AS1323_1 [AMSCO]

1.6uA Quiescent Current, Single Cell, DC-DC Step-up Converter; 1.6uA静态电流,单细胞, DC-DC升压转换器
AS1323_1
型号: AS1323_1
厂家: AMS(艾迈斯)    AMS(艾迈斯)
描述:

1.6uA Quiescent Current, Single Cell, DC-DC Step-up Converter
1.6uA静态电流,单细胞, DC-DC升压转换器

转换器 升压转换器
文件: 总14页 (文件大小:665K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet  
AS1323  
1.6µA Quiescent Current, Single Cell, DC-DC Step-up Converter  
1 General Description  
2 Key Features  
The AS1323 high-efficiency step-up DC-DC converter  
was designed specifically for single-cell, battery-pow-  
ered devices where lowest quiescent current and high  
efficiency are essential.  
1.6µA Quiescent Current  
Input Voltage Range: 0.75 to 2V  
Up to 100mA Output Current  
Fixed Output Voltages: 2.7, 3.0 and 3.3V  
Shutdown Current: 0.1µA  
The compact device is available in three fixed-voltage  
variations and is perfect for a wide variety of applications  
where extremely-low quiescent currents and very-small  
form factors are critical.  
The devices are available as the standard products  
shown in Table 1. See also Ordering Information on  
page 13.  
Output Voltage Accuracy: ±3%  
Efficiency: Up to 85%  
Table 1. Standard Products  
Model  
Fixed Output Voltage  
Package  
TSOT23-5  
TSOT23-5  
TSOT23-5  
AS1323-27  
AS1323-30  
AS1323-33  
2.7V  
3.0V  
3.3V  
No External Diode or FETs Needed  
Output Disconnect in Shutdown  
Guaranteed 0.95V Start-Up Voltage  
TSOT23-5 Package  
Integrated boot circuitry ensures start-up even with very-  
high load currents.  
The true output disconnect feature completely discon-  
nects the output from the battery during shutdown.  
The device is available in a TSOT23-5 pin package.  
3 Applications  
The devices are ideal for single-cell portable devices  
including mobile phones, MP3 players, PDAs, remote  
controls, personal medical devices, wireless transmitters  
and receivers, and any other battery-operated, portable  
device.  
Figure 1. Typical Operating Circuit  
10µH  
VBATT  
VSS  
1
2
3
5
LX  
1
5
VBATT  
LX  
10µF  
2
AS1323  
AS1323  
VSS  
3
4
SHDNN  
4
VOUT  
SHDNN  
VOUT  
10µF  
www.austriamicrosystems.com  
Revision 1.04  
1 - 14  
AS1323  
Data Sheet - Pinout  
4 Pinout  
Pin Assignments  
Figure 2. Pin Assignments (Top View)  
VBATT  
VSS  
1
2
3
5
4
LX  
AS1323  
SHDNN  
VOUT  
Pin Descriptions  
Table 2. Pin Descriptions  
Pin Number  
Pin Name  
VBATT  
VSS  
Description  
Battery Supply Input and Coil Connection  
Negative Supply and Ground  
Shutdown Input.  
1
2
0 = Shutdown mode.  
3
SHDNN  
1 = Normal operating mode.  
Output. This pin also supplies bootstrap power to the device.  
4
5
VOUT  
LX  
Inductor Connection. This pin is connected to the internal N-channel MOSFET switch  
drain and P-channel synchronous rectifier drain.  
www.austriamicrosystems.com  
Revision 1.04  
2 - 14  
AS1323  
Data Sheet - Absolute Maximum Ratings  
5 Absolute Maximum Ratings  
Stresses beyond those listed in Table 3 may cause permanent damage to the device. These are stress ratings only,  
and functional operation of the device at these or any other conditions beyond those indicated in Electrical Character-  
istics on page 4 is not implied. Exposure to absolute maximum rating conditions for extended periods may affect  
device reliability.  
Table 3. Absolute Maximum Ratings  
Parameter  
Min  
Max  
+5  
1
Units  
Comments  
VBATT, SHDNN, LX to VSS  
Maximum Current VOUT, LX  
Thermal Resistance ΘJA  
Electro-Static Discharge  
Operating Temperature Range  
Storage Temperature Range  
Junction Temperature  
-0.3  
V
A
207.4 ºC/W  
on PCB  
HBM  
2
kV  
ºC  
ºC  
ºC  
-40  
-65  
+85  
+150  
+150  
The reflow peak soldering temperature (body  
temperature) specified is in accordance with  
IPC/JEDEC J-STD-020C “Moisture/Reflow  
Sensitivity Classification for Non-Hermetic  
Solid State Surface Mount Devices”.  
The lead finish for Pb-free leaded packages is  
matte tin (100% Sn).  
Package Body Temperature  
+260  
ºC  
www.austriamicrosystems.com  
Revision 1.04  
3 - 14  
AS1323  
Data Sheet - Electrical Characteristics  
6 Electrical Characteristics  
DC Electrical Characteristics  
TAMB = -40°C to +85°C, VBATT = 1.2V, VOUT = VOUT(NOM), SHDNN = VOUT, RLOAD = , unless otherwise noted. Typical  
values are at TA = 25°C.(unless otherwise specified). Limits are 100% production tested at TAMB = 25ºC. Limits over  
the operating temperature range are guaranteed by design.  
Table 4. Electrical Characteristics  
Symbol  
VINMIN  
VIN  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
V
Minimum Input Voltage  
Operating Input Voltage  
0.75  
TAMB = 25ºC  
0.95  
2
V
Minimum Start-Up  
Input Voltage  
TAMB = 25ºC,  
VINSU  
0.75  
0.95  
V
V
RLOAD = 100Ω  
AS1323-27  
AS1323-30  
AS1323-33  
2.619  
2.91  
2.7  
3.0  
3.3  
2.781  
3.09  
VOUT  
Output Voltage  
3.201  
3.399  
Load depended drop  
of VOUT  
VBATT = 1.5V;  
ILOAD = 45mA  
RLOAD  
30  
40  
mV  
N-Channel On-Resistance  
P-Channel On-Resistance  
0.5  
1.0  
1.5  
Ω
Ω
RDS-ON  
0.75  
N-Channel Switch  
Current Limit  
ILIMIT  
tON  
Programmed at 400mA  
400  
6
mA  
µs  
Switch Maximum On-Time  
Synchronous Rectifier  
Zero-Crossing Current  
10  
mA  
Operating Current  
into VBATT  
VBATT = 1.5V, VOUT =  
3.3V, TAMB = 25ºC  
IOP-OUT  
IQ-OUT  
IQ-BAT  
6
µA  
µA  
µA  
Quiescent Current to VOUT  
1.6  
0.3  
3
1
Quiescent Current into  
VBATT = 1.5V, TAMB = 25ºC  
VBATT = 1.5V, TAMB = 25ºC  
VBATT  
1
Shutdown Current to VOUT  
200  
nA  
nA  
ISDI-OUT  
ISDI-BAT  
Shutdown Current into  
100  
100  
VBATT  
SHDNN Voltage Threshold,  
Low  
VIL  
150  
mV  
SHDNN Voltage Threshold,  
High  
VIH  
ISDI  
900  
300  
mV  
nA  
SHDNN Input Bias Current TAMB = 25ºC, VSDI = VOUT  
1. VOUT is completely disconnected (0V) during shutdown.  
www.austriamicrosystems.com  
Revision 1.04  
4 - 14  
AS1323  
Data Sheet - Typical Operating Characteristics  
7 Typical Operating Characteristics  
VOUT= 3.3V; TA = 25°C; CIN = COUT = 10µF, L = 10µH, ILOAD = 10mA; VBATT = 1.5V; unless otherwise specified.  
Figure 3. Efficiency vs. Output Current; VOUT = 3.3V  
Figure 4. Efficiency vs. Output Current; VOUT = 3.0V  
90  
90  
V
IN  
= 1.8V  
V
= 1.8V  
IN  
80  
70  
60  
50  
40  
30  
80  
70  
60  
50  
40  
30  
V
= 1.2V  
IN  
V
= 1.5V  
= 1.2V  
IN  
V
IN  
= 1.5V  
V
V
= 0.95V  
IN  
IN  
IN  
V
= 0.95V  
0.1  
1
10  
100  
0.1  
1
10  
100  
Output Current (mA)  
Output Current (mA)  
Figure 5. Efficiency vs. Output Current; VOUT = 2.7V  
Figure 6. Efficiency vs. Input Voltage  
90  
90  
V
IN  
= 1.8V  
80  
70  
60  
50  
40  
30  
80  
70  
60  
50  
40  
30  
V
IN  
V
IN  
V
IN  
= 1.5V  
= 1.2V  
= 0.95V  
Iload =80µA  
Iload =800µA  
Iload =11mA  
0.1  
1
10  
100  
0.75  
1
1.25  
1.5  
1.75  
2
Output Current (mA)  
Input Voltage (V)  
Figure 7. Output Voltage vs. Temperature  
Figure 8. Output Voltage vs. Output Current  
3.32  
3.4  
V
= 1.5V  
IN  
3.35  
3.3  
3.315  
No Load  
3.31  
V
IN  
= 1.2V  
3.25  
3.2  
3.305  
3.3  
3.295  
3.29  
I
I
= 10mA  
= 30mA  
LOAD  
LOAD  
3.15  
3.1  
3.05  
3
3.285  
3.28  
-50 -25  
0
25 50  
75 100 125  
0
10  
20  
30  
40  
50  
60  
70  
Temperature (°C)  
Output Current (mA)  
www.austriamicrosystems.com  
Revision 1.04  
5 - 14  
AS1323  
Data Sheet - Typical Operating Characteristics  
Figure 9. Output Voltage vs. Input Voltage  
Figure 10. Shutdown Current vs. Temperature  
3.4  
1000  
3.38  
3.36  
3.34  
3.32  
3.3  
V
IN  
= 1.5V  
100  
10  
1
V
= 1.2V  
IN  
3.28  
3.26  
3.24  
3.22  
3.2  
0.1  
0.9  
1
1.1 1.2 1.3 1.4 1.5 1.6 1.7  
Input Voltage (V)  
-50 -25  
0
25  
50  
75 100 125  
Temperature (°C)  
Figure 11. Minimum Input Startup Votage vs.  
Temperature  
Figure 12. Output Voltage vs. Input Voltage;  
VOUT = 2.7V  
1
0.9  
0.8  
0.7  
0.6  
0.5  
2.78  
2.76  
2.74  
I
= 0mA  
= 10mA  
= 30mA  
OUT  
2.72  
2.7  
I
I
OUT  
OUT  
2.68  
2.66  
2.64  
2.62  
-50 -25  
0
25  
50  
75 100 125  
0.75  
1
1.25  
1.5  
1.75  
2
Temperature (°C)  
Input Voltage (V)  
Figure 13. Output Voltage vs. Input Voltage;  
VOUT = 3.0V  
Figure 14. Output Voltage vs. Input Voltage;  
VOUT = 3.3V  
3.1  
3.08  
3.06  
3.4  
3.38  
3.36  
I
= 0mA  
OUT  
3.04  
3.02  
3
3.34  
3.32  
3.3  
I
= 0mA  
OUT  
I
= 10mA  
OUT  
I
= 10mA  
OUT  
I
= 30mA  
OUT  
2.98  
2.96  
2.94  
2.92  
2.9  
3.28  
3.26  
3.24  
3.22  
3.2  
I
= 30mA  
OUT  
0.75  
1
1.25  
1.5  
1.75  
2
0.75  
1
1.25  
1.5  
1.75  
2
Input Voltage (V)  
Input Voltage (V)  
www.austriamicrosystems.com  
Revision 1.04  
6 - 14  
AS1323  
Data Sheet - Typical Operating Characteristics  
Figure 15. Output Current vs. Input Voltage  
Figure 16. Switching Waveform; VOUT = 2.7V  
110  
100  
90  
V
OUT  
= 3.0V  
80  
70  
60  
50  
40  
30  
20  
V
OUT  
= 3.3V  
V
= 2.7V  
OUT  
200µs/Div  
0.75  
1
1.25  
1.5  
1.75  
2
Input Voltage (V)  
Figure 17. Switching Waveform; VOUT = 3.0V  
Figure 18. Switching Waveform; VOUT = 3.3V  
200µs/Div  
200µs/Div  
www.austriamicrosystems.com  
Revision 1.04  
7 - 14  
AS1323  
Data Sheet - Detailed Description  
8 Detailed Description  
The AS1323 is a compact, high-efficiency, step-up DC-DC converter guaranteed to start up with voltages as low as  
0.95V, and operate with an input voltage down to 0.75V. Consuming only 1.6µA of quiescent current, the device  
includes an integrated synchronous rectifier that eliminates the need for an external diode and improves overall effi-  
ciency by minimizing losses (see Synchronous Rectification on page 8). The AS1323 also features an active-low shut-  
down circuit that supply current to 0.1µA.  
Figure 19. Block Diagram  
L1  
4
1
VOUT  
VBATT  
CIN  
0.95 to  
1.6V  
COUT  
Comparator  
Discharge  
Comparator  
Voltage  
Control  
Logic  
Startup  
System  
Timing  
5
3
LX  
SHDNN  
AS1323  
Ref  
Comparator  
Charge  
2
VSS  
PFM Control  
A forced discontinuous, current-limited, pulse-frequency modulation (PFM) control scheme provides ultra-low quies-  
cent current and high efficiency over a wide output current-range. Rather than using an integrated oscillator, the induc-  
tor current is limited by the 400mA N-channel current limit or by the 6µs switch maximum on-time. After each device-on  
cycle, the inductor current must ramp to zero before another cycle can start. When the error comparator senses that  
the output has fallen below the regulation threshold, another cycle can begin.  
Synchronous Rectification  
The integrated synchronous rectifier eliminates the need for an external Schottky diode, reducing cost and PCB space.  
During normal operation, while the inductor discharges, the P-channel MOSFET turns on and shunts the MOSFET  
body diode. Consequently the rectifier voltage drop is significantly reduced improving efficiency without the need for  
external components.  
Low-Voltage Startup Circuit  
The AS1323 contains a unique low-voltage startup circuit which ensures start-up even with very high load currents.  
The minimum start-up voltage is independent of the load current. This device is powered from pin VBATT, guaranteeing  
startup at input voltages as low as 0.95V.  
Shutdown  
The AS1323 enter shutdown when the SHDNN pin is driven low. During shutdown, the output is completely discon-  
nected from the battery. Shutdown can be pulled as high as 3.6V, regardless of the voltage at pins VBATT or VOUT. For  
normal operation, connect SHDN to the input.  
www.austriamicrosystems.com  
Revision 1.04  
8 - 14  
AS1323  
Data Sheet - Application Information  
9 Application Information  
Figure 20. Typical Application  
10µH  
1
5
VBATT  
10µF  
LX  
2
AS1323  
VSS  
3
4
SHDNN  
VOUT  
10µF  
Inductor Selection  
The control scheme of the AS1323 allows for a wide range if inductor values. A 10µH inductor should be sufficient for  
most applications (see Figure 20).  
Smaller inductance values typically offer smaller physical size for a given series resistance, allowing the smallest over-  
all circuit dimensions. Applications using larger inductance values may startup at lower battery voltages, provide higher  
efficiency and exhibit less ripple, but they may reduce the maximum output current. This occurs when the inductance is  
sufficiently large to prevent the maximum current limit (ILIMIT) from being reached before the maximum on-time (tON)  
expires (see Electrical Characteristics on page 4).  
For maximum output current, the inductor value should be chosen such that the controller reaches the current-limit  
before the maximum on-time is triggered:  
VBATT tON  
(EQ 1)  
-------------------------------  
L >  
ILIMIT  
tONMAX is 6µs (typ).  
ILIMIT is 400mA (typ).  
For larger inductor values, the peak inductor current (IPEAK) can be determined by:  
The inductor’s incremental saturation current rating should be greater than the peak switching current. However, it is  
VBATT tON  
(EQ 2)  
-------------------------------  
IPEAK =  
L
generally advisable to bias the inductor into saturation by as much as 20%, although this will slightly reduce efficiency.  
Maximum Output Current  
The maximum output current (IOUTMAX) is a function of IPEAK, VIN, VOUT, and the overall efficiency (η) as indicated in  
the formula for determining IOUTMAX:  
1
--  
VBATT  
VOUT  
(EQ 3)  
----------------  
IOUTMAX =  
IPEAK ⋅  
⋅ η  
2
www.austriamicrosystems.com  
Revision 1.04  
9 - 14  
AS1323  
Data Sheet - Application Information  
Capacitor Selection  
Choose input and output capacitors to supply the input and output peak currents with acceptable voltage ripple. The  
input filter capacitor (CIN) reduces peak currents drawn from the battery and improves efficiency. Low equivalent  
series resistance (ESR) capacitors are recommended.  
Note: Ceramic capacitors have the lowest ESR, but low ESR tantalum or polymer capacitors offer a good balance  
between cost and performance.  
Output voltage ripple has two components: variations in the charge stored in the output capacitor with each COIL  
pulse, and the voltage drop across the capacitor’s ESR caused by the current into and out of the capacitor:  
VRIPPLE = VRIPPLE(C) + VRIPPLE(ESR)  
VRIPPLE(ESR) = IPEAK RESR(COUT)  
(EQ 4)  
(EQ 5)  
1
--  
L
2
2
--------------------------------------------------------------  
(EQ 6)  
VRIPPLE(C) ≈  
⋅ (IPEAK IOUT )  
2
(VOUT VBATT) ⋅ COUT  
Where: IPEAK is the peak inductor current.  
For ceramic capacitors, the output voltage ripple is typically dominated by VRIPPLE(C). For example, a 10µF ceramic  
capacitor and a 10µH inductor typically provide 75mV of output ripple when stepping up from 1.2V to 3.3V at 50mA.  
Low input-to-output voltage differences require higher output capacitor values.  
Capacitance and ESR variation of temperature should be considered for best performance in applications with wide  
operating temperature ranges.  
PC Board Layout Considerations  
The AS1323 has been specially designed to be tolerant to PC board parasitic inductances and resistances. However,  
to achieve maximum efficiency a careful PC board layout and component selection is vital.  
Note: For the optimal performance the IC’s VSS and the ground leads of the input and output capacitors must be  
kept less than 5mm apart using a ground plane. In addition, keep all connections to COIL as short as possible.  
The system robustness guarantees a reliable operation even if those recommendations are not fully applied.  
www.austriamicrosystems.com  
Revision 1.04  
10 - 14  
AS1323  
Data Sheet - Package Drawings and Markings  
10 Package Drawings and Markings  
The device is available in an TSOT23-5 package.  
Figure 21. TSOT23-5 Package  
Symbol  
Min  
Typ  
Max  
1.00  
0.10  
0.90  
0.45  
0.39  
0.20  
Notes  
Symbol  
Min  
Typ  
0.40  
Max  
Notes  
A
A1  
A2  
b
L
L1  
L2  
N
0.30  
0.50  
0.01  
0.84  
0.30  
0.31  
0.12  
0.05  
0.87  
0.60REF  
0.25BSC  
5
b1  
c
0.35  
0.15  
R
0.10  
0.10  
R1  
0.25  
8º  
c1  
0.08  
0.13  
0.16  
0º  
4º  
4º  
θ
θ1  
D
E
2.90BSC  
2.80BSC  
1.60BSC  
0.95BSC  
1.90BSC  
3,4  
3,4  
3,4  
10º  
12º  
Tolerances of Form and Position  
E1  
e
aaa  
bbb  
ccc  
ddd  
0.15  
0.25  
0.10  
0.20  
e1  
Notes:  
1. Dimensioning and tolerancing conform to ASME Y14.5M - 1994.  
2. Dimensions are in millimeters.  
3. Dimension D does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, and gate burrs shall  
not exceed 0.15mm per end. Dimension E1 does not include interlead flash or protrusion. Interlead flash or pro-  
trusion shall not exceed 0.15mm per side. Dimensions D and E1 are determined at datum H.  
4. The package top can be smaller than the package bottom. Dimensions D and E1 are determined at the outer-  
most extremes of the plastic body exclusive of mold flash, tie bar burrs, gate burrs, and interlead flash, but  
include any mistmatches between the top of the package body and the bottom. D and E1 are determined at  
datum H.  
www.austriamicrosystems.com  
Revision 1.04  
11 - 14  
AS1323  
Data Sheet - Package Drawings and Markings  
Tape and Reel Pin1 Orientation  
Figure 22. Tape&Reel Pin1 Orientation  
User direction of feed  
Top, Through View  
TSOT23-5  
TSOT23-5  
TSOT23-5  
TSOT23-5  
www.austriamicrosystems.com  
Revision 1.04  
12 - 14  
AS1323  
Data Sheet - Ordering Information  
11 Ordering Information  
The device is available as the standard products shown in Table 5.  
Table 5. Ordering Information  
Model  
Marking  
Output  
Description  
Delivery Form  
Package  
1.6µA Quiescent Current, Single Cell,  
DC-DC Step-up Converter  
AS1323-BTTT-27  
ASJN  
2.7V  
Tape and Reel  
TSOT23-5  
1.6µA Quiescent Current, Single Cell,  
DC-DC Step-up Converter  
AS1323-BTTT-30  
AS1323-BTTT-33  
ASMP  
ASMQ  
3.0V  
3.3V  
Tape and Reel  
Tape and Reel  
TSOT23-5  
TSOT23-5  
1.6µA Quiescent Current, Single Cell,  
DC-DC Step-up Converter  
All devices are RoHS compliant and free of halogene substances.  
www.austriamicrosystems.com  
Revision 1.04  
13 - 14  
AS1323  
Data Sheet  
Copyrights  
Copyright © 1997-2009, austriamicrosystems AG, Schloss Premstaetten, 8141 Unterpremstaetten, Austria-Europe.  
Trademarks Registered ®. All rights reserved. The material herein may not be reproduced, adapted, merged, trans-  
lated, stored, or used without the prior written consent of the copyright owner.  
All products and companies mentioned are trademarks or registered trademarks of their respective companies.  
Disclaimer  
Devices sold by austriamicrosystems AG are covered by the warranty and patent indemnification provisions appearing  
in its Term of Sale. austriamicrosystems AG makes no warranty, express, statutory, implied, or by description regarding  
the information set forth herein or regarding the freedom of the described devices from patent infringement. austria-  
microsystems AG reserves the right to change specifications and prices at any time and without notice. Therefore,  
prior to designing this product into a system, it is necessary to check with austriamicrosystems AG for current informa-  
tion. This product is intended for use in normal commercial applications. Applications requiring extended temperature  
range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-  
sustaining equipment are specifically not recommended without additional processing by austriamicrosystems AG for  
each application. For shipments of less than 100 parts the manufacturing flow might show deviations from the standard  
production flow, such as test flow or test location.  
The information furnished here by austriamicrosystems AG is believed to be correct and accurate. However,  
austriamicrosystems AG shall not be liable to recipient or any third party for any damages, including but not limited to  
personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or  
consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the tech-  
nical data herein. No obligation or liability to recipient or any third party shall arise or flow out of  
austriamicrosystems AG rendering of technical or other services.  
Contact Information  
Headquarters  
austriamicrosystems AG  
A-8141 Schloss Premstaetten, Austria  
Tel: +43 (0) 3136 500 0  
Fax: +43 (0) 3136 525 01  
For Sales Offices, Distributors and Representatives, please visit:  
http://www.austriamicrosystems.com/contact-us  
www.austriamicrosystems.com  
Revision 1.04  
14 - 14  

相关型号:

AS1324

1.5MHz, 600mA, DC/DC Step-Down Regulator
AMSCO

AS1324-12

1.5MHz, 600mA, DC/DC Step-Down Regulator
AMSCO

AS1324-15

1.5MHz, 600mA, DC/DC Step-Down Regulator
AMSCO

AS1324-18

1.5MHz, 600mA, DC/DC Step-Down Regulator
AMSCO

AS1324-AD

1.5MHz, 600mA, DC/DC Step-Down Regulator
AMSCO

AS1324-BTTT-12

1.5MHz, 600mA, DC/DC Step-Down Regulator
AMSCO

AS1324-BTTT-15

1.5MHz, 600mA, DC/DC Step-Down Regulator
AMSCO

AS1324-BTTT-18

1.5MHz, 600mA, DC/DC Step-Down Regulator
AMSCO

AS1324-BTTT-AD

1.5MHz, 600mA, DC/DC Step-Down Regulator
AMSCO

AS1324_13

1.5MHz, 600mA Synchronous DC/DC Conver ter
AMSCO

AS1325

300mA Step-Up DC-DC Converter
AMSCO

AS1325-BSTT-33

300mA Step-Up DC-DC Converter
AMSCO