CS8156 [CHERRY]

12V, 5V Low Dropout Dual Regulator with ENABLE; 12V , 5V低压降稳压器双带使能
CS8156
型号: CS8156
厂家: CHERRY SEMICONDUCTOR CORPORATION    CHERRY SEMICONDUCTOR CORPORATION
描述:

12V, 5V Low Dropout Dual Regulator with ENABLE
12V , 5V低压降稳压器双带使能

稳压器
文件: 总8页 (文件大小:176K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CS8156  
12V, 5V Low Dropout Dual Regulator  
with ENABLE  
Features  
Two regulated outputs  
Description  
The CS8156 is a low dropout 12V/5V  
The regulator is protected against over-  
voltage conditions. Both outputs are  
protected against short circuit and ther-  
mal runaway conditions.  
dual output linear regulator. The 12V  
± 5% output sources 750mA and the 5V  
±2.0% output sources 100mA.  
12V ±5.0%; 750mA  
5V ±2.0%; 100mA  
The on board ENABLE function con-  
The CS8156 is packaged in a 5 lead  
trols the regulatorÕs two outputs. When TOÐ220 with copper tab. The copper  
Very low SLEEP mode  
the ENABLE lead is low, the regulator  
is placed in SLEEP mode. Both outputs  
are disabled and the regulator draws  
only 200nA of quiescent current.  
tab can be connected to a heat sink if  
necessary.  
current drain 200nA  
Fault Protection  
Reverse Battery  
+60V, -50V Peak  
Transient Voltage  
Absolute Maximum Ratings  
Short Circuit  
Input Voltage  
Operating Range.....................................................................-0.5V to 26V  
Peak Transient Voltage (Load Dump = 46V) ....................................60V  
Internal Power Dissipation..................................................Internally Limited  
Operating Temperature Range................................................-40¡C to +125¡C  
Junction Temperature Range...................................................-40¡C to +150¡C  
Storage Temperature Range ....................................................-65¡C to +150¡C  
Lead Temperature Soldering  
Thermal Shutdown  
CMOS Compatible  
ENABLE  
Wave Solder (through hole styles only)..........10 sec. max, 260¡C peak  
Package Options  
Block Diagram  
5 Lead TO-220  
Tab (Gnd)  
VOUT , 5V  
VIN  
2
Anti-Saturation  
and  
Current Limit  
+
-
ENABLE  
+
-
Pre-Regulator  
V
OUT , 12V  
1
Over Voltage  
Shutdown  
Gnd  
1
2
3
4
5
VIN  
Anti-Saturation  
and  
Current Limit  
Bandgap  
VOUT1  
Gnd  
ENABLE  
VOUT2  
+
-
Reference  
1
Thermal  
Shutdown  
Cherry Semiconductor Corporation  
2000 South County Trail, East Greenwich, RI 02818  
Tel: (401)885-3600 Fax: (401)885-5786  
Email: info@cherry-semi.com  
Web Site: www.cherry-semi.com  
Rev. 2/19/98  
1
A
¨
Company  
Electrical Characteristics for VOUT: VIN = 14.5V, IOUT1 = 5mA, IOUT2 = 5mA, -40¡C ² TJ ² +150ûC, -40¡C ² TC ² +125ûC  
unless otherwise specified  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Output Stage(VOUT1  
)
Output Voltage, VOUT1  
Dropout Voltage  
13V ² VIN ² 16V, IOUT1 ² 750mA  
11.2  
12.0  
12.8  
V
IOUT1 = 500mA  
IOUT1 = 750mA  
0.4  
0.6  
0.6  
1.0  
V
V
Line Regulation  
Load Regulation  
Quiescent Current  
13V ² VIN ² 16V ,5mA ² IOUT < 100mA  
5mA ² IOUT1 ² 500mA  
15  
15  
80  
80  
mV  
mV  
IOUT1 ² 500mA, No Load on Standby  
IOUT1 ² 750mA, No Load on Standby  
45  
100  
125  
250  
mA  
mA  
Sleep Mode  
ENABLE = Low  
200  
70  
nA  
dB  
Ripple Rejection  
f = 120Hz, IOUT = 5mA,  
VIN = 1.5VPP at 15.5VDC  
42  
Current Limit  
0.75  
60  
1.20  
90  
2.50  
A
V
V
Maximum Line Transient  
VOUT1 ² 13V  
Reverse Polarity  
VOUT1 ³ -0.6V, 10½ Load  
-18  
-30  
Input Voltage, DC  
Reverse Polarity Input  
Voltage, Transient  
1% Duty Cycle, t = 100ms, VOUT ³ -6V,  
10½ Load  
-50  
-80  
V
Output Noise Voltage  
Output Impedance  
10Hz - 100kHz  
500  
1.0  
45  
µVrms  
500mA DC and 10mA rms, 100Hz  
0.2  
34  
½
V
Over-voltage Shutdown  
28  
Standby Output (VOUT2  
)
Output Voltage, (VOUT2  
Dropout Voltage  
Line Regulation  
)
9V ² VIN ² 16V, 1mA ² IOUT2 ² 100mA  
IOUT2 ² 100mA  
4.90  
5.00  
5.10  
0.60  
50  
V
V
6V ² VIN ² 26V; 1mA ² IOUT ² 100mA  
1mA ² IOUT2 ² 100mA; 9V ² VIN ² 16V  
VOUT1 OFF, VOUT2 OFF, VENABLE = 0.8V  
5
5
mV  
mV  
µA  
dB  
Load Regulation  
Quiescent Current  
Ripple Rejection  
50  
1
350  
f = 120Hz; IOUT = 100mA,  
VIN = 1.5VPP at 14.5VDC  
42  
70  
Current Limit  
100  
200  
mA  
ENABLE Function (ENABLE)  
Input ENABLE Threshold  
VOUT1 Off  
VOUT1 On  
1.25  
1.25  
0.80  
10  
V
V
2.00  
-10  
Input ENABLE Current  
VENABLE ² VTHRESHOLD  
Package Lead Description  
LEAD SYMBOL  
0
µA  
PACKAGE LEAD #  
5 Lead TO-220  
FUNCTION  
1
2
3
4
VIN  
Supply voltage, usually direct from battery.  
Regulated output 12V, 750mA (typ)  
Ground connection.  
VOUT1  
Gnd  
ENABLE  
CMOS compatible input lead; switches outputs on and off.  
When ENABLE is high VOUT1 and VOUT2 are active.  
5
VOUT2  
Regulated output 5V, 100mA (typ).  
2
Typical Performance Characteristics  
Dropout Voltage vs IOUT2  
VOUT1 vs. Input Voltage  
13  
12  
2000  
1800  
RL=10W  
11  
10  
1600  
1400  
1200  
1000  
800  
9
8
7
6
5
4
3
2
1
0
600  
400  
200  
0
-1  
-2  
0
50  
100  
150  
200  
-40  
-20  
0
20  
40  
60  
IOUT (mA)  
INPUT VOLTAGE (V)  
VOUT1 vs. Temperature  
VOUT2 vs. Temperature  
5.030  
5.020  
5.010  
5.000  
4.990  
4.980  
4.970  
12.15  
12.10  
12.05  
12.00  
11.95  
11.90  
11.85  
11.80  
11.75  
-40 -20  
0
20 40 60 80 100 120 140 160  
-40 -20  
0
20 40 60 80 100 120 140 160  
Temp (°C)  
Temp (°C)  
ENABLE Current vs. ENABLE Voltage  
ENABLE Current vs. ENABLE Voltage  
5.0  
100  
4.0  
3.0  
2.0  
80  
60  
40  
20  
0
1.0  
0.0  
0
1
2
3
4
5
0.0  
5
10  
15  
20  
25  
V
(V)  
V
(V)  
ENABLE  
ENABLE  
3
Typical Performance Characteristics: continued  
Line Transient Response (VOUT1  
)
Line Transient Response (VOUT2  
)
20  
10  
10  
5
IOUT1 = 500mA  
IOUT2 = 100mA  
0
-5  
0
-10  
-20  
-10  
3
2
1
3
2
1
0
0
0
10 20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
TIME (ms)  
TIME (ms)  
Load Transient Response (VOUT1  
)
Load Transient Response (VOUT2  
)
150  
100  
50  
150  
100  
50  
0
0
-50  
-100  
-150  
0.8  
0.6  
0.4  
0.2  
0
-50  
-100  
-150  
20  
15  
10  
5
0
0
10  
20  
30  
40  
50  
60  
0
10  
20  
30  
40  
50  
60  
TIME (ms)  
TIME (ms)  
Quiescent Current vs Output Current for VOUT2  
Maximum Power Dissipation (TO-220)  
20  
150  
140  
130  
120  
110  
100  
90  
80  
70  
60  
50  
No Load on 5V  
18  
16  
14  
12  
10  
8
INFINITE  
HEAT SINK  
VIN = 14V  
125ûC  
25ûC  
-40ûC  
10°C/W HEAT SINK  
6
40  
30  
20  
10  
4
NO HEAT SINK  
2
0
0
0
100 200 300 400 500 600  
Output Current (mA)  
700 800  
0
10 20 30 40 50 60 70 80 90  
AMBIENT TEMPERATURE (°C)  
4
Typical Performance Characteristics: continued  
Quiescent Current vs Output Current for VOUT1  
Line Regulation vs Output Current for VOUT2  
22  
20  
18  
16  
14  
12  
10  
8
3
2
No Load On 12V  
VIN = 14V  
1
25ûC  
0
-40ûC  
-1  
-2  
-3  
-4  
-5  
-6  
125ûC  
-40ûC  
125ûC  
6
VIN = 6 - 26V  
25ûC  
4
2
0
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
Output Current (mA)  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
Output Current (mA)  
Line Regulation vs Output Current for VOUT1  
Load Regulation vs Output Current for VOUT2  
25  
0
-2  
20  
15  
10  
5
-40ûC  
25ûC  
VIN = 13 - 26V  
125ûC  
-4  
-6  
0
25ûC  
-8  
-5  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
-10  
-12  
-14  
-16  
-18  
125ûC  
-40ûC  
VIN = 14V  
0
100 100 100 100 100 100 100 800  
Output Current (mA)  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
Output Current (mA)  
Load Regulation vs Output Current for VOUT1  
0
-5  
-40ûC  
-10  
-15  
-20  
-25  
-30  
-35  
-40  
25ûC  
125ûC  
VIN = 14V  
0
100 200 300 400 500 600 700 800  
Output Current (mA)  
5
Definition of Terms  
Dropout Voltage  
Long Term Stability  
The input-output voltage differential at which the circuit  
ceases to regulate against further reduction in input voltage.  
Measured when the output voltage has dropped 100mV  
from the nominal value obtained at 14V input, dropout volt-  
age is dependent upon load current and junction temperature.  
Output voltage stability under accelerated life-test condi-  
tions after 1000 hours with maximum rated voltage and  
junction temperature.  
Output Noise Voltages  
The rms AC voltage at the output, with constant load and no  
input ripple, measured over a specified frequency range.  
Input Voltage  
The DC voltage applied to the input terminals with respect  
to ground.  
Quiescent Current  
The part of the positive input current that does not con-  
tribute to the positive load current. i.e., the regulator ground  
lead current.  
Input Output Differential  
The voltage difference between the unregulated input volt-  
age and the regulated output voltage for which the regulator  
will operate.  
Ripple Rejection  
The ratio of the peak-to-peak input ripple voltage to the  
peak-to-peak output ripple voltage.  
Line Regulation  
The change in output voltage for a change in the input volt-  
age. The measurement is made under conditions of low dis-  
sipation or by using pulse techniques such that the average  
chip temperature is not significantly affected.  
Temperature Stability of VOUT  
The percentage change in output voltage for a thermal varia-  
tion from room temperature to either temperature extreme.  
Load Regulation  
The change in output voltage for a change in load current at  
constant chip temperature.  
Typical Circuit Waveform  
60V  
26V  
14V  
31V  
VIN  
14V  
3V  
2.0V  
0.8V  
ENABLE  
12V  
12V  
12V  
12V  
12V  
2.4V  
2.4V  
0V  
0V  
VOUT  
0V  
0V  
1
5V  
5V  
V
OUT2  
System  
Condition  
Turn  
On  
Load  
Dump  
Line Noise, Etc.  
VOUT  
Short1  
Circuit  
V
Turn  
Off  
OUT  
1
Low VIN  
Thermal  
Shutdown  
VOUT  
Short2  
Circuit  
Application Notes  
To determine acceptable values for C2 and C3 for a par-  
ticular application, start with a tantalum capacitor of the  
recommended value and work towards a less expensive  
alternative part for each output.  
Stability Considerations  
The output or compensation capacitor helps determine  
three main characteristics of a linear regulator: start-up  
delay, load transient response and loop stability.  
Step 1: Place the completed circuit with the tantalum  
capacitors of the recommended value in an environmental  
chamber at the lowest specified operating temperature  
and monitor the outputs with an oscilloscope. A decade  
box connected in series with capacitor C2will simulate the  
higher ESR of an aluminum capacitor. Leave the decade  
box outside the chamber, the small resistance added by  
the longer leads is negligible.  
The capacitor value and type should be based on cost,  
availability, size and temperature constraints. A tantalum  
or aluminum electrolytic capacitor is best, since a film or  
ceramic capacitor with almost zero ESR can cause instabil-  
ity. The aluminum electrolytic capacitor is the cheapest  
solution, but, if the circuit operates at low temperatures  
(-25¡C to -40¡C), both the value and ESR of the capacitor  
will vary considerably. The capacitor manufacturers data  
sheet usually provides this information.  
Step 2: With the input voltage at its maximum value,  
increase the load current slowly from zero to full load on  
the output under observation. Look for any oscillations on  
the output. If no oscillations are observed, the capacitor is  
large enough to ensure a stable design under steady state  
conditions.  
The value for the output capacitors C2 and C3 shown in  
the test and applications circuit should work for most appli-  
cations, however it is not necessarily the best solution.  
6
Application Notes  
Step 3: Increase the ESR of the capacitor from zero using  
the decade box and vary the load current until oscillations  
appear. Record the values of load current and ESR that  
cause the greatest oscillation. This represents the worst  
case load conditions for the output at low temperature.  
I
IN  
I
I
OUT  
OUT  
1
V
Smart  
IN  
V
V
OUT  
OUT  
Regulator  
1
2
Step 4: Maintain the worst case load conditions set in step  
3 and vary the input voltage until the oscillations increase.  
This point represents the worst case input voltage conditions.  
Control  
Features  
2
}
Step 5: If the capacitor is adequate, repeat steps 3 and 4  
with the next smaller valued capacitor. A smaller capaci-  
tor will usually cost less and occupy less board space. If  
the output oscillates within the range of expected operat-  
ing conditions, repeat steps 3 and 4 with the next larger  
standard capacitor value.  
I
Q
Figure 1: Dual output regulator with key performance parameters  
labeled.  
The value of RQJA can then be compared with those in  
the package section of the data sheet. Those packages  
with RQJA's less than the calculated value in equation 2  
will keep the die temperature below 150¡C.  
Step 6: Test the load transient response by switching in  
various loads at several frequencies to simulate its real  
working environment. Vary the ESR to reduce ringing.  
Step 7: Remove the unit from the environmental chamber  
and heat the IC with a heat gun. Vary the load current as  
instructed in step 5 to test for any oscillations.  
In some cases, none of the packages will be sufficient to  
dissipate the heat generated by the IC, and an external  
heatsink will be required.  
Once the minimum capacitor value with the maximum  
ESR is found for each output, a safety factor should be  
added to allow for the tolerance of the capacitor and any  
variations in regulator performance. Most good quality  
aluminum electrolytic capacitors have a tolerance of +/-  
20% so the minimum value found should be increased by  
at least 50% to allow for this tolerance plus the variation  
which will occur at low temperatures. The ESR of the  
capacitors should be less than 50% of the maximum allow-  
able ESR found in step 3 above.  
Heat Sinks  
A heat sink effectively increases the surface area of the  
package to improve the flow of heat away from the IC and  
into the surrounding air.  
Each material in the heat flow path between the IC and the  
outside environment will have a thermal resistance. Like  
series electrical resistances, these resistances are summed  
to determine the value of RQJA  
:
Repeat steps 1 through 7 with C3, the capacitor on the  
other output.  
R
QJA = RQJC + RQCS + RQSA  
(3)  
where  
Calculating Power Dissipation  
in a Dual Output Linear Regulator  
R
R
R
QJC = the junctionÐtoÐcase thermal resistance,  
QCS = the caseÐtoÐheatsink thermal resistance, and  
QSA = the heatsinkÐtoÐambient thermal resistance.  
The maximum power dissipation for a dual output regula-  
tor (Figure 1) is:  
R
R
QJC appears in the package section of the data sheet. Like  
QJA, it too is a function of package type. RQCS and RQSA  
PD(max) = {VIN(max)ÐVOUT1(min)}IOUT1(max)  
+
are functions of the package type, heatsink and the inter-  
face between them. These values appear in heat sink data  
sheets of heat sink manufacturers.  
{VIN(max)ÐVOUT2(min)}IOUT2(max)+VIN(max)IQ  
(1)  
Where:  
VIN(max) is the maximum input voltage,  
VOUT1(min) is the minimum output voltage from VOUT1  
VOUT2(min) is the minimum output voltage fromVOUT2  
Test & Application Circuit  
,
,
IOUT1(max) is the maximum output current for the appli-  
cation,  
C1*  
0.1mF  
VIN  
VOUT1  
IOUT2(max) is the maximum output current for the appli-  
cation, and  
+
C2**  
22mF  
CS8156  
IQ is the quiescent current the regulator consumes at  
ENABLE  
IOUT(max)  
.
Once the value of PD(max) is known, the maximum permis-  
sible value of RQJA can be calculated:  
VOUT2  
Gnd  
+
C3**  
22mF  
NOTES:  
150¡C - TA  
*
C1 required if regulator is located far  
from power supply filter.  
RQJA  
=
(2)  
PD  
** C2, C3 required for stability.  
7
Package Specification  
PACKAGE DIMENSIONS IN mm(INCHES)  
PACKAGE THERMAL DATA  
5 Lead TO-220  
Thermal Data  
RQJC  
RQJA  
typ  
typ  
2.0  
50  
ûC/W  
ûC/W  
5 Lead TO-220 (T) Straight  
1.40 (.055)  
1.14 (.045)  
5 Lead TO-220 (THA) Horizontal  
4.83 (.190)  
10.54 (.415)  
4.06 (.160)  
9.78 (.385)  
4.83 (.190)  
4.06 (.160)  
3.96 (.156)  
2.87 (.113)  
2.62 (.103)  
3.71 (.146)  
10.54 (.415)  
9.78 (.385)  
1.40 (.055)  
1.14 (.045)  
6.55 (.258)  
5.94 (.234)  
3.96 (.156)  
3.71 (.146)  
2.87 (.113)  
2.62 (.103)  
14.99 (.590)  
14.22 (.560)  
14.99 (.590)  
14.22 (.560)  
6.55 (.258)  
5.94 (.234)  
14.22 (.560)  
13.72 (.540)  
2.77 (.109)  
6.83 (.269)  
1.68  
1.02 (.040)  
0.76 (.030)  
2.92 (.115)  
2.29 (.090)  
0.56 (.022)  
(.066)  
TYP  
0.81(.032)  
0.36 (.014)  
0.56 (.022)  
0.36 (.014)  
6.60 (.260)  
5.84 (.230)  
1.83(.072)  
1.57(.062)  
1.02(.040)  
0.63(.025)  
1.70 (.067)  
6.81(.268)  
6.93(.273)  
6.68(.263)  
2.92 (.115)  
2.29 (.090)  
5 Lead TO-220 (TVA) Vertical  
4.83 (.190)  
4.06 (.160)  
3.96 (.156)  
3.71 (.146)  
10.54 (.415)  
9.78 (.385)  
1.40 (.055)  
1.14 (.045)  
6.55 (.258)  
5.94 (.234)  
2.87 (.113)  
2.62 (.103)  
14.99 (.590)  
14.22 (.560)  
1.78 (.070)  
2.92 (.115)  
2.29 (.090)  
8.64 (.340)  
7.87 (.310)  
4.34 (.171)  
7.51 (.296)  
0.56 (.022)  
0.36 (.014)  
1.68  
(.066) typ  
1.70 (.067)  
6.80 (.268)  
.94 (.037)  
.69 (.027)  
Ordering Information  
Description  
Part Number  
CS8156YT5  
CS8156YTVA5  
CS8156YTHA5  
Ch erry Sem icon du ctor Corporation reserves th e  
righ t to m ake ch an ges to th e specification s with ou t  
n otice. Please con tact Ch erry Sem icon du ctor  
Corporation for th e latest available in form ation .  
5 Lead TO-220 Straight  
5 Lead TO-220 Vertical  
5 Lead TO-220 Horizontal  
Rev. 2/19/98  
© 1999 Cherry Semiconductor Corporation  
8

相关型号:

CS8156/D

12 V, 5.0 V Low Dropout Dual Regulator with ENABLE
ETC

CS8156YT5

12V, 5V Low Dropout Dual Regulator with ENABLE
CHERRY

CS8156YT5

12 V, 5.0 V Low Dropout Dual Regulator with ENABLE
ONSEMI

CS8156YT5G

12 V, 5.0 V Low Dropout Dual Regulator with ENABLE
ONSEMI

CS8156YTHA5

12V, 5V Low Dropout Dual Regulator with ENABLE
CHERRY

CS8156YTHA5

12 V, 5.0 V Low Dropout Dual Regulator with ENABLE
ONSEMI

CS8156YTHA5G

12 V, 5.0 V Low Dropout Dual Regulator with ENABLE
ONSEMI

CS8156YTVA5

12V, 5V Low Dropout Dual Regulator with ENABLE
CHERRY

CS8156YTVA5

12 V, 5.0 V Low Dropout Dual Regulator with ENABLE
ONSEMI

CS8156YTVA5G

12 V, 5.0 V Low Dropout Dual Regulator with ENABLE
ONSEMI

CS8161

12V, 5V Low Dropout Dual Regulator with ENABLE
CHERRY

CS8161

12 V, 5.0 V Low Dropout Dual Regulator with ENABLE
ONSEMI