FCD4B14CCB [ATMEL]

Thermal Fingerprint Sensor with 0.4 mm x 14 mm Sensing Area and Digital Output; 热指纹传感器0.4毫米× 14毫米感光面积和数字输出
FCD4B14CCB
型号: FCD4B14CCB
厂家: ATMEL    ATMEL
描述:

Thermal Fingerprint Sensor with 0.4 mm x 14 mm Sensing Area and Digital Output
热指纹传感器0.4毫米× 14毫米感光面积和数字输出

传感器
文件: 总20页 (文件大小:255K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Features  
Sensitive Layer Over a 0.8 µm CMOS Array  
Image Zone: 0.4 x 14 mm = 0.02" x 0.55"  
Image Array: 8 x 280 = 2240 pixels  
Pixel Pitch: 50 µm x 50 µm = 500 dpi  
Pixel Clock: up to 2 MHz Enabling up to 1780 Frames per Second  
Die Size: 1.7 x 17.3 mm  
Operating Voltage: 3V to 5.5V  
Naturally Protected Against ESD: > 16 kV Air Discharge  
Power Consumption: 20 mW at 3.3V, 1 MHz, 25°C  
Operating Temperature Range: 0°C to +70°C: C suffix  
Resistant to Abrasion: >1 Million Finger Sweeps  
Chip-On-Board (COB) package or 20-lead Ceramic DIP available for development, with  
Specific Protective Layer  
Thermal  
Fingerprint  
Sensor with  
0.4 mm x 14 mm  
(0.02" x 0.55")  
Sensing Area  
and  
Applications  
PDA (Access Control, Data Protection)  
Cellular Phones, SmartPhone (Access e-business)  
Notebook, PC-add on (Access Control, e-business)  
PIN Code Replacement  
Automated Teller Machine, POS  
Building Access  
Electronic Keys (Cars, Home,...)  
Portable Fingerprint Imaging for Law Enforcement  
TV Access  
Digital Output  
(On-chip ADC)  
Figure 1. Fingerchip Packages  
Step for easy  
integration  
Chip-on-Board Package  
(COB)  
FCD4B14  
Sensing area  
FingerChip™  
Wire protection  
(not drawn)  
20-pin, 0.3" Dual-Inline  
Ceramic Package  
(DIP20)  
Rev. 1962C01/02  
Table 1. Pin Description For DIP Ceramic Package  
Pin Number  
Name  
GND  
AVE  
TPP  
VCC  
RST  
OE  
Type  
1
2
GND  
Analog output  
Power  
3
4
Power  
5
Digital input  
Digital input  
Digital output  
Digital output  
Digital output  
Digital output  
GND  
6
7
De0  
De1  
De2  
De3  
FPL  
Do3  
Do2  
Do1  
Do0  
GND  
ACKN  
PCLK  
TPE  
AVO  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
Digital output  
Digital output  
Digital output  
Digital output  
GND  
Digital output  
Digital input  
Digital input  
Analog output  
Die Attach is connected to pin 1 and 16, and must be grounded. FPL pin must be  
grounded.  
1
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
AVO  
TPE  
PCLK  
ACKN  
GND  
Do0  
GND  
AVE  
2
3
4
TPP  
VCC  
5
6
7
8
RST  
OE  
Do1  
De0  
De1  
Do2  
9
Do3  
De2  
De3  
10  
FPL  
2
FCD4B14  
1962C01/02  
FCD4B14  
Table 2. Pin Description For Chip-On-Board Package  
Pin Number  
Name  
GND  
AVE  
AVO  
TPP  
TPE  
VCC  
GND  
RST  
PCLK  
OE  
Type  
1
2
GND  
Analog output  
Analog output  
Power  
3
4
5
Digital input  
Power  
6
7
GND  
8
Digital input  
Digital input  
Digital input  
Digital output  
Digital output  
Digital output  
Digital output  
Digital output  
Digital output  
Digital output  
Digital output  
Digital output  
GND  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
ACKN  
De0  
Do0  
De1  
Do1  
De2  
Do2  
De3  
Do3  
FPL  
GND  
GND  
Die Attach is connected to pin 1, 7 and 21, and must be grounded. FPL pin must be  
grounded.  
GND  
AVE  
AVO  
TPP  
TPE  
VCC  
GND  
RST  
PCLK  
OE  
ACKN  
De0  
Do0  
De1  
Do1  
De2  
Do2  
De3  
Do3  
FPL  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
GND  
21  
3
1962C01/02  
Description  
FCD4B14 is part of the FingerChip Atmel monolithic fingerprint sensor family for which  
no optics, no prism and no light source are required.  
FCD4B14 is a single chip, high performance, low cost sensor based on temperature  
physical effects for fingerprint sensing.  
FCD4B14 has a linear shape, allowing for the capture of a fingerprint image by sweep-  
ing the finger across the sensing area. After capturing several images, Atmel proprietary  
software can reconstruct a full 8-bit fingerprint image, if needed.  
FCD4B14 has a small surface combined with CMOS technology, and a Chip-On-Board  
or ceramic dual-in-line package assembly. These facts contribute to a low-cost device.  
FCD4B14 delivers a programmable number of images per second, while an integrated  
Analog to Digital Converter delivers a digital signal adapted to interfaces such as an  
EPP parallel port, USB microcontroller or directly to micro-processors. Thus, no frame  
grabber or glue interface is necessary to send the frames. These facts make FCD4B14  
an easy device to include in any system for identification or verification applications.  
Table 3. Absolute Maximum Ratings(1)  
Parameter  
Symbol  
VCC  
Comments  
Value  
Unit  
V
Positive supply voltage  
Temperature stabilization power  
Front plane  
GND to 6.5  
GND to 6.5  
GND to VCC  
GND to VCC  
-50 to +85  
TPP  
V
FPL  
V
Digital input voltage  
RST PCLK  
Tstg  
V
Storage temperature  
°C  
Do not solder  
DIP: socket mandatory  
Lead temperature (soldering, 10 seconds.)  
Tleads  
Forbidden  
°C  
Note:  
1. Absolute maximum ratings are limiting values, to be applied individually, while other parameters are within specified operat-  
ing conditions. Long exposure to maximum ratings may affect device reliability.  
Table 4. Recommended Conditions Of Use  
Parameter  
Symbol  
VCC  
Comments  
Min  
Typ  
5V  
Max  
Unit  
V
Positive supply voltage  
Front plane  
3V  
5.5V  
FPL  
Must be grounded  
GND  
V
Digital input voltage  
Digital output voltage  
Digital load  
CMOS levels  
CMOS levels  
V
V
CL  
50  
pF  
CA  
RA  
pF  
Analog load  
Not connected  
kΩ  
Operating temperature range  
Maximum current on TPP  
Tamb  
Civil: Cgrade  
0 to +70  
°C  
ITPP  
0
100  
mA  
4
FCD4B14  
1962C01/02  
FCD4B14  
Table 5. Resistance  
Parameter  
Min Value  
Standard Method  
ESD  
On pins. HBM (Human Body Model) CMOS I/O  
2 kV  
MIL-STD-883- method 3015.7  
NF EN 6100-4-2  
On die surface (Zapgun)  
Air discharge  
16 kV  
MECHANICAL ABRASION  
Number of cycles without lubricant multiply by a  
factor of 20 for correlation with a real finger  
200 000  
4 hours  
MIL E 12397B  
CHEMICAL RESISTANCE  
Cleaning agent, acid, grease, alcohol, diluted  
acetone  
Internal method  
Table 6. Specifications  
Explanation Of Test Levels  
I
100% production tested at +25°C  
II  
100% production tested at +25°C, and sample tested at specified temperatures (AC testing done on sample)  
Sample tested only  
III  
IV  
V
VI  
D
Parameter is guaranteed by design and/or characterization testing  
Parameter is a typical value only  
100% production tested at temperature extremes  
100% probe tested on wafer at Tamb = +25°C  
Parameter  
Symbol  
Test Level  
Min  
Typ  
50  
Max  
Unit  
micron  
pixel  
Resolution  
IV  
IV  
I
Size  
8x280  
Yield: number of bad pixels  
Equivalent resistance on TPP pin  
15  
47  
bad pixels  
I
23  
30  
5
1962C01/02  
Table 7. 5V. Power supply = +5V; Tamb = 25°C; FPCLK = 1 MHz; Duty cycle = 50%;  
load 120 pF on digital outputs, analog outputs disconnected otherwise specified.  
C
Parameter  
Symbol  
Test Level  
Min  
Typ  
Max  
Unit  
Power Requirements  
Positive supply voltage  
VCC  
4.5  
5
5.5  
V
Digital positive supply current on VCC pin  
I
7
5
10  
6
mA  
mA  
Cload = 0  
ICC  
IV  
Power dissipation on VCC  
I
35  
25  
50  
30  
mW  
mW  
Cload = 0  
PCC  
IV  
Current on VCC in NAP mode  
Analog Output  
ICCNAP  
I
I
10  
µA  
Voltage range  
VAVx  
0
2.9  
V
Digital Inputs  
Logic compatibility  
Logic 0voltage  
Logic 1voltage  
Logic 0current  
Logic 1current  
CMOS  
VIL  
VIH  
IIL  
I
I
I
I
0
3.6  
-10  
0
1.2  
VCC  
0
V
V
µA  
µA  
IIH  
10  
Digital Outputs  
Logic compatibility  
Logic 0voltage(1)  
Logic 1voltage(1)  
CMOS  
VOL  
VOH  
I
I
1.5  
V
V
3.5  
Note:  
1. With IOL = 1 mA and IOH = -1 mA  
6
FCD4B14  
1962C01/02  
FCD4B14  
.
Table 8. 3.3V. Power supply = +3.3V; Tamb = 25°C; FPCLK = 1 MHz; Duty cycle = 50%;  
C
load 120 pF on digital outputs, analog outputs disconnected otherwise specified  
Parameter  
Symbol  
Test Level  
Min  
Typ  
Max  
Unit  
Power Requirements  
Positive supply voltage  
VCC  
ICC  
3.0  
3.3  
3.6  
V
Digital positive supply current on VCC pin  
Cload= 0  
I
6
5
10  
6
mA  
mA  
IV  
Power dissipation on VCC  
Cload = 0  
I
20  
17  
33  
20  
mW  
mW  
PCC  
IV  
Current on VCC in NAP mode  
Analog Output  
ICCNAP  
I
I
10  
µA  
Voltage range  
VAVx  
0
2.9  
V
Digital Inputs  
Logic compatibility  
Logic 0voltage  
Logic 1voltage  
Logic 0current  
Logic 1current  
CMOS  
VIL  
VIH  
IIL  
I
I
I
I
0
0.8  
VCC  
0
V
V
2.3  
-10  
0
µA  
µA  
IIH  
10  
Digital Outputs  
Logic compatibility  
Logic 0voltage(1)  
Logic 1voltage(1)  
CMOS  
VOL  
VOH  
I
I
0.6  
V
V
2.4  
Note:  
1. With IOL = 1 mA and IOH = -1 mA  
7
1962C01/02  
.
Table 9. Switching Performances. Tamb = 25°C; FPCLK = 1 MHz; Duty cycle = 50%;  
C
load 120 pF on digital and analog outputs otherwise specified  
Parameter  
Symbol  
fPCLK  
Test level  
Min  
0.5  
Typ  
Max  
Unit  
MHz  
ns  
Clock frequency  
I
I
1
2
Clock pulse width (high)  
Clock pulse width (low)  
Clock setup time (high)/reset falling edge  
No data change  
tHCLK  
250  
250  
tLCLK  
I
ns  
tSetup  
I
0
ns  
tNOOE  
IV  
100  
ns  
Table 10. 5.0V. All power supplies = +5 V  
Parameter  
Symbol  
tPLHACKN  
tPHLACKN  
tPDATA  
Test level  
Min  
Typ  
Max  
85  
Unit  
ns  
Output delay from PCLK to ACKN rising edge  
Output delay from PCLK to ACKN falling edge  
Output delay from PCLK to Data output Dxi  
Output delay from PCLK to Analog output Avx  
Output delay from OE to data high-Z  
Output delay from OE to data output  
I
I
80  
ns  
I
70  
ns  
tPAVIDEO  
tDATAZ  
I
170  
ns  
IV  
IV  
25  
29  
ns  
tZDATA  
ns  
Table 11. 3.3V. All power supplies = +3.3 V  
Parameter  
Symbol  
tPLHACKN  
tPHLACKN  
tPDATA  
Test level  
Min  
Typ  
Max  
110  
95  
Unit  
ns  
Output delay from PCLK to ACKN rising edge  
Output delay from PCLK to ACKN falling edge  
Output delay from PCLK to Data output Dxi  
Output delay from PCLK to Analog output AVx  
Output delay from OE to data high-Z  
Output delay from OE to data output  
I
I
ns  
I
85  
ns  
tPAVIDEO  
tDATAZ  
I
190  
ns  
IV  
IV  
34  
47  
ns  
tZDATA  
ns  
8
FCD4B14  
1962C01/02  
FCD4B14  
Figure 2. Reset  
t
HRST  
Reset RST  
Clock PCLK  
t
SETUP  
Figure 3. Read One Byte/Two Pixels  
F
PCLK  
t
t
HCLK  
LCLK  
Clock  
PCLK  
Acknowledge  
ACKN  
t
t
PLHACK  
PHLACKN  
Data output  
Data # N-1  
Data # N  
Data # N+1  
t
PDATA  
Do0-3, De0-3  
Data #N+1  
Data #N+2  
Data #N  
Video analog output  
AVO, AVE  
t
PAVIDEO  
9
1962C01/02  
Figure 4. Output Enable  
Output Enable  
OE  
t
t
DATAZ  
ZDATA  
Hi-Z  
Hi-Z  
Data output  
Data output  
Do0-3, De0-3  
Figure 5. No data change  
tNOOE  
PCLK  
OE  
Note:  
OE must not change during TNOOE after the PCLK falls. This is to ensure that the output drivers of the data is not driving cur-  
rent, to reduce the noise level on the power supply.  
10  
FCD4B14  
1962C01/02  
FCD4B14  
Figure 6. FCD4B14 Block Diagram  
clock  
reset  
ACKN  
PCLK  
RST  
line sel  
amp  
column selection  
even  
odd  
4
4
4-bit  
ADC  
De0-3  
Do0-3  
1 dummy column  
1
8
8
8 lines of 280 columns of pixels  
latches  
2240  
8
4-bit  
ADC  
chip  
temperature  
sensor  
chip temperature  
stabilization  
output  
enable  
analog  
output  
TPP  
TPE  
AVE AVO  
OE  
Functional Description  
The circuit is divided into two main sections: sensor and data conversion. One particular  
column among 280+1 is selected in the sensor array (1), then each pixel of the selected  
column sends its electrical information to amplifiers (2) (one per line), then two lines at a  
time are selected (odd and even) so that two particular pixels send their information to  
the input of two 4-bit Analog-to-Digital Converters (3), so 2 pixels can be read for each  
clock pulse (4).  
Figure 7. Functional Description  
1
2
3
4
column selection  
line sel  
even  
odd  
4
4
4-bit  
ADC  
De0-3  
Do0-3  
8
8 lines of 280 columns of pixels  
1 dummy column  
amp  
latches  
8
4-bit  
ADC  
chip  
temperature  
sensor  
Sensor  
Each pixel is a sensor in itself. The sensor detects a temperature differential between  
the beginning of acquisition and the reading of information: this is the integration time.  
The integration time begins with a reset of the pixel to a predefined initial state. Note that  
the integration time reset has nothing to do with the reset of the digital section.  
Then, at a rate depending on the sensitivity of the pyroelectric layer, on the temperature  
variation between the reset and the end of the integration time, and on the duration of  
the integration time, electrical charges are generated at the pixel level.  
11  
1962C01/02  
Analog-to-Digital  
Converter/  
An Analog-to-Digital Converter (ADC) is used to convert the analog signal coming from  
the pixel into digital data that can be used by a processor.  
Reconstructing an 8-bit  
Fingerprint Image  
As the data rate for parallel port and USB is in the range of 1 MB per second and at least  
a rate of 500 frames per second is needed to reconstruct the image with a fair sweeping  
speed for the finger, two 4-bit ADCs have been used to output 2 pixels at a time on 1  
byte.  
Start Sequence  
A reset is not necessary between each frame acquisition!  
Start sequence must consist of:  
1. Set the RST pin to high  
2. Set the RST pin to low  
3. Send 4 clock pulses (due to pipe-line)  
4. Send clock pulses to skip the first frame  
Note that the first frame never contains relevant information because the integration  
time is not correct.  
Figure 8. Start Sequence  
Reset RST  
4+1124 clock pulses to skip the first frame  
Clock PCLK  
1
2
3
4
1
1124  
1
Reading the Frames  
A frame consists of 280 true columns + 1 dummy column of 8 pixels. As two pixels are  
output at a time, a system must send 281x4 = 1124 clock pulses to read one frame.  
Reset must be low when reading the frames.  
Read One Byte/Output  
Enable  
Clock is taken into account on the falling edge and data are output on the rising edge.  
For each clock pulse, after the start sequence, a new byte is output on the Do0-3, De0-  
3 pins. This byte contains 2 pixels: 4-bit on Do0-3 (odd pixels), 4-bit on De0-3 (even  
pixels).  
To output the data, the output enable (OE) pin must be low. When OE is high, the Do0-  
3 and De0-3 pins are in high impedance state. This enables an easy connection to a  
microprocessor bus without additional circuitry-it will enable data output by using a chip  
select signal. Note that the FCD4B14 is always sending data: there is no data exchange  
to perform using read/write mode.  
Power Supply Noise  
Video Output  
IMPORTANT: When a falling edge is applied on OE (i.e when the Output Enable  
becomes active), then some current is drained from the power supply to drive the 8 out-  
puts, producing some noise. It is important to avoid such noise just after the falling edge  
of the clock PCLK, when the pixels information is evaluated: the timing diagram figure 5  
and time TNOOE defines the interval time where the power supply must be as quiet as  
possible.  
An analog signal is also available on pins AVE and AVO. Note that video output is avail-  
able one clock pulse before the corresponding digital output (one clock pipe-line delay  
for the analog to digital conversion).  
12  
FCD4B14  
1962C01/02  
FCD4B14  
Pixel Order  
After a reset, pixel number one is located on the upper left corner, looking at the chip  
with bond pads to the right. For each column of 8 pixels, pixels 1-3-5-7 are output on  
odd data Do0-3 pins, pixels 2-4-6-8 are output on even data De0-3 pins. Most significant  
bit is bit #3, least significant is bit #0.  
Figure 9. Pixel Order  
Pixel #2233 (280,1)  
Pixel #1 (1,1)  
Bond pads  
Pixel #8 (1,8)  
Pixel #2240 (280,8)  
Synchronization: The  
Dummy Column  
A dummy column has been added to the sensor to act as a specific pattern to detect the  
first pixel. So, 280 true columns + 1 dummy column are read for each frame.  
The 4 bytes of the dummy column contain a fixed pattern on the two first bytes, and tem-  
perature information on the last two bytes.  
Dummy Byte  
Odd  
111X  
111X  
rrrr  
Even  
0000  
0000  
nnnn  
pppp  
Dummy Byte 1 DB1:  
Dummy Byte 2 DB2:  
Dummy Byte 3 DB3:  
Dummy Byte 4 DB4:  
tttt  
Note:  
x represents 0 or 1  
The sequence 111X0000 111X0000 appears on every frame (exactly every 1124 clock  
pulses), so it is an easy pattern to recognize for synchronization purposes.  
13  
1962C01/02  
Thermometer  
The dummy bytes DB3 and DB4 contains some internal and temperature information.  
The even nibble nnnn in DB3 can be used to measure an increase (or decrease) of the  
chip temperature, using the difference between two measures of the same physical  
device. The following table gives values in Kelvin.  
nnnn  
nnnn  
Temperature differential with code 8 in  
Kelvin  
Decimal  
Binary  
15  
14  
13  
12  
11  
10  
9
1111  
1110  
1101  
1100  
1011  
1010  
1001  
1000  
0111  
0110  
0101  
0100  
0011  
0010  
0001  
0000  
11.2  
8.4  
7
5.6  
4.2  
2.8  
1.4  
8
0
-1.4  
-2.8  
-4.2  
-5.6  
-7  
7
6
5
4
3
2
-8.4  
-11.2  
< -16.8  
1
0
For code 0 and 15, the absolute value is a minimum (saturation).  
When the image contrast becomes low because of a low temperature difference  
between the finger and the sensor, it is recommended to use the temperature stabiliza-  
tion circuitry to increase the temperature of two codes (i.e. from 8 to 10), to get at least  
an increase >1.4 Kelvin of the sensor. This enables to recover enough contrast to get a  
proper fingeprint for recognition purpose.  
14  
FCD4B14  
1962C01/02  
FCD4B14  
Integration Time and  
Clock Jitter  
The FCD4B14 is not very sensitive to clock jitter (clock variation). The most important  
requirement is a regular integration time that ensures the frame reading rate is also as  
regular as possible, in order to get consistent fingerprint slices.  
If the integration time is not regular, contrast will vary from one frame to another.  
Note that it is possible to introduce some waiting time between each set of 1124 clock  
pulses, but the overall time of one frame read must be regular. This waiting time is gen-  
erally the time needed by the processor to perform some calculation over the frame (to  
detect the finger, for instance).  
Figure 10. Read One Frame  
Reset RST is low  
Column 1  
3
Column 2  
6
Column 280  
Dummy Column 281  
1
2
4
5
1119 1120 1121 1122 1123 1124  
Clock PCLK  
Pixels 1 & 2 3 & 4 5 & 6 7 & 8 1 & 2 3 & 4  
7 & 8  
DB1  
DB2  
DB3 DB4  
Figure 11. Regular Integration Time  
REGULAR INTEGRATION TIME  
Frame n  
Frame n+1  
Frame n+2  
Frame n+3  
Clock PCLK  
1124 pulses  
1124 pulses  
1124 pulses  
1124 pulses  
15  
1962C01/02  
Power Management  
Nap Mode  
Several strategies are possible to reduce power consumption when not in use.  
The simplest and most efficient is to cut the power supply, using external means.  
A nap mode is also implemented in the FCD4B14. To activate this nap mode, user must:  
1. Set the reset RST pin to high. Doing this, all analog sections of the device are  
internally powered down.  
2. Set the clock PCLK pin to high (or low), thus stopping the entire digital section.  
3. Set the TPE pin to low or disconnect TPP to stop the temperature stabilization  
feature.  
4. Set Output Enable OE pin to high, so that output are forced in HiZ.  
Figure 12. Nap Mode  
Nap mode  
Reset RST  
Nap  
Clock PCLK  
In Nap Mode, all internal transistors are in shut mode. Only leakage current is drained in  
power supply, generally less than the tested value.  
Static Current  
Consumption  
When the clock is stopped (set to 1) and the reset is low (set to 0), the analog sections  
of the device drain some current and the digital section does not consume current if the  
outputs are connected to a standard CMOS input (= no current is drained in the I/O). In  
this case the typical current value is 5 mA. This current does not depend on the voltage  
(i.e. it is almost the same from 3V to 5.5V).  
Dynamic Current  
Consumption  
When the clock is running, the digital sections are consuming current, and particularly  
the outputs if they are heavily loaded. In any case, it should be less than the testing  
machine (120 pF load on each I/O), 50 pF maximum is recommended.  
Connected to a USB interface chip (see application note 26 related to the FCDEMO4  
kit) at 5V, and running at about 1 MHz, the FCD4B14 consumes less than 7 mA on VCC  
pin.  
Temperature  
Stabilization Power  
When the TPE pin is set to 1, current is drained via the TPP pin. The current is limited by  
the internal equivalent resistance given in table 4 and a possible external resistor.  
Consumption (TPP pin)  
Most of the time, TPE is set to 0 and no current is drained in TPP. When the image con-  
trast becomes low because of a low temperature differential (less than one Kelvin), then  
it is recommended to set TPE to 1 during a short time so that the dissipated power in the  
chip elevates the temperature, enabling to recover contrast. The necessary time to  
increase the chip temperature of one Kelvin depends on the dissipated power, the ther-  
mal capacity of the silicon sensor and the thermal resistance between the sensor and  
the surroundings.  
As a rule of thumb, dissipating 300 mW in the chip elevates the temperature of 1 Kelvin  
in one second. With the 30 typical value, 300 mW is 3V applied on TPP.  
16  
FCD4B14  
1962C01/02  
FCD4B14  
Packaging:  
Mechanical Data  
Figure 13. COB: Top View (all dimensions in mm)  
0.2 A  
+0.07  
-0.01  
17.51  
at 0.4 height from B ref.  
0.89 0.3  
5.45 0.30  
14  
0.35  
2.32 0.5  
2.95 0.50  
5.90 max  
9.45 0.5*  
+ 0.07  
- 0.01  
1.66  
A
at 0.4 height from B ref.  
0.83 0.50  
5.20 max  
0.2 min  
26.6 0.25*  
*: including burrs  
Dam and Fill  
B
1.5 max  
0.790  
max  
0.2 max  
Figure 14. COB: Bottom View (all dimensions in mm)  
1 0.075  
3.5 0.075  
1.15 0.15  
0.5 0.075  
2.15 0.15  
1.5 0.075  
1
0.15  
6.30 0.1  
+0.08  
(x3)  
R0.75  
2
0.075  
0.15  
-0.12  
2
+0.33  
-0.25  
23.85 0.1  
0.75  
+0.15  
(x3)  
1.5  
-0.23  
17  
1962C01/02  
Figure 15. DIL Package (all dimensions in mm)  
0.08  
60°  
0.81 0.05  
0.46 0.05  
2.54 0.13  
22.86 0.13  
3.15 0.32  
25.4 0.25  
9.36 0.15 6.34 0.15  
(2.45)  
0.1 min  
NO.11  
NO.20  
NO.10  
NO.1  
(0.20)  
0.75 max  
0.08  
5.4 max  
18  
FCD4B14  
1962C01/02  
FCD4B14  
Ordering Information  
Package Device  
C
C
FC  
D4B14  
Atmel prefix  
Quality level  
FingerChip family  
: s tandard  
Device type  
Package  
C: DIP Ceramic 20 pins  
CB: Chip On Board (COB)  
Temperature range  
Com: 0° to +70°C  
19  
1962C01/02  
Atmel Headquarters  
Atmel Operations  
Corporate Headquarters  
2325 Orchard Parkway  
San Jose, CA 95131  
TEL 1(408) 441-0311  
FAX 1(408) 487-2600  
Memory  
RF/Automotive  
Atmel Corporate  
Atmel Heilbronn  
2325 Orchard Parkway  
San Jose, CA 95131  
TEL 1(408) 436-4270  
FAX 1(408) 436-4314  
Theresienstrasse 2  
Postfach 3535  
74025 Heilbronn, Germany  
TEL (49) 71-31-67-0  
FAX (49) 71-31-67-2340  
Europe  
Atmel SarL  
Microcontrollers  
Route des Arsenaux 41  
Casa Postale 80  
CH-1705 Fribourg  
Switzerland  
TEL (41) 26-426-5555  
FAX (41) 26-426-5500  
Atmel Corporate  
Atmel Colorado Springs  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906  
TEL 1(719) 576-3300  
2325 Orchard Parkway  
San Jose, CA 95131  
TEL 1(408) 436-4270  
FAX 1(408) 436-4314  
FAX 1(719) 540-1759  
Atmel Nantes  
La Chantrerie  
BP 70602  
44306 Nantes Cedex 3, France  
TEL (33) 2-40-18-18-18  
FAX (33) 2-40-18-19-60  
Biometrics/Imaging/Hi-Rel MPU/  
High Speed Converters/RF Datacom  
Atmel Grenoble  
Avenue de Rochepleine  
BP 123  
38521 Saint-Egreve Cedex, France  
TEL (33) 4-76-58-30-00  
FAX (33) 4-76-58-34-80  
Asia  
Atmel Asia, Ltd.  
Room 1219  
Chinachem Golden Plaza  
77 Mody Road Tsimhatsui  
East Kowloon  
Hong Kong  
TEL (852) 2721-9778  
ASIC/ASSP/Smart Cards  
Atmel Rousset  
FAX (852) 2722-1369  
Zone Industrielle  
13106 Rousset Cedex, France  
TEL (33) 4-42-53-60-00  
FAX (33) 4-42-53-60-01  
Japan  
Atmel Japan K.K.  
9F, Tonetsu Shinkawa Bldg.  
1-24-8 Shinkawa  
Chuo-ku, Tokyo 104-0033  
Japan  
Atmel Colorado Springs  
1150 East Cheyenne Mtn. Blvd.  
Colorado Springs, CO 80906  
TEL 1(719) 576-3300  
TEL (81) 3-3523-3551  
FAX (81) 3-3523-7581  
FAX 1(719) 540-1759  
Atmel Smart Card ICs  
Scottish Enterprise Technology Park  
Maxwell Building  
East Kilbride G75 0QR, Scotland  
TEL (44) 1355-803-000  
FAX (44) 1355-242-743  
e-mail  
literature@atmel.com  
Web Site  
http://www.atmel.com  
© Atmel Corporation 2002.  
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Companys standard warranty  
which is detailed in Atmels Terms and Conditions located on the Companys web site. The Company assumes no responsibility for any errors  
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does  
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted  
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmels products are not authorized for use as critical  
components in life support devices or systems.  
ATMEL® is the registered trademarks of Atmel.  
Other terms and product names may be the trademarks of others.  
1962C01/02/xM  

相关型号:

FCD4N60

600V N-Channel MOSFET
FAIRCHILD

FCD4N60TF

600V N-Channel MOSFET
FAIRCHILD

FCD4N60TM

600V N-Channel MOSFET
FAIRCHILD

FCD4N60TM

功率 MOSFET,N 沟道,SUPERFET®,Easy Drive,600 V,3.9 A,1.2 Ω,DPAK
ONSEMI

FCD5N60

600V N-Channel MOSFET
FAIRCHILD

FCD5N60-F085

N 沟道,SuperFET®,600 V,4.6 A,0.86 Ω
ONSEMI

FCD5N60TF

600V N-Channel MOSFET
FAIRCHILD

FCD5N60TM

600V N-Channel MOSFET
FAIRCHILD

FCD5N60TM

功率 MOSFET,N 沟道,SUPERFET®,Easy Drive,600 V,4.6 A,950 mΩ,DPAK
ONSEMI

FCD5N60TM-WS

功率 MOSFET,N 沟道,SUPERFET®,Easy Drive,600 V,4.6 A,950 mΩ,DPAK
ONSEMI

FCD5N60TM_WS

暂无描述
FAIRCHILD

FCD600N60Z

功率 MOSFET,N 沟道,SUPERFET® II,FAST,600 V,7.4 A,600 mΩ,DPAK
ONSEMI