTER mode)  
(MASTER mode)  
t
isclk1  
isclk2  
ICLKD to Outputs Propagation Delays (CMODE low)  
ICLKD to Outputs Propagation Delays (CMODE high)  
SCLK output  
(MASTER mode)  
t
mslr  
t
t
pcf  
L/ R output  
pdw  
(MASTER mode)  
t
sdo  
DPD  
SDATA  
t
t
pcr  
msfs  
DCAL  
FSYNC output  
(MASTER mode)  
SCLK to SDATA, L/R & FSYNC - MASTER Mode  
Power Down & Calibration Timing  
t
t
t
sclkh  
t
slr1  
slr2  
sclkl  
SCLK input  
(SLAVE mode)  
t
sclkw  
t
L/R input  
(SLAVE mode)  
t
lrdss  
dss  
MSB  
MSB-1  
MSB-2  
SDATA  
SCLK to L/R & SDATA - SLAVE mode, FSYNC high  
t
t
sfs1  
sfs2  
SCLK input  
(SLAVE mode)  
FSYNC input  
(SLAVE mode)  
MSB-1  
MSB-2  
MSB  
SDATA  
FSYNC to SCLK - SLAVE Mode, FSYNC Controlled.  
DS23F1  
3-43  
CS5336, CS5338, CS5339  
RECOMMENDED OPERATING CONDITIONS  
(AGND, LGND, DGND = 0V; all voltages with respect to ground)  
Parameter  
Symbol  
Min  
Typ  
Max  
VA+  
Units  
DC Power Supplies:  
Positive Digital  
Positive Logic  
Positive Analog  
Negative Analog  
4.75  
5.0  
5.0  
5.0  
V
V
V
V
VD+  
VL+  
VA+  
VA-  
4.75  
4.75  
4.75  
VA+  
5.25  
5.25  
_
_
_
5.0  
_
V
Analog Input Voltage  
V
3.68  
-
(Note 7)  
3.68  
AIN  
Notes: 7. The ADCs accept input voltages up to the analog supplies (VA+, VA-). They will produce a positive  
full-scale output for inputs above 3.68 V and negative full-scale output for inputs below -3.68 V. These  
values are subject to the gain error tolerance specification. Additional tag bits are output to indicate  
the amount of overdrive.  
+5V Digital  
+
Ferrite Bead  
0.1  
µ
F
µ
1 F  
+5V Analog  
+
0.1  
µ
F
51  
1
µ
F
0.1 µF  
18  
VD+  
4
25  
VA+  
VL+  
6
10  
7
Power Down  
28  
APD  
VREF  
& Calibrate  
Control  
0.1  
µ
F
10  
µ
F
DPD  
+
ACAL  
9
DCAL  
Left Analog Input  
51  
2
AINL  
AINR  
CS5336  
CS5338  
CS5339  
13  
12  
10 nF  
10 nF  
SMODE  
CMODE  
Mode  
Settings  
Right Analog Input  
51  
27  
Audio  
Data  
Processor  
16  
A/D CONVERTER  
SDATA  
14  
15  
17  
3
26  
1
L/R  
Timing  
Logic  
ZEROL  
ZEROR  
AGND  
SCLK  
FSYNC  
ICLKD  
& Clock  
20  
21  
23  
OCLKD  
ICLKA  
Ferrite bead may  
be used if VD+ is  
derived from VA+.  
If used, do not drive  
any other logic  
from VD+.  
An example ferrite  
bead is Permag  
VK200-2.5/52  
8
NC  
NC  
22  
VA-  
LGND  
24  
DGND  
19  
TST  
VA+  
5
11  
-5V Analog  
+
0.1  
µF  
1
µF  
Figure 1. Typical Connection Diagram  
3-44  
DS23F1  
CS5336, CS5338, CS5339  
SYSTEM DESIGN  
GENERAL DESCRIPTION  
The CS5336, CS5338, and CS5339 are 16-bit, 2-  
channel A/D converters designed specifically for  
stereo digital audio applications. The devices use  
two one-bit delta-sigma modulators which simul-  
taneously sample the analog input signals at a 64  
X sampling rate. The resulting serial bit streams  
are digitally filtered, yielding pairs of 16-bit val-  
ues. This technique yields nearly ideal conversion  
performance independent of input frequency and  
amplitude. The converters do not require difficult-  
to-design or expensive anti-alias filters, and do not  
require external sample-and-hold amplifiers or a  
voltage reference.  
Very few external components are required to sup-  
port the ADC. Normal power supply decoupling  
components, voltage reference bypass capacitors  
and a single resistor and capacitor on each input  
for anti-aliasing are all that’s required, as shown  
in Figure 1.  
Master Clock Input  
The master input clock (ICLKD) into the ADC  
runs the digital filter, and is used to generate the  
modulator sampling clock. ICLKD frequency is  
determined by the desired Output Word Rate  
(OWR) and the setting of the CMODE pin.  
CMODE high will set the required ICLKD fre-  
quency to 384 X OWR, while CMODE low will  
set the required ICLKD frequency to 256 X  
OWR. Table 1 shows some common clock fre-  
quencies. The digital output clock (OCLKD) is  
always equal to 128 X OWR, which is always  
2 X the input sample rate. OCLKD should be  
connected to ICLKA, which controls the input  
sample rate.  
An on-chip voltage reference provides for an in-  
put signal range of ± 3.68 volts. Any zero offset is  
internally calibrated out during a power-up self-  
calibration cycle. Output data is available in serial  
form, coded as 2’s complement 16-bit numbers.  
Typical power consumption of only 400 mW can  
be further reduced by use of the power-down  
mode.  
For more information on delta-sigma modulation  
and the particular implementation inside these  
ADCs, see the references at the end of this data  
sheet.  
The phase alignment between ICLKD and  
OCLKD is determined as follows: when CMODE is  
0
1
2
3
4
5
6
7
ICLKD  
Input  
DPD  
*
Input  
_
OCLKD/  
L/ R  
Input  
1
1
L/R  
CMODE  
ICLKD  
(MHz)  
ICLKA  
(MHz)  
SCLK  
(MHz)  
**  
(kHz)  
OCLKD  
32  
low  
high  
low  
8.192  
4.096  
4.096  
2.048  
2.048  
2.8224  
2.8224  
3.072  
3.072  
Output  
_
32  
12.288  
L/ R  
Input  
2
2
***  
44.1  
44.1  
48  
11.2896 5.6448  
16.9344 5.6448  
OCLKD  
Output  
high  
low  
12.288  
18.432  
6.144  
6.144  
* DPD low is recognized on the next ICLKD rising edge (#0)  
** L/R rising before ICLKD rising #2 causes OCLKD -1  
*** L/R rising after ICLKD rising #2 causes OCLKD - 2  
48  
high  
Table 1. Common Clock Frequencies  
Figure 2. ICLKD to OCLKD Timing with CMODE  
high (384 X OWR)  
DS23F1  
3-45  
CS5336, CS5338, CS5339  
L/ R  
Output  
0
1
2
3
16 17 18 19 20 21  
31  
0
1
2
3
16 17 18 19 20 21  
31  
0
1
*
SCLK  
Output  
FSYNC  
Output  
SDATA  
Output  
15 14  
1
0
T2 T1 T0  
Tag Bits  
15 14  
1
0
T2 T1 T0  
*
SCLK for CS5336/8.  
SCLK inverted for  
CS5339  
Left Audio Data  
Left Data Tag  
Right Audio Data Tag Bits  
Right Data Tag  
Figure 3. Data Output Timing - MASTER mode  
L/ R  
Input  
15  
30  
15 16  
17 18 19 20 21  
0
1
2
16 17 18 19 20  
31  
0
1
2
31  
0
1
*
SCLK  
Input  
FSYNC  
Input (high)  
SDATA  
15 14  
1
0
T2 T1 T0  
15 14  
1
0
T2 T1 T0  
Output  
*
SCLK for CS5336/8.  
SCLK inverted for  
CS5339  
Left Audio Data  
Tag Bits  
Left Data Tag  
Right Audio Data Tag Bits  
Right Data Tag  
Figure 4. Data Output Timing - SLAVE Mode, FSYNC high  
low, ICLKD is divided by 2 to generate OCLKD.  
The phase relationship between ICLKD and  
OCLKD is always the same, and is shown in the  
Switching Characteristics Timing Diagrams.  
When CMODE is high, OCLKD is ICLKD di-  
vided by 3. There are two possible phase  
relationships between ICLKD and OCLKD,  
which depend on the start-up timing between  
DPD and L/R, shown in Figure 2.  
converter is driven from a master clock (ICLKD)  
and outputs all other clocks, derived from ICLKD  
(see Figure 3). Notice the one SCLK cycle delay  
between L/R edges and FSYNC rising edges.  
FSYNC brackets the 16 data bits for each chan-  
nel.  
In SLAVE mode, L/R and SCLK are inputs. L/R  
must be externally derived from ICLKD, and  
should be equal to the Output Word Rate. SCLK  
should be equal to the input sample rate, which is  
equal to OCLKD/2. Other SCLK frequencies are  
possible, but may degrade dynamic range because  
of interference effects. Data bits are clocked out  
via the SDATA pin using the SCLK and L/R in-  
puts. The rising edge of SCLK causes the ADC to  
Serial Data Interface  
The serial data output interface has 3 possible  
modes of operation: MASTER mode, SLAVE  
mode with FSYNC high, and SLAVE mode with  
FSYNC controlled. In MASTER mode, the A/D  
3-46  
DS23F1  
CS5336, CS5338, CS5339  
L/ R  
Input  
0
1
2
15 16 17 18 19 20  
0
1
2
15 16 17 18 19 20  
*
SCLK  
Input  
FSYNC  
Input  
***  
***  
**  
**  
SDATA  
Output  
15  
15 14  
1
0
T2 T1 T0  
Tag Bits  
15  
15 14  
1
0
T2 T1 T0  
Tag Bits  
Left Audio Data  
Left Data  
Tag  
Right Audio Data  
Right Data  
Tag  
*
**  
***  
SCLK for CS5336/8.  
SCLK inverted for CS5339  
Rising FSYNC enables  
SCLK to clock out SDATA  
Falling FSYNC stops SCLK from  
clocking out SDATA  
Figure 5. Data Output Timing - SLAVE Mode, FSYNC controlled  
output each bit, except the MSB, which is clocked  
out by the L/R edge. As shown in Figure 4, when  
FSYNC is high, serial data bits are clocked imme-  
diately following the L/R edge.  
position in time the data bits onto a common se-  
rial bus.  
The serial nature of the output data results in the  
left and right data words being read at different  
times. However, the words within an L/R cycle  
represent simultaneously sampled analog inputs.  
In SLAVE mode with FSYNC controlled, as  
shown in Figure 5, when FSYNC is low, only the  
MSB is clocked out after the L/R edge. With  
FSYNC low, SCLK is ignored. When it is desired  
to start clocking out data, bring FSYNC high  
which enables SCLK to start clocking out data.  
Bringing FSYNC low will stop the data being  
clocked out. This feature is particularly useful to  
In all modes, additional bits are output after the  
data bits: 3 tag bits and a left/right indicator. The  
tag bits indicate a near-to-clipping input condition  
for the data word to which the tag bits are at-  
tached. Table 2 shows the relationship between  
input level and the tag bit values. The serial bit  
immediately following the tag bits is 0 for the  
left channel, and 1 for the right channel. The re-  
maining bits before the next L/R edge will be 1’s  
for the left channel and 0’s for the right channel.  
Normally, the tag bits are separated from the  
audio data by the digital signal processor. How-  
ever, if the tag bits are interpreted as audio data,  
their position below the LSB would result as a  
very small dc offset.  
Input Level  
1.375 x FS  
T2 T1 T0  
1
1
1
1
0
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1.250 x FS to 1.375 x FS  
1.125 x FS to 1.250 x FS  
1.000 x FS to 1.125 x FS  
-1.006dB to 0.000dB  
-3.060dB to -1.006dB  
-6.000dB to -3.060dB  
< -6.000dB  
In all modes, SCLK is shown for the CS5336 and  
CS5338, where data bits are clocked out on rising  
edges. SCLK is inverted for the CS5339.  
FS = Full Scale (0dB) Input  
Table 2. Tag Bit Definition  
DS23F1  
3-47  
CS5336, CS5338, CS5339  
Certain serial modes align well with various inter-  
face requirements. A CS5339 in MASTER mode,  
with an inverted L/R signal, generates I S  
(Philips) compatible timing. A CS5336 in MAS-  
TER mode, using FSYNC, interfaces well with a  
Motorola DSP56000. A CS5336 in SLAVE mode  
emulates a CS5326 style interface, and also links  
up to a DSP56000 in network mode.  
mended that the above RC filter is placed between  
the active circuitry and the AINR and AINL pins.  
The above example frequencies scale linearly with  
output word rate.  
2
The on-chip voltage reference output is brought  
out to the VREF pin. A 10 µF electrolytic capaci-  
tor in parallel with a 0.1 µF ceramic capacitor  
attached to this pin eliminates the effects of high  
frequency noise. Note the negative value of VREF  
when using polarized capacitors. No load current  
may be taken from the VREF output pin.  
Analog Connections  
The analog inputs are presented to the modulators  
via the AINR and AINL pins. The analog input  
signal range is determined by the internal voltage  
reference value, which is typically -3.68 volts.  
The input signal range therefore is typically  
± 3.68 volts.  
The analog input level used as zero during the  
offset calibration period (described later) is input  
on the ZEROL and ZEROR pins. Typically, these  
pins are directly attached to AGND. For the ulti-  
mate in offset nulling, networks can be attached to  
ZEROR and ZEROL whose impedances match  
the impedances present on AINL and AINR.  
The ADC samples the analog inputs at  
3.072 MHz for a 12.288 MHz ICLKD (CMODE  
low). For the CS5336, the digital filter rejects all  
noise between 26 kHz and (3.072 MHz-26 kHz).  
For the CS5338 and CS5339, the digital filter re-  
jects all noise between 28 kHz and  
(3.072 MHz-28 kHz). However, the filter will not  
reject frequencies right around 3.072 MHz (and  
multiples of 3.072 MHz). Most audio signals do  
not have significant energy at 3.072 MHz. Never-  
theless, a 51 resistor in series with the analog  
input, and a 10 nF NPO or COG capacitor to  
ground will attenuate any noise energy at 3.072  
MHz, in addition to providing the optimum  
source impedance for the modulators. The use of  
capacitors which have a large voltage coefficient  
(such as general purpose ceramics) should be  
avoided since these can degrade signal linearity. If  
active circuitry precedes the ADC, it is recom-  
Power-Down and Offset Calibration  
The ADC has a power-down mode wherein typi-  
cal consumption drops to 150 µW. In addition,  
exiting the power-down state initiates an offset  
calibration procedure.  
APD and DPD are the analog and digital power-  
down pins. When high, they place the analog and  
digital sections in the power-down mode. Bring-  
ing these pins low takes the part out of  
power-down mode. DPD going low initiates a  
calibration cycle. If not using the power down  
feature, APD should be tied to AGND. When us-  
ing the power down feature, DPD and APD may  
be tied together if the capacitor on VREF is not  
Cal Period  
Filter Delay Time  
(4096 x L/R clocks)  
(85.33 ms @ 48kHz)  
(~40 L/R periods)  
(~2 ms @ 48 kHz)  
DPD  
Normal Operation  
DCAL  
Figure 6. Initial Calibration Cycle Timing  
3-48  
DS23F1  
CS5336, CS5338, CS5339  
Power-up Considerations  
greater than 10 µF, as stated in the "Power-Up  
Considerations" section.  
Upon initial application of power to the supply  
pins, the data in the calibration registers will be  
indeterminate. A calibration cycle should always  
be initiated after application of power to replace  
potentially large values of data in these registers  
with the correct values.  
During the offset calibration cycle, the digital sec-  
tion of the part measures and stores the value of  
the calibration input of each channel in registers.  
The calibration input value is subtracted from all  
future outputs. The calibration input may be ob-  
tained from either the analog input pins (AINL  
and AINR) or the zero pins (ZEROL and  
ZEROR) depending on the state of the ACAL pin.  
With ACAL low, the analog input pin voltages are  
measured, and with ACAL high, the zero pin volt-  
ages are measured.  
The modulators settle very quickly (a matter of  
microseconds) after the analog section is powered  
on, either through the application of power, or by  
exiting the power-down mode. The voltage refer-  
ence can take a much longer time to reach a final  
value due to the presence of large external capaci-  
tance on the VREF pin; allow approximately  
5 ms/µF. The calibration period is long enough to  
allow the reference to settle for capacitor values of  
up to 10 µF. If a larger capacitor is used, addi-  
tional time between APD going low and DPD  
going low should be allowed for VREF settling  
before a calibration cycle is initiated.  
As shown in Figure 6, the DCAL output is high  
during calibration, which takes 4096 L/R clock  
cycles. If DCAL is connected to the ACAL input,  
the calibration routine will measure the voltage on  
ZEROR and ZEROL. These should be connected  
directly to ground or through a network matched  
to that present on the analog input pins. Internal  
offsets of each channel will thus be measured and  
subsequently subtracted.  
Grounding and Power Supply Decoupling  
As with any high resolution converter, the ADC  
requires careful attention to power supply and  
grounding arrangements if its potential perform-  
ance is to be realized. Figure 1 shows the  
recommended power arrangements, with VA+,  
VA- and VL+ connected to a clean ± 5 V supply.  
VD+, which powers the digital filter, may be run  
from the system +5V logic supply, provided that  
it is not excessively noisy (< ± 50 mV pk-to-pk).  
Alternatively, VD+ may be powered from VA+ via  
a ferrite bead. In this case, no additional devices  
should be powered from VD+. Analog ground and  
digital ground should be connected together near  
to where the supplies are brought onto the printed  
circuit board. Decoupling capacitors should be as  
near to the ADC as possible, with the low value  
ceramic capacitor being the nearest.  
Alternatively, ACAL may be permanently con-  
nected low and DCAL utilized to control a  
multiplexer which grounds the user’s front end.  
In this case, the calibration routine will measure  
and store not only the internal offsets but also  
any offsets present in the front end input circuitry.  
During calibration, the digital output of both  
channels is forced to a 2’s complement zero. Sub-  
traction of the calibration input from conversions  
after calibration substantially reduces any  
power on click that might otherwise be experi-  
enced. A short delay of approximately 40 output  
words will occur following calibration for the  
digital filter to begin accurately tracking audio  
band signals.  
The printed circuit board layout should have sepa-  
rate analog and digital regions and ground planes,  
DS23F1  
3-49  
CS5336, CS5338, CS5339  
PERFORMANCE  
with the ADC straddling the boundary. All sig-  
nals, especially clocks, should be kept away from  
the VREF pin in order to avoid unwanted cou-  
pling into the modulators. The VREF decoupling  
capacitors, particularly the 0.1 µF, must be posi-  
tioned to minimize the electrical path from VREF  
to Pin 1 AGND and to minimize the path between  
VREF and the capacitors. An evaluation board is  
available which demonstrates the optimum layout  
and power supply arrangements, as well as allow-  
ing fast evaluation of the ADC.  
FFT Tests  
For FFT based tests, a very pure sine wave is pre-  
sented to the ADC, and an FFT analysis is  
performed on the output data. The resulting spec-  
trum is a measure of the performance of the ADC.  
Figure 7 shows the spectral purity of the CS5336  
with a 1 kHz, -10 dB input. Notice the low noise  
floor, the absence of any harmonic distortion, and  
the Dynamic Range value of 95.41 dB.  
To minimize digital noise, connect the ADC digi-  
tal outputs only to CMOS inputs.  
Figure 8 shows the CS5336 high frequency per-  
formance. The input signal is a -10 dB, 9 kHz  
sine wave. Notice the small 2nd harmonic at  
110 dB down.  
Synchronization of Multiple CS5336/8/9  
In systems where multiple ADC’s are required,  
care must be taken to insure that the ADC internal  
clocks are synchronized between converters to in-  
sure simultaneous sampling. In the absence of this  
synchronization, the sampling difference could be  
one ICLKD period which is typically 81.4 nsec  
for a 48 kHz sample rate.  
Figure 9 shows the low-level performance of the  
CS5336. Notice the lack of any distortion compo-  
nents. Traditional R-2R ladder based ADC’s can  
have problems with this test, since differential  
non-linearities around the zero point become very  
significant. Figure 10 shows the same very low  
input amplitude performance, but at 9kHz input  
frequency.  
SLAVE MODE  
Synchronous sampling in the slave mode is  
achieved by connecting all DPD and APD pins to  
a single control signal and supplying the same  
ICLKD and L/R to all converters.  
MASTER MODE  
The internal counters of the CS5336/8/9 are reset  
during DPD/APD high and will start simultane-  
ously by insuring that the release of DPD/APD  
for all converters is internally latched on the same  
rising edge of ICLKD. This can be achieved by  
connecting all DPD/APD pins to  
the same  
control signal and insuring that the DPD/APD  
falling edge occurs outside a ±30 ns window  
either side of an ICLKD rising edge.  
3-50  
DS23F1  
CS5336, CS5338, CS5339  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
Output Word Rate: 48 kHz  
Full Scale: 7.3 Vp-p  
S/(N+D): 85.03 dB  
Dynamic Range: 95.033 dB  
(dc to 20 kHz)  
Output Word Rate: 48 kHz  
Full Scale: 7.3 Vp-p  
S/(N+D): 85.41 dB  
Dynamic Range: 95.41 dB  
(dc to 20 kHz)  
Signal  
Signal  
Amplitude  
Relative to  
Full Scale  
(dB)  
Amplitude  
Relative to  
Full Scale  
(dB)  
-90  
-90  
-100  
-110  
-120  
-130  
-100  
-110  
-120  
-130  
0
4
8
12  
16  
20  
24  
0
4
8
12  
16  
20  
24  
Input Frequency (kHz)  
Input Frequency (kHz)  
Figure 7. CS5336 FFT Plot with -10 dB, 1 kHz Input  
Figure 8. CS5336 FFT Plot with -10 dB, 9 kHz Input  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
0
Output Word Rate: 48 kHz  
-10  
Output Word Rate: 48 kHz  
Full Scale: 7.3 Vp-p  
-20  
Full Scale: 7.3 Vp-p  
S/(N+D): 16.09 dB  
Dynamic Range: 96.09 dB  
(dc to 20 kHz)  
S/(N+D): 15.72 dB  
-30  
Dynamic Range: 95.72 dB  
-40  
-50  
-60  
-70  
-80  
Signal  
Signal  
(dc to 20 kHz)  
Amplitude  
Relative to  
Full Scale  
(dB)  
Amplitude  
Relative to  
Full Scale  
(dB)  
-90  
-90  
-100  
-110  
-120  
-130  
-100  
-110  
-120  
-130  
0
4
8
12  
16  
20  
24  
0
4
8
12  
16  
20  
24  
Input Frequency (kHz)  
Input Frequency (kHz)  
Figure 9. CS5336 FFT Plot with -80 dB, 1 kHz Input  
Figure 10. CS5336 FFT Plot with -80 dB, 9 kHz Input  
DNL Tests  
displays the worst case positive and negative er-  
rors in each of 512 groups of 128 codes.  
Codewidths typically are within ± 0.2 LSB’s of  
ideal. A delta-sigma modulator based ADC has no  
inherent mechanism for generating DNL errors.  
The residual small deviations shown in Figure 11  
are a result of noise. Nevertheless, the perform-  
ance shown is extremely good, and is superior to  
typical R-2R ladder based designs.  
A Differential Non-Linearity test is also shown.  
Here, the converter is presented with a linear ramp  
signal. The resulting output codes are counted to  
yield a number which is proportional to the  
codewidth. A plot of codewidth versus code  
graphically illustrates the uniformity of the  
codewidths. Figure 11 shows the excellent Differ-  
ential Non-Linearity of the CS5336. This plot  
DS23F1  
3-51  
CS5336, CS5338, CS5339  
+1  
+1/2  
0
-1/2  
-1  
0
32,768  
65,535  
Codes  
Figure 11. CS5336 Differential Non-Linearity Plot  
Digital Filter  
Figures 12 through 17 show the performance of  
the digital filter included in the ADC. All the plots  
assume an output word rate of 48 kHz. The filter  
frequency response will scale precisely with  
changes in output word rate. The passband ripple  
is flat to ± 0.01 dB maximum. Stopband rejection  
is greater than 80 dB.  
Figures 12,14 &16 show the CS5338 and CS5339  
filter characteristics. Figure 17 is an expanded  
view of the transition band.  
Figures 13,15 & 17 show the CS5336 filter char-  
acteristics. Figure 17 is an expanded view of the  
transition band.  
3-52  
DS23F1  
CS5336, CS5338, CS5339  
10  
0
10  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
0
8
16  
24  
32  
40  
48  
0
8
16  
24  
32  
40  
48  
Input Frequency (kHz)  
Input Frequency (kHz)  
Figure 12. CS5338/9 Digital Filter Stopband Rejection  
Figure 13. CS5336 Digital Filter Stopband Rejection  
0.020  
0.010  
0.000  
-0.010  
-0.020  
0.020  
0.010  
0.000  
-0.010  
-0.020  
0
4
8
12  
16  
20  
24  
0
4
8
12  
16  
20  
24  
Input Frequency (kHz)  
Input Frequency (kHz)  
Figure 14. CS5338/9 Digital Filter Passband Ripple  
Figure 15. CS5336 Digital Filter Passband Ripple  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-90  
-100  
20  
21  
22  
23  
24  
25  
26  
27  
28  
22  
23  
24  
25  
26  
27  
28  
29  
30  
Input Frequency (kHz)  
Input Frequency (kHz)  
Figure 16. CS5338/9 Digital Filter Transition Band  
DS23F1  
Figure 17. CS5336 Digital Filter Transition Band  
3-53  
CS5336, CS5338, CS5339  
PIN DESCRIPTIONS  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
ANALOG GROUND AGND  
LEFT CHANNEL ANALOG INPUT AINL  
LEFT CHANNEL ZERO INPUT ZEROL  
VREF VOLTAGE REFERENCE OUTPUT  
2
AINR  
ZEROR RIGHT CHANNEL ZERO INPUT  
VL+ ANALOG SECTION LOGIC POWER  
RIGHT CHANNEL ANALOG INPUT  
3
4
POSITIVE ANALOG POWER  
NEGATIVE ANALOG POWER  
ANALOG POWER DOWN INPUT  
VA+  
VA-  
APD  
5
LGND ANALOG SECTION LOGIC GROUND  
ICLKA ANALOG SECTION CLOCK INPUT  
6
7
ANALOG CALIBRATE INPUT ACAL  
NO CONNECT NC  
DIGITAL CALIBRATE OUTPUT DCAL  
NC  
NO CONNECT  
8
OCLKD DIGITAL SECTION OUTPUT CLOCK  
ICLKD DIGITAL SECTION CLOCK INPUT  
DGND DIGITAL GROUND  
9
10  
11  
12  
13  
14  
DIGITAL POWER DOWN INPUT  
TEST  
DPD  
TST  
VD+  
DIGITAL SECTION POSITIVE POWER  
SELECT CLOCK MODE CMODE  
SELECT SERIAL I/O MODE SMODE  
FSYNC FRAME SYNC SIGNAL  
SDATA SERIAL DATA OUTPUT  
SCLK SERIAL DATA CLOCK  
LEFT/RIGHT SELECT  
L/R  
Power Supply Connections  
VA+ - Positive Analog Power, PIN 4.  
Positive analog supply. Nominally +5 volts.  
VL+ - Positive Logic Power, PIN 25.  
Positive logic supply for the analog section. Nominally +5 volts.  
VA- - Negative Analog Power, PIN 5.  
Negative analog supply. Nominally -5 volts.  
AGND - Analog Ground, PIN 1.  
Analog ground reference.  
LGND - Logic Ground, PIN 24  
Ground for the logic portions of the analog section.  
VD+ - Positive Digital Power, PIN 18.  
Positive supply for the digital section. Nominally +5 volts.  
DGND - Digital Ground, PIN 19.  
Digital ground for the digital section.  
Analog Inputs  
AINL, AINR - Left and Right Channel Analog Inputs, PINS 2, 27  
Analog input connections for the left and right input channels. Nominally ±3.68 volts full  
scale.  
3-54  
DS23F1  
CS5336, CS5338, CS5339  
ZEROL, ZEROR - Zero Level Inputs for Left and Right Channels, PINS 3, 26.  
Analog zero level inputs for the left and right channels. The levels present on these pins  
can be used as zero during the offset calibration cycle. Normally connected to AGND,  
optionally through networks matched to the analog input networks.  
Analog Outputs  
VREF - Voltage Reference Output, PIN 28.  
Nominally -3.68 volts. Normally connected to a 0.1µF ceramic capacitor in parallel with a  
10µF or larger electrolytic capacitor. Note the negative output polarity.  
Digital Inputs  
ICLKA - Analog Section Input Clock, PIN 23.  
This clock is internally divided by 2 to set the modulators’ sample rate. Sampling rates,  
output rates, and digital filter characteristics scale to ICLKA frequency. ICLKA frequency  
is 128 X the output word rate. For example, 6.144 MHz ICLKA corresponds to an output  
word rate of 48 kHz per channel. Normally connected to OCLKD.  
ICLKD - Digital Section Input Clock, PIN 20.  
This is the clock which runs the digital filter. ICLKD frequency is determined by the  
required output word rate and by the CMODE pin. If CMODE is low, ICLKD frequency  
should be 256 X the desired output word rate. If CMODE is high, ICLKD should be  
384 X the desired output word rate. For example, with CMODE low, ICLKD should be  
12.288 MHz for an output word rate of 48 kHz. This clock also generates OCLKD,  
which is always 128 X the output word rate.  
APD - Analog Power Down, PIN 6.  
Analog section power-down command. When high, the analog circuitry is in power-down  
mode. APD is normally connected to DPD when using the power down feature. If power  
down is not used, then connect APD to AGND.  
DPD - Digital Power Down, PIN 10  
Digital section power-down command. Bringing DPD high puts the digital section into  
power-down mode. Upon returning low, the ADC starts an offset calibration cycle. This  
takes 4096 L/R periods (85.33 ms with a 12.288 MHz ICLKD). DCAL is high during the  
calibrate cycle and goes low upon completion. DPD is normally connected to APD when  
using the power down feature. A calibration cycle should always be initiated after  
applying power to the supply pins.  
ACAL - Analog Calibrate, PIN 7.  
Analog section calibration command. When high, causes the left and right channel  
modulator inputs to be internally connected to ZEROL and ZEROR inputs respectively.  
May be connected to DCAL.  
DS23F1  
3-55  
CS5336, CS5338, CS5339  
CMODE - Clock Mode Select, PIN 12.  
CMODE should be tied low to select an ICLKD frequency of 256 X the output word rate.  
CMODE should be tied high to select an ICLKD frequency of 384 X the output word  
rate.  
SMODE - Serial Interface Mode Select, PIN 13.  
SMODE should be tied high to select serial interface master mode, where SCLK, FSYNC  
and L/R are all outputs, generated by internal dividers operating from ICLKD. SMODE  
should be tied low to select serial interface slave mode, where SCLK, FSYNC and L/R  
are all inputs. In slave mode, L/R, FSYNC and SCLK need to be derived from ICLKD  
using external dividers.  
Digital Outputs  
SDATA - Serial Data Output, PIN 16.  
Audio data bits are presented MSB first, in 2’s complement format. Additional tag bits,  
which indicate input overload and left/right channel data, are output immediately  
following each audio data word.  
DCAL - Digital Calibrate Output, PIN 9.  
DCAL rises immediately upon entering the power-down state (DPD brought high). It  
returns low 4096 L/R periods after leaving the power down state (DPD brought low),  
indicating the end of the offset calibration cycle (which = 85.33 ms with a 12.288 MHz  
ICLKD). May be connected to ACAL.  
OCLKD - Digital Section Output Clock, PIN 21.  
OCLKD is always 128 X the output word rate. Normally connected to ICLKA.  
Digital Inputs or Outputs  
SCLK - Serial Data Clock, PIN 15.  
Data is clocked out on the rising edge of SCLK for the CS5336 and CS5338. Data is  
clocked out on the falling edge of SCLK for the CS5339.  
In master mode (SMODE high), SCLK is a continuous output clock at 64 X the output  
word rate.  
In slave mode (SMODE low), SCLK is an input, which requires a continuously supplied  
clock at any frequency from 32 X to 128 X the output word rate (64 X is preferred).  
When FSYNC is high, SCLK clocks out serial data, except for the MSB which appears on  
SDATA when L/R changes.  
3-56  
DS23F1  
CS5336, CS5338, CS5339  
L/R - Left/Right Select, PIN 14.  
In master mode (SMODE high), L/R is an output whose frequency is at the output word  
rate. L/R edges occur 1 SCLK cycle before FSYNC rises. When L/R is high, left channel  
data is on SDATA, except for the first SCLK cycle. When L/R is low, right channel data is  
on SDATA, except for the first SCLK cycle. The MSB data bit appears on SDATA one  
SCLK cycle after L/R changes.  
In slave mode (SMODE low), L/R is an input which selects the left or right channel for  
output on SDATA. The rising edge of L/R starts the MSB of the left channel data. L/R  
frequency must be equal to the output word rate.  
Although the outputs of each channel are transmitted at different times, the two words in  
an L/R cycle represent simultaneously sampled analog inputs.  
FSYNC - Frame Synchronization Signal, PIN 17.  
In master mode (SMODE high), FSYNC is an output which goes high coincident with the  
start of the first SDATA bit (MSB) and falls low immediately after the last SDATA audio  
data bit (LSB).  
In slave mode (SMODE low), FSYNC is an input which controls the clocking out of the  
data bits on SDATA. FSYNC is normally tied high, which causes the data bits to be  
clocked out immediately following L/R transitions. If it is desired to delay the data bits  
from the L/R edge, then FSYNC must be low during the delay period. Bringing FSYNC  
high will then enable the clocking out of the SDATA bits. Note that the MSB will be  
clocked out based on the L/R edge, independent of the state of FSYNC.  
Miscellaneous  
NC - No Connection, PINS 8, 22.  
These two pins are bonded out to test outputs. They must not be connected to any external  
component or any length of PC trace.  
TST -Test Input, PIN 11.  
Allows access to the ADC test modes, which are reserved for factory use. Must be tied to  
DGND.  
DS23F1  
3-57  
CS5336, CS5338, CS5339  
PARAMETER DEFINITIONS  
N,  
Resolution - The total number of possible output codes is equal to 2 where N = the number of bits  
in the output word for each channel.  
Dynamic Range - Full scale (RMS) signal to broadband noise ratio. The broadband noise is measured  
over the specified bandwidth, and with an input signal 60dB below full-scale. Units in decibels.  
Signal-to-(Noise plus Distortion) Ratio - The ratio of the rms value of the signal to the rms sum of all  
other spectral components over the specified bandwidth (typically 10 Hz to 20 kHz), including  
distortion components. Expressed in decibels.  
Total Harmonic Distortion - The ratio of the rms sum of all harmonics up to 20 kHz to the rms value  
of the signal. Units in percent.  
Interchannel Phase Deviation - The difference between the left and right channel sampling times.  
Interchannel Isolation - A measure of crosstalk between the left and right channels. Measured for  
each channel at the converter’s output with the input under test grounded and a full-scale signal  
applied to the other channel. Units in decibels.  
Interchannel Gain Mismatch - The gain difference between left and right channels. Units in  
decibels.  
Gain Error - The deviation of the measured full scale amplitude from the ideal full scale amplitude  
value.  
Gain Drift - The change in gain value with temperature. Units in ppm/°C.  
Bipolar Offset Error - The deviation of the mid-scale transition (111...111 to 000...000) from the ideal  
(1/2 LSB below AGND). Units in LSBs.  
3-58  
DS23F1  
CS5336, CS5338, CS5339  
REFERENCES  
1) "A Stereo 16-bit Delta-Sigma A/D Converter for Digital Audio" by D.R. Welland, B.P. Del Sig-  
nore, E.J. Swanson, T. Tanaka, K. Hamashita, S. Hara, K. Takasuka. Paper presented at the 85th  
Convention of the Audio Engineering Society, November 1988.  
2) " The Effects of Sampling Clock Jitter on Nyquist Sampling Analog-to-Digital Converters, and on  
Oversampling Delta Sigma ADC’s" by Steven Harris. Paper presented at the 87th Convention of the  
Audio Engineering Society, October 1989.  
3) " An 18-Bit Dual-Channel Oversampling Delta-Sigma A/D Converter, with 19-Bit Mono Applica-  
tion Example" by Clif Sanchez. Paper presented at the 87th Convention of the Audio Engineering  
Society, October 1989.  
Ordering Guide  
Model  
Resolution  
16-bits  
16-bits  
16-bits  
16-bits  
16-bits  
16-bits  
16-bits  
16-bits  
16-bits  
Passband  
22 kHz  
22 kHz  
24 kHz  
24 kHz  
22 kHz  
22 kHz  
24 kHz  
24 kHz  
22 kHz  
SCLK  
active  
active  
active  
active  
active  
active  
active  
active  
active  
Temperature  
0°C to 70 °C  
-40 to +85 °C  
0°C to 70 °C  
0°C to 70 °C  
0°C to 70 °C  
-40 to +85 °C  
0°C to 70 °C  
0°C to 70 °C  
-55 to +125 °C  
Package  
CS5336-KP  
CS5336-BP  
CS5338-KP  
CS5339-KP  
CS5336-KS  
CS5336-BS  
CS5338-KS  
CS5339-KS  
CS5336-TC  
28-pin Plastic DIP  
28-pin Plastic DIP  
28-pin Plastic DIP  
28-pin Plastic DIP  
28-pin SOIC  
28-pin SOIC  
28-pin SOIC  
28-pin SOIC  
28-pin Sidebrazed Ceramic DIP  
CDB5336  
CDB5338  
CDB5339  
CS5336 Evaluation Board  
CS5338 Evaluation Board  
CS5339 Evaluation Board  
DS23F1  
3-59  
CDB5336  
CDB5338 CDB5339  
Semiconductor Corporation  
Evaluation Board for CS5336, CS5338 & CS5339  
Features  
General Description  
The CDB5336, CDB5338 & CDB5339 evaluation  
boards allow fast evaluation of the CS5336, CS5338  
and CS5339 16-bit, stereo A/D converters. The boards  
generate all converter timing signals and provide both  
parallel and serial output interfaces. Evaluation re-  
quires a digital signal processor, a low-distortion signal  
source, and a power supply.  
Demonstrates recommended layout  
and grounding arrangements  
CS8402 Generates AES/EBU, S/PDIF  
& CP-340 Compatible Digital Audio  
Also included is a CS8402 digital audio transmitter I.C.,  
which can generate AES/EBU, S/PDIF & EIAJ CP-340  
compatible audio data.  
Buffered Serial Output Interface  
16-Bit Parallel Output Interface  
Digital and Analog Patch Areas  
The evaluation boards may also be configured to ac-  
cept external timing signals for operation in a user  
application during system development.  
ORDERING INFORMATION:  
On-board or externally supplied system  
timing  
CDB5336, CDB5338, CDB5339  
-15V GND +15V  
GND +5V  
EXTCLKIN  
FSYNC  
DIGITAL  
PATCH  
AREA  
ANALOG  
PATCH  
AREA  
POWER SUPPLY  
REGULATION &  
CONDITIONING  
L/R  
CLOCK / TIMING  
GENERATOR  
SCLK  
SERIAL  
OUTPUT  
DATA  
CS5336,  
CS5338,  
AINR  
Input  
Buffer  
SDATA  
OFFSET  
CALIBRATION  
NETWORK  
OR  
CS5339  
A IN L  
SERIAL TO  
PARALLEL  
CONVERTER  
PARALLEL  
OUTPUT  
DATA  
Input  
Buffer  
A/D CONVERTER  
CS8402  
DIGITAL  
AUDIO  
DATA  
DIGITAL AUDIO  
LINE DRIVER  
AUG ’93  
DS23DB5  
3-60  
Crystal Semiconductor Corporation  
P.O. Box 17847, Austin, TX 78760  
(512) 445 7222 FAX: (512) 445 7581  
CDB5336,8,9  
Power Supply Circuitry  
ken before L1 may be installed. R5 and C7 low-  
pass filter the analog logic power supply pin,  
VL+. The evaluation board uses both an analog  
and a digital ground plane which are connected  
at a single point by J1. This ground plane ar-  
rangement isolates the board’s digital logic from  
the analog circuitry.  
The schematic diagram in Figure 1 shows the  
evaluation board power supply circuitry. Power  
is supplied to the evaluation board by five bind-  
ing posts. The ±5 Volt analog power supply  
inputs of the converter are derived from ±15  
Volts using the voltage regulators U10 and U11.  
The +5 Volt digital supply for the converter and  
the discrete logic on the board is provided by the  
+5V and DGND binding posts. D1, D2 and D4  
are transient suppressors which also provide pro-  
tection from incorrectly connected power supply  
leads. C25-C28, C30 and C31 provide general  
power supply filtering for the analog supplies.  
As shown in Figure 2, C10-C13 provide local-  
ized decoupling for the converter VA+ and VA-  
pins. Note that C13 is connected between VA-  
and VA+ and not VA- and AGND. Space for a  
ferrite bead inductor, L1, has been provided so  
that the board may be modified to power the  
converter’s VD+ input directly from the VA+  
supply. Note that the trace connecting the VD+  
power to the VD+ of the converter must be bro-  
Offset Calibration & Reset Circuit  
Figure 1, shows the optional offset calibration  
circuit provided on the evaluation board. Upon  
power-up, this circuit provides a pulse on the  
Analog-to-Digital Converter’s DPD pin initiating  
an offset calibration cycle. Releasing SW1 also  
initiates an offset calibration cycle. P6 (see Fig-  
ure 2) selects the signal source used during  
offset calibration. In the "AIN" position, the  
AINL and AINR inputs are selected during cali-  
bration, while in the "ZERO" position, the  
ZEROL and ZEROR inputs are selected.  
U10  
78L05  
COM  
IN  
OUT  
VA+  
+15V  
C27  
C25  
C30  
+
+
D2  
D4  
0.47 uF  
0.22 uF  
47 uF  
J1  
AGND  
C31  
C26  
C28  
AGND  
DGND  
47 uF  
0.22 uF  
0.47 uF  
COM  
79L05  
U11  
VA-  
IN  
-15V  
OUT  
9
8
D2 = D4 = 1N6276A 1.5KE  
D1 = P6KE-6V8P from Thomson  
RST  
CS8402  
U7E  
VD+  
VD+  
+5V  
C8  
C9  
R26  
10k  
+
D3  
1N4148  
D1  
47 uF  
0.1 uF  
11  
10  
Cal  
DGND  
(DPD CS5336)  
SW1  
CAL  
0.1uF  
C15  
U7D  
Figure 1. Power Supply and Reset Circuitry  
DS23DB5  
3-61  
CDB5336,8,9  
0.1 uF  
C16  
10 uF  
C17  
+
28  
VREF  
22  
8
VD+  
NC  
NC  
18  
6
VD+  
VD+  
APD  
DPD  
1 uF  
C6  
0.1 uF  
C5  
+
10  
Cal  
L1  
Cal  
VL+  
P6  
R5  
51  
AIN  
ZERO  
7
9
25  
4
VL+  
VA+  
ACAL  
DCAL  
0.1 uF  
VA+  
C7  
VD+  
DCAL  
20 k  
12  
U1  
VA+  
CMODE  
0.1 uF  
1 uF  
C10  
+
+
R7  
C12  
CS5336  
CS5338  
CS5339  
13  
11  
Pins 1,13  
U9  
SMODE  
1
5
AGND  
TST  
1 uF  
C11  
0.1 uF  
C13  
L/R  
VA-  
14  
L/R  
L/R  
VA-  
VA-  
SDATA  
SCLK  
24  
19  
LGND  
DGND  
16  
15  
SDATA  
SDATA  
SCLK  
R1  
51  
SCLK  
27  
2
AINR  
FSYNC  
10 nF  
NPO  
C1  
From  
Buffers  
Fig 3  
17  
FSYNC  
ICLKD  
FSYNC  
R2  
51  
20  
AINL  
ICLKD  
10 nF  
NPO  
C2  
OCLKD  
21  
ICLKA  
23  
ZEROL  
ZEROR  
26  
3
P7  
ICLKA  
C3*  
C4*  
10 nF  
R3*  
51  
R4*  
51  
EXT  
INT  
10 nF  
NC  
1
VD+  
U3  
R6*  
75  
* Optional  
VD+  
12.288 MHz  
Oscillator  
Module  
2
1
8
7
14  
14  
C14  
0.1 uF  
C15  
7
3
U8A  
0.1 uF  
MCK  
8402  
EXT  
CLKIN  
Figure 2 ADC Connections  
3-62  
DS23DB5  
CDB5336,8,9  
Analog Inputs  
tance. Also remove U13 op-amp, to remove the  
1kload impedance.  
As shown in Figure 2, the analog input signals  
are connected to the CS5336 via an RC network.  
R1 and C1 provide antialiasing and optimum  
source impedance for the right analog input  
channel while R2 and C2 do so for the left chan-  
nel. The ZEROR and ZEROL inputs are tied to  
the analog ground plane on the board as shipped  
from the factory, but space is provided for an op-  
tional RC section on each. These RC sections  
may be added to model the output impedance of  
the analog signal source to minimize offset error  
during calibration.  
Timing Generator  
P7 selects the master clock source supplied to  
the ICLKD pin of the converter. As shipped from  
the factory, P7 is set to the "INT" position to  
select the 12.288 MHz clock signal provided by  
U3. An external master clock signal may be con-  
nected to the EXTCLKIN connector and selected  
by placing P7 in the "EXT" position. Note that  
R6, tied between EXTCLKIN and GND, is  
available for impedance matching an external  
clock source. The board is shipped with SMODE  
high, which selects MASTER timing mode. In  
this mode, SCLK, L/R and FSYNC are all out-  
puts, generated by the converter from ICLKD.  
Figure 3 shows the optional input buffer circuit.  
This can be used as an example input buffer cir-  
cuit for your application. If the ADC is driven  
from a 50source impedance signal generator,  
the input buffer amplifiers may be bypassed.  
Place P8 and P9 jumpers in the OUT position,  
and short circuit R1 and R2. This ensures that  
the ADC is driven from a 50source resis-  
Serial Output Interface  
The serial output interface is provided by the  
SDATA, SCLK, FSYNC and L/R BNC  
connectors on the evaluation board. These out-  
1 k  
VA+  
8
R22  
0.1 uF  
C32  
1 k  
_
2
3
AINL  
IN  
R1, Fig 2  
U13A  
R21  
1
+
OUT  
4
0.1 uF  
C33  
P8  
VA-  
1 k  
R24  
1 k  
_
6
5
MC33078P  
7
AINR  
IN  
R2, Fig 2  
U13B  
R23  
+
OUT  
P9  
Figure 3. Input Buffer Circuit  
DS23DB5  
3-63  
CDB5336,8,9  
VD+  
10 k  
SIP  
8
1
4
2
5
6
7
9 3  
P4  
OCLKD  
DIPSW 8  
SW 2  
5
6
____  
14  
15  
13  
12  
11  
9
3
2
4
5
6
8
7
1
2
1
19  
MCK  
SCK  
VD+  
PRO  
__ __  
C7/C3  
VD+  
+
C34  
1 uF  
C24  
0.1 uF  
18  
15  
__  
GND  
CBL  
3
4
P3  
C1/FC0  
__ __  
C6/C2  
CBL  
V
__ ___  
12  
13  
14  
24  
CS8402  
U2  
9
10  
11  
C9/C15  
V
__  
EM1/C8  
__  
EM0/C9  
R16 20 k  
R17 20 k  
C
C
U
10  
16  
U
CRE/FC1  
___  
RST  
____  
RST  
R18 20 k  
16  
20  
21  
22  
23  
M0  
M1  
M2  
R19  
110  
3
1
TXP  
R20  
17  
TXN  
SDATA  
8
FSYNC  
2
4
VD+  
7
SCHOTT 67125450  
PULSE PE65612  
13  
12  
13  
FSYNC  
SDATA  
11  
_
CS5336  
RESET2  
U8D  
12  
9
8
L/R CS5336  
Q2  
D2  
74HC08  
74HC74  
U12B  
11  
__  
Q2  
CLK  
FSYNC CS5336  
SET2  
10  
R11  
47 k  
+5 V  
Figure 4. CS8402 Digital Audio Line Driver Connections  
puts are buffered, as shown in Figure 5, in order  
to isolate the converter from the digital signal  
processor. If slave mode is selected by pulling  
SMODE low, then U9 (74HC243) will change to  
the opposite direction, and act as an input buffer.  
U9 is provided to protect against inadvertent ex-  
ternal driving of SCLK, L/R and FSYNC while  
in MASTER mode. U9 is not necessary in your  
application circuit.  
Jumper P4 allows the board to be configured for  
either the CS5336/38, or the CS5339, which  
have opposite polarities of SCLK.  
Parallel Output Interface  
Figure 6 depicts the parallel output interface on  
the evaluation board. 16-bit words are assembled  
from the serial data output of the converter. Each  
bit of serial data is clocked out of the converter  
3-64  
DS23DB5  
CDB5336,8,9  
VD+  
20 k  
1
R8  
A-to-B  
Enable  
13  
SMODE  
VD+  
13  
11  
14  
B-to-A  
Enable  
VCC  
0.1 uF  
C20  
SCLK  
15  
17  
7
3
B1  
GND  
A1  
SCLK  
U9  
SCLK  
FSYNC  
L/R  
FSYNC  
74HC243  
10  
B2  
B3  
A4  
FSYNC  
4
5
L/R  
14  
16  
A2  
A3  
9
6
L/R  
SDATA  
SDATA  
SDATA  
B4  
VD+  
10  
R10  
20 k  
8
4
5
R9  
20 k  
9
6
U8B  
U8C  
CS8402  
Pin 6  
74HC08  
U7B  
8
3
4
5336/38  
5337/39  
SDATA  
Pin 11  
U4, U5  
595’s  
P4  
Figure 5. Serial Output Interface  
on the rising edge of SCLK and shifted into the  
16-bit shift register formed by U4 and U5 on  
SCLK’s falling edge. After all data bits for the  
selected channel have been shifted into U4 and  
U5 the data is latched onto P1 by a delayed ver-  
sion of FSYNC.  
processor. (Set jumper P2 to the DRDY posi-  
tion.) The fall of DRDY informs the digital  
signal processor that a new data word is avail-  
able. The processor then reads the port and  
acknowledges the transfer by asserting DACK.  
Note that DRDY will not be asserted again un-  
less DACK is momentarily brought high  
although new data will continue to be latched  
onto the port.  
P5 selects the channel whose output data will be  
converted to parallel form and presented on P1.  
With P5 in the "B" (both) position, parallel data  
from one channel will be presented first with  
data from the other channel presented sub-  
sequently. In the "L" (left) position, only left  
channel conversions will be presented, while in  
the "R" (right) position only right channel con-  
versions are presented.  
Digital Audio Standard Interface  
Included on the evaluation board is a CS8402  
Digital Audio Line Driver. This device can im-  
plement AES/EBU, S/PDIF and EIAJ CP-340  
interface standards. Figure 4 shows the sche-  
matic for the CS8402. P3 allows the C, U and V  
bits to be driven from external logic using the  
CBL output for block synchronization. SW2 pro-  
vides 8 DIP switches to select various modes  
and bits for the CS8402. Table 3 lists the settings  
for the professional mode which is the default  
setting for the evaluation board from the factory.  
The third switch selects between professional  
Two interface mechanisms are provided for read-  
ing the data from this port. With the first, the  
edges of L/R may be used to clock the parallel  
data into the digital signal processor. (Set jumper  
P2 into the L/R position.) Alternatively, a hand-  
shake protocol implemented with DACK and  
DRDY may be used to transfer data to the signal  
DS23DB5  
3-65  
CDB5336,8,9  
X
Y
Z
P1  
Z
Y
X
L/R  
PIN14  
U1  
VD+  
RP3  
DIP Resistor  
68  
P5  
9
VD+  
B
L
R
DOUT  
VCC  
16  
7
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
D15 (MSB)  
D14  
Q
Q
Q
Q
H
G
F
U7C  
C16  
6
6
5
0.1uF  
8
5
D13  
GND  
1
R15  
47 k  
4
D12  
U4  
CLR  
VD+  
E
D
C
B
A
FSYNC  
PIN17  
U1  
2
3
3
D11  
5
74HC595 Q  
D
Q
Q
10  
12  
2
D10  
Q
Q
Q
SRCLR  
6
1
D9  
Latch CLK  
U12A  
CLK  
15  
D8  
11  
Shift CLK  
DIN  
ICLKD  
PIN20  
U1  
14  
OE  
13  
VD+  
0.1 uF  
VCC  
14  
PRE GND  
4
7
C29  
R11  
VD+  
47 k  
RP2  
P4  
DIP Resistor  
68  
9
13  
OE  
VD+  
DOUT  
VCC  
16  
7
1
16  
15  
14  
13  
12  
11  
10  
9
D7  
Q
H
G
F
C17  
6
2
3
4
5
6
7
8
D6  
Q
Q
Q
Q
Q
Q
Q
0.1uF  
8
5
D5  
GND  
U5  
4
D4  
E
D
C
B
A
74HC595  
SRCLR  
3
D3  
10  
12  
2
D2  
1
D1  
Latch CLK  
11  
15  
D0 (LSB)  
Shift CLK  
DIN  
DACK  
DRDY  
VD+  
14  
VD+  
0.1uF  
C18  
R12 47k  
VD+ SDATA  
0.1 uF  
R14  
68  
14  
2
68  
1
C19  
1
CLR  
14  
Q
U7A  
74HC14  
7
R13  
L/R  
7
6
L/R  
DRDY  
3
2
CLK  
U6A  
74HC74  
P2  
13  
5
CLR  
D
Q
12  
11  
8
9
PRE  
4
D
Q
U6B  
74HC74  
CLK  
PRE  
Q
47k  
10  
R11  
VD+  
Figure 6. Parallel Output Interface  
3-66  
DS23DB5  
CDB5336,8,9  
CONNECTOR  
INPUT/OUTPUT  
SIGNAL PRESENT  
+15  
-15  
input  
input  
input  
input  
input  
input  
input  
input  
+15 Volts from power supply  
-15 Volts from power supply  
AGND  
+5  
analog ground connection from power supply  
+5V for ADC VD+ and discrete logic  
digital ground connection from power supply  
left channel analog input  
DGND  
AINL  
AINR  
right channel analog input  
EXTCLKIN  
external master clock input  
L/R  
output/input  
output  
left /right channel signal  
serial output data  
SDATA  
SCLK  
output/input  
output/input  
output  
serial output clock  
FSYNC  
data framing signal  
DIGITAL OUTPUT  
CS8402 digital output via transformer  
CS8402 C,U,V inputs; CBL output  
parallel output data  
P3  
P1  
output/input  
output  
Table 1. System Connections  
POSITION  
JUMPER  
PURPOSE  
FUNCTION SELECTED  
P6  
selects offset calibration  
input source  
AIN  
AINL and AINR selected during  
offset calibration  
*ZERO  
ZEROL and ZEROR selected during  
offset calibration  
P7  
P5  
selects master clock source  
for CS5326 CLKIN  
*INT  
EXT  
CLKIN provided by U3  
CLKIN provided by EXTCLKIN BNC  
selects channel for serial to  
parallel conversion  
*L  
R
left channel data presented on P1  
right channel data presented on P1  
B
left then right channel data  
alternately presented on P1  
selects L/R or DRDY as the  
output status signal presented  
on P1  
*DRDY  
DRDY selected to signal the arrival of  
new data for the selected channel  
P2  
L/R  
*IN  
L/R selected  
P8, P9  
P4  
selects optional input buffers  
Buffer amplifier in circuit  
Buffer amplifier bypassed  
OUT  
selects device type  
Correct SCLK for CS5337 & CS5339  
Correct SCLK for CS5336 & CS5338  
5337/39  
5336/38  
* Default setting from factory  
Table 2. Jumper Selectable Options  
DS23DB5  
3-67  
CDB5336,8,9  
Switch#  
0=Closed, 1=Open  
Comment  
Professional Mode, C0=1 (default)  
3
1
PRO=0  
CRE  
Local Sample Address Counter & Reliability Flags  
default  
0
1
Disabled  
Internally Generated (channel status bytes 14-17 and byte 22)  
C6,C7 - Sample Frequency  
5, 2  
C6, C7  
1
1
0
0
1
0
1
0
00 - Not Indicated - Default to 48 kHz  
01 - 48 kHz  
10 - 44.1 kHz  
default  
11 - 32 kHz  
4
C1  
C1 - Audio  
default  
1
0
0 - Normal Audio  
1 - Non-Audio  
6
C9  
C8,C9,C10,C11 - Channel Mode (1 of 4 bits)  
1
0
0000 - Not indicated - Default to 2-channel  
0100 - Stereophonic  
default  
8, 7  
EM1, EM0  
C2,C3,C4 - Emphasis  
default  
1
1
0
0
1
0
1
0
000 - Not Indicated - default to none  
100 - No emphasis  
110 - 50/15 µs  
111 - CCITT J.17  
Table 3. CS8402 Switch Definitions - Professional Mode  
and consumer modes; however, the CS8402 out-  
put to the transformer must be modified, as  
shown below Table 4, to be compatible with the  
consumer interface. Table 4 lists the switch set-  
tings for consumer mode. If the C input of  
connector P3 is used, the input bits are logically  
OR’ed with the appropriate DIP switch bits. In  
Tables 3 and 4, the ’C’ bits listed in the com-  
ment section are taken from the Digital Audio  
Interface specifications. As an example, switch 6  
in the professional mode (Table 3) controls C9  
which is the inverse of channel status bit 9 (also  
listed as byte 1, bit 1 in the CS8402 data sheet).  
Channel status bit 9 is one of four bits indicating  
channel mode. Therefore, using DIP switch 6,  
only two of the available channel modes may be  
selected. The C input port on connector P3 may  
be used to select other channel modes. See the  
CS8401 & CS8402 part data sheet for more in-  
formation on the operation of the CS8402.  
3-68  
DS23DB5  
CDB5336,8,9  
Switch#  
0=Closed, 1=Open  
Comment  
Consumer Mode, C0=0 (Note 1)  
3
PRO=1  
1, 4  
FC1, FC0  
C24,C25,C26,C27 - Sample Frequency (encoded 2 of 4 bits)  
0
0
1
1
0
1
0
1
0000 - 44.1 kHz  
0100 - 48 kHz  
1100 - 32 kHz  
0000 - 44.1 kHz, CD Mode  
2
5
C3  
C3,C4,C5 - Emphasis (1 of 3 bits)  
1
0
000 - None  
100 - 50/15 µs  
C2  
C2 - Copy/Copyright  
1
0
0 - Copy Inhibited/Copyright Asserted  
1 - Copy Permitted/Copyright Not Asserted  
6
C15  
C15 - Generation Status  
1
0
0 - Definition is based on category code.  
1 -  
See CS8402 Data Sheet, Appendix A  
8, 7  
C8, C9  
C8-C14 - Category Code (2 of 7 bits)  
1
1
0
0
1
0
1
0
0000000 - General  
0100000 - PCM encoder/decoder  
1000000 - Compact Disk - CD  
1100000 - Digital Audio Tape - DAT  
Note: 1. The evaluation board is shipped from the factory in the Professional mode. Changing switch 3 to  
open places the CS8402 in Consumer mode; however, the hardware is not set up for consumer  
mode. To modify the hardware for Consumer mode, change R19 to 374and add R20 at 90.9.  
Then, as shown in the figure below, cut the trace connecting TXN to the transformer, and connect  
the transformer side to the ground hole provided. For a full explanation of the consumer hardware  
interface, see the CS8402 data sheet, Appendix B.  
Table 4. CS8402 Switch Definitions - Consumer Mode  
R19  
20  
3
1
TXP  
374  
90.9  
CS8402  
U2  
TXN  
R20  
17  
2
4
SCHOTT 67125450  
PULSE PE65612  
DS23DB5  
3-69  
CDB5336,8,9  
Figure 7. Top Ground Plane Layer (NOT TO SCALE)  
3-70  
DS23DB5  
CDB5336,8,9  
Figure 8. Bottom Trace Layer (NOT TO SCALE)  
DS23DB5  
3-71  
CDB5336,8,9  
Figure 9. Component Layout (NOT TO SCALE)  
3-72  
DS23DB5  

相关型号:

CS5340

101 dB, 192kHz, MULTI-BIT AUDIO A/D CONVERTER
CIRRUS

CS5340-CZZ

101 dB, 192kHz, MULTI-BIT AUDIO A/D CONVERTER
CIRRUS

CS5340-CZZR

101 dB, 192kHz, MULTI-BIT AUDIO A/D CONVERTER
CIRRUS

CS5340-DZ

ADC, Delta-Sigma, 24-Bit, 1 Func, 2 Channel, Serial Access, PDSO16, 4.40 MM, MO-153, TSSOP-16
CIRRUS

CS5340-DZZ

101 dB, 192kHz, MULTI-BIT AUDIO A/D CONVERTER
CIRRUS

CS5340-DZZR

101 dB, 192kHz, MULTI-BIT AUDIO A/D CONVERTER
CIRRUS

CS5340_06

101 dB, 192kHz, MULTI-BIT AUDIO A/D CONVERTER
CIRRUS

CS5340_08

101 dB, 192 kHz, Multi-Bit Audio A/D Converter
CIRRUS

CS5341

105 dB, 192 kHz, MULTI-BIT AUDIO A/D CONVERTER
CIRRUS

CS5341-CZ

ADC, Delta-Sigma, 24-Bit, 1 Func, 2 Channel, Serial Access, PDSO16, 4.40 MM, MO-153, TSSOP-16
CIRRUS

CS5341-CZZ

105 dB, 192 kHz, MULTI-BIT AUDIO A/D CONVERTER
CIRRUS

CS5341-CZZR

105 dB, 192 kHz, Multi-Bit Audio A/D Converter
CIRRUS