CS5340-DZ [CIRRUS]

ADC, Delta-Sigma, 24-Bit, 1 Func, 2 Channel, Serial Access, PDSO16, 4.40 MM, MO-153, TSSOP-16;
CS5340-DZ
型号: CS5340-DZ
厂家: CIRRUS LOGIC    CIRRUS LOGIC
描述:

ADC, Delta-Sigma, 24-Bit, 1 Func, 2 Channel, Serial Access, PDSO16, 4.40 MM, MO-153, TSSOP-16

转换器
文件: 总22页 (文件大小:385K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Confidential Draft  
3/11/08  
CS5340  
101 dB, 192 kHz, Multi-Bit Audio A/D Converter  
Features  
General Description  
 Advanced Multi-bit Delta-Sigma Architecture  
 24-bit Conversion  
The CS5340 is a complete analog-to-digital converter  
for digital audio systems. It performs sampling, analog-  
to-digital conversion, and anti-alias filtering, generating  
24-bit values for both left and right inputs in serial form  
at sample rates up to 200 kHz per channel.  
 Supports All Audio Sample Rates Including  
192 kHz  
The CS5340 uses a 5th-order, multi-bit Delta-Sigma  
modulator followed by digital filtering and decimation,  
which removes the need for an external anti-alias filter.  
 101 dB Dynamic Range at 5 V  
 -94 dB THD+N  
The CS5340 is available in a 16-pin TSSOP package  
for Commercial (-10° to +70° C) and Automotive grades  
(-40° to +85° C). The CDB5340 Customer Demonstra-  
tion Board is also available for device evaluation and  
implementation suggestions. Please refer to “Ordering  
Information” on page 22 for complete ordering  
information.  
 90 mW Power Consumption  
 High-Pass Filter to Remove DC Offsets  
 Analog/Digital Core Supplies from 3.3 V to 5 V  
 Supports Logic Levels between 1.8 V and 5 V  
 Auto-detect Mode Selection in Slave Mode  
 Auto-Detect MCLK Divider  
The CS5340 is ideal for audio systems requiring wide  
dynamic range, negligible distortion and low noise, such  
as set-top boxes, DVD-karaoke players, DVD record-  
ers, A/V receivers, and automotive applications.  
 Pin Compatible with CS5341  
VA  
VD  
VL  
3.3 V to 5 V  
3.3 V to 5 V  
1.8 V to 5 V  
Auto-detect  
MCLK Divider  
Master Clock  
Single-Ended  
Analog Input  
Switch-Cap  
ADC  
Low-Latency  
Digital Filters  
AINL  
High-Pass  
Filter  
SCLK  
LRCK  
FILT+  
VQ  
Slave Mode  
Auto-detect  
Internal  
Reference  
Voltages  
SDOUT  
M0  
M1  
Mode  
Configuration  
AINR Switch-Cap  
ADC  
Low-Latency  
Digital Filters  
Single-Ended  
Analog Input  
High-Pass  
Filter  
Reset  
Copyright © Cirrus Logic, Inc. 2008  
March '08  
DS601F2  
(All Rights Reserved)  
http://www.cirrus.com  
Confidential Draft  
3/11/08  
CS5340  
TABLE OF CONTENTS  
1. CHARACTERISTICS AND SPECIFICATIONS ...................................................................................... 4  
SPECIFIED OPERATING CONDITIONS ............................................................................................... 4  
ABSOLUTE MAXIMUM RATINGS ......................................................................................................... 4  
ANALOG CHARACTERISTICS - COMMERCIAL GRADE .................................................................... 5  
ANALOG CHARACTERISTICS - AUTOMOTIVE GRADE ..................................................................... 6  
DIGITAL FILTER CHARACTERISTICS ................................................................................................. 7  
DC ELECTRICAL CHARACTERISTICS .............................................................................................. 10  
DIGITAL CHARACTERISTICS ............................................................................................................. 10  
SWITCHING CHARACTERISTICS - SERIAL AUDIO PORT ............................................................... 11  
2. PIN DESCRIPTION .............................................................................................................................. 13  
3. TYPICAL CONNECTION DIAGRAM ................................................................................................... 14  
4. APPLICATIONS ................................................................................................................................... 15  
4.1 Single-, Double-, and Quad-Speed Modes ..................................................................................... 15  
4.2 Operation as Either a Clock Master or Slave ................................................................................. 15  
4.2.1 Operation as a Clock Master ................................................................................................. 16  
4.2.2 Operation as a Clock Slave with Auto-Detect ....................................................................... 16  
4.2.3 Master Clock ......................................................................................................................... 17  
4.3 Serial Audio Interface ..................................................................................................................... 17  
4.4 Power-Up Sequence ...................................................................................................................... 18  
4.5 Analog Connections ....................................................................................................................... 18  
4.6 Grounding and Power Supply Decoupling ...................................................................................... 18  
4.7 Synchronization of Multiple Devices ............................................................................................... 18  
4.8 Capacitor Size on the Reference Pin (FILT+) ................................................................................ 19  
5. PARAMETER DEFINITIONS ................................................................................................................ 20  
6. PACKAGE DIMENSIONS ................................................................................................................... 21  
THERMAL CHARACTERISTICS .......................................................................................................... 21  
7. ORDERING INFORMATION ................................................................................................................ 22  
8. REVISION HISTORY ............................................................................................................................ 22  
2
DS601F2  
Confidential Draft  
3/11/08  
CS5340  
LIST OF FIGURES  
Figure 1.Single-Speed Mode Stopband Rejection ...................................................................................... 8  
Figure 2.Single-Speed Mode Stopband Rejection ...................................................................................... 8  
Figure 3.Single-Speed Mode Transition Band (Detail) ................................................................................ 8  
Figure 4.Single-Speed Mode Passband Ripple .......................................................................................... 8  
Figure 5.Double-Speed Mode Stopband Rejection ..................................................................................... 8  
Figure 6.Double-Speed Mode Stopband Rejection ..................................................................................... 8  
Figure 7.Double-Speed Mode Transition Band (Detail) .............................................................................. 9  
Figure 8.Double-Speed Mode Passband Ripple ......................................................................................... 9  
Figure 9.Quad-Speed Mode Stopband Rejection ....................................................................................... 9  
Figure 10.Quad-Speed Mode Stopband Rejection ..................................................................................... 9  
Figure 11.Quad-Speed Mode Transition Band (Detail) ............................................................................... 9  
Figure 12.Quad-Speed Mode Passband Ripple ......................................................................................... 9  
Figure 13.Master Mode, Left-Justified SAI ................................................................................................ 12  
Figure 14.Slave Mode, Left-Justified SAI .................................................................................................. 12  
Figure 15.Master Mode, I²S SAI ................................................................................................................ 12  
Figure 16.Slave Mode, I²S SAI .................................................................................................................. 12  
Figure 17.Typical Connection Diagram ..................................................................................................... 14  
Figure 18.CS5340 Master Mode Clocking ................................................................................................ 16  
Figure 19.I²S Serial Audio Interface .......................................................................................................... 17  
Figure 20.Left-Justified Serial Audio Interface .......................................................................................... 17  
Figure 21.CS5340 Recommended Analog Input Buffer ............................................................................ 18  
Figure 22.CS5340 THD+N versus Frequency .......................................................................................... 19  
LIST OF TABLES  
Table 1. Speed Modes and the Associated Output Sample Rates (Fs) .................................................... 15  
Table 2. CS5340 Mode Control ................................................................................................................. 15  
Table 3. Master Clock (MCLK) Ratios ....................................................................................................... 17  
Table 4. Master Clock (MCLK) Frequencies for Standard Audio Sample Rates ...................................... 17  
DS601F2  
3
Confidential Draft  
3/11/08  
CS5340  
1. CHARACTERISTICS AND SPECIFICATIONS  
(All Min/Max characteristics and specifications are guaranteed over the Specified Operating Conditions. Typical  
performance characteristics and specifications are derived from measurements taken at typical supply voltages  
and T = 25°C.)  
A
SPECIFIED OPERATING CONDITIONS  
(GND = 0 V, all voltages with respect to 0 V.)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Power Supplies  
Analog  
Digital  
Logic  
VA  
VD  
VL  
3.1  
3.1  
1.7  
(Note 1)  
3.3  
3.3  
5.25  
5.25  
5.25  
V
V
V
Ambient Operating Temperature  
Commercial  
Automotive  
TAC  
TAC  
-10  
-40  
-
-
70  
85  
°C  
°C  
Notes:  
1. This part is specified at typical analog voltages of 3.3 V and 5.0 V. See Analog Characteristics - Com-  
mercial Grade and Analog Characteristics - Automotive Grade, below, for details.  
ABSOLUTE MAXIMUM RATINGS  
(GND = 0 V, All voltages with respect to ground.) (Note 2)  
Parameter  
Symbol  
Min  
Max  
Units  
DC Power Supplies:  
Analog  
Logic  
Digital  
VA  
VL  
VD  
-0.3  
-0.3  
-0.3  
+6.0  
+6.0  
+6.0  
V
V
V
Input Current  
(Note 3)  
(Note 4)  
(Note 4)  
I
-10  
GND-0.7  
-0.7  
+10  
VA+0.7  
VL+0.7  
+95  
mA  
V
in  
Analog Input Voltage  
Digital Input Voltage  
V
IN  
V
V
IND  
Ambient Operating Temperature (Power Applied)  
Storage Temperature  
TA  
°C  
°C  
-50  
T
-65  
+150  
stg  
2. Operation beyond these limits may result in permanent damage to the device.  
Normal operation is not guaranteed at these extremes.  
3. Any pin except supplies. Transient currents of up to ±100 mA on the analog input pins will not cause  
SRC latch-up.  
4. The maximum over/under voltage is limited by the input current.  
4
DS601F2  
Confidential Draft  
3/11/08  
CS5340  
ANALOG CHARACTERISTICS - COMMERCIAL GRADE  
Test Conditions (unless otherwise specified): Input test signal is a 1 kHz sine wave; measurement bandwidth is  
10 Hz to 20 kHz.  
Dynamic Performance for Commercial Grade  
VA = 5 V  
VA = 3.3 V  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
Single-Speed Mode  
Fs = 48 kHz  
Dynamic Range  
A-weighted  
unweighted  
95  
92  
101  
98  
-
-
92  
89  
98  
95  
-
-
dB  
dB  
Total Harmonic Distortion + Noise  
(Note 5)  
-1 dB  
THD+N  
-
-
-
-94  
-78  
-38  
-88  
-
-
-
-
-
-91  
-75  
-35  
-85  
-
-
dB  
dB  
dB  
-20 dB  
-60 dB  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
Double-Speed Mode  
Fs = 96 kHz  
Dynamic Range  
A-weighted  
unweighted  
95  
92  
-
101  
98  
95  
-
-
-
92  
89  
-
98  
95  
92  
-
-
-
dB  
dB  
dB  
40 kHz bandwidth unweighted  
Total Harmonic Distortion + Noise  
(Note 5)  
-1 dB  
THD+N  
-
-
-
-
-94  
-78  
-38  
-91  
-88  
-
-
-
-
-91  
-75  
-35  
-85  
-85  
dB  
dB  
dB  
dB  
-20 dB  
-60 dB  
-
-
-
-
-
-
40 kHz bandwidth  
-1 dB  
Symbol  
Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
Quad-Speed Mode  
Fs = 192 kHz  
Dynamic Range  
A-weighted  
unweighted  
95  
92  
-
101  
98  
95  
-
-
-
92  
89  
-
98  
95  
92  
-
-
-
dB  
dB  
dB  
40 kHz bandwidth unweighted  
Total Harmonic Distortion + Noise  
(Note 5)  
-1 dB  
THD+N  
-
-
-
-
-94  
-78  
-38  
-91  
-88  
-
-
-
-
-91  
-75  
-35  
-85  
-85  
dB  
dB  
dB  
dB  
-20 dB  
-60 dB  
-
-
-
-
-
-
40 kHz bandwidth  
-1 dB  
Min  
Typ  
Max  
Dynamic Performance All Modes  
Interchannel Isolation  
DC Accuracy  
Unit  
-
90  
-
dB  
Interchannel Gain Mismatch  
Gain Error  
-
-5  
-
0.1  
-
-
+5  
-
dB  
%
Gain Drift  
100  
ppm/°C  
Analog Input Characteristics  
Full-Scale Input Voltage  
Input Impedance  
0.53*VA  
-
0.56*VA  
25  
0.59*VA  
-
Vpp  
kΩ  
5. Referred to the typical full-scale input voltage  
DS601F2  
5
Confidential Draft  
3/11/08  
CS5340  
ANALOG CHARACTERISTICS - AUTOMOTIVE GRADE  
Test Conditions (unless otherwise specified): Input test signal is a 1 kHz sine wave; measurement bandwidth is  
10 Hz to 20 kHz.  
Dynamic Performance for Automotive Grade  
VA = 5 V  
VA = 3.3 V  
Symbol Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
Single-Speed Mode  
Fs = 48 kHz  
Dynamic Range  
A-weighted  
unweighted  
93  
90  
101  
98  
-
-
90  
87  
98  
95  
-
-
dB  
dB  
Total Harmonic Distortion + Noise  
(Note 5)  
-1 dB  
THD+N  
-
-
-
-94  
-78  
-38  
-86  
-
-
-
-
-
-91  
-75  
-35  
-83  
-
-
dB  
dB  
dB  
-20 dB  
-60 dB  
Symbol Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
Double-Speed Mode  
Fs = 96 kHz  
Dynamic Range  
A-weighted  
unweighted  
93  
90  
-
101  
98  
95  
-
-
-
90  
87  
-
98  
95  
92  
-
-
-
dB  
dB  
dB  
40 kHz bandwidth unweighted  
Total Harmonic Distortion + Noise  
(Note 5)  
-1 dB  
THD+N  
-
-
-
-
-94  
-78  
-38  
-91  
-86  
-
-
-
-
-91  
-75  
-35  
-85  
-83  
dB  
dB  
dB  
dB  
-20 dB  
-60 dB  
-
-
-
-
-
-
40 kHz bandwidth  
-1 dB  
Symbol Min  
Typ  
Max  
Min  
Typ  
Max  
Unit  
Quad-Speed Mode  
Fs = 192 kHz  
Dynamic Range  
A-weighted  
unweighted  
93  
90  
-
101  
98  
95  
-
-
-
90  
87  
-
98  
95  
92  
-
-
-
dB  
dB  
dB  
40 kHz bandwidth unweighted  
Total Harmonic Distortion + Noise  
(Note 5)  
-1 dB  
THD+N  
-
-
-
-
-94  
-78  
-38  
-91  
-86  
-
-
-
-
-91  
-75  
-35  
-85  
-83  
dB  
dB  
dB  
dB  
-20 dB  
-60 dB  
-
-
-
-
-
-
40 kHz bandwidth  
-1 dB  
Min  
Typ  
Max  
Dynamic Performance All Modes  
Interchannel Isolation  
DC Accuracy  
Unit  
-
90  
-
dB  
Interchannel Gain Mismatch  
Gain Error  
-
-10  
-
0.1  
-
-
+10  
-
dB  
%
Gain Drift  
100  
ppm/°C  
Analog Input Characteristics  
Full-Scale Input Voltage  
Input Impedance  
0.50*VA  
-
0.56*VA  
25  
0.62*VA  
-
Vpp  
kΩ  
6. Referred to the typical full-scale input voltage  
6
DS601F2  
Confidential Draft  
3/11/08  
CS5340  
DIGITAL FILTER CHARACTERISTICS  
Parameter  
Symbol Min  
Typ  
Max  
Unit  
Single-Speed Mode  
Passband  
(-0.1 dB)  
(Note 7)  
(Note 7)  
0
-
0.4895  
Fs  
dB  
Fs  
dB  
s
Passband Ripple  
Stopband  
-0.035  
0.5687  
70  
-
0.035  
-
-
-
-
-
Stopband Attenuation  
Total Group Delay (Fs = Output Sample Rate)  
tgd  
tgd  
tgd  
-
12/Fs  
Double-Speed Mode  
Passband  
(-0.1 dB)  
(Note 7)  
(Note 7)  
0
-0.025  
0.5604  
69  
-
0.4895  
Fs  
dB  
Fs  
dB  
s
Passband Ripple  
Stopband  
-
0.025  
-
-
-
-
-
Stopband Attenuation  
Total Group Delay (Fs = Output Sample Rate)  
-
9/Fs  
Quad-Speed Mode  
Passband  
(-0.1 dB)  
(Note 7)  
(Note 7)  
0
-0.025  
0.5  
60  
-
0.2604  
Fs  
dB  
Fs  
dB  
s
Passband Ripple  
Stopband  
-
0.025  
-
-
-
-
-
Stopband Attenuation  
Total Group Delay (Fs = Output Sample Rate)  
-
5/Fs  
High-Pass Filter Characteristics  
Frequency Response  
-3.0 dB  
-0.13 dB  
-
1
20  
-
-
Hz  
Hz  
(Note 8)  
(Note 8)  
Phase Deviation  
Passband Ripple  
@ 20 Hz  
-
-
10  
-
-
Deg  
dB  
0
7. Filter characteristics scale precisely with Fs  
8. Response shown is for Fs equal to 48 kHz. Filter characteristics scale with Fs.  
DS601F2  
7
Confidential Draft  
3/11/08  
CS5340  
0
-10  
0
-10  
-20  
-30  
-40  
-50  
-20  
-30  
-40  
-50  
-60  
-70  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
0.40 0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5 0.6  
0.7 0.8  
0.9  
1.0  
Frequency (normalized to Fs)  
Frequency (normalized to Fs)  
Figure 1. Single-Speed Mode Stopband Rejection  
Figure 2. Single-Speed Mode Stopband Rejection  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
-0.02  
-0.04  
-0.06  
-0.08  
-0.10  
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
-10  
0
0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5  
0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.55  
Frequency (normalized to Fs)  
Frequency (normalized to Fs)  
Figure 3. Single-Speed Mode Transition Band (Detail)  
Figure 4. Single-Speed Mode Passband Ripple  
0
-10  
0
-10  
-20  
-30  
-40  
-50  
-20  
-30  
-40  
-50  
-60  
-70  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5 0.6  
0.7 0.8  
0.9  
1.0  
0.40 0.42 0.44 0.46 0.48 0.50 0.52 0.54 0.56 0.58 0.60  
Frequency (normalized to Fs)  
Frequency (normalized to Fs)  
Figure 5. Double-Speed Mode Stopband Rejection  
Figure 6. Double-Speed Mode Stopband Rejection  
8
DS601F2  
Confidential Draft  
3/11/08  
CS5340  
0
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
-0.02  
-0.04  
-0.06  
-0.08  
-0.10  
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
-10  
0.46  
0.47  
0.48  
0.49  
0.50  
0.51  
0.52  
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50  
Frequency (normalized to Fs)  
Frequency (normalized to Fs)  
Figure 7. Double-Speed Mode Transition Band (Detail)  
Figure 8. Double-Speed Mode Passband Ripple  
0
-10  
0
-10  
-20  
-30  
-40  
-50  
-20  
-30  
-40  
-50  
-60  
-70  
-60  
-70  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
-80  
-90  
-100  
-110  
-120  
-130  
-140  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5 0.6  
0.7 0.8  
0.9  
1.0  
0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85  
Frequency (normalized to Fs)  
Frequency (normalized to Fs)  
Figure 9. Quad-Speed Mode Stopband Rejection  
Figure 10. Quad-Speed Mode Stopband Rejection  
0
-1  
-2  
-3  
-4  
-5  
-6  
-7  
-8  
-9  
-10  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
-0.02  
-0.04  
-0.06  
-0.08  
0.10  
0.15  
0.20  
0.25  
0.30  
0.35  
0.40  
0.45  
0.50  
-0.10  
0.00 0.03 0.05 0.08 0.10 0.13 0.15 0.18 0.20 0.23 0.25 0.28  
Frequency (normalized to Fs)  
Frequency (normalized to Fs)  
Figure 11. Quad-Speed Mode Transition Band (Detail)  
Figure 12. Quad-Speed Mode Passband Ripple  
DS601F2  
9
Confidential Draft  
3/11/08  
CS5340  
DC ELECTRICAL CHARACTERISTICS  
(GND = 0 V, all voltages with respect to 0 V. MCLK=12.288 MHz; Master Mode)  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
DC Power Supplies:  
Positive Analog  
Positive Digital  
Positive Logic  
VA  
VD  
VL  
3.1  
3.1  
1.7  
-
-
-
5.25  
5.25  
5.25  
V
V
V
Power Supply Current  
(Normal Operation)  
VA = 5 V  
VA = 3.3 V  
VL,VD = 5 V  
IA  
IA  
ID  
ID  
-
-
-
-
21  
18.2  
15  
25.5  
22.5  
18.5  
10  
mA  
mA  
mA  
mA  
9
VL,VD = 3.3 V  
Power Supply Current  
(Power-Down Mode) (Note 9)  
VA = 5 V  
VL,VD=5 V  
IA  
ID  
-
-
1.5  
0.4  
-
-
mA  
mA  
Power Consumption  
(Normal Operation)  
VL, VD, VA = 5 V  
VL, VD, VA = 3.3 V  
(Power-Down Mode)  
-
-
-
-
-
-
180  
90  
9.5  
220  
107.2  
-
mW  
mW  
mW  
PSRR  
-
65  
-
dB  
Power Supply Rejection Ratio (1 kHz)  
Q Nominal Voltage  
(Note 10)  
V
-
-
VA÷2  
-
-
V
kΩ  
25  
Output Impedance  
Filt+ Nominal Voltage  
Output Impedance  
Maximum allowable DC current source/sink  
-
-
-
VA  
36  
0.01  
-
-
-
V
kΩ  
mA  
9. Power Down Mode is defined as RST = Low, with all clocks and data lines held static at a valid logic  
levels.  
10. Valid with the recommended capacitor values on FILT+ and VQ as shown in the Typical Connection  
Diagram, Figure 17 on page 14.  
DIGITAL CHARACTERISTICS  
Parameter  
Symbol  
VIH  
Min  
70%  
-
Typ  
Max  
Units  
High-Level Input Voltage  
Low-Level Input Voltage  
(% of VL)  
(% of VL)  
-
-
-
-
30%  
-
V
V
V
VIL  
VOH  
70%  
High-Level Output Voltage at Io = 100 µA  
(% of VL)  
(% of VL)  
VOL  
Iin  
-
-
-
15%  
V
Low-Level Output Voltage at Io =100 µA  
Input Leakage Current  
-10  
+10  
µA  
10  
DS601F2  
Confidential Draft  
3/11/08  
CS5340  
SWITCHING CHARACTERISTICS - SERIAL AUDIO PORT  
(Logic "0" = GND = 0 V; Logic "1" = VL, C = 20 pF)  
L
Parameter  
MCLK Specifications  
MCLK Period  
Symbol  
Min  
Typ  
Max  
Unit  
tclkw  
39  
78  
40  
-
-
-
45  
1953  
60  
ns  
ns  
%
MCLK Pulse Duty Cycle  
Master Mode  
tmslr  
-20  
-20  
-8  
-
-
-
20  
20  
8
ns  
ns  
ns  
SCLK falling to LRCK  
Single-Speed  
Double-Speed  
Quad-Speed  
SCLK falling to SDOUT valid.  
SCLK Duty Cycle.  
tsdo  
-
-
-
-
32  
-
ns  
%
%
Single-Speed  
Double-Speed  
50  
50  
-
-
33  
-
%
Quad-Speed  
Slave Mode  
Single-Speed (Note 11)  
LRCK Duty Cycle  
40  
156  
45  
10  
5
50  
-
60  
-
%
ns  
%
tsclkw  
SCLK Period  
50  
-
55  
-
SCLK Duty Cycle  
tstp  
thld  
tslrd  
ns  
ns  
ns  
SDOUT valid before SCLK rising  
SDOUT valid after SCLK rising  
-
-
-20  
-
20  
SCLK falling to LRCK edge  
Double-Speed (Note 11)  
LRCK Duty Cycle  
40  
156  
45  
10  
5
50  
-
60  
-
%
ns  
%
tsclkw  
SCLK Period  
50  
-
55  
-
SCLK Duty Cycle  
tstp  
thld  
tslrd  
ns  
ns  
ns  
SDOUT valid before SCLK rising  
-
-
SDOUT valid after SCLK rising  
SCLK falling to LRCK edge.  
Quad-Speed (Note 11)  
LRCK Duty Cycle  
-20  
-
20  
40  
78  
29.7  
10  
5
50  
-
60  
-
%
ns  
%
tsclkw  
SCLK Period  
33  
-
50  
-
SCLK Duty Cycle  
tstp  
thld  
tslrd  
ns  
ns  
ns  
SDOUT valid before SCLK rising  
SDOUT valid after SCLK rising  
SCLK falling to LRCK edge.  
-
-
-8  
-
8
11. For a description of speed modes, please refer to Table on page 15.  
DS601F2  
11  
Confidential Draft  
3/11/08  
CS5340  
SCLK output  
LRCK output  
SDOUT  
LRCK input  
SCLK input  
t
t
t
mslr  
sclkw  
slrd  
t
t
t
sdo  
stp hld  
MSB  
MSB-1  
MSB  
MSB-1  
SDOUT  
Figure 13. Master Mode, Left-Justified SAI  
Figure 14. Slave Mode, Left-Justified SAI  
SCLK output  
LRCK input  
t
t
t
mslr  
sclkw  
slrd  
LRCK output  
SDOUT  
SCLK input  
SDOUT  
t
t
t
sdo  
stp hld  
MSB  
MSB  
Figure 15. Master Mode, I²S SAI  
Figure 16. Slave Mode, I²S SAI  
12  
DS601F2  
Confidential Draft  
3/11/08  
CS5340  
2. PIN DESCRIPTION  
M0  
MCLK  
VL  
SDOUT  
GND  
VD  
SCLK  
LRCK  
M1  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
FILT+  
REF_GND  
VA  
AINR  
VQ  
AINL  
RST  
Pin Name  
#
Pin Description  
M0  
M1  
1
16  
Mode Selection (Input) - Determines the operational mode of the device.  
MCLK  
VL  
2
3
Master Clock (Input) - Clock source for the delta-sigma modulator and digital filters.  
Logic Power (Input) - Positive power for the digital input/output.  
SDOUT  
GND  
VD  
4
Serial Audio Data Output (Output) - Output for two’s complement serial audio data.  
Ground (Input) - Ground reference. Must be connected to analog ground.  
Digital Power (Input) - Positive power supply for the digital section.  
Serial Clock (Input/Output) - Serial clock for the serial audio interface.  
5,14  
6
SCLK  
7
Left Right Clock (Input/Output) - Determines which channel, Left or Right, is currently  
active on the serial audio data line.  
LRCK  
RST  
8
9
Reset (Input) - The device enters a low power mode when low.  
AINL  
AINR  
10  
12  
Analog Input (Input) - The full-scale analog input level is specified in the Analog Charac-  
teristics specification table.  
Quiescent Voltage (Output) - Filter connection for the internal quiescent  
reference voltage.  
VQ  
11  
13  
15  
VA  
Analog Power (Input) - Positive power supply for the analog section.  
Positive Voltage Reference (Output) - Positive reference voltage for the internal  
sampling circuits.  
FILT+  
DS601F2  
13  
Confidential Draft  
3/11/08  
CS5340  
3. TYPICAL CONNECTION DIAGRAM  
3.3V to 5V  
+
1.8 V to 5V  
µ
1 F  
µ
0.1 F  
+
µ
µ
1 F  
0.1 F  
**  
3.3V to 5V  
+
5.1  
µ
1 F  
µ
0.1 F  
µ
0.1 F  
VA  
VD  
VL  
FILT+  
µ ***  
+
µ
0.1 F  
1 F  
REFGND  
VQ  
µ
0.1 F  
1µ  
F
+
RST  
M0  
M1  
Power Down  
and Mode  
Settings  
CS5340  
VL or GND  
*
A/D CONVERTER  
10k  
AINL  
AINR  
Audio Data  
Processor  
SDOUT  
Analog Input Buffer  
Figure 21  
MCLK  
LRCK  
Timing Logic  
and Clock  
SCLK  
* Pull-up to VL for I2S  
*** Capacitor value affects  
Pull-down to GND for LJ low frequency distortion  
performance as described  
GND  
** Resistor may only be  
in Section 4.8  
used if VD is derived from  
VA. If used, do not drive  
any other logic from VD  
14  
DS601F2  
Confidential Draft  
3/11/08  
CS5340  
4. APPLICATIONS  
4.1  
Single-, Double-, and Quad-Speed Modes  
The CS5340 can support output sample rates from 2 kHz to 200 kHz. The proper speed mode can be de-  
termined by the desired output sample rate and the external MCLK/LRCK ratio, as shown in Table 1.  
MCLK/LRCK  
Speed Mode  
Single-Speed Mode  
Double-Speed Mode  
Quad-Speed Mode  
Output Sample Rate Range (kHz)  
Ratio  
512x  
256x  
256x  
128x  
128x  
64x*  
43 - 50  
2 - 50  
86 - 100  
4 - 100  
172 - 200  
100 - 200  
* Quad-Speed Mode, 64x only available in Master Mode.  
Table 1. Speed Modes and the Associated Output Sample Rates (Fs)  
4.2  
Operation as Either a Clock Master or Slave  
The CS5340 supports operation as either a clock master or slave. As a clock master, the LRCK and SCLK  
pins are outputs with the left/right and serial clocks synchronously generated on-chip. As a clock slave, the  
LRCK and SCLK pins are inputs and require the left/right and serial clocks to be externally generated. The  
selection of clock master or slave is made via the Mode pins as shown in Table 2.  
M1 (Pin 16) M0 (Pin 1)  
MODE  
Clock Master, Single-Speed Mode  
Clock Master, Double-Speed Mode  
Clock Master, Quad-Speed Mode  
Clock Slave, All Speed Modes  
0
0
1
1
0
1
0
1
Table 2. CS5340 Mode Control  
DS601F2  
15  
Confidential Draft  
3/11/08  
CS5340  
4.2.1  
Operation as a Clock Master  
As a clock master, LRCK and SCLK operate as outputs. The left/right and serial clocks are internally de-  
rived from the master clock with the left/right clock equal to Fs and the serial clock equal to 64x Fs, as  
shown in Figure 18.  
Single  
Speed  
÷ 256  
÷ 128  
÷ 64  
00  
Double  
Speed  
LRCK Output  
(Equal to Fs)  
01  
10  
Quad  
Speed  
÷ 1  
÷ 2  
0
1
M1 M0  
MCLK  
Single  
Speed  
÷ 4  
00  
Auto-Select  
Double  
Speed  
SCLK Output  
÷ 2  
÷ 1  
01  
10  
Quad  
Speed  
Figure 18. CS5340 Master Mode Clocking  
4.2.2  
Operation as a Clock Slave with Auto-Detect  
LRCK and SCLK operate as inputs in clock slave mode. It is recommended that the left/right clock be  
synchronously derived from the master clock and must be equal to Fs. It is also recommended that the  
serial clock be synchronously derived from the master clock and be equal to 64x Fs to maximize system  
performance.  
A unique feature of the CS5340 is the automatic selection of either Single-, Double- or Quad-Speed mode  
when operating as a clock slave. The auto-mode select feature negates the need to configure the Mode  
pins to correspond to the desired mode. The auto-mode selection feature supports all standard audio  
sample rates from 2 to 200 kHz. However, there are ranges of non-standard audio sample rates that are  
not supported when operating with a fast MCLK (512x, 256x, 128x for Single-, Double-, and Quad-Speed  
Modes, respectively). Please refer to Table for supported sample rate ranges.  
16  
DS601F2  
Confidential Draft  
3/11/08  
CS5340  
4.2.3  
Master Clock  
The CS5340 requires a Master clock (MCLK) which runs the internal sampling circuits and digital filters.  
There is also an internal MCLK divider which is automatically activated based on the speed mode and  
frequency of the MCLK. Table 3 shows a listing of the external MCLK/LRCK ratios that are required.  
Table 4 lists some common audio output sample rates and the required MCLK frequency. Please note  
that not all of the listed sample rates are supported when operating with a fast MCLK (512x, 256x, 128x  
for Single-, Double-, and Quad-Speed Modes, respectively).  
Single-Speed Mode  
Double-Speed Mode  
Quad-Speed Mode  
MCLK/LRCK Ratio  
256x, 512x  
128x, 256x  
64x*,128x  
* Quad Speed, 64x only available in Master Mode.  
Table 3. Master Clock (MCLK) Ratios  
SAMPLE RATE (kHz)  
MCLK (MHz)  
8.192  
32  
44.1  
11.2896  
22.5792  
12.288  
48  
24.576  
64  
8.192  
88.2  
11.2896  
22.5792  
12.288  
96  
24.576  
192  
12.288  
24.576  
Table 4. Master Clock (MCLK) Frequencies for Standard Audio Sample Rates  
4.3  
Serial Audio Interface  
The CS5340 supports both I²S and Left-Justified serial audio formats. Upon start-up, the CS5340 will detect  
the logic level on SDOUT (pin 4). A 10 kpull-up to VL is needed to select I²S format, and a 10 kpull-  
down to GND is needed to select Left-Justified format. Figures 19 and 20 illustrate the I²S and Left-Justified  
audio formats. Please see Figures 13 through 16, for more information on the required timing for the two  
serial audio interface formats. Also see Application Note AN282 for a detailed discussion of the serial audio  
interface formats.  
LR CK  
Left Channel  
R ight Channel  
SCLK  
SD ATA  
23 22  
9
8
7
6
5
4
3
2
1
0
23 22  
9
8
7
6
5
4
3
2
1
0
23 22  
Figure 19. I²S Serial Audio Interface  
LRCK  
SCLK  
Left C hannel  
R ight Channel  
SD ATA  
23 22  
9
8
7
6
5
4
3
2
1
0
23 22  
9
8
7
6
5
4
3
2
1
0
23 22  
Figure 20. Left-Justified Serial Audio Interface  
DS601F2  
17  
Confidential Draft  
3/11/08  
CS5340  
4.4  
4.5  
Power-Up Sequence  
Reliable power-up can be accomplished by keeping the device in reset until the power supplies, clocks and  
configuration pins are stable. It is also recommended that reset be enabled if the analog or digital supplies  
drop below the minimum specified operating voltages to prevent power-glitch-related issues.  
Analog Connections  
The analog modulator samples the input at half of the MCLK frequency, or nominally 6.144 MHz. The digital  
filter will reject signals within the stopband of the filter. However, there is no rejection for input signals which  
are multiples of the input sampling frequency (n × 6.144 MHz), where n=0,1,2,... Refer to Figure 21 which  
shows the suggested filter that will attenuate any noise energy at 6.144 MHz, in addition to providing the  
optimum source impedance for the modulators. The use of capacitors which have a large voltage coefficient  
(such as general purpose ceramics) must be avoided since these can degrade signal linearity.  
634  
VA  
470 pF  
100 kΩ  
C0G  
91 Ω  
4.7 µF  
CS5340 AINx  
AINx  
2700 pF  
100 kΩ  
Figure 21. CS5340 Recommended Analog Input Buffer  
4.6  
4.7  
18  
Grounding and Power Supply Decoupling  
As with any high-resolution converter, achieving optimal performance from the CS5340 requires careful at-  
tention to power supply and grounding arrangements. Figure 17 shows the recommended power arrange-  
ments, with VA and VL connected to clean supplies. VD, which powers the digital filter, may be run from the  
system logic supply or may be powered from the analog supply via a resistor. In this case, no additional  
devices should be powered from VD. Decoupling capacitors should be as near to the ADC as possible, with  
the low-value ceramic capacitor being the nearest. All signals, especially clocks, should be kept away from  
the FILT+ and VQ pins in order to avoid unwanted coupling into the modulators. The FILT+ and VQ decou-  
pling capacitors, particularly the 0.01 µF, must be positioned to minimize the electrical path from FILT+ and  
REF_GND. Furthermore, all ground pins on CS5340 should be referenced to the same ground reference.  
The CDB5340 evaluation board demonstrates the optimum layout and power supply arrangements. To min-  
imize digital noise, connect the ADC digital outputs only to CMOS inputs.  
Synchronization of Multiple Devices  
In systems where multiple ADCs are required, the user can achieve simultaneous sampling if the MCLK and  
LRCK signals are the same for all of the CS5340’s in the system. If only one master clock source is needed,  
one solution is to place one CS5340 in Master mode, and slave all of the other CS5340’s to the one master.  
If multiple master clock sources are needed, a possible solution would be to supply all clocks from the same  
external source and time the CS5340 reset with the inactive (falling) edge of MCLK. This will ensure that all  
converters begin sampling on the same clock edge.  
DS601F2  
Confidential Draft  
3/11/08  
CS5340  
4.8  
Capacitor Size on the Reference Pin (FILT+)  
The CS5340 requires an external capacitance on the internal reference voltage pin, FILT+. The size of this  
decoupling capacitor will affect the low frequency distortion performance as shown in Figure 22, with larger  
capacitor values used to optimize low frequency distortion performance. This plot was taken using the  
CDB5340 evaluation platform, with the device running in Single-Speed Mode and VA=VD=VL=5 V.  
1 uF  
2.2 uF  
3.3 uF  
4.7 uF  
5.6 uF  
6.8 uF  
10 uF  
22 uF  
47 uF  
100 uF  
Figure 22. CS5340 THD+N versus Frequency  
DS601F2  
19  
Confidential Draft  
3/11/08  
CS5340  
5. PARAMETER DEFINITIONS  
Dynamic Range  
The ratio of the rms value of the signal to the rms sum of all other spectral components over the specified  
bandwidth. Dynamic Range is a signal-to-noise ratio measurement over the specified bandwidth made with  
a -60 dBFS signal. 60 dB is added to resulting measurement to refer the measurement to full-scale. This  
technique ensures that the distortion components are below the noise level and do not affect the measure-  
ment. This measurement technique has been accepted by the Audio Engineering Society, AES17-1991,  
and the Electronic Industries Association of Japan, EIAJ CP-307. Expressed in decibels.  
Total Harmonic Distortion + Noise  
The ratio of the rms value of the signal to the rms sum of all other spectral components over the specified  
bandwidth (typically 10 Hz to 20 kHz), including distortion components. Expressed in decibels. Measured  
at -1 and -20 dBFS as suggested in AES17-1991 Annex A.  
Frequency Response  
A measure of the amplitude response variation from 10 Hz to 20 kHz relative to the amplitude response at  
1 kHz. Units in decibels.  
Interchannel Isolation  
A measure of crosstalk between the left and right channels. Measured for each channel at the converter's  
output with no signal to the input under test and a full-scale signal applied to the other channel. Units in deci-  
bels.  
Interchannel Gain Mismatch  
The gain difference between left and right channels. Units in decibels.  
Gain Error  
The deviation from the nominal full-scale analog input for a full-scale digital output.  
Gain Drift  
The change in gain value with temperature. Units in ppm/°C.  
Offset Error  
The deviation of the mid-scale transition (111...111 to 000...000) from the ideal. Units in mV.  
20  
DS601F2  
Confidential Draft  
3/11/08  
CS5340  
6. PACKAGE DIMENSIONS  
16L TSSOP (4.4 mm BODY) PACKAGE DRAWING  
N
D
E11  
A2  
A
E
A1  
b2  
e
L
END VIEW  
SEATING  
PLANE  
SIDE VIEW  
1
2 3  
TOP VIEW  
INCHES  
NOM  
MILLIMETERS  
NOM  
NOTE  
DIM  
MIN  
MAX  
MIN  
MAX  
A
A1  
A2  
b
D
E
E1  
e
L
--  
0.002  
0.03346  
0.00748  
0.193  
0.248  
0.169  
--  
--  
0.004  
0.043  
0.006  
0.037  
0.012  
0.201  
0.256  
0.177  
--  
--  
--  
--  
1.10  
0.15  
0.95  
0.30  
5.10  
6.50  
4.50  
--  
0.05  
0.85  
0.19  
4.90  
6.30  
4.30  
--  
0.0354  
0.0096  
0.1969  
0.2519  
0.1732  
0.026 BSC  
0.024  
0.90  
0.245  
5.00  
6.40  
4.40  
0.65 BSC  
0.60  
4°  
2,3  
1
1
0.020  
0°  
0.028  
8°  
0.50  
0°  
0.70  
8°  
µ
4°  
JEDEC #: MO-153  
Controlling Dimension is Millimeters  
1. “D” and “E1” are reference datums and do not included mold flash or protrusions, but do include mold  
mismatch and are measured at the parting line, mold flash or protrusions shall not exceed 0.20 mm per  
side.  
2. Dimension “b” does not include dambar protrusion/intrusion. Allowable dambar protrusion shall be  
0.13 mm total in excess of “b” dimension at maximum material condition. Dambar intrusion shall not re-  
duce dimension “b” by more than 0.07 mm at least material condition.  
3. These dimensions apply to the flat section of the lead between 0.10 and 0.25 mm from lead tips.  
THERMAL CHARACTERISTICS  
Parameter  
Allowable Junction Temperature  
Symbol  
Min  
Typ  
-
Max  
135  
-
Unit  
°C  
°C/W  
-
-
Junction to Ambient Thermal Impedance  
θJA  
75  
DS601F2  
21  
Confidential Draft  
3/11/08  
CS5340  
7. ORDERING INFORMATION  
Product  
Description  
Package Pb-Free  
Grade  
Temp Range Container  
Order #  
CS5340-CZZ  
Bulk  
101 dB, 192 kHz, Multi-Bit  
Audio A/D Converter  
CS5340  
16-TSSOP  
YES  
Commercial -10° to +70° C  
Automotive -40° to +85° C  
Tape & Reel CS5340-CZZR  
Bulk  
Tape & Reel CS5340-DZZR  
CDB5340  
CS5340-DZZ  
101 dB, 192 kHz, Multi-Bit  
Audio A/D Converter  
CS5340  
16-TSSOP  
-
YES  
-
CDB5340 CS5340 Evaluation Board  
-
-
-
8. REVISION HISTORY  
Release  
Changes  
Remove CS5340-CZ from Ordering Information  
Redefine Serial Audio Port Switching Characteristics  
Correct dimension “e” under Package Dimensions  
Update Output Sample Rate Range  
PP3  
Update maximum current and power specifications  
Update Filt+ output impedance specification  
F1  
F2  
Reduced minimum sample rate to 4 kHz for Double-Speed Mode 128x in Table 1 on page 15  
Updated Legal Text  
Contacting Cirrus Logic Support  
For all product questions and inquiries, contact a Cirrus Logic Sales Representative.  
To find the one nearest to you, go to www.cirrus.com.  
IMPORTANT NOTICE  
Cirrus Logic, Inc. and its subsidiaries ("Cirrus") believe that the information contained in this document is accurate and reliable. However, the information is subject  
to change without notice and is provided "AS IS" without warranty of any kind (express or implied). Customers are advised to obtain the latest version of relevant  
information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale  
supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by Cirrus  
for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third  
parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights,  
copyrights, trademarks, trade secrets or other intellectual property rights. Cirrus owns the copyrights associated with the information contained herein and gives con-  
sent for copies to be made of the information only for use within your organization with respect to Cirrus integrated circuits or other products of Cirrus. This consent  
does not extend to other copying such as copying for general distribution, advertising or promotional purposes, or for creating any work for resale.  
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROP-  
ERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE  
IN PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRIT-  
ICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK AND  
CIRRUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY  
AND FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT THAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR  
CUSTOMER’S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO  
FULLY INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUD-  
ING ATTORNEYS’ FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES.  
Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks  
or service marks of their respective owners.  
22  
DS601F2  

相关型号:

CS5340-DZZ

101 dB, 192kHz, MULTI-BIT AUDIO A/D CONVERTER
CIRRUS

CS5340-DZZR

101 dB, 192kHz, MULTI-BIT AUDIO A/D CONVERTER
CIRRUS

CS5340_06

101 dB, 192kHz, MULTI-BIT AUDIO A/D CONVERTER
CIRRUS

CS5340_08

101 dB, 192 kHz, Multi-Bit Audio A/D Converter
CIRRUS

CS5341

105 dB, 192 kHz, MULTI-BIT AUDIO A/D CONVERTER
CIRRUS

CS5341-CZ

ADC, Delta-Sigma, 24-Bit, 1 Func, 2 Channel, Serial Access, PDSO16, 4.40 MM, MO-153, TSSOP-16
CIRRUS

CS5341-CZZ

105 dB, 192 kHz, MULTI-BIT AUDIO A/D CONVERTER
CIRRUS

CS5341-CZZR

105 dB, 192 kHz, Multi-Bit Audio A/D Converter
CIRRUS

CS5341-DZZ

105 dB, 192 kHz, MULTI-BIT AUDIO A/D CONVERTER
CIRRUS

CS5341-DZZR

105 dB, 192 kHz, Multi-Bit Audio A/D Converter
CIRRUS

CS5341_06

105 dB, 192 kHz, Multi-Bit Audio A/D Converter
CIRRUS

CS5341_08

105 dB, 192 kHz, Multi-Bit Audio A/D Converter
CIRRUS