YS05S10-0G [BEL]

DC-DC Regulated Power Supply Module, 36W, MODULE-6;
YS05S10-0G
型号: YS05S10-0G
厂家: BEL FUSE INC.    BEL FUSE INC.
描述:

DC-DC Regulated Power Supply Module, 36W, MODULE-6

文件: 总20页 (文件大小:1081K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Bel Power Solutions point-of-load converters are  
recommended for use with regulated bus converters in an  
Intermediate Bus Architecture (IBA). The YS05S10 non-  
isolated DC-DC converter delivers up to 10 A of output  
current in an industry-standard surface-mount package.  
Operating from a 3.0 5.5 V input, the YS05S10 converter  
is an ideal choice for Intermediate Bus Architectures where  
Point-of-Load (POL) power delivery is generally  
a
requirement. It provides an extremely tightly-regulated  
programmable output voltage from 0.7525 V to 3.63 V.  
The YS05S10 converter provides exceptional thermal  
performance, even in high temperature environments with  
m
without airflow at natural convection. This performance is  
accomplished through the use of advanced circuitry,  
packaging, and processing techniques to achieve a design  
possessing ultra-high efficiency, excellent thermal  
management, and a very low-body profile.  
RoHS lead-free solder and lead-solder-exempted  
products are available  
Delivers up to 10 A (36 W)  
No derating up to 85 C  
Surface-mount package  
Industry-standard footprint and pinout  
The low-body profile and the preclusion of heat sinks  
minimize impedance to system airflow, thus enhancing  
cooling for both upstream and downstream devices. The  
use of 100% automation for assembly, coupled with  
advanced power electronics and thermal design, results in  
a product with extremely high reliability.  
Small size and low profile: 1.30” x 0.53” x 0.314”  
(33.02 x 13.46 x 7.98 mm)  
Weight: 0.22 oz [6.12 g]  
Coplanarity less than 0.003”, maximum  
Synchronous Buck Converter topology  
Start-up into pre-biased output  
No minimum load required  
Programmable output voltage via external resistor  
Operating ambient temperature: -40 °C to 85 °C  
Remote output sense  
Remote ON/OFF (Positive or Negative)  
Fixed-frequency operation  
.
.
.
.
.
Intermediate Bus Architectures  
Telecommunications  
Data communications  
Distributed Power Architectures  
Servers, Workstations  
Auto-reset output overcurrent protection  
Auto-reset overtemperature protection  
High reliability, MTBF approx. 32.54 million hours  
.
.
.
.
.
.
High efficiency no heat sink required  
Reduces Total Solution Board Area  
Tape and Reel Packing  
Compatible with Pick & Place Equipment  
Minimizes Part Numbers in Inventory  
Cost Effective  
calculated per Telcordia TR-332, Method I Case 1  
All materials meet UL94, V-0 flammability rating  
Approved to the latest edition and amendment of ITE  
Safety standards, UL/CSA 60950-1 and IEC60950-1  
North America  
+1 866 513 2839  
Asia-Pacific  
+86 755 29885888  
Europe, Middle East  
+353 61 225 977  
tech.support@psbel.com  
BCD.00703_AA  
© 2015 Bel Power Solutions, Inc.  
YS05S10  
1. ELECTRICAL SPECIFICATIONS  
Conditions: TA = 25 ºC, Airflow = 300 LFM (1.5 m/s), Vin = 5 VDC, Vout = 0.7525 3.63 V, unless otherwise specified.  
PARAMETER  
NOTES  
MIN  
TYP  
MAX  
UNITS  
Absolute Maximum Ratings  
Input Voltage  
Continuous  
-0.3  
-40  
-55  
6
VDC  
°C  
Operating Ambient Temperature  
Storage Temperature  
85  
125  
°C  
Feature Characteristics  
Switching Frequency  
Output Voltage Trim Range1, 4  
Remote Sense Compensation1  
Turn-On Delay Time2  
Full Temperature Range  
By external resistor, See Trim Table 1  
Percent of VOUT(NOM)  
250  
300  
350  
3.63  
0.5  
kHz  
VDC  
VDC  
0.7525  
Full resistive load  
With Vin = (Converter Enabled, then Vin applied)  
With Enable (Vin = Vin(nom) applied, then enabled)  
Rise time2  
From Vin = Vin(min) to Vo = 0.1* Vo(nom)  
From enable to Vo = 0.1*Vo(nom)  
From 0.1*Vo(nom) to 0.9*Vo(nom)  
Converter Off  
3
3
3.5  
3.5  
3.5  
4.5  
4.5  
5
ms  
ms  
3
ms  
-5  
2.4  
2.4  
-5  
0.8  
5.5  
5.5  
0.8  
VDC  
VDC  
VDC  
VDC  
ON/OFF Control (Positive Logic) 3  
ON/OFF Control (Negative Logic) 3  
Converter On  
Converter Off  
Converter On  
Input Characteristics  
Operating Input Voltage Range  
Input Undervoltage Lockout  
Turn-on Threshold  
3.0  
5.0  
5.5  
VDC  
Guaranteed by controller  
Guaranteed by controller  
1.95  
1.73  
2.05  
1.9  
2.15  
2.07  
VDC  
VDC  
Turn-off Threshold  
Maximum Input Current  
VIN = 4.5 VDC, IOUT = 10 A  
VIN = 3.0 VDC, IOUT = 10 A  
VIN = 3.0 VDC, IOUT = 10 A  
VIN = 3.0 VDC, IOUT = 10 A  
VIN = 3.0 VDC, IOUT = 10 A  
VIN = 3.0 VDC, IOUT = 10 A  
VIN = 3.0 VDC, IOUT = 10 A  
VIN = 3.0 VDC, IOUT = 10 A  
Input Stand-by Current (Converter disabled)  
Input No Load Current (Converter enabled)  
VOUT = 3.3 VDC  
VOUT = 2.5 VDC  
VOUT = 2.0 VDC  
VOUT = 1.8 VDC  
VOUT = 1.5 VDC  
VOUT = 1.2 VDC  
VOUT = 1.0 VDC  
VOUT = 0.7525 VDC  
Vin = 5.0 VDC  
7.9  
9.1  
7.3  
6.7  
5.7  
4.7  
4.0  
3.2  
ADC  
ADC  
ADC  
ADC  
ADC  
ADC  
ADC  
ADC  
mA  
3.0  
Vin = 5.5 VDC  
VOUT = 3.3 VDC  
VOUT = 2.5 VDC  
VOUT = 2.0 VDC  
VOUT = 1.8 VDC  
VOUT = 1.5 VDC  
VOUT = 1.2 VDC  
VOUT = 1.0 VDC  
VOUT = 0.7525 VDC  
See Fig. E for setup (BW = 20 MHz)  
80  
80  
72  
68  
60  
55  
50  
42  
10  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Input Reflected-Ripple Current - is  
mAP-P  
+1 866 513 2839  
tech.support@psbel.com  
© 2015 Bel Power Solutions, Inc.  
BCD.00703_AA  
YS05S10  
PARAMETER  
NOTES  
MIN  
TYP  
MAX  
UNITS  
Output Characteristics  
Output Voltage Set Point (no load)  
Output Regulation4  
Over Line  
-1.5  
Vout  
+1.5  
%Vout  
Full resistive load  
0.1  
0.1  
0.5  
0.5  
%Vout  
%Vout  
Over Load  
From no load to full load  
Overall operating input voltage, resistive load  
and temperature conditions until end of life  
Output Voltage Range  
-3  
+3  
%Vout  
Output Ripple and Noise 20 MHz bandwidth  
Peak-to-Peak  
Over line, load and temperature (Fig. E)  
VOUT = 3.3 VDC  
40  
25  
60  
35  
mVP-P  
mVP-P  
Peak-to-Peak  
VOUT = 0.7525 VDC  
External Load Capacitance  
Min ESR > 1 m  
Plus full load (resistive)  
μF  
μF  
1,000  
5,000  
10  
Min ESR > 10 mΩ  
Output Current Range  
0
A
Output Current Limit Inception (IOUT  
)
18  
2
A
Short = 10 mΩ, continuous  
Output Short-Circuit Current (Hiccup mode)  
Arms  
Dynamic Response  
50% Load current change from  
Co = 100 μF tant. + 1 μF ceramic  
150  
60  
mV  
µs  
5 A -10 A - 5 A with di/dt = 5 A/μs5  
Settling Time (VOUT < 10% peak deviation) 5  
Efficiency  
Full load (10 A)  
VOUT = 3.3 VDC  
VOUT = 2.5 VDC  
VOUT = 2.0 VDC  
VOUT = 1.8 VDC  
VOUT = 1.5 VDC  
VOUT = 1.2 VDC  
VOUT = 1.0 VDC  
VOUT = 0.7525 VDC  
94.5  
93.0  
92.0  
91.5  
89.5  
87.5  
86.0  
83.0  
%
%
%
%
%
%
%
%
Notes:  
1
The output voltage should not exceed 3.63 V (taking into account both the programming and remote sense compensation).  
Note that startup time is the sum of turn-on delay time and rise time.  
The converter is on if ON/OFF pin is left open.  
Trim resistor connected across the GND (pin 5) and TRIM (pin 3) pins of the converter.  
See waveforms for dynamic response and settling time for different output voltages.  
2
3
4
5
+1 866 513 2839  
tech.support@psbel.com  
© 2015 Bel Power Solutions, Inc.  
BCD.00703_AA  
YS05S10  
2. OPERATIONS  
2.1. INPUT AND OUTPUT IMPEDANCE  
The YS05S10 converter should be connected via a low impedance to the DC power source. In many applications, the  
inductance associated with the distribution from the power source to the input of the converter can affect the stability  
of the converter. The use of decoupling capacitors is recommended in order to ensure stability of the converter and  
reduce input ripple voltage. Internally, the converter has 44 μF (low ESR ceramics) of input capacitance.  
In a typical application, low - ESR tantalum or POS capacitors will be sufficient to provide adequate ripple voltage  
filtering at the input of the converter. However, very low ESR ceramic capacitors 100 - 200 μF are recommended at the  
input of the converter in order to minimize the input ripple voltage. They should be placed as close as possible to the  
input pins of the converter.  
The YS05S10 has been designed for stable operation with or without external capacitance. Low ESR ceramic  
capacitors placed as close as possible to the load (minimum 100 μF) are recommended for improved transient  
performance and lower output voltage ripple.  
It is important to keep low resistance and low inductance PCB traces for connecting load to the output pins of the  
converter in order to maintain good load regulation.  
2.2. ON/OFF (PIN 1)  
The ON/OFF pin is used to turn the power converter on or off remotely via a system signal. There are two remote  
control options available, positive logic (standard option) and negative logic, with ON/OFF signal referenced to GND.  
The typical connections are shown in Fig. A.  
Y-Series  
Converter  
Vin  
SENSE  
Vout  
R*  
(Top View)  
ON/OFF  
Vin  
Rload  
GND  
TRIM  
CONTROL  
INPUT  
R* is for negative logic option only  
Fig. A: Circuit configuration for ON/OFF function.  
To turn the converter on the ON/OFF pin should be at a logic low or left open, and to turn the converter off the ON/OFF  
pin should be at a logic high or connected to Vin. See the Electrical Specifications for logic high/low definitions.  
The positive logic version turns the converter on when the ON/OFF pin is at a logic high or left open, and turns the  
converter off when at a logic low or shorted to GND.  
The negative logic version turns the converter on when the ON/OFF pin is at logic low or left open, and turns the  
converter off when the ON/OFF pin is at a logic high or connected to Vin.  
The ON/OFF pin is internally pulled up to Vin for positive logic version, and pulled down for a negative logic version. A  
TTL or CMOS logic gate, open- collector (open-drain) transistor can be used to drive ON/OFF pin. This device must be  
capable of:  
sinking up to 1.2 mA at a low level voltage of 0.8 V  
sourcing up to 0.25 mA at a high logic level of 2.3 V - 5.5 V.  
When using open-collector (open-drain) transistor with a negative logic option, add a pull-up resistor (R*) to Vin as  
shown in Fig. A:  
20 K, if the minimum Vin is 4.5 V  
10 K, if the minimum Vin is 3.0 V  
5 K, if the undervoltage shutdown at 2.05 - 2.15 V is required.  
+1 866 513 2839  
tech.support@psbel.com  
© 2015 Bel Power Solutions, Inc.  
BCD.00703_AA  
YS05S10  
2.3. REMOTE SENSE (PIN 2)  
The remote sense feature of the converter compensates for voltage drops occurring only between Vout pin (Pin 4) of  
the converter and the load. The SENSE (Pin 2) pin should be connected at the load or at the point where regulation is  
required (see Fig. B). There is no sense feature on the output GND return pin, where the solid ground plane should  
provide a low voltage drop.  
Y-Series  
Converter  
SENSE  
Vout  
Vin  
Rw  
(Top View)  
ON/OFF  
Vin  
Rload  
TRIM  
GND  
Rw  
Fig. B: Remote sense circuit configuration.  
If remote sensing is not required, the SENSE pin must be connected to the Vout pin (Pin 4) to ensure the converter will  
regulate at the specified output voltage. If these connections are not made, the converter will deliver an output voltage  
that is slightly higher than the specified value.  
Because the sense lead carries minimal current, large trace on the end-user board are not required. However, sense  
trace should be located close to a ground plane to minimize system noise and ensure optimum performance.  
When utilizing the remote sense feature, care must be taken not to exceed the maximum allowable output power  
capability of the converter, which is equal to the product of the nominal output voltage and the allowable output current  
for the given conditions.  
When using remote sense, the output voltage at the converter can be increased up to 0.5 V above the nominal rating  
in order to maintain the required voltage across the load. Therefore, the designer must, if necessary, decrease the  
maximum current (originally obtained from the derating curves) by the same percentage to ensure the converter’s actual  
output power remains at or below the maximum allowable output power.  
2.4. OUTPUT VOLTAGE PROGRAMMING (PIN 3)  
The output voltage can be programmed from 0.7525 V to 3.63 V by connecting an external resistor between TRIM pin  
(Pin 3) and GND pin (Pin 5); see Fig. C. Note that when a trim resistor is not connected, the output voltage of the  
converter is 0.7525 V.  
Y-Series  
Converter  
SENSE  
Vout  
Vin  
(Top View)  
ON/OFF  
Vin  
Rload  
TRIM  
GND  
RTRIM  
Fig. C: Configuration for programming output voltage.  
A trim resistor, RTRIM, for a desired output voltage can be calculated using the following equation:  
21.07  
RTRIM   
5.11  
[kΩ]  
(VO-REQ - 0.7525)  
where,  
RTRIM Required value of trim resistor [kΩ]  
VOREQ Desired (trimmed) output voltage [V]  
+1 866 513 2839  
tech.support@psbel.com  
© 2015 Bel Power Solutions, Inc.  
BCD.00703_AA  
YS05S10  
Note that the tolerance of a trim resistor directly affects the output voltage tolerance. It is recommended to use standard  
1% or 0.5% resistors; for tighter tolerance, two resistors in parallel are recommended rather than one standard value  
from Table 1.  
Ground pin of the trim resistor should be connected directly to the converter GND pin (Pin 5) with no voltage drop in  
between. Table 1 provides the trim resistor values for popular output voltages.  
The Closest Standard  
RTRIM [kΩ]  
V0-REG [V]  
Value [kΩ]  
0.7525  
1.0  
open  
80.0  
41.97  
23.1  
15  
80.6  
42.2  
23.2  
15  
1.2  
1.5  
1.8  
2.0  
11.78  
6.95  
3.16  
2.21  
11.8  
6.98  
3.16  
2.21  
2.5  
3.3  
3.63  
Table 1: Trim Resistor Value  
The output voltage can also be programmed by external voltage source. To make trimming less sensitive, a series  
external resistor Rext is recommended between TRIM pin and programming voltage source. Control Voltage can be  
calculated by the formula:  
(5.11REXT)(VO-REQ - 0.7525)  
VCTRL 0.7   
[V]  
30.1  
where,  
VCTRL Control voltage [V]  
REXT External resistor between TRIM pin and voltage source; the value can be chosen depending on the required  
output voltage range [kΩ].  
Control voltages with REXT 0 and REXT 15 K are shown in Table 2.  
V0-REG [V]  
0.7525  
1.0  
VCTRL (REXT = 0)  
0.700  
VCTRL(REXT = 15 K)  
0.700  
0.658  
0.535  
1.2  
0.624  
0.401  
1.5  
0.573  
0.201  
1.8  
0.522  
-0.000  
2.0  
0.488  
-0.133  
2.5  
0.403  
-0.468  
3.3  
0.268  
-1.002  
3.63  
0.257  
-1.044  
Table 2: Control Voltage [VDC]  
3. PROTECTION FEATURES  
3.1. INPUT UNDERVOLTAGE LOCKOUT  
Input undervoltage lockout is standard with this converter. The converter will shut down when the input voltage drops  
below a pre-determined voltage; it will start automatically when Vin returns to a specified range.  
The input voltage must be typically 2.05 V for the converter to turn on. Once the converter has been turned on, it will  
shut off when the input voltage drops below typically 1.9 V.  
+1 866 513 2839  
tech.support@psbel.com  
© 2015 Bel Power Solutions, Inc.  
BCD.00703_AA  
YS05S10  
3.2. OUTPUT OVERCURRENT PROTECTION (OCP)  
The converter is protected against overcurrent and short circuit conditions. Upon sensing an overcurrent condition, the  
converter will enter hiccup mode. Once over-load or short circuit condition is removed, Vout will return to nominal value.  
3.3. OVERTEMPERATURE PROTECTION (OTP)  
The converter will shut down under an overtemperature condition to protect itself from overheating caused by operation  
outside the thermal derating curves, or operation in abnormal conditions such as system fan failure. After the converter  
has cooled to a safe operating temperature, it will automatically restart.  
3.4. SAFETY REQUIREMENTS  
The converter meets North American and International safety regulatory requirements per UL60950 and EN60950. The  
maximum DC voltage between any two pins is Vin under all operating conditions. Therefore, the unit has ELV (extra low  
voltage) output; it meets SELV requirements under the condition that all input voltages are ELV.  
The converter is not internally fused. To comply with safety agencies’ requirements, a recognized fuse with a maximum  
rating of 20 Amps must be used in series with the input line.  
4. CHARACTERIZATION  
4.1. GENERAL INFORMATION  
The converter has been characterized for many operational aspects, to include thermal derating (maximum load current  
as a function of ambient temperature and airflow) for vertical and horizontal mountings, efficiency, startup and shutdown  
parameters, output ripple and noise, transient response to load step-change, overload, and short circuit.  
The figures are numbered as Fig. x.y, where x indicates the different output voltages, and y associates with specific  
plots (y = 1 for the vertical thermal derating, …). For example, Fig. x.1 will refer to the vertical thermal derating for all  
the output voltages in general.  
The following pages contain specific plots or waveforms associated with the converter. Additional comments for  
specific data are provided below.  
4.2. TEST CONDITIONS  
All data presented were taken with the converter soldered to a test board, specifically a 0.060” thick printed wiring  
board (PWB) with four layers. The top and bottom layers were not metalized. The two inner layers, comprised of two-  
ounce copper, were used to provide traces for connectivity to the converter.  
The lack of metalization on the outer layers as well as the limited thermal connection ensured that heat transfer from  
the converter to the PWB was minimized. This provides a worst-case but consistent scenario for thermal derating  
purposes.  
All measurements requiring airflow were made in the vertical and horizontal wind tunnels using Infrared (IR)  
thermography and thermocouples for thermometry.  
Ensuring components on the converter do not exceed their ratings is important to maintaining high reliability. If one  
anticipates operating the converter at or close to the maximum loads specified in the derating curves, it is prudent to  
check actual operating temperatures in the application. Thermographic imaging is preferable; if this capability is not  
available, then thermocouples may be used. . The use of AWG #40 gauge thermocouple is recommended to ensure  
measurement accuracy. Careful routing of the thermocouple leads will further minimize measurement error. Refer to  
Fig. D for the optimum measuring thermocouple location.  
+1 866 513 2839  
tech.support@psbel.com  
© 2015 Bel Power Solutions, Inc.  
BCD.00703_AA  
YS05S10  
Fig. D: Location of the thermocouple for thermal testing.  
4.3. THERMAL DERATING  
Load current vs. ambient temperature and airflow rates are given in Figs. x.1 and Figs. x.2 for maximum temperature  
of 120°C. Ambient temperature was varied between 25 °C and 85 °C, with airflow rates from 30 to 500 LFM (0.15 m/s  
to 2.5 m/s), and vertical and horizontal mountings. The airflow during the testing is parallel to the short axis of the  
converter, going from pin 1 and pin 6 to pins 25.  
For each set of conditions, the maximum load current is defined as the lowest of:  
(i)  
The output current at which any MOSFET temperature does not exceed a maximum specified temperature  
(120°C) as indicated by the thermographic image, or  
(ii)  
The maximum current rating of the converter (10 A).  
During normal operation, derating curves with maximum FET temperature less than or equal to  
120 °C should not be exceeded. Temperature on the PCB at the thermocouple location shown in Fig. D should not  
exceed 120 °C in order to operate inside the derating curves.  
4.4. EFFICIENCY  
Fig. x.3 shows the efficiency vs. load current plot for ambient temperature of 25 ºC, airflow rate of 200 LFM (1 m/s) and  
input voltages of 4.5V, 5.0V and 5.5V. Fig. x.4 is for input voltages of 3.0 V, 3.3V and 3.6 V and output voltages 2.5 V.  
4.5. POWER DISSIPATION  
Fig. 3.3V.4 shows the power dissipation vs. load current plot for Ta = 25 ºC, airflow rate of 200 LFM (1 m/s) with vertical  
mounting and input voltages of 4.5 V, 5.0 V and 5.5 V for 3.3 V output.  
4.6. RIPPLE AND NOISE  
The output voltage ripple waveform is measured at full rated load current. Note that all output voltage waveforms are  
measured across a 1 μF ceramic capacitor.  
The output voltage ripple and input reflected-ripple current waveforms are obtained using the test setup, see Fig. E.  
iS  
1 H  
source  
inductance  
Y-Series  
CO  
CIN  
1F  
ceramic  
capacitor  
100F  
ceramic  
capacitor  
Vout  
DC-DC  
Converter  
4x47F  
ceramic  
capacitor  
Vsource  
Fig. E: Test setup for measuring input reflected-ripple currents, is and output voltage ripple.  
+1 866 513 2839  
tech.support@psbel.com  
© 2015 Bel Power Solutions, Inc.  
BCD.00703_AA  
YS05S10  
12  
10  
8
12  
10  
8
6
6
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
30 LFM (0.15 m/s)  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
30 LFM (0.15 m/s)  
4
4
2
2
0
0
20  
30  
40  
50  
60  
70  
80  
90  
20  
30  
40  
50  
60  
70  
80  
90  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Fig. 3.3V.1: Available load current vs. ambient temperature  
and airflow rates for Vout = 3.3 V converter mounted  
vertically with Vin = 5 V, and maximum MOSFET temperature  
120 C.  
Fig. 3.3V.2: Available load current vs. ambient temperature  
and airflow rates for Vout = 3.3 V converter mounted  
horizontally with Vin = 5 V, and maximum MOSFET  
temperature 120 C.  
1.00  
0.95  
0.90  
0.85  
2.5  
2.0  
1.5  
1.0  
5.5 V  
5.0 V  
4.5 V  
5.5 V  
5.0 V  
4.5 V  
0.80  
0.75  
0.5  
0.0  
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
Load Current [Adc]  
Load Current [Adc]  
Fig. 3.3V.3: Efficiency vs. load current and input voltage for  
Vout = 3.3 V converter mounted vertically with air flowing at  
a rate of 200 LFM (1 m/s) and Ta = 25 C.  
Fig. 3.3V.4: Power Loss vs. load current and input voltage for  
Vout = 3.3 V converter mounted vertically with air flowing at  
a rate of 200 LFM (1 m/s) and Ta = 25 C.  
Fig. 3.3V.5: Turn-on transient for Vout = 3.3 V with the  
application of Enable signal at full rated load current  
(resistive) and 100 μF external capacitance at Vin = 5 V. Top  
trace: Enable signal (2 V/div.); Bottom trace: output voltage  
(1 V/div.); Time scale: 2 ms/div.  
Fig. 3.3V.6: Output voltage ripple (20 mV/div.) at full rated  
load current into a resistive load with external capacitance  
100 μF ceramic + 1 μF ceramic and Vin = 5 V for Vout = 3.3V.  
Time scale: 2 μs/div.  
+1 866 513 2839  
tech.support@psbel.com  
© 2015 Bel Power Solutions, Inc.  
BCD.00703_AA  
YS05S10  
Fig. 3.3V.7: Output voltage for Vout = 3.3 V to positive load  
Fig. 3.3V.8: Output voltage response for Vout = 3.3 V to  
negative load current step change from 10 A to 5 A with slew  
rate of -5 A/μs at Vin = 5 V. Top trace: output voltage (100  
mV/div.); Bottom trace: load current (5 A/div.). Co = 100 μF  
ceramic + 1 μF ceramic. Time scale: 20 μs/div.  
current step change from 5 A to 10 A with slew rate of 5 A/μs  
at Vin = 5 V. Top trace: output voltage (100 mV/div.); Bottom  
trace: load current (5 A/div.). Co = 100 μF ceramic + 1 μF  
ceramic. Time scale: 20 μs/div.  
12  
10  
8
12  
10  
8
6
6
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
4
2
0
4
2
0
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
30 LFM (0.15 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
30 LFM (0.15 m/s)  
20  
30  
40  
50  
60  
70  
80  
90  
20  
30  
40  
50  
60  
70  
80  
90  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Fig. 2.5V.1: Available load current vs. ambient temperature  
and airflow rates for Vout = 2.5 V converter mounted  
vertically with Vin = 5 V, and maximum MOSFET temperature  
120 C.  
Fig. 2.5V.2: Available load current vs. ambient temperature  
and airflow rates for Vout = 2.5 V converter mounted  
horizontally with Vin = 5 V, and maximum MOSFET  
temperature 120 C.  
1.00  
0.95  
0.90  
0.85  
1.00  
0.95  
0.90  
0.85  
5.5 V  
5.0 V  
4.5 V  
3.6 V  
3.3 V  
3.0 V  
0.80  
0.75  
0.80  
0.75  
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
Load Current [Adc]  
Load Current [Adc]  
Fig. 2.5V.3: Efficiency vs. load current and input voltage for  
Vout = 2.5 V converter mounted vertically with air flowing at  
a rate of 200 LFM (1 m/s) and Ta = 25 C.  
Fig. 2.5V.4: Efficiency vs. load current and input voltage for  
Vout = 2.5 V converter mounted vertically with air flowing at  
a rate of 200 LFM (1 m/s) and Ta = 25 C.  
+1 866 513 2839  
tech.support@psbel.com  
© 2015 Bel Power Solutions, Inc.  
BCD.00703_AA  
YS05S10  
Fig. 2.5V.5: Turn-on transient for Vout = 2.5 V with the  
Fig. 2.5V.6: Output voltage ripple (20 mV/div.) at full rated  
load current into a resistive load with external capacitance  
100 μF ceramic + 1 μF ceramic and Vin = 5 V for  
Vout = 2.5 V. Time scale: 2 μs/div.  
application of Enable signal at full rated load current  
(resistive) and 100 μF external capacitance at Vin = 5 V. Top  
trace: Enable signal (2 V/div.); Bottom trace: output voltage  
(1 V/div.); Time scale: 2 ms/div.  
Fig. 2.5V.7: Output voltage response for Vout = 2.5 V to  
positive load current step change from 5 A to 10 A with slew  
rate of 5 A/μs at Vin = 5 V. Top trace: output voltage (100  
mV/div.); Bottom trace: load current (5 A/div.). Co = 100 μF  
ceramic + 1 μF ceramic. Time scale: 20 μs/div.  
Fig. 2.5V.8: Output voltage response for Vout = 2.5 V to  
negative load current step change from 10 A to 5 A with slew  
rate of -5 A/μs at Vin = 5 V. Top trace: output voltage (100  
mV/div.); Bottom trace: load current (5 A/div.). Co = 100 μF  
ceramic + 1 μF ceramic. Time scale: 20 μs/div.  
12  
10  
8
12  
10  
8
6
6
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
4
2
0
4
2
0
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
30 LFM (0.15 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
30 LFM (0.15 m/s)  
20  
30  
40  
50  
60  
70  
80  
90  
20  
30  
40  
50  
60  
70  
80  
90  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Fig. 2.0V.1: Available load current vs. ambient temperature  
and airflow rates for Vout = 2.0 V converter mounted  
vertically with Vin = 5 V, and maximum MOSFET temperature  
120 C.  
Fig. 2.0V.2: Available load current vs. ambient temperature  
and airflow rates for Vout = 2.0 V converter mounted  
horizontally with Vin = 5 V, and maximum MOSFET  
temperature 120 C.  
+1 866 513 2839  
tech.support@psbel.com  
© 2015 Bel Power Solutions, Inc.  
BCD.00703_AA  
YS05S10  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
1.00  
0.95  
0.90  
0.85  
0.80  
3.6 V  
3.3 V  
3.0 V  
5.5 V  
5.0 V  
4.5 V  
0.75  
0
0
2
4
6
8
10  
12  
2
4
6
8
10  
12  
Load Current [Adc]  
Load Current [Adc]  
Fig. 2.0V.4: Efficiency vs. load current and input voltage for  
Vout = 2.0 V converter mounted vertically with air flowing at  
a rate of 200 LFM (1 m/s) and Ta = 25 C.  
Fig. 2.0V.3: Efficiency vs. load current and input voltage for  
Vout = 2.0 V converter mounted vertically with air flowing at  
a rate of 200 LFM (1 m/s) and Ta = 25 C.  
Fig. 2.0V.5: Turn-on transient for Vout = 2.0 V with the  
application of Enable signal at full rated load current  
(resistive) and 100 μF external capacitance at Vin = 5 V. Top  
trace: Enable signal (2 V/div.); Bottom trace: output voltage  
(500 mV/div.); Time scale: 2 ms/div.  
Fig. 2.0V.6: Output voltage ripple (20 mV/div.) at full rated  
load current into a resistive load with external capacitance  
100 μF ceramic + 1 μF ceramic and Vin = 5 V for Vout = 2.0V.  
Time scale: 2 μs/div.  
Fig. 2.0V.7: Output voltage response for Vout = 2.0 V to  
positive load current step change from 5 A to 10 A with slew  
rate of 5 A/μs at Vin = 5 V. Top trace: output voltage (100  
mV/div.); Bottom trace: load current (5 A/div.). Co = 100 μF  
ceramic + 1 μF ceramic. Time scale: 20 μs/div.  
Fig. 2.0V.8: Output voltage response for Vout = 2.0 V to  
negative load current step change from 10 A to 5 A with slew  
rate of -5 A/μs at Vin = 5 V. Top trace: output voltage (100  
mV/div.); Bottom trace: load current (5 A/div.). Co = 100 μF  
ceramic + 1 μF ceramic. Time scale: 20 μs/div.  
+1 866 513 2839  
tech.support@psbel.com  
© 2015 Bel Power Solutions, Inc.  
BCD.00703_AA  
YS05S10  
12  
10  
8
12  
10  
8
6
6
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
30 LFM (0.15 m/s)  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
30 LFM (0.15 m/s)  
4
4
2
2
0
0
20  
30  
40  
50  
60  
70  
80  
90  
20  
30  
40  
50  
60  
70  
80  
90  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Fig. 1.8V.1: Available load current vs. ambient temperature  
and airflow rates for Vout = 1.8 V converter mounted  
vertically with Vin = 5 V, and maximum MOSFET temperature  
Fig. 1.8V.2: Available load current vs. ambient temperature  
and airflow rates for Vout = 1.8 V converter mounted  
horizontally with Vin = 5 V, and maximum MOSFET  
temperature 120 C.  
120 C.  
1.00  
0.95  
0.90  
0.85  
1.00  
0.95  
0.90  
0.85  
5.5 V  
5.0 V  
4.5 V  
3.6 V  
3.3 V  
3.0 V  
0.80  
0.75  
0.80  
0.75  
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
Load Current [Adc]  
Load Current [Adc]  
Fig. 1.8V.3: Efficiency vs. load current and input voltage for  
Vout = 1.8 V converter mounted vertically with air flowing at  
a rate of 200 LFM (1 m/s) and Ta = 25 C.  
Fig. 1.8V.4: Efficiency vs. load current and input voltage for  
Vout = 1.8 V converter mounted vertically with air flowing at  
a rate of 200 LFM (1 m/s) and Ta = 25 C.  
Fig. 1.8V.5: Turn-on transient for Vout = 1.8 V with the  
application of Enable signal at full rated load current  
(resistive) and 100 μF external capacitance at Vin = 5 V. Top  
trace: Enable signal (2 V/div.); Bottom trace: output voltage  
(500 mV/div.); Time scale: 2 ms/div.  
Fig. 1.8V.6: Output voltage ripple (20 mV/div.) at full rated  
load current into a resistive load with external capacitance  
100 μF ceramic + 1 μF ceramic and Vin = 5 V for  
Vout = 1.8 V. Time scale: 2 μs/div.  
+1 866 513 2839  
tech.support@psbel.com  
© 2015 Bel Power Solutions, Inc.  
BCD.00703_AA  
YS05S10  
Fig. 1.8V.7: Output voltage response for Vout = 1.8 V to  
Fig. 1.8V.8: Output voltage response for Vout = 1.8 V to  
negative load current step change from 10 A to 5 A with slew  
rate of -5 A/μs at Vin = 5 V. Top trace: output voltage (100  
mV/div.); Bottom trace: load current (5 A/div.). Co = 100 μF  
ceramic + 1 μF ceramic. Time scale: 20 μs/div.  
positive load current step change from 5 A to 10 A with slew  
rate of 5 A/μs at Vin = 5 V. Top trace: output voltage (100  
mV/div.); Bottom trace: load current (5 A/div.). Co = 100 μF  
ceramic + 1 μF ceramic. Time scale: 20 μs/div.  
12  
10  
8
12  
10  
8
6
6
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
4
2
0
4
2
0
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
30 LFM (0.15 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
30 LFM (0.15 m/s)  
20  
30  
40  
50  
60  
70  
80  
90  
20  
30  
40  
50  
60  
70  
80  
90  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Fig. 1.5V.1: Available load current vs. ambient temperature  
and airflow rates for Vout = 1.5 V converter mounted  
vertically with Vin = 5 V, and maximum MOSFET temperature  
Fig. 1.5V.2: Available load current vs. ambient temperature  
and airflow rates for Vout = 1.5 V converter mounted  
horizontally with Vin = 5 V, and maximum MOSFET  
temperature 120 C.  
120 C.  
0.95  
0.90  
0.95  
0.90  
0.85  
0.85  
5.5 V  
3.6 V  
0.80  
0.75  
0.80  
0.75  
5.0 V  
4.5 V  
3.3 V  
3.0 V  
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
Load Current [Adc]  
Load Current [Adc]  
Fig. 1.5V.3: Efficiency vs. load current and input voltage for  
Vout = 1.5 V converter mounted vertically with air flowing at  
a rate of 200 LFM (1 m/s) and Ta = 25 C.  
Fig. 1.5V.4: Efficiency vs. load current and input voltage for  
Vout = 1.5 V converter mounted vertically with air flowing at  
a rate of 200 LFM (1 m/s) and Ta = 25 C.  
+1 866 513 2839  
tech.support@psbel.com  
© 2015 Bel Power Solutions, Inc.  
BCD.00703_AA  
YS05S10  
Fig. 1.5V.5: Turn-on transient for Vout = 1.5 V with the  
Fig. 1.5V.6: Output voltage ripple (20 mV/div.) at full rated  
load current into a resistive load with external capacitance  
100 μF ceramic + 1 μF ceramic and Vin = 5 V for Vout = 1.5  
V. Time scale: 2 μs/div.  
application of Enable signal at full rated load current  
(resistive) and 100 μF external capacitance at Vin = 5 V. Top  
trace: Enable signal (2 V/div.); Bottom trace: output voltage  
(500 mV/div.); Time scale: 2 ms/div.  
Fig. 1.5V.7: Output voltage response for Vout = 1.5 V to  
positive load current step change from 5 A to 10 A with slew  
rate of 5 A/μs at Vin = 5V. Top trace: output voltage (100  
mV/div.); Bottom trace: load current (5 A/div.). Co = 100 μF  
ceramic + 1 μF ceramic. Time scale: 20 μs/div.  
Fig. 1.5V.8: Output voltage response for Vout = 1.5 V to  
negative load current step change from 10 A to 5 A with slew  
rate of -5 A/μs at Vin = 5 V. Top trace: output voltage (100  
mV/div.); Bottom trace: load current (5 A/div.). Co = 100 μF  
ceramic + 1 μF ceramic. Time scale: 20 μs/div.  
12  
10  
8
12  
10  
8
6
6
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
4
2
0
4
2
0
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
30 LFM (0.15 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
30 LFM (0.15 m/s)  
20  
30  
40  
50  
60  
70  
80  
90  
20  
30  
40  
50  
60  
70  
80  
90  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Fig. 1.2V.1: Available load current vs. ambient temperature  
and airflow rates for Vout = 1.2 V converter mounted  
vertically with Vin = 5 V, and maximum MOSFET temperature  
120 C.  
Fig. 1.2V.2: Available load current vs. ambient temperature  
and airflow rates for Vout = 1.2 V converter mounted  
horizontally with Vin = 5 V, and maximum MOSFET  
temperature 120 C.  
+1 866 513 2839  
tech.support@psbel.com  
© 2015 Bel Power Solutions, Inc.  
BCD.00703_AA  
YS05S10  
0.95  
0.90  
0.85  
0.80  
0.75  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
5.5 V  
5.0 V  
4.5 V  
3.6 V  
3.3 V  
3.0 V  
0.70  
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
Load Current [Adc]  
Load Current [Adc]  
Fig. 1.2V.3: Efficiency vs. load current and input voltage for  
Vout = 1.2 V converter mounted vertically with air flowing at  
a rate of 200 LFM (1 m/s) and Ta = 25 C.  
Fig. 1.2V.4: Efficiency vs. load current and input voltage for  
Vout = 1.2 V converter mounted vertically with air flowing at  
a rate of 200 LFM (1 m/s) and Ta = 25 C.  
Fig. 1.2V.5: Turn-on transient for Vout = 1.2 V with the  
application of Enable signal at full rated load current  
(resistive) and 100 μF external capacitance at Vin = 5 V. Top  
trace: Enable signal (2 V/div.); Bottom trace: output voltage  
(500 mV/div.); Time scale: 2 ms/div.  
Fig. 1.2V.6: Output voltage ripple (20 mV/div.) at full rated  
load current into a resistive load with external capacitance  
100 μF ceramic + 1 μF ceramic and Vin = 5 V for Vout = 1.2  
V. Time scale: 2 μs/div.  
Fig. 1.2V.7: Output voltage response for Vout = 1.2 V to  
positive load current step change from 5 A to 10 A with slew  
rate of 5 A/μs at Vin = 5 V. Top trace: output voltage (100  
mV/div.); Bottom trace: load current (5 A/div.). Co = 100 μF  
ceramic + 1 μF ceramic. Time scale: 20 μs/div.  
Fig. 1.2V.8: Output voltage response for Vout = 1.2 V to  
negative load current step change from 10 A to 5 A with slew  
rate of -5 A/μs at Vin = 5 V. Top trace: output voltage (100  
mV/div.); Bottom trace: load current (5 A/div.). Co = 100 μF  
ceramic + 1 μF ceramic. Time scale: 20 μs/div.  
+1 866 513 2839  
tech.support@psbel.com  
© 2015 Bel Power Solutions, Inc.  
BCD.00703_AA  
YS05S10  
12  
10  
8
12  
10  
8
6
6
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
30 LFM (0.15 m/s)  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
30 LFM (0.15 m/s)  
4
4
2
2
0
0
20  
30  
40  
50  
60  
70  
80  
90  
20  
30  
40  
50  
60  
70  
80  
90  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Fig. 1.0V.1: Available load current vs. ambient temperature  
and airflow rates for Vout = 1.0 V converter mounted  
vertically with Vin = 5 V, and maximum MOSFET temperature  
120 C.  
Fig. 1.0V.2: Available load current vs. ambient temperature  
and airflow rates for Vout = 1.0 V converter mounted  
horizontally with Vin = 5 V, and maximum MOSFET  
temperature 120 C.  
0.95  
0.90  
0.85  
0.80  
0.95  
0.90  
0.85  
0.80  
5.5 V  
5.0 V  
4.5 V  
3.6 V  
3.3 V  
3.0 V  
0.75  
0.70  
0.75  
0.70  
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
Load Current [Adc]  
Load Current [Adc]  
Fig. 1.0V.3: Efficiency vs. load current and input voltage for  
Vout = 1.0 V converter mounted vertically with air flowing at  
a rate of 200 LFM (1 m/s) and Ta = 25 C.  
Fig. 1.0V.4: Efficiency vs. load current and input voltage for  
Vout = 1.0 V converter mounted vertically with air flowing at  
a rate of 200 LFM (1 m/s) and Ta = 25 C.  
Fig. 1.0V.5: Turn-on transient for Vout = 1.0 V with the  
application of Enable signal at full rated load current  
(resistive) and 100 μF external capacitance at Vin = 5 V. Top  
trace: Enable signal (2 V/div.); Bottom trace: output voltage  
(500 mV/div.); Time scale: 2 ms/div.  
Fig. 1.0V.6: Output voltage ripple (20 mV/div.) at full rated  
load current into a resistive load with external capacitance  
100 μF ceramic + 1 μF ceramic and Vin = 5 V for Vout = 1.0  
V. Time scale: 2 μs/div.  
+1 866 513 2839  
tech.support@psbel.com  
© 2015 Bel Power Solutions, Inc.  
BCD.00703_AA  
YS05S10  
Fig. 1.0V.7: Output voltage response Vout = 1.0 V to positive  
Fig. 1.0V.8: Output voltage response for Vout = 1.0 V to  
negative load current step change from 10 A to 5 A with slew  
rate of -5 A/μs at Vin = 5 V. Top trace: output voltage (100  
mV/div.); Bottom trace: load current (5 A/div.). Co = 100 μF  
ceramic + 1 μF ceramic. Time scale: 20 μs/div.  
load current step change from 5 A to 10 A with slew rate of 5  
A/μs at Vin = 5 V. Top trace: output voltage (100 mV/div.);  
Bottom trace: load current (5 A/div.). Co = 100 μF ceramic +  
1 μF ceramic. Time scale: 20 μs/div.  
12  
10  
8
12  
10  
8
6
6
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
4
2
0
4
2
0
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
30 LFM (0.15 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
30 LFM (0.15 m/s)  
20  
30  
40  
50  
60  
70  
80  
90  
20  
30  
40  
50  
60  
70  
80  
90  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Fig. 0.7525V.1: Available load current vs. ambient  
Fig. 0.7525V.2: Available load current vs. ambient  
temperature and airflow rates for Vout = 0.7525 V converter  
mounted vertically with Vin = 5 V, and maximum MOSFET  
temperature 120 C.  
temperature and airflow rates for Vout = 0.7525 V converter  
mounted horizontally with Vin = 5 V, and maximum MOSFET  
temperature 120 C.  
0.90  
0.90  
0.85  
0.85  
0.80  
0.80  
5.5 V  
3.6 V  
0.75  
0.70  
0.75  
0.70  
5.0 V  
4.5 V  
3.3 V  
3.0 V  
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
Load Current [Adc]  
Load Current [Adc]  
Fig. 0.7525V.3: Efficiency vs. load current and input voltage  
for Vout = 0.7525 V converter mounted vertically with air  
flowing at a rate of 200 LFM (1 m/s) and Ta = 25 C.  
Fig. 0.7525V.4: Efficiency vs. load current and input voltage  
for Vout = 0.7525 V converter mounted vertically with air  
flowing at a rate of 200 LFM (1 m/s) and Ta = 25 C.  
+1 866 513 2839  
tech.support@psbel.com  
© 2015 Bel Power Solutions, Inc.  
BCD.00703_AA  
YS05S10  
Fig. 0.7525V.5: Turn-on transient for Vout = 0.7525 V with  
Fig. 0.7525V.6: Output voltage ripple (20 mV/div.) at full rated  
load current into a resistive load with external capacitance  
100 μF ceramic + 1 μF ceramic and Vin = 5 V for Vout =  
0.7525 V. Time scale: 2 μs/div.  
the application of Enable signal at full rated load current  
(resistive) and 100 μF external capacitance at Vin = 5 V. Top  
trace: Enable signal (2 V/div.); Bottom trace: output voltage  
(200 mV/div.); Time scale: 2 ms/div.  
Fig. 0.7525V.7: Output voltage response for Vout = 0.7525 V  
to positive load current step change from 5 A to 10 A with  
slew rate of 5 A/μs at Vin = 5 V. Top trace: output voltage  
(100 mV/div.); Bottom trace: load current (5 A/div.). Co = 100  
μF ceramic + 1 μF ceramic. Time scale: 20 μs/div.  
Fig. 0.7525V.8: Output voltage response for Vout = 0.7525 V  
to negative load current step change from 10 A to 8 A with  
slew rate of -5 A/μs at Vin = 5 V. Top trace: output voltage  
(100 mV/div.); Bottom trace: load current (5 A/div.). Co = 100  
μF ceramic + 1 μF ceramic. Time scale: 20 μs/div.  
+1 866 513 2839  
tech.support@psbel.com  
© 2015 Bel Power Solutions, Inc.  
BCD.00703_AA  
YS05S10  
5. PHYSICAL INFORMATION  
PAD/PIN CONNECTIONS  
Pad/Pin #  
Function  
ON/OFF  
SENSE  
TRIM  
1
2
3
4
5
6
Vout  
GND  
Vin  
2
3
4
5
YS05S Platform Notes  
1(*)  
6
All dimensions are in inches [mm]  
Connector Material: Copper  
TOP VIEW  
(*) PIN # 1 ROTATED 90°  
Connector Finish: Gold over Nickel  
Converter Weight: 0.22 oz [6.12 g]  
Converter Height: 0.327” Max., 0.301” Min.  
Recommended Surface-mount Pads:  
Min. 0.080” X 0.112” [2.03 x 2.84]  
SIDE VIEW  
YS05S Pinout (Surface-Mount)  
6. ORDERING INFORMATION  
PRODUC  
T SERIES  
INPUT  
VOLTAGE  
MOUNTING  
SCHEME  
RATED LOAD  
CURRENT  
ENABLE LOGIC  
0
ENVIRONMENTAL  
YS  
05  
S
10  
0 Standard  
(Positive Logic)  
No Suffix RoHS  
lead-solder-exempt  
compliant  
10 A  
Y-Series  
3.0 5.5 V  
S Surface-Mount  
(0.7525 V to 3.63 V)  
D Opposite of  
Standard  
(Negative Logic)  
G RoHS compliant  
for all six substances  
The example above describes P/N YS05S10-0: 3.0 5.5 V input, surface mount, 10 A at 0.7525 V to 3.63 V output, standard enable  
logic, and Eutectic Tin/Lead solder. Please consult factory for the complete list of available options.  
NUCLEAR AND MEDICAL APPLICATIONS - Products are not designed or intended for use as critical components in life support  
systems, equipment used in hazardous environments, or nuclear control systems.  
TECHNICAL REVISIONS - The appearance of products, including safety agency certifications pictured on labels, may change  
depending on the date manufactured. Specifications are subject to change without notice.  
+1 866 513 2839  
tech.support@psbel.com  
© 2015 Bel Power Solutions, Inc.  
BCD.00703_AA  

相关型号:

YS05S10-D

DC-DC Regulated Power Supply Module, 36W, MODULE-6
BEL

YS05S16-D

DC-DC Regulated Power Supply Module, 1 Output, 58W, Hybrid,
BEL

YS06215000J0G

Barrier Strip Terminal Block,
AMPHENOL

YS10010000J0G

Barrier Strip Terminal Block
AMPHENOL

YS10013000J0G

Barrier Strip Terminal Block
AMPHENOL

YS10015000J0G

Barrier Strip Terminal Block,
AMPHENOL

YS10016000J0G

Barrier Strip Terminal Block
AMPHENOL

YS10019000J0G

Barrier Strip Terminal Block
AMPHENOL

YS10212000J0G

Barrier Strip Terminal Block
AMPHENOL

YS10219000J0G

Barrier Strip Terminal Block
AMPHENOL

YS1021C000J0G

Barrier Strip Terminal Block
AMPHENOL

YS12010000J0G

Barrier Strip Terminal Block
AMPHENOL