YS05S10-D [BEL]

DC-DC Regulated Power Supply Module, 36W, MODULE-6;
YS05S10-D
型号: YS05S10-D
厂家: BEL FUSE INC.    BEL FUSE INC.
描述:

DC-DC Regulated Power Supply Module, 36W, MODULE-6

文件: 总30页 (文件大小:333K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
YS05S10 DC-DC Converter Data Sheet  
3.0-5.5 VDC Input; 0.7525-3.63 VDC Programmable @ 10 A  
The  
Products: Y-Series  
Features  
RoHS lead-free solder and lead-solder-exempted  
products are available  
Delivers up to 10 A (36 W)  
No derating up to 85 C  
Surface-mount package  
Industry-standard footprint and pinout  
Small size and low profile: 1.30” x 0.53” x 0.314”  
(33.02 x 13.46 x 7.98 mm)  
Weight: 0.22 oz [6.12 g]  
Applications  
Coplanarity less than 0.003”, maximum  
Synchronouewwwqs Buck Converter topology  
Start-up into pre-biased output  
Intermediate Bus Architectures  
Telecommunications  
No minimum load required  
Data communications  
Programmable output voltage via external resistor  
Operating ambient temperature: -40 °C to 85 °C  
Remote output sense  
Distributed Power Architectures  
Servers, workstations  
Remote ON/OFF (Positive or Negative)  
Fixed-frequency operation  
Benefits  
Auto-reset output overcurrent protection  
Auto-reset overtemperature protection  
High reliability, MTBF approx. 32.54 million hours  
calculated per Telcordia TR-332, Method I Case 1  
All materials meet UL94, V-0 flammability rating  
High efficiency – no heat sink required  
Reduces total solution board area  
Tape and reel packing  
Compatible with pick & place equipment  
Minimizes part numbers in inventory  
Cost effective  
UL60950 recognition in U.S. & Canada, and DEMKO  
certification per IEC/EN60950  
Description  
Power-One’s point-of-load converters are recommended for use with regulated bus converters in an Intermediate  
Bus Architecture (IBA). The YS05S10 non-isolated DC-DC converter delivers up to 10 A of output current in an  
industry-standard surface-mount package. Operating from a 3.0 – 5.5 V input, the YS05S10 converter is an ideal  
choice for Intermediate Bus Architectures where Point-of-Load (POL) power delivery is generally a requirement. It  
provides an extremely tightly-regulated programmable output voltage from 0.7525 V to 3.63 V.  
The YS05S10 converter provides exceptional thermal performance, even in high temperature environments with  
minimal airflow. No derating is required up to 85 C, even without airflow at natural convection. This performance  
is accomplished through the use of advanced circuitry, packaging, and processing techniques to achieve a design  
possessing ultra-high efficiency, excellent thermal management, and a very low-body profile.  
The low-body profile and the preclusion of heat sinks minimize impedance to system airflow, thus enhancing  
cooling for both upstream and downstream devices. The use of 100% automation for assembly, coupled with  
advanced power electronics and thermal design, results in a product with extremely high reliability.  
MCD10204 Rev. 1.0, 24-Jun-10  
Page 1 of 30  
www.power-one.com  
YS05S10 DC-DC Converter Data Sheet  
3.0-5.5 VDC Input; 0.7525-3.63 VDC Programmable @ 10 A  
Electrical Specifications  
Conditions: TA = 25 ºC, Airflow = 300 LFM (1.5 m/s), Vin = 5 VDC, Vout = 0.7525 – 3.63 V, unless otherwise specified.  
Parameter  
Notes  
Min  
Typ  
Max Units  
Absolute Maximum Ratings  
Input Voltage  
Continuous  
-0.3  
-40  
-55  
6
VDC  
°C  
Operating Ambient Temperature  
Storage Temperature  
85  
125  
°C  
Feature Characteristics  
Switching Frequency  
Full Temperature Range  
250  
300  
3.5  
350  
3.63  
0.5  
kHz  
VDC  
VDC  
Output Voltage Trim Range1, 4  
Remote Sense Compensation1  
By external resistor, See Trim Table 1  
Percent of VOUT(NOM)  
0.7525  
Turn-On Delay Time2  
Full resistive load  
With Vin = (Converter Enabled, then  
Vin applied)  
From Vin = Vin(min) to Vo = 0.1* Vo(nom)  
3
4.5  
ms  
With Enable (Vin = Vin(nom)  
applied, then enabled)  
Rise time2  
From enable to Vo = 0.1*Vo(nom)  
From 0.1*Vo(nom) to 0.9*Vo(nom)  
3
3
3.5  
3.5  
4.5  
5
ms  
ms  
ON/OFF Control (Positive Logic) 3  
Converter Off  
-5  
0.8  
5.5  
VDC  
VDC  
Converter On  
2.4  
ON/OFF Control (Negative Logic) 3  
Converter Off  
2.4  
-5  
5.5  
0.8  
VDC  
VDC  
Converter On  
Additional Notes:  
1
The output voltage should not exceed 3.63 V (taking into account both the programming and remote sense compensation).  
Note that startup time is the sum of turn-on delay time and rise time.  
The converter is on if ON/OFF pin is left open.  
Trim resistor connected across the GND (pin 5) and TRIM (pin 3) pins of the converter.  
See waveforms for dynamic response and settling time for different output voltages.  
2
3
4
5
MCD10204 Rev. 1.0, 24-Jun-10  
Page 2 of 30  
www.power-one.com  
YS05S10 DC-DC Converter Data Sheet  
3.0-5.5 VDC Input; 0.7525-3.63 VDC Programmable @ 10 A  
Electrical Specifications (continued)  
Conditions: TA = 25 ºC, Airflow = 300 LFM (1.5 m/s), Vin = 5 VDC, Vout = 0.7525 – 3.63 V, unless otherwise specified.  
Parameter  
Notes  
Min  
Typ  
Max Units  
Input Characteristics  
Operating Input Voltage Range  
Input Undervoltage Lockout  
Turn-on Threshold  
3.0  
5.0  
5.5  
VDC  
Guaranteed by controller  
Guaranteed by controller  
1.95  
1.73  
2.05  
1.9  
2.15  
2.07  
VDC  
VDC  
Turn-off Threshold  
Maximum Input Current  
VIN = 4.5 VDC, IOUT = 10 A  
VIN = 3.0 VDC, IOUT = 10 A  
VIN = 3.0 VDC, IOUT = 10 A  
VIN = 3.0 VDC, IOUT = 10 A  
VIN = 3.0 VDC, IOUT = 10 A  
VIN = 3.0 VDC, IOUT = 10 A  
VIN = 3.0 VDC, IOUT = 10 A  
VIN = 3.0 VDC, IOUT = 10 A  
VOUT = 3.3 VDC  
VOUT = 2.5 VDC  
VOUT = 2.0 VDC  
VOUT = 1.8 VDC  
VOUT = 1.5 VDC  
VOUT = 1.2 VDC  
VOUT = 1.0 VDC  
VOUT = 0.7525 VDC  
7.9  
9.1  
7.3  
6.7  
5.7  
4.7  
4.0  
3.2  
ADC  
ADC  
ADC  
ADC  
ADC  
ADC  
ADC  
ADC  
mA  
Input Stand-by Current (Converter disabled) Vin = 5.0 VDC  
3.0  
Input No Load Current (Converter enabled)  
Vin = 5.5 VDC  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
VOUT = 3.3 VDC  
80  
80  
72  
68  
60  
55  
50  
42  
10  
VOUT = 2.5 VDC  
VOUT = 2.0 VDC  
VOUT = 1.8 VDC  
VOUT = 1.5 VDC  
VOUT = 1.2 VDC  
VOUT = 1.0 VDC  
VOUT = 0.7525 VDC  
See Fig. E for setup (BW = 20 MHz)  
Input Reflected-Ripple Current - is  
mAP-P  
MCD10204 Rev. 1.0, 24-Jun-10  
Page 3 of 30  
www.power-one.com  
YS05S10 DC-DC Converter Data Sheet  
3.0-5.5 VDC Input; 0.7525-3.63 VDC Programmable @ 10 A  
Electrical Specifications (continued)  
Conditions: TA = 25 ºC, Airflow = 300 LFM (1.5 m/s), Vin = 5 VDC, Vout = 0.7525 – 3.63 V, unless otherwise specified.  
Parameter  
Notes  
Min  
Typ  
Max Units  
Output Characteristics  
-1.5  
Vout  
+1.5  
%Vout  
Output Voltage Set Point (no load)  
Output Regulation4  
Over Line  
Full resistive load  
From no load to full load  
0.1  
0.1  
0.5  
0.5  
%Vout  
%Vout  
Over Load  
Output Voltage Range  
(Over all operating input voltage, resistive load  
and temperature conditions until end of life )  
-3  
+3  
%Vout  
Output Ripple and Noise – 20 MHz bandwidth Over line, load and temperature (Fig. E)  
mVP-P  
mVP-P  
Peak-to-Peak  
Peak-to-Peak  
VOUT = 3.3 VDC  
40  
25  
60  
35  
VOUT = 0.7525 VDC  
Plus full load (resistive)  
External Load Capacitance  
Min ESR > 1 m  
μF  
μF  
1,000  
5,000  
10  
Min ESR > 10 mΩ  
Output Current Range  
A
0
Output Current Limit Inception (IOUT  
)
A
18  
2
Arms  
Output Short-Circuit Current (Hiccup mode)  
Short = 10 m, continuous  
Dynamic Response  
50% Load current change from  
5 A -10 A - 5 A with di/dt = 5 A/μs5  
Settling Time (VOUT < 10% peak deviation) 5  
Co = 100 μF tant. + 1 μF ceramic  
150  
60  
mV  
µs  
Efficiency  
Full load (10 A)  
VOUT = 3.3 VDC  
VOUT = 2.5 VDC  
VOUT = 2.0 VDC  
VOUT = 1.8 VDC  
VOUT = 1.5 VDC  
VOUT = 1.2 VDC  
VOUT = 1.0 VDC  
VOUT = 0.7525 VDC  
94.5  
93.0  
92.0  
91.5  
89.5  
87.5  
86.0  
83.0  
%
%
%
%
%
%
%
%
MCD10204 Rev. 1.0, 24-Jun-10  
Page 4 of 30  
www.power-one.com  
YS05S10 DC-DC Converter Data Sheet  
3.0-5.5 VDC Input; 0.7525-3.63 VDC Programmable @ 10 A  
Operations  
Input and Output Impedance  
To turn the converter on the ON/OFF pin should be  
The YS05S10 converter should be connected via a  
low impedance to the DC power source. In many  
applications, the inductance associated with the  
distribution from the power source to the input of the  
converter can affect the stability of the converter.  
The use of decoupling capacitors is recommended in  
order to ensure stability of the converter and reduce  
input ripple voltage. Internally, the converter has  
44 μF (low ESR ceramics) of input capacitance.  
at a logic low or left open, and to turn the converter  
off the ON/OFF pin should be at a logic high or  
connected to Vin. See the Electrical Specifications  
for logic high/low definitions.  
The positive logic version turns the converter on  
when the ON/OFF pin is at a logic high or left open,  
and turns the converter off when at a logic low or  
shorted to GND.  
The negative logic version turns the converter on  
when the ON/OFF pin is at logic low or left open, and  
turns the converter off when the ON/OFF pin is at a  
logic high or connected to Vin.  
In a typical application, low - ESR tantalum or POS  
capacitors will be sufficient to provide adequate  
ripple voltage filtering at the input of the converter.  
However, very low ESR ceramic capacitors  
100 - 200 μF are recommended at the input of the  
converter in order to minimize the input ripple  
voltage. They should be placed as close as possible  
to the input pins of the converter.  
The ON/OFF pin is internally pulled up to Vin for  
positive logic version, and pulled down for a negative  
logic version. A TTL or CMOS logic gate, open-  
collector (open-drain) transistor can be used to drive  
ON/OFF pin. This device must be capable of:  
The YS05S10 has been designed for stable  
operation with or without external capacitance. Low  
ESR ceramic capacitors placed as close as possible  
to the load (minimum 100 μF) are recommended for  
improved transient performance and lower output  
voltage ripple.  
– sinking up to 1.2 mA at a low level voltage of  
0.8 V  
– sourcing up to 0.25 mA at a high logic level of  
2.3 V - 5.5 V.  
When using open-collector (open-drain) transistor  
with a negative logic option, add a pull-up resistor  
(R*) to Vin as shown in Fig. A:  
It is important to keep low resistance and low  
inductance PCB traces for connecting load to the  
output pins of the converter in order to maintain good  
load regulation.  
– 20 K, if the minimum Vin is 4.5 V  
– 10 K, if the minimum Vin is 3.0 V  
ON/OFF (Pin 1)  
– 5 K, if the undervoltage shutdown at 2.05 - 2.15 V  
is required.  
The ON/OFF pin is used to turn the power converter  
on or off remotely via a system signal. There are two  
remote control options available, positive logic  
(standard option) and negative logic, with ON/OFF  
signal referenced to GND. The typical connections  
are shown in Fig. A.  
Remote Sense (Pin 2)  
The remote sense feature of the converter  
compensates for voltage drops occurring only  
between Vout pin (Pin 4) of the converter and the  
load. The SENSE (Pin 2) pin should be connected at  
the load or at the point where regulation is required  
(see Fig. B). There is no sense feature on the output  
GND return pin, where the solid ground plane should  
provide a low voltage drop.  
Y-Series  
Converter  
Vin  
SENSE  
Vout  
R*  
(Top View)  
ON/OFF  
Vin  
Rload  
GND  
TRIM  
CONTROL  
INPUT  
R* is for negative logic option only  
Fig. A: Circuit configuration for ON/OFF function.  
MCD10204 Rev. 1.0, 24-Jun-10  
Page 5 of 30  
www.power-one.com  
YS05S10 DC-DC Converter Data Sheet  
3.0-5.5 VDC Input; 0.7525-3.63 VDC Programmable @ 10 A  
Y-Series  
Converter  
Y-Series  
Converter  
SENSE  
Vout  
SENSE  
Vout  
Vin  
Vin  
Rw  
(Top View)  
(Top View)  
ON/OFF  
ON/OFF  
Vin  
Vin  
Rload  
Rload  
TRIM  
TRIM  
GND  
GND  
RTRIM  
Rw  
Fig. B: Remote sense circuit configuration.  
Fig. C: Configuration for programming output voltage.  
If remote sensing is not required, the SENSE pin  
must be connected to the Vout pin (Pin 4) to ensure  
the converter will regulate at the specified output  
voltage. If these connections are not made, the  
converter will deliver an output voltage that is slightly  
higher than the specified value.  
A trim resistor, RTRIM, for a desired output voltage  
can be calculated using the following equation:  
21.07  
RTRIM   
5.11  
[k]  
(VO-REQ - 0.7525)  
where,  
Because the sense lead carries minimal current,  
large trace on the end-user board are not required.  
However, sense trace should be located close to a  
ground plane to minimize system noise and ensure  
optimum performance.  
RTRIM Required value of trim resistor [k]  
VOREQ Desired (trimmed) output voltage [V]  
Note that the tolerance of a trim resistor directly  
affects the output voltage tolerance. It is  
recommended to use standard 1% or 0.5% resistors;  
for tighter tolerance, two resistors in parallel are  
recommended rather than one standard value from  
Table 1.  
When utilizing the remote sense feature, care must  
be taken not to exceed the maximum allowable  
output power capability of the converter, which is  
equal to the product of the nominal output voltage  
and the allowable output current for the given  
conditions.  
Ground pin of the trim resistor should be connected  
directly to the converter GND pin (Pin 5) with no  
voltage drop in between. Table 1 provides the trim  
resistor values for popular output voltages.  
When using remote sense, the output voltage at the  
converter can be increased up to 0.5 V above the  
nominal rating in order to maintain the required  
voltage across the load. Therefore, the designer  
must, if necessary, decrease the maximum current  
(originally obtained from the derating curves) by the  
same percentage to ensure the converter’s actual  
output power remains at or below the maximum  
allowable output power.  
Table 1: Trim Resistor Value  
The Closest  
V0-REG [V]  
RTRIM [k]  
Standard Value [k]  
0.7525  
1.0  
open  
80.0  
41.97  
23.1  
15  
80.6  
42.2  
23.2  
15  
1.2  
1.5  
Output Voltage Programming (Pin 3)  
1.8  
2.0  
11.78  
6.95  
3.16  
2.21  
11.8  
6.98  
3.16  
2.21  
The output voltage can be programmed from  
0.7525 V to 3.63 V by connecting an external resistor  
between TRIM pin (Pin 3) and GND pin (Pin 5); see  
Fig. C. Note that when a trim resistor is not  
connected, the output voltage of the converter is  
0.7525 V.  
2.5  
3.3  
3.63  
The output voltage can also be programmed by  
external voltage source. To make trimming less  
sensitive,  
a
series external resistor Rext is  
recommended between TRIM pin and programming  
voltage source. Control Voltage can be calculated by  
the formula:  
MCD10204 Rev. 1.0, 24-Jun-10  
Page 6 of 30  
www.power-one.com  
YS05S10 DC-DC Converter Data Sheet  
3.0-5.5 VDC Input; 0.7525-3.63 VDC Programmable @ 10 A  
cooled to a safe operating temperature, it will  
automatically restart.  
(5.11REXT)(VO-REQ - 0.7525)  
V
CTRL 0.7   
[V]  
30.1  
where,  
VCTRL Control voltage [V]  
Safety Requirements  
The converter meets North American and  
International safety regulatory requirements per  
UL60950 and EN60950. The maximum DC voltage  
between any two pins is Vin under all operating  
conditions. Therefore, the unit has ELV (extra low  
voltage) output; it meets SELV requirements under  
the condition that all input voltages are ELV.  
REXT External resistor between TRIM pin and  
voltage source; the value can be chosen depending  
on the required output voltage range [k].  
Control voltages with REXT 0 and REXT 15 K are  
shown in Table 2.  
Table 2: Control Voltage [VDC]  
The converter is not internally fused. To comply with  
safety agencies’ requirements, a recognized fuse  
with a maximum rating of 20 Amps must be used in  
series with the input line.  
V0-REG [V] VCTRL (REXT = 0) VCTRL(REXT = 15 K)  
0.7525  
1.0  
0.700  
0.658  
0.624  
0.573  
0.522  
0.488  
0.403  
0.268  
0.257  
0.700  
0.535  
0.401  
0.201  
-0.000  
-0.133  
-0.468  
-1.002  
-1.044  
1.2  
Characterization  
1.5  
1.8  
General Information  
2.0  
The converter has been characterized for many  
operational aspects, to include thermal derating  
(maximum load current as a function of ambient  
temperature and airflow) for vertical and horizontal  
mountings, efficiency, startup and shutdown  
parameters, output ripple and noise, transient  
response to load step-change, overload, and short  
circuit.  
2.5  
3.3  
3.63  
Protection Features  
Input Undervoltage Lockout  
Input undervoltage lockout is standard with this  
converter. The converter will shut down when the  
input voltage drops below a pre-determined voltage;  
it will start automatically when Vin returns to a  
specified range.  
The figures are numbered as Fig. x.y, where x  
indicates the different output voltages, and y  
associates with specific plots (y = 1 for the vertical  
thermal derating, …). For example, Fig. x.1 will refer  
to the vertical thermal derating for all the output  
voltages in general.  
The input voltage must be typically 2.05 V for the  
converter to turn on. Once the converter has been  
turned on, it will shut off when the input voltage  
drops below typically 1.9 V.  
The following pages contain specific plots or  
waveforms associated with the converter. Additional  
comments for specific data are provided below.  
Output Overcurrent Protection (OCP)  
Test Conditions  
The converter is protected against overcurrent and  
short circuit conditions. Upon sensing an overcurrent  
condition, the converter will enter hiccup mode. Once  
over-load or short circuit condition is removed, Vout  
will return to nominal value.  
All data presented were taken with the converter  
soldered to a test board, specifically a 0.060” thick  
printed wiring board (PWB) with four layers. The top  
and bottom layers were not metalized. The two inner  
layers, comprised of two-ounce copper, were used to  
provide traces for connectivity to the converter.  
Overtemperature Protection (OTP)  
The converter will shut down under an  
overtemperature condition to protect itself from  
overheating caused by operation outside the thermal  
derating curves, or operation in abnormal conditions  
such as system fan failure. After the converter has  
The lack of metalization on the outer layers as well  
as the limited thermal connection ensured that heat  
transfer from the converter to the PWB was  
minimized. This provides a worst-case but consistent  
scenario for thermal derating purposes.  
MCD10204 Rev. 1.0, 24-Jun-10  
Page 7 of 30  
www.power-one.com  
YS05S10 DC-DC Converter Data Sheet  
3.0-5.5 VDC Input; 0.7525-3.63 VDC Programmable @ 10 A  
All measurements requiring airflow were made in the  
vertical and horizontal wind tunnels using Infrared  
(IR) thermography and thermocouples for  
thermometry.  
120 °C should not be exceeded. Temperature on the  
PCB at the thermocouple location shown in Fig. D  
should not exceed 120 °C in order to operate inside  
the derating curves.  
Ensuring components on the converter do not  
exceed their ratings is important to maintaining high  
reliability. If one anticipates operating the converter  
at or close to the maximum loads specified in the  
derating curves, it is prudent to check actual  
Efficiency  
Fig. x.3 shows the efficiency vs. load current plot for  
ambient temperature of 25 ºC, airflow rate of  
200 LFM (1 m/s) and input voltages of 4.5 V, 5.0 V  
and 5.5 V. Fig. x.4 is for input voltages of 3.0 V,  
3.3 V and 3.6 V and output voltages 2.5 V.  
operating  
temperatures  
in  
the  
application.  
Thermographic imaging is preferable; if this  
capability is not available, then thermocouples may  
be used. . The use of AWG #40 gauge thermocouple  
is recommended to ensure measurement accuracy.  
Careful routing of the thermocouple leads will further  
minimize measurement error. Refer to Fig. D for the  
optimum measuring thermocouple location.  
Power Dissipation  
Fig. 3.3V.4 shows the power dissipation vs. load  
current plot for Ta = 25 ºC, airflow rate of 200 LFM  
(1 m/s) with vertical mounting and input voltages of  
4.5 V, 5.0 V and 5.5 V for 3.3 V output.  
Ripple and Noise  
The output voltage ripple waveform is measured at  
full rated load current. Note that all output voltage  
waveforms are measured across a 1 μF ceramic  
capacitor.  
The output voltage ripple and input reflected-ripple  
current waveforms are obtained using the test setup  
shown in Fig. E.  
Fig. D: Location of the thermocouple for thermal testing.  
iS  
1 H  
source  
inductance  
Y-Series  
CO  
1F  
CIN  
ceramic  
capacitor  
100F  
ceramic  
capacitor  
Vout  
DC-DC  
Converter  
4x47F  
ceramic  
capacitor  
Thermal Derating  
Vsource  
Load current vs. ambient temperature and airflow  
rates are given in Figs. x.1 and Figs. x.2 for  
Fig. E: Test setup for measuring input reflected-ripple  
currents, is and output voltage ripple.  
maximum  
temperature  
of  
120°C.  
Ambient  
temperature was varied between 25 °C and 85 °C,  
with airflow rates from 30 to 500 LFM (0.15 m/s to  
2.5 m/s), and vertical and horizontal mountings. The  
airflow during the testing is parallel to the short axis  
of the converter, going from pin 1 and pin 6 to  
pins 2–5.  
For each set of conditions, the maximum load  
current is defined as the lowest of:  
(i) The output current at which any MOSFET  
temperature does not exceed a maximum specified  
temperature (120°C) as indicated by the  
thermographic image, or  
(ii) The maximum current rating of the converter  
(10 A).  
During normal operation, derating curves with  
maximum FET temperature less than or equal to  
MCD10204 Rev. 1.0, 24-Jun-10  
Page 8 of 30  
www.power-one.com  
YS05S10 DC-DC Converter Data Sheet  
3.0-5.5 VDC Input; 0.7525-3.63 VDC Programmable @ 10 A  
12  
10  
8
12  
10  
8
6
6
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
30 LFM (0.15 m/s)  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
30 LFM (0.15 m/s)  
4
4
2
0
2
0
20  
30  
40  
50  
60  
70  
80  
90  
20  
30  
40  
50  
60  
70  
80  
90  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Fig. 3.3V.1: Available load current vs. ambient temperature  
and airflow rates for Vout 3.3 converter mounted  
Fig. 3.3V.2: Available load current vs. ambient temperature  
and airflow rates for Vout 3.3 converter mounted  
=
V
=
V
vertically with Vin = 5 V, and maximum MOSFET temperature  
horizontally with Vin  
=
5
V, and maximum MOSFET  
120 C.  
temperature 120 C.  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
1.00  
0.95  
0.90  
0.85  
5.5 V  
5.0 V  
4.5 V  
5.5 V  
5.0 V  
4.5 V  
0.80  
0.75  
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
Load Current [Adc]  
Load Current [Adc]  
Fig. 3.3V.4: Power Loss vs. load current and input voltage for  
Vout = 3.3 V converter mounted vertically with air flowing at a  
rate of 200 LFM (1 m/s) and Ta = 25 C.  
Fig. 3.3V.3: Efficiency vs. load current and input voltage for  
Vout = 3.3 V converter mounted vertically with air flowing at a  
rate of 200 LFM (1 m/s) and Ta = 25 C.  
MCD10204 Rev. 1.0, 24-Jun-10  
Page 9 of 30  
www.power-one.com  
YS05S10 DC-DC Converter Data Sheet  
3.0-5.5 VDC Input; 0.7525-3.63 VDC Programmable @ 10 A  
Fig. 3.3V.6: Output voltage ripple (20 mV/div.) at full rated  
load current into a resistive load with external capacitance  
100 μF ceramic + 1 μF ceramic and Vin = 5 V for Vout = 3.3 V.  
Time scale: 2 μs/div.  
Fig. 3.3V.5: Turn-on transient for Vout = 3.3 V with the  
application of Enable signal at full rated load current  
(resistive) and 100 μF external capacitance at Vin = 5 V. Top  
trace: Enable signal (2 V/div.); Bottom trace: output voltage  
(1 V/div.); Time scale: 2 ms/div.  
Fig. 3.3V.8: Output voltage response for Vout = 3.3 V to  
negative load current step change from 10 A to 5 A with slew  
rate of -5 A/μs at Vin = 5 V. Top trace: output voltage  
(100 mV/div.); Bottom trace: load current (5 A/div.). Co =  
100 μF ceramic + 1 μF ceramic. Time scale: 20 μs/div.  
Fig. 3.3V.7: Output voltage for Vout = 3.3 V to positive load  
current step change from 5 A to 10 A with slew rate of 5 A/μs  
at Vin = 5 V. Top trace: output voltage (100 mV/div.); Bottom  
trace: load current (5 A/div.). Co = 100 μF ceramic + 1 μF  
ceramic. Time scale: 20 μs/div.  
MCD10204 Rev. 1.0, 24-Jun-10  
Page 10 of 30  
www.power-one.com  
YS05S10 DC-DC Converter Data Sheet  
3.0-5.5 VDC Input; 0.7525-3.63 VDC Programmable @ 10 A  
rate of 200 LFM (1 m/s) and Ta = 25 C.  
12  
10  
8
6
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
30 LFM (0.15 m/s)  
4
2
0
20  
30  
40  
50  
60  
70  
80  
90  
Ambient Temperature [°C]  
Fig. 2.5V.1: Available load current vs. ambient temperature  
and airflow rates for Vout 2.5 converter mounted  
=
V
vertically with Vin = 5 V, and maximum MOSFET temperature  
120 C.  
1.00  
0.95  
0.90  
0.85  
5.5 V  
5.0 V  
4.5 V  
0.80  
0.75  
0
2
4
6
8
10  
12  
Load Current [Adc]  
Fig. 2.5V.3: Efficiency vs. load current and input voltage for  
Vout = 2.5 V converter mounted vertically with air flowing at a  
MCD10204 Rev. 1.0, 24-Jun-10  
Page 11 of 30  
www.power-one.com  
YS05S10 DC-DC Converter Data Sheet  
3.0-5.5 VDC Input; 0.7525-3.63 VDC Programmable @ 10 A  
12  
10  
8
6
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
30 LFM (0.15 m/s)  
4
2
0
20  
30  
40  
50  
60  
70  
80  
90  
Ambient Temperature [°C]  
Fig. 2.5V.2: Available load current vs. ambient temperature  
and airflow rates for Vout 2.5 converter mounted  
=
V
horizontally with Vin  
temperature 120 C.  
=
5
V, and maximum MOSFET  
Fig. 2.5V.5: Turn-on transient for Vout = 2.5 V with the  
application of Enable signal at full rated load current  
(resistive) and 100 μF external capacitance at Vin = 5 V. Top  
trace: Enable signal (2 V/div.); Bottom trace: output voltage  
(1 V/div.); Time scale: 2 ms/div.  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
3.6 V  
3.3 V  
3.0 V  
0
2
4
6
8
10  
12  
Load Current [Adc]  
Fig. 2.5V.4: Efficiency vs. load current and input voltage for  
Vout = 2.5 V converter mounted vertically with air flowing at a  
rate of 200 LFM (1 m/s) and Ta = 25 C.  
Fig. 2.5V.7: Output voltage response for Vout = 2.5 V to  
positive load current step change from 5 A to 10 A with slew  
rate of 5 A/μs at Vin = 5 V. Top trace: output voltage  
(100 mV/div.); Bottom trace: load current (5 A/div.). Co =  
100 μF ceramic + 1 μF ceramic. Time scale: 20 μs/div.  
MCD10204 Rev. 1.0, 24-Jun-10  
Page 12 of 30  
www.power-one.com  
YS05S10 DC-DC Converter Data Sheet  
3.0-5.5 VDC Input; 0.7525-3.63 VDC Programmable @ 10 A  
Fig. 2.5V.8: Output voltage response for Vout = 2.5 V to  
negative load current step change from 10 A to 5 A with slew  
rate of -5 A/μs at Vin = 5 V. Top trace: output voltage  
(100 mV/div.); Bottom trace: load current (5 A/div.). Co =  
100 μF ceramic + 1 μF ceramic. Time scale: 20 μs/div.  
Fig. 2.5V.6: Output voltage ripple (20 mV/div.) at full rated  
load current into a resistive load with external capacitance  
100 μF ceramic + 1 μF ceramic and Vin = 5 V for Vout = 2.5 V.  
Time scale: 2 μs/div.  
12  
10  
8
6
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
4
2
0
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
30 LFM (0.15 m/s)  
20  
30  
40  
50  
60  
70  
80  
90  
Ambient Temperature [°C]  
Fig. 2.0V.1: Available load current vs. ambient temperature  
and airflow rates for Vout 2.0 converter mounted  
=
V
vertically with Vin = 5 V, and maximum MOSFET temperature  
120 C.  
MCD10204 Rev. 1.0, 24-Jun-10  
Page 13 of 30  
www.power-one.com  
YS05S10 DC-DC Converter Data Sheet  
3.0-5.5 VDC Input; 0.7525-3.63 VDC Programmable @ 10 A  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
12  
10  
8
6
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
30 LFM (0.15 m/s)  
4
2
0
5.5 V  
5.0 V  
4.5 V  
0
2
4
6
8
10  
12  
20  
30  
40  
50  
60  
70  
80  
90  
Load Current [Adc]  
Ambient Temperature [°C]  
Fig. 2.0V.3: Efficiency vs. load current and input voltage for  
Vout = 2.0 V converter mounted vertically with air flowing at a  
rate of 200 LFM (1 m/s) and Ta = 25 C.  
Fig. 2.0V.2: Available load current vs. ambient temperature  
and airflow rates for Vout 2.0 converter mounted  
=
V
horizontally with Vin  
=
5
V, and maximum MOSFET  
temperature 120 C.  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
3.6 V  
3.3 V  
3.0 V  
0
2
4
6
8
10  
12  
Load Current [Adc]  
Fig. 2.0V.4: Efficiency vs. load current and input voltage for  
Vout = 2.0 V converter mounted vertically with air flowing at a  
rate of 200 LFM (1 m/s) and Ta = 25 C.  
MCD10204 Rev. 1.0, 24-Jun-10  
Page 14 of 30  
www.power-one.com  
YS05S10 DC-DC Converter Data Sheet  
3.0-5.5 VDC Input; 0.7525-3.63 VDC Programmable @ 10 A  
Fig. 2.0V.6: Output voltage ripple (20 mV/div.) at full rated  
load current into a resistive load with external capacitance  
100 μF ceramic + 1 μF ceramic and Vin = 5 V for Vout = 2.0 V.  
Time scale: 2 μs/div.  
Fig. 2.0V.5: Turn-on transient for Vout = 2.0 V with the  
application of Enable signal at full rated load current  
(resistive) and 100 μF external capacitance at Vin = 5 V. Top  
trace: Enable signal (2 V/div.); Bottom trace: output voltage  
(500 mV/div.); Time scale: 2 ms/div.  
Fig. 2.0V.8: Output voltage response for Vout = 2.0 V to  
negative load current step change from 10 A to 5 A with slew  
rate of -5 A/μs at Vin = 5 V. Top trace: output voltage  
(100 mV/div.); Bottom trace: load current (5 A/div.). Co =  
100 μF ceramic + 1 μF ceramic. Time scale: 20 μs/div.  
Fig. 2.0V.7: Output voltage response for Vout = 2.0 V to  
positive load current step change from 5 A to 10 A with slew  
rate of 5 A/μs at Vin = 5 V. Top trace: output voltage  
(100 mV/div.); Bottom trace: load current (5 A/div.). Co =  
100 μF ceramic + 1 μF ceramic. Time scale: 20 μs/div.  
MCD10204 Rev. 1.0, 24-Jun-10  
Page 15 of 30  
www.power-one.com  
YS05S10 DC-DC Converter Data Sheet  
3.0-5.5 VDC Input; 0.7525-3.63 VDC Programmable @ 10 A  
MCD10204 Rev. 1.0, 24-Jun-10  
Page 16 of 30  
www.power-one.com  
YS05S10 DC-DC Converter Data Sheet  
3.0-5.5 VDC Input; 0.7525-3.63 VDC Programmable @ 10 A  
12  
10  
8
12  
10  
8
6
6
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
30 LFM (0.15 m/s)  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
30 LFM (0.15 m/s)  
4
4
2
0
2
0
20  
30  
40  
50  
60  
70  
80  
90  
20  
30  
40  
50  
60  
70  
80  
90  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Fig. 1.8V.1: Available load current vs. ambient temperature  
and airflow rates for Vout 1.8 converter mounted  
vertically with Vin = 5 V, and maximum MOSFET temperature  
Fig. 1.8V.2: Available load current vs. ambient temperature  
and airflow rates for Vout 1.8 converter mounted  
=
V
=
V
horizontally with Vin  
=
5
V, and maximum MOSFET  
120 C.  
temperature 120 C.  
1.00  
0.95  
0.90  
0.85  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
5.5 V  
5.0 V  
4.5 V  
3.6 V  
3.3 V  
3.0 V  
0.80  
0.75  
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
Load Current [Adc]  
Load Current [Adc]  
Fig. 1.8V.3: Efficiency vs. load current and input voltage for  
Vout = 1.8 V converter mounted vertically with air flowing at a  
rate of 200 LFM (1 m/s) and Ta = 25 C.  
Fig. 1.8V.4: Efficiency vs. load current and input voltage for  
Vout = 1.8 V converter mounted vertically with air flowing at a  
rate of 200 LFM (1 m/s) and Ta = 25 C.  
MCD10204 Rev. 1.0, 24-Jun-10  
Page 17 of 30  
www.power-one.com  
YS05S10 DC-DC Converter Data Sheet  
3.0-5.5 VDC Input; 0.7525-3.63 VDC Programmable @ 10 A  
Fig. 1.8V.6: Output voltage ripple (20 mV/div.) at full rated  
load current into a resistive load with external capacitance  
100 μF ceramic + 1 μF ceramic and Vin = 5 V for Vout = 1.8 V.  
Time scale: 2 μs/div.  
Fig. 1.8V.5: Turn-on transient for Vout = 1.8 V with the  
application of Enable signal at full rated load current  
(resistive) and 100 μF external capacitance at Vin = 5 V. Top  
trace: Enable signal (2 V/div.); Bottom trace: output voltage  
(500 mV/div.); Time scale: 2 ms/div.  
Fig. 1.8V.8: Output voltage response for Vout = 1.8 V to  
negative load current step change from 10 A to 5 A with slew  
rate of -5 A/μs at Vin = 5 V. Top trace: output voltage  
(100 mV/div.); Bottom trace: load current (5 A/div.). Co =  
100 μF ceramic + 1 μF ceramic. Time scale: 20 μs/div.  
Fig. 1.8V.7: Output voltage response for Vout = 1.8 V to  
positive load current step change from 5 A to 10 A with slew  
rate of 5 A/μs at Vin = 5 V. Top trace: output voltage  
(100 mV/div.); Bottom trace: load current (5 A/div.). Co =  
100 μF ceramic + 1 μF ceramic. Time scale: 20 μs/div.  
MCD10204 Rev. 1.0, 24-Jun-10  
Page 18 of 30  
www.power-one.com  
YS05S10 DC-DC Converter Data Sheet  
3.0-5.5 VDC Input; 0.7525-3.63 VDC Programmable @ 10 A  
MCD10204 Rev. 1.0, 24-Jun-10  
Page 19 of 30  
www.power-one.com  
YS05S10 DC-DC Converter Data Sheet  
3.0-5.5 VDC Input; 0.7525-3.63 VDC Programmable @ 10 A  
12  
10  
8
12  
10  
8
6
6
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
30 LFM (0.15 m/s)  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
30 LFM (0.15 m/s)  
4
4
2
0
2
0
20  
30  
40  
50  
60  
70  
80  
90  
20  
30  
40  
50  
60  
70  
80  
90  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Fig. 1.5V.1: Available load current vs. ambient temperature  
and airflow rates for Vout 1.5 converter mounted  
Fig. 1.5V.2: Available load current vs. ambient temperature  
and airflow rates for Vout 1.5 converter mounted  
=
V
=
V
vertically with Vin = 5 V, and maximum MOSFET temperature  
horizontally with Vin  
=
5
V, and maximum MOSFET  
120 C.  
temperature 120 C.  
0.95  
0.90  
0.85  
0.80  
0.75  
0.95  
0.90  
0.85  
3.6 V  
3.3 V  
3.0 V  
5.5 V  
5.0 V  
4.5 V  
0.80  
0.75  
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
Load Current [Adc]  
Load Current [Adc]  
Fig. 1.5V.4: Efficiency vs. load current and input voltage for  
Vout = 1.5 V converter mounted vertically with air flowing at a  
rate of 200 LFM (1 m/s) and Ta = 25 C.  
Fig. 1.5V.3: Efficiency vs. load current and input voltage for  
Vout = 1.5 V converter mounted vertically with air flowing at a  
rate of 200 LFM (1 m/s) and Ta = 25 C.  
MCD10204 Rev. 1.0, 24-Jun-10  
Page 20 of 30  
www.power-one.com  
YS05S10 DC-DC Converter Data Sheet  
3.0-5.5 VDC Input; 0.7525-3.63 VDC Programmable @ 10 A  
Fig. 1.5V.6: Output voltage ripple (20 mV/div.) at full rated  
load current into a resistive load with external capacitance  
100 μF ceramic + 1 μF ceramic and Vin = 5 V for Vout = 1.5 V.  
Time scale: 2 μs/div.  
Fig. 1.5V.5: Turn-on transient for Vout = 1.5 V with the  
application of Enable signal at full rated load current  
(resistive) and 100 μF external capacitance at Vin = 5 V. Top  
trace: Enable signal (2 V/div.); Bottom trace: output voltage  
(500 mV/div.); Time scale: 2 ms/div.  
Fig. 1.5V.8: Output voltage response for Vout = 1.5 V to  
negative load current step change from 10 A to 5 A with slew  
rate of -5 A/μs at Vin = 5 V. Top trace: output voltage  
(100 mV/div.); Bottom trace: load current (5 A/div.). Co =  
100 μF ceramic + 1 μF ceramic. Time scale: 20 μs/div.  
Fig. 1.5V.7: Output voltage response for Vout = 1.5 V to  
positive load current step change from 5 A to 10 A with slew  
rate of  
5 A/μs at Vin = 5V. Top trace: output voltage  
(100 mV/div.); Bottom trace: load current (5 A/div.). Co =  
100 μF ceramic + 1 μF ceramic. Time scale: 20 μs/div.  
MCD10204 Rev. 1.0, 24-Jun-10  
Page 21 of 30  
www.power-one.com  
YS05S10 DC-DC Converter Data Sheet  
3.0-5.5 VDC Input; 0.7525-3.63 VDC Programmable @ 10 A  
rate of 200 LFM (1 m/s) and Ta = 25 C.  
12  
10  
8
6
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
30 LFM (0.15 m/s)  
4
2
0
20  
30  
40  
50  
60  
70  
80  
90  
Ambient Temperature [°C]  
Fig. 1.2V.1: Available load current vs. ambient temperature  
and airflow rates for Vout 1.2 converter mounted  
=
V
vertically with Vin = 5 V, and maximum MOSFET temperature  
120 C.  
0.95  
0.90  
0.85  
0.80  
5.5 V  
5.0 V  
4.5 V  
0.75  
0.70  
0
2
4
6
8
10  
12  
Load Current [Adc]  
Fig. 1.2V.3: Efficiency vs. load current and input voltage for  
Vout = 1.2 V converter mounted vertically with air flowing at a  
MCD10204 Rev. 1.0, 24-Jun-10  
Page 22 of 30  
www.power-one.com  
YS05S10 DC-DC Converter Data Sheet  
3.0-5.5 VDC Input; 0.7525-3.63 VDC Programmable @ 10 A  
12  
10  
8
6
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
30 LFM (0.15 m/s)  
4
2
0
20  
30  
40  
50  
60  
70  
80  
90  
Ambient Temperature [°C]  
Fig. 1.2V.2: Available load current vs. ambient temperature  
and airflow rates for Vout 1.2 converter mounted  
=
V
Fig. 1.2V.5: Turn-on transient for Vout = 1.2 V with the  
application of Enable signal at full rated load current  
(resistive) and 100 μF external capacitance at Vin = 5 V. Top  
trace: Enable signal (2 V/div.); Bottom trace: output voltage  
(500 mV/div.); Time scale: 2 ms/div.  
horizontally with Vin  
=
5
V, and maximum MOSFET  
temperature 120 C.  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
3.6 V  
3.3 V  
3.0 V  
0
2
4
6
8
10  
12  
Load Current [Adc]  
Fig. 1.2V.4: Efficiency vs. load current and input voltage for  
Vout = 1.2 V converter mounted vertically with air flowing at a  
rate of 200 LFM (1 m/s) and Ta = 25 C.  
Fig. 1.2V.6: Output voltage response for Vout = 1.2 V to  
positive load current step change from 5 A to 10 A with slew  
rate of 5 A/μs at Vin = 5 V. Top trace: output voltage  
(100 mV/div.); Bottom trace: load current (5 A/div.). Co =  
100 μF ceramic + 1 μF ceramic. Time scale: 20 μs/div.  
MCD10204 Rev. 1.0, 24-Jun-10  
Page 23 of 30  
www.power-one.com  
YS05S10 DC-DC Converter Data Sheet  
3.0-5.5 VDC Input; 0.7525-3.63 VDC Programmable @ 10 A  
Fig. 1.2V.8: Output voltage response for Vout = 1.2 V to  
negative load current step change from 10 A to 5 A with slew  
rate of -5 A/μs at Vin = 5 V. Top trace: output voltage  
(100 mV/div.); Bottom trace: load current (5 A/div.). Co =  
100 μF ceramic + 1 μF ceramic. Time scale: 20 μs/div.  
Fig. 1.2V.6: Output voltage ripple (20 mV/div.) at full rated  
load current into a resistive load with external capacitance  
100 μF ceramic + 1 μF ceramic and Vin = 5 V for Vout = 1.2 V.  
Time scale: 2 μs/div.  
MCD10204 Rev. 1.0, 24-Jun-10  
Page 24 of 30  
www.power-one.com  
YS05S10 DC-DC Converter Data Sheet  
3.0-5.5 VDC Input; 0.7525-3.63 VDC Programmable @ 10 A  
12  
10  
8
12  
10  
8
6
6
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
30 LFM (0.15 m/s)  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
30 LFM (0.15 m/s)  
4
4
2
0
2
0
20  
30  
40  
50  
60  
70  
80  
90  
20  
30  
40  
50  
60  
70  
80  
90  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Fig. 1.0V.1: Available load current vs. ambient temperature  
and airflow rates for Vout 1.0 converter mounted  
Fig. 1.0V.2: Available load current vs. ambient temperature  
and airflow rates for Vout 1.0 converter mounted  
=
V
=
V
vertically with Vin = 5 V, and maximum MOSFET temperature  
horizontally with Vin  
=
5
V, and maximum MOSFET  
120 C.  
temperature 120 C.  
0.95  
0.90  
0.85  
0.80  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
5.5 V  
5.0 V  
4.5 V  
3.6 V  
3.3 V  
3.0 V  
0.75  
0.70  
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
Load Current [Adc]  
Load Current [Adc]  
Fig. 1.0V.3: Efficiency vs. load current and input voltage for  
Vout = 1.0 V converter mounted vertically with air flowing at a  
rate of 200 LFM (1 m/s) and Ta = 25 C.  
Fig. 1.0V.4: Efficiency vs. load current and input voltage for  
Vout = 1.0 V converter mounted vertically with air flowing at a  
rate of 200 LFM (1 m/s) and Ta = 25 C.  
MCD10204 Rev. 1.0, 24-Jun-10  
Page 25 of 30  
www.power-one.com  
YS05S10 DC-DC Converter Data Sheet  
3.0-5.5 VDC Input; 0.7525-3.63 VDC Programmable @ 10 A  
Fig. 1.0V.6: Output voltage ripple (20 mV/div.) at full rated  
load current into a resistive load with external capacitance  
100 μF ceramic + 1 μF ceramic and Vin = 5 V for Vout = 1.0 V.  
Time scale: 2 μs/div.  
Fig. 1.0V.5: Turn-on transient for Vout = 1.0 V with the  
application of Enable signal at full rated load current  
(resistive) and 100 μF external capacitance at Vin = 5 V. Top  
trace: Enable signal (2 V/div.); Bottom trace: output voltage  
(500 mV/div.); Time scale: 2 ms/div.  
Fig. 1.0V.8: Output voltage response for Vout = 1.0 V to  
negative load current step change from 10 A to 5 A with slew  
rate of -5 A/μs at Vin = 5 V. Top trace: output voltage  
(100 mV/div.); Bottom trace: load current (5 A/div.). Co =  
100 μF ceramic + 1 μF ceramic. Time scale: 20 μs/div.  
Fig. 1.0V.7: Output voltage response Vout = 1.0 V to positive  
load current step change from 5 A to 10 A with slew rate of  
5 A/μs at Vin = 5 V. Top trace: output voltage (100 mV/div.);  
Bottom trace: load current (5 A/div.). Co = 100 μF ceramic +  
1 μF ceramic. Time scale: 20 μs/div.  
MCD10204 Rev. 1.0, 24-Jun-10  
Page 26 of 30  
www.power-one.com  
YS05S10 DC-DC Converter Data Sheet  
3.0-5.5 VDC Input; 0.7525-3.63 VDC Programmable @ 10 A  
12  
10  
8
12  
10  
8
6
6
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
30 LFM (0.15 m/s)  
500 LFM (2.5 m/s)  
400 LFM (2.0 m/s)  
300 LFM (1.5 m/s)  
200 LFM (1.0 m/s)  
100 LFM (0.5 m/s)  
30 LFM (0.15 m/s)  
4
4
2
0
2
0
20  
30  
40  
50  
60  
70  
80  
90  
20  
30  
40  
50  
60  
70  
80  
90  
Ambient Temperature [°C]  
Ambient Temperature [°C]  
Fig. 0.7525V.1: Available load current vs. ambient  
temperature and airflow rates for Vout = 0.7525 V converter  
mounted vertically with Vin = 5 V, and maximum MOSFET  
temperature 120 C.  
Fig. 0.7525V.2: Available load current vs. ambient  
temperature and airflow rates for Vout = 0.7525 V converter  
mounted horizontally with Vin = 5 V, and maximum MOSFET  
temperature 120 C.  
0.90  
0.85  
0.90  
0.85  
0.80  
0.80  
3.6 V  
5.5 V  
0.75  
0.70  
3.3 V  
3.0 V  
0.75  
0.70  
5.0 V  
4.5 V  
0
2
4
6
8
10  
12  
0
2
4
6
8
10  
12  
Load Current [Adc]  
Load Current [Adc]  
Fig. 0.7525V.4: Efficiency vs. load current and input voltage  
for Vout = 0.7525 V converter mounted vertically with air  
flowing at a rate of 200 LFM (1 m/s) and Ta = 25 C.  
Fig. 0.7525V.3: Efficiency vs. load current and input voltage  
for Vout = 0.7525 V converter mounted vertically with air  
flowing at a rate of 200 LFM (1 m/s) and Ta = 25 C.  
MCD10204 Rev. 1.0, 24-Jun-10  
Page 27 of 30  
www.power-one.com  
YS05S10 DC-DC Converter Data Sheet  
3.0-5.5 VDC Input; 0.7525-3.63 VDC Programmable @ 10 A  
100 μF ceramic + 1 μF ceramic. Time scale: 20 μs/div.  
Fig. 0.7525V.5: Turn-on transient for Vout = 0.7525 V with the  
application of Enable signal at full rated load current  
(resistive) and 100 μF external capacitance at Vin = 5 V. Top  
trace: Enable signal (2 V/div.); Bottom trace: output voltage  
(200 mV/div.); Time scale: 2 ms/div.  
Fig. 0.7525V.7: Output voltage response for Vout = 0.7525 V  
to positive load current step change from 5 A to 10 A with  
slew rate of 5 A/μs at Vin = 5 V. Top trace: output voltage  
(100 mV/div.); Bottom trace: load current (5 A/div.). Co =  
MCD10204 Rev. 1.0, 24-Jun-10  
Page 28 of 30  
www.power-one.com  
YS05S10 DC-DC Converter Data Sheet  
3.0-5.5 VDC Input; 0.7525-3.63 VDC Programmable @ 10 A  
Fig. 0.7525V.8: Output voltage response for Vout  
=
0.7525 V to negative load current step change from 10 A to  
8 A with slew rate of -5 A/μs at Vin = 5 V. Top trace: output  
voltage (100 mV/div.); Bottom trace: load current (5 A/div.).  
Co = 100 μF ceramic + 1 μF ceramic. Time scale: 20 μs/div.  
Fig. 0.7525V.6: Output voltage ripple (20 mV/div.) at full rated  
load current into a resistive load with external capacitance  
100 μF ceramic + 1 μF ceramic and Vin = 5 V for Vout =  
0.7525 V. Time scale: 2 μs/div.  
MCD10204 Rev. 1.0, 24-Jun-10  
Page 29 of 30  
www.power-one.com  
YS05S10 DC-DC Converter Data Sheet  
3.0-5.5 VDC Input; 0.7525-3.63 VDC Programmable @ 10 A  
Physical Information  
YS05S Pinout (Surface-Mount)  
Pad/Pin Connections  
Pad/Pin #  
Function  
ON/OFF  
SENSE  
TRIM  
1
2
3
4
5
6
Vout  
GND  
Vin  
2
3
4
5
1(*)  
6
YS05S Platform Notes  
TOP VIEW  
(*) PIN # 1 ROTATED 90°  
All dimensions are in inches [mm]  
Connector Material: Copper  
Connector Finish: Gold over Nickel  
Converter Weight: 0.22 oz [6.12 g]  
Converter Height: 0.327” Max., 0.301” Min.  
Recommended Surface-Mount Pads:  
Min. 0.080” X 0.112” [2.03 x 2.84]  
SIDE VIEW  
Converter Part Numbering Scheme  
Product  
Series  
Input  
Voltage  
Mounting  
Scheme  
Rated Load  
Current  
Enable Logic  
0
Environmental  
YS  
05  
S
10  
No Suffix RoHS  
lead-solder-exempt  
compliant  
0 Standard  
(Positive Logic)  
10 A  
S Surface-  
Y-Series  
3.0 – 5.5 V  
(0.7525 V to 3.63 V)  
Mount  
D Opposite of  
Standard  
(Negative Logic)  
G RoHS  
compliant for all six  
substances  
The example above describes P/N YS05S10-0: 3.0 – 5.5 V input, surface mount, 10 A at 0.7525 V to 3.63 V output, standard  
enable logic, and Eutectic Tin/Lead solder. Please consult factory for the complete list of available options.  
NUCLEAR AND MEDICAL APPLICATIONS - Power-One products are not designed, intended for use in, or authorized for use as critical  
components in life support systems, equipment used in hazardous environments, or nuclear control systems without the express written  
consent of the respective divisional president of Power-One, Inc.  
TECHNICAL REVISIONS - The appearance of products, including safety agency certifications pictured on labels, may change depending on  
the date manufactured. Specifications are subject to change without notice.  
MCD10204 Rev. 1.0, 24-Jun-10  
Page 30 of 30  
www.power-one.com  

相关型号:

YS05S16-D

DC-DC Regulated Power Supply Module, 1 Output, 58W, Hybrid,
BEL

YS06215000J0G

Barrier Strip Terminal Block,
AMPHENOL

YS10010000J0G

Barrier Strip Terminal Block
AMPHENOL

YS10013000J0G

Barrier Strip Terminal Block
AMPHENOL

YS10015000J0G

Barrier Strip Terminal Block,
AMPHENOL

YS10016000J0G

Barrier Strip Terminal Block
AMPHENOL

YS10019000J0G

Barrier Strip Terminal Block
AMPHENOL

YS10212000J0G

Barrier Strip Terminal Block
AMPHENOL

YS10219000J0G

Barrier Strip Terminal Block
AMPHENOL

YS1021C000J0G

Barrier Strip Terminal Block
AMPHENOL

YS12010000J0G

Barrier Strip Terminal Block
AMPHENOL

YS12018000J0G

Barrier Strip Terminal Block
AMPHENOL