CS8156/D [ETC]

12 V, 5.0 V Low Dropout Dual Regulator with ENABLE ; 12 V , 5.0 V低压降稳压器双用ENABLE\n
CS8156/D
型号: CS8156/D
厂家: ETC    ETC
描述:

12 V, 5.0 V Low Dropout Dual Regulator with ENABLE
12 V , 5.0 V低压降稳压器双用ENABLE\n

稳压器
文件: 总12页 (文件大小:86K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CS8156  
12 V, 5.0 V Low Dropout  
Dual Regulator with ENABLE  
The CS8156 is a low dropout 12 V/5.0 V dual output linear regulator.  
The 12 V ±5.0% output sources 750 mA and the 5.0 V ±2.0% output  
sources 100 mA.  
The on board ENABLE function controls the regulator’s two  
outputs. When the ENABLE lead is low, the regulator is placed in  
SLEEP mode. Both outputs are disabled and the regulator draws only  
200 nA of quiescent current.  
The regulator is protected against overvoltage conditions. Both  
outputs are protected against short circuit and thermal runaway  
conditions.  
The CS8156 is packaged in a 5 lead TO–220 with copper tab. The  
copper tab can be connected to a heat sink if necessary.  
http://onsemi.com  
TO–220  
FIVE LEAD  
T SUFFIX  
CASE 314D  
1
5
TO–220  
FIVE LEAD  
TVA SUFFIX  
CASE 314K  
1
Features  
Two Regulated Outputs  
12 V ±5.0%; 750 mA  
5.0 V ±2.0%; 100 mA  
Very Low SLEEP Mode Current Drain 200 nA  
Fault Protection  
TO–220  
FIVE LEAD  
THA SUFFIX  
CASE 314A  
1
5
PIN CONNECTIONS AND  
MARKING DIAGRAM  
Reverse Battery  
+60 V, 50 V Peak Transient Voltage  
Short Circuit  
Tab = GND  
Thermal Shutdown  
CMOS Compatible ENABLE  
Pin 1. V  
2. V  
IN  
OUT1  
CS8156  
AWLYWW  
3. GND  
4. ENABLE  
5. V  
OUT2  
1
A
= Assembly Location  
WL, L = Wafer Lot  
YY, Y = Year  
WW, W = Work Week  
ORDERING INFORMATION  
Device  
Package  
Shipping  
CS8156YT5  
CS8156YTVA5  
CS8156YTHA5  
*Five lead.  
TO–220*  
50 Units/Rail  
STRAIGHT  
TO–220*  
VERTICAL  
50 Units/Rail  
50 Units/Rail  
TO–220*  
HORIZONTAL  
Semiconductor Components Industries, LLC, 2001  
1
Publication Order Number:  
January, 2001 – Rev. 7  
CS8156/D  
CS8156  
V
OUT2  
, 5.0 V  
V
IN  
Anti–saturation  
and  
Current Limit  
+
ENABLE  
+
Pre–Regulator  
V
OUT1  
, 12 V  
Overvoltage  
Shutdown  
Anti–saturation  
and  
Current Limit  
Bandgap  
Reference  
+
GND  
Thermal  
Shutdown  
Figure 1. Block Diagram  
ABSOLUTE MAXIMUM RATINGS*  
Rating  
Value  
Unit  
Input Voltage:  
Operating Range  
Peak Transient Voltage (Note 1.)  
–0.5 to 26  
60  
V
V
Internal Power Dissipation  
Operating Temperature Range  
Junction Temperature Range  
Storage Temperature Range  
Lead Temperature Soldering:  
Internally Limited  
–40 to +125  
–40 to +150  
–65 to +150  
260 peak  
°C  
°C  
°C  
°C  
Wave Solder (through hole styles only) (Note 2.)  
1. Load Dump = 46 V  
2. 10 second maximum.  
*The maximum package power dissipation must be observed.  
http://onsemi.com  
2
CS8156  
ELECTRICAL CHARACTERISTICS for VOUT: (V = 14.5 V, I  
= 5.0 mA, I  
= 5.0 mA, –40°C T +150°C,  
OUT2 J  
IN  
OUT1  
–40°C T +125°C; unless otherwise specified.)  
C
Characteristic  
Test Conditions  
Min  
Typ  
Max  
Unit  
Output Stage (V  
)
OUT1  
Output Voltage, (V  
)
13 V V 16 V, I 750 mA  
OUT1  
11.2  
12.0  
12.8  
V
OUT1  
IN  
Dropout Voltage  
I
= 500 mA  
= 750 mA  
0.4  
0.6  
0.6  
1.0  
V
V
OUT1  
I
OUT1  
Line Regulation  
Load Regulation  
Quiescent Current  
13 V V 16 V, 5.0 mA I  
< 100 mA  
15  
15  
80  
80  
mV  
mV  
IN  
OUT1  
5.0 mA I  
500 mA  
OUT1  
I
I
500 mA, No Load on Standby  
750 mA, No Load on Standby  
45  
100  
125  
250  
mA  
mA  
OUT1  
OUT1  
Quiescent Current (Sleep Mode)  
Ripple Rejection  
ENABLE = Low  
f = 120 Hz, I  
0.2  
70  
50  
µA  
dB  
A
= 5.0 mA, V = 1.5 V at 15.5 V  
DC  
42  
OUT  
IN  
PP  
Current Limit  
0.75  
60  
1.20  
90  
2.50  
Maximum Line Transient  
Reverse Polarity Input Voltage, DC  
V
V
13 V  
V
OUT1  
–0.6 V, 10 Load  
–18  
–50  
–30  
–80  
V
OUT1  
Reverse Polarity Input Voltage,  
Transient  
1.0% Duty Cycle, t = 100 ms, V  
10 Load  
–6.0 V,  
V
OUT  
Output Noise Voltage  
Output Impedance  
10 Hz – 100 kHz  
500  
1.0  
45  
µVrms  
500 mA DC and 10 mA rms, 100Hz  
0.2  
34  
Overvoltage Shutdown  
28  
V
Standby Output (V  
)
OUT2  
Output Voltage, (V  
Dropout Voltage  
Line Regulation  
Load Regulation  
Ripple Rejection  
Current Limit  
)
9.0 V V 16 V, 1.0 mA I 100 mA  
OUT2  
4.90  
5.00  
5.10  
0.60  
50  
50  
V
OUT2  
IN  
I
100 mA  
V
OUT2  
6.0 V V 26 V, 1.0 mA I  
100 mA  
5.0  
5.0  
70  
mV  
mV  
dB  
mA  
IN  
OUT  
1.0 mA I  
100 mA; 9.0 V V 16 V  
OUT2  
IN  
f = 120 Hz; I  
= 100 mA, V = 1.5 V at 14.5 V  
DC  
42  
100  
OUT  
IN  
PP  
200  
ENABLE Function (ENABLE)  
Input ENABLE Threshold  
V
OUT1  
V
OUT1  
Off  
On  
2.00  
1.25  
1.25  
0.80  
V
V
Input ENABLE Current  
V
V  
–10  
0
10  
µA  
ENABLE  
THRESHOLD  
PACKAGE PIN DESCRIPTION  
PACKAGE LEAD #  
5 Lead TO–220  
LEAD SYMBOL  
FUNCTION  
1
2
3
4
V
Supply voltage, usually direct from battery.  
Regulated output 12 V, 750 mA (typ).  
Ground connection.  
IN  
V
OUT1  
GND  
ENABLE  
CMOS compatible input lead; switches outputs on and off.  
When ENABLE is high V and V are active.  
OUT1  
OUT2  
5
V
OUT2  
Regulated output 5.0 V, 100 mA (typ).  
http://onsemi.com  
3
CS8156  
TYPICAL PERFORMANCE CHARACTERISTICS  
2000  
1800  
13  
12  
11  
10  
R = 10  
L
1600  
1400  
1200  
9.0  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0
1000  
800  
600  
400  
200  
0
–1.0  
–2.0  
0
50  
100  
150  
(mA)  
200  
–40  
–20  
0
20  
40  
60  
I
Input Voltage (V)  
OUT  
Figure 2. Dropout Voltage vs. IOUT2  
Figure 3. VOUT1 vs. Input Voltage  
12.15  
12.10  
12.05  
12.00  
11.95  
11.90  
11.85  
11.80  
11.75  
5.030  
5.020  
5.010  
5.000  
4.990  
4.980  
4.970  
–40 –20  
0
20 40 60 80 100 120 140 160  
–40 –20  
0
20 40 60 80 100 120 140 160  
Temp (°C)  
Temp (°C)  
Figure 4. VOUT1 vs. Temperature  
Figure 5. VOUT2 vs. Temperature  
100  
80  
60  
40  
20  
5.0  
4.0  
3.0  
2.0  
1.0  
0
0
0
0
1.0  
2.0  
3.0  
(V)  
4.0  
5.0  
5.0  
10  
15  
(V)  
20  
25  
V
V
ENABLE  
ENABLE  
Figure 6. ENABLE Current vs.  
ENABLE Voltage  
Figure 7. ENABLE Current vs. ENABLE  
Voltage  
http://onsemi.com  
4
CS8156  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
20  
10  
10  
I
= 100 mA  
OUT2  
I
= 500 mA  
OUT1  
5.0  
0
0
–5.0  
–10  
–10  
–20  
3.0  
2.0  
1.0  
0
3.0  
2.0  
1.0  
0
0
10  
20  
30  
40  
50  
60  
60  
90  
0
10  
20  
30  
40  
50  
60  
Time (µs)  
Time (µs)  
Figure 8. Line Transient Response (VOUT1  
)
Figure 9. Line Transient Response (VOUT2)  
150  
100  
50  
150  
100  
50  
0
0
–50  
–100  
–150  
0.8  
0.6  
0.4  
0.2  
0
–50  
–100  
–150  
20  
15  
10  
5.0  
0
0
10  
20  
30  
40  
50  
0
10  
20  
30  
40  
50  
60  
Time (µs)  
Time (µs)  
Figure 10. Load Transient Response  
(VOUT1  
Figure 11. Load Transient Response  
(VOUT2  
)
)
20  
18  
150  
No Load on 5.0 V  
140  
130  
120  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
125°C  
Infinite Heat Sink  
16  
14  
V
= 14 V  
IN  
12  
25°C  
10  
8.0  
6.0  
4.0  
2.0  
–40°C  
10°C/W Heat Sink  
No Heat Sink  
0
0
0
10  
20  
30  
40  
50  
60  
70  
80  
0
100  
200  
300  
400  
500  
600  
700 800  
Ambient Temperature (°C)  
Output Current (mA)  
Figure 12. Maximum Power Dissipation  
(TO–220)  
Figure 13. Quiescent Current vs. Output  
Current for VOUT2  
http://onsemi.com  
5
CS8156  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
3.0  
2.0  
22  
20  
No Load on 5.0 V  
18  
1.0  
0
25°C  
16  
V
IN  
= 14 V  
14  
–40°C  
–1.0  
12  
125°C  
10  
–2.0  
–3.0  
8.0  
6.0  
4.0  
–40°C  
125°C  
V
IN  
= 6.0–26 V  
–4.0  
–5.0  
–6.0  
25°C  
2.0  
0
0
20  
40  
60  
80  
100  
120  
140  
0
20  
40  
60  
80  
100  
120  
140  
Output Current (mA)  
Output Current (mA)  
Figure 14. Quiescent Current vs. Output  
Current for VOUT1  
Figure 15. Line Regulation vs. Output  
Current for VOUT2  
25  
20  
0
–40°C  
25°C  
125°C  
–2.0  
–4.0  
–6.0  
–8.0  
–10  
–12  
–14  
–16  
–18  
15  
10  
5.0  
0
25°C  
–5.0  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
V
= 13–26V  
IN  
125°C  
–40°C  
V
= 14 V  
IN  
0
20  
40  
60  
80  
100  
120  
140  
0
100  
200  
300  
400  
500 600  
700  
800  
Output Current (mA)  
Output Current (mA)  
Figure 16. Load Regulation vs. Output  
Current fo VOUT2  
Figure 17. Line Regulation vs. Output  
Current for VOUT1  
0
–5.0  
–10  
–15  
–20  
–25  
–30  
–40°C  
25°C  
125°C  
V
IN  
= 14 V  
–35  
–40  
0
100  
200  
300  
400  
500  
600  
700  
800  
Output Current (mA)  
Figure 18. Load Regulation vs. Output  
Current for VOUT1  
http://onsemi.com  
6
CS8156  
DEFINITION OF TERMS  
Dropout Voltage – The input–output voltage differential  
Load Regulation – The change in output voltage for a  
change in load current at constant chip temperature.  
Long Term Stability – Output voltage stability under  
accelerated life–test conditions after 1000 hours with  
maximum rated voltage and junction temperature.  
Output Noise Voltage – The rms AC voltage at the  
output, with constant load and no input ripple, measured  
over a specified frequency range.  
at which the circuit ceases to regulate against further  
reduction in input voltage. Measured when the output  
voltage has dropped 100 mV from the nominal value  
obtained at 14 V input, dropout voltage is dependent upon  
load current and junction temperature.  
Input Voltage – The DC voltage applied to the input  
terminals with respect to ground.  
Input Output Differential – The voltage difference  
between the unregulated input voltage and the regulated  
output voltage for which the regulator will operate.  
Line Regulation – The change in output voltage for a  
change in the input voltage. The measurement is made under  
conditions of low dissipation or by using pulse techniques  
such that the average chip temperature is not significantly  
affected.  
Quiescent Current – The part of the positive input  
current that does not contribute to the positive load current,  
i.e., the regulator ground lead current.  
Ripple Rejection – The ratio of the peak–to–peak input  
ripple voltage to the peak–to–peak output ripple voltage.  
Temperature Stability of V  
– The percentage  
OUT  
change in output voltage for a thermal variation from room  
temperature to either temperature extreme.  
60 V  
34 V  
26 V  
14V  
V
IN  
14 V  
3.0 V  
2.0 V  
0.8 V  
ENABLE  
12 V  
12 V  
12 V  
12 V  
12 V  
2.4 V  
0 V  
0 V  
V
0 V  
0 V  
OUT1  
5.0 V  
5.0 V  
V
OUT2  
2.4 V  
Turn  
On  
Load  
Dump  
Low V  
Line  
Noise, Etc.  
V
Short  
Circuit  
V
OUT1  
Thermal  
Shutdown  
Turn  
Off  
IN  
OUT1  
V
Short  
OUT2  
Circuit  
Figure 19. Typical Circuit Waveform  
APPLICATION NOTES  
Stability Considerations  
To determine acceptable values for C2 and C3 for a  
particular application, start with a tantalum capacitor of the  
recommended value and work towards a less expensive  
alternative part for each output.  
The output or compensation capacitor helps determine  
three main characteristics of a linear regulator: start–up  
delay, load transient response and loop stability.  
The capacitor value and type should be based on cost,  
availability, size and temperature constraints. A tantalum or  
aluminum electrolytic capacitor is best, since a film or  
ceramic capacitor with almost zero ESR can cause  
instability. The aluminum electrolytic capacitor is the  
cheapest solution, but, if the circuit operates at low  
temperatures (–25°C to –40°C), both the value and ESR of  
the capacitor will vary considerably. The capacitor  
manufacturers data sheet usually provides this information.  
The value for the output capacitors C2 and C3 shown in  
the test and applications circuit should work for most  
applications, however it is not necessarily the best solution.  
Step 1: Place the completed circuit with a tantalum  
capacitor of the recommended value in an environmental  
chamber at the lowest specified operating temperature and  
monitor the outputs with an oscilloscope. A decade box  
connected in series with the capacitor C will simulate the  
2
higher ESR of an aluminum capacitor. Leave the decade box  
outside the chamber, the small resistance added by the  
longer leads is negligible.  
Step 2: With the input voltage at its maximum value,  
increase the load current slowly from zero to full load while  
observing the output for any oscillations. If no oscillations  
http://onsemi.com  
7
CS8156  
are observed, the capacitor is large enough to ensure a stable  
design under steady state conditions.  
I
I
is the quiescent current the regulator consumes at  
Q
.
OUT(max)  
Step 3: Increase the ESR of the capacitor from zero using the  
decade box and vary the load current until oscillations  
appear. Record the values of load current and ESR that cause  
the greatest oscillation. This represents the worst case load  
conditions for the regulator at low temperature.  
Once the value of P  
is known, the maximum  
can be calculated:  
D(max)  
permissible value of R  
ΘJA  
150°C * T  
+
A
R
QJA  
(2)  
P
D
Step 4: Maintain the worst case load conditions set in step  
3 and vary the input voltage until the oscillations increase.  
This point represents the worst case input voltage  
conditions.  
Step 5: If the capacitor is adequate, repeat steps 3 and 4 with  
the next smaller valued capacitor. A smaller capacitor will  
usually cost less and occupy less board space. If the output  
oscillates within the range of expected operating conditions,  
repeat steps 3 and 4 with the next larger standard capacitor  
value.  
Step 6: Test the load transient response by switching in  
various loads at several frequencies to simulate its real  
working environment. Vary the ESR to reduce ringing.  
Step 7: Raise the temperature to the highest specified  
operating temperature. Vary the load current as instructed in  
step 5 to test for any oscillations.  
The value of R  
can be compared with those in the  
ΘJA  
package section of the data sheet. Those packages with  
’s less than the calculated value in equation 2 will keep  
R
ΘJA  
the die temperature below 150°C.  
In some cases, none of the packages will be sufficient to  
dissipate the heat generated by the IC, and an external  
heatsink will be required.  
I
IN  
I
OUT1  
Smart  
V
OUT1  
V
IN  
Regulator  
I
OUT2  
Control  
V
OUT2  
Features  
Once the minimum capacitor value with the maximum  
ESR is found for each output, a safety factor should be added  
to allow for the tolerance of the capacitor and any variations  
in regulator performance. Most good quality aluminum  
electrolytic capacitors have a tolerance of ±20% so the  
minimum value found should be increased by at least 50%  
to allow for this tolerance plus the variation which will occur  
at low temperatures. The ESR of the capacitors should be  
less than 50% of the maximum allowable ESR found in step  
3 above.  
I
Q
Figure 20. Dual Output Regulator With Key  
Performance Parameters Labeled.  
Heat Sinks  
A heat sink effectively increases the surface area of the  
package to improve the flow of heat away from the IC and  
into the surrounding air.  
Each material in the heat flow path between the IC and the  
outside environment will have a thermal resistance. Like  
series electrical resistances, these resistances are summed to  
Repeat steps 1 through 7 with C , the capacitor on the  
3
other output.  
Calculating Power Dissipation in a  
Dual Output Linear Regulator  
determine the value of R  
ΘJA  
:
The maximum power dissipation for a dual output  
regulator (Figure 20) is  
R
+ R  
) R  
) R  
QCS QSA  
(3)  
QJA  
QJC  
where:  
NJ
NJ
Nj
I
V
V
* V  
* V  
)
P
+
R
ΘJC  
= the junction–to–case thermal resistance,  
= the case–to–heatsink thermal resistance, and  
= the heatsink–to–ambient thermal resistance.  
IN(max)  
IN(max)  
OUT1(min) OUT1(max)  
D(max)  
Nj
(1)  
I
) V  
IQ  
IN(max)  
OUT2(min) OUT2(max)  
R
ΘCS  
R
ΘSA  
where:  
V
V
V
is the maximum input voltage,  
IN(max)  
R
appears in the package section of the data sheet. Like  
ΘJC  
is the minimum output voltage from V  
is the minimum output voltage from V  
,
,
OUT1(min)  
OUT2(min)  
OUT1  
OUT2  
R
, it too is a function of package type. R and R  
ΘCS ΘSA  
ΘJA  
are functions of the package type, heatsink and the interface  
between them. These values appear in heat sink data sheets  
of heat sink manufacturers.  
I
is the maximum output current, for the  
OUT1(max)  
application,  
I
is the maximum output current, for the  
OUT2(max)  
application, and  
http://onsemi.com  
8
CS8156  
C *  
1
0.1 µF  
V
IN  
V
V
OUT1  
+
+
CS8156  
C **  
22 µF  
2
ENABLE  
OUT2  
GND  
C **  
3
22 µF  
* C is required if the regulator is far from power supply filter.  
1
** C C required for stability.  
2,  
3
Figure 21. Test & Application Circuit  
http://onsemi.com  
9
CS8156  
PACKAGE DIMENSIONS  
TO–220  
FIVE LEAD  
T SUFFIX  
CASE 314D–04  
ISSUE E  
SEATING  
–T–  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
PLANE  
C
–Q–  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION D DOES NOT INCLUDE  
INTERCONNECT BAR (DAMBAR) PROTRUSION.  
DIMENSION D INCLUDING PROTRUSION SHALL  
NOT EXCEED 10.92 (0.043) MAXIMUM.  
B
E
A
U
INCHES  
DIM MIN MAX  
0.613 14.529 15.570  
MILLIMETERS  
L
MIN MAX  
1 2 3 4 5  
A
B
C
D
E
G
H
J
0.572  
0.390  
0.170  
0.025  
0.048  
K
0.415  
0.180  
0.038  
0.055  
9.906 10.541  
4.318  
0.635  
1.219  
4.572  
0.965  
1.397  
0.067 BSC  
1.702 BSC  
0.087  
0.015  
0.990  
0.320  
0.140  
0.105  
0.112 2.210  
0.025 0.381  
2.845  
0.635  
1.045 25.146 26.543  
J
H
G
K
L
D 5 PL  
0.365 8.128  
0.153 3.556  
0.117 2.667  
9.271  
3.886  
2.972  
Q
U
M
M
T Q  
0.356 (0.014)  
TO–220  
FIVE LEAD  
TVA SUFFIX  
CASE 314K–01  
ISSUE O  
NOTES:  
ąă1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
SEATING  
PLANE  
–T–  
ąă2. CONTROLLING DIMENSION: INCH.  
ąă3. DIMENSION D DOES NOT INCLUDE  
INTERCONNECT BAR (DAMBAR) PROTRUSION.  
DIMENSION D INCLUDING PROTRUSION SHALL  
NOT EXCEED 10.92 (0.043) MAXIMUM.  
C
B
–Q–  
E
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
14.22  
9.78  
MAX  
14.99  
10.54  
4.83  
W
A
B
C
D
E
F
0.560  
0.385  
0.160  
0.027  
0.045  
0.530  
0.590  
0.415  
0.190  
0.037  
0.055  
0.545  
4.06  
0.69  
A
0.94  
1.40  
U
1.14  
13.46  
F
13.84  
L
G
J
0.067 BSC  
1.70 BSC  
K
0.014  
0.785  
0.321  
0.063  
0.146  
0.271  
0.146  
0.460  
0.022  
0.800  
0.337  
0.078  
0.156  
0.321  
0.196  
0.475  
0.36  
19.94  
8.15  
0.56  
20.32  
8.56  
1
2
3
4
5
K
L
M
Q
R
S
U
W
1.60  
3.71  
1.98  
3.96  
6.88  
3.71  
8.15  
4.98  
M
11.68  
12.07  
5 °  
5 °  
J
D
5 PL  
G
M
M
T Q  
0.356 (0.014)  
S
R
http://onsemi.com  
10  
CS8156  
TO–220  
FIVE LEAD  
THA SUFFIX  
CASE 314A–03  
ISSUE E  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION D DOES NOT INCLUDE  
INTERCONNECT BAR (DAMBAR) PROTRUSION.  
DIMENSION D INCLUDING PROTRUSION SHALL  
NOT EXCEED 0.043 (1.092) MAXIMUM.  
SEATING  
PLANE  
–T–  
B
C
–P–  
E
Q
OPTIONAL  
CHAMFER  
INCHES  
DIM MIN MAX  
0.613 14.529 15.570  
MILLIMETERS  
MIN MAX  
A
B
C
D
E
F
0.572  
0.390  
0.170  
0.025  
0.048  
0.570  
A
0.415  
0.180  
0.038  
0.055  
9.906 10.541  
U
F
4.318  
0.635  
1.219  
4.572  
0.965  
1.397  
L
K
0.585 14.478 14.859  
1.702 BSC  
0.381 0.635  
0.745 18.542 18.923  
G
J
0.067 BSC  
0.015  
0.730  
0.320  
0.140  
0.210  
0.468  
0.025  
K
L
G
5X J  
0.365  
0.153  
0.260  
8.128  
3.556  
5.334  
9.271  
3.886  
6.604  
Q
S
U
S
5X D  
0.505 11.888 12.827  
M
M
T P  
0.014 (0.356)  
PACKAGE THERMAL DATA  
Parameter  
TO–220  
FIVE LEAD  
Unit  
°C/W  
°C/W  
R
R
Typical  
Typical  
2.0  
50  
Θ
Θ
JC  
JA  
http://onsemi.com  
11  
CS8156  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without  
further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.  
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or  
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold  
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable  
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim  
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
PUBLICATION ORDERING INFORMATION  
NORTH AMERICA Literature Fulfillment:  
CENTRAL/SOUTH AMERICA:  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)  
Email: ONlit–spanish@hibbertco.com  
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada  
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada  
Email: ONlit@hibbertco.com  
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support  
Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)  
Toll Free from Hong Kong & Singapore:  
Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada  
001–800–4422–3781  
N. American Technical Support: 800–282–9855 Toll Free USA/Canada  
Email: ONlit–asia@hibbertco.com  
EUROPE: LDC for ON Semiconductor – European Support  
German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)  
Email: ONlit–german@hibbertco.com  
JAPAN: ON Semiconductor, Japan Customer Focus Center  
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031  
Phone: 81–3–5740–2745  
French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)  
Email: ONlit–french@hibbertco.com  
English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)  
Email: ONlit@hibbertco.com  
Email: r14525@onsemi.com  
ON Semiconductor Website: http://onsemi.com  
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781  
For additional information, please contact your local  
Sales Representative.  
*Available from Germany, France, Italy, UK, Ireland  
CS8156/D  

相关型号:

CS8156YT5

12V, 5V Low Dropout Dual Regulator with ENABLE
CHERRY

CS8156YT5

12 V, 5.0 V Low Dropout Dual Regulator with ENABLE
ONSEMI

CS8156YT5G

12 V, 5.0 V Low Dropout Dual Regulator with ENABLE
ONSEMI

CS8156YTHA5

12V, 5V Low Dropout Dual Regulator with ENABLE
CHERRY

CS8156YTHA5

12 V, 5.0 V Low Dropout Dual Regulator with ENABLE
ONSEMI

CS8156YTHA5G

12 V, 5.0 V Low Dropout Dual Regulator with ENABLE
ONSEMI

CS8156YTVA5

12V, 5V Low Dropout Dual Regulator with ENABLE
CHERRY

CS8156YTVA5

12 V, 5.0 V Low Dropout Dual Regulator with ENABLE
ONSEMI

CS8156YTVA5G

12 V, 5.0 V Low Dropout Dual Regulator with ENABLE
ONSEMI

CS8161

12V, 5V Low Dropout Dual Regulator with ENABLE
CHERRY

CS8161

12 V, 5.0 V Low Dropout Dual Regulator with ENABLE
ONSEMI

CS8161/D

12 V, 5.0 V Low Dropout Dual Regulator with ENABLE
ETC