AS1325 [AMSCO]

300mA Step-Up DC-DC Converter; 300毫安升压型DC -DC转换器
AS1325
型号: AS1325
厂家: AMS(艾迈斯)    AMS(艾迈斯)
描述:

300mA Step-Up DC-DC Converter
300毫安升压型DC -DC转换器

转换器
文件: 总16页 (文件大小:973K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
austriamicrosystems  
Data Sheet  
AS1325  
300mA Step-Up DC-DC Converter  
1 General Description  
2 Key Features  
Fixed Output Voltage:  
The AS1325 is a high-efficiency step-up DC-DC con-  
verter designed to generate a fixed output voltage of  
+3.3V or +5V.  
- 3.3V (AS1325-BSTT-33) or 5V (AS1325-BSST-50)  
Output Current:  
The AS1325 achieves an efficiency of up to 96% and the  
minimum input voltage is 1.5V. The AS1325-BSTT-33  
delivers up to 300mA output current at the fixed output  
voltage of +3.3V (@ 2V VBATT). With the fixed output  
voltage of +5V the AS1325-BSST-50 supplies up to  
185mA output current (@ 2V VBATT).  
- Up to 300mA (AS1325-BSTT-33) @ 2V VBATT  
- Up to 185mA (AS1325-BSST-50) @ 2V VBATT  
Internal Synchronous Rectifier  
Shutdown Mode Supply Current: Less Than 1µA  
Efficiency: Up to 96%  
In order to save power the AS1325 features a shutdown  
mode, where it draws less than 1µA. In shutdown mode  
the battery is connected directly to the output enabling  
the supply of real-time-clocks.  
Minimum Input Voltage: +1.5V  
Accurate Shutdown Low-Battery Cutoff Threshold  
The AS1325 provides a power-on reset output that goes  
high-impedance when the output reaches 90% of its reg-  
ulation point.  
Battery Input Connected to Pin OUT in Shutdown  
Mode for Backup Power  
Antiringing Control Minimizes EMI  
Ripple Reduction at Light Loads  
6-pin SOT23 Package  
The SHDNN trip threshold of the AS1325 can be used  
as an input voltage detector that disables the device  
when the battery voltage falls to a predetermined level.  
An internal synchronous rectifier is included.  
The AS1325 is available in a 6-pin SOT23 package.  
3 Applications  
The AS1325 is ideal for low-power applications where  
ultra-small size is critical as in medical diagnostic equip-  
ment, hand-held instruments, pagers, digital cameras,  
remote wireless transmitters, cordless phones, and PC  
cards. The device is also perfect as a local supply or as  
a battery backup.  
Figure 1. Application Diagram  
+5.0V Output only  
+3.3 or  
+5.0V  
2
5
Output  
BATT  
OUT  
COUT  
22µF  
R1  
100k  
+1.5 to +3.3V or  
+1.5 to +5.0V  
Battery  
4
6
RESETN  
Output  
AS1325  
L1  
10µH  
LX  
RESETN  
CIN  
22µF  
1
3
On  
Off  
SHDNN  
GND  
www.austriamicrosystems.com  
Revision 1.00  
1 - 16  
AS1325  
austriamicrosystems  
Data Sheet  
4 Absolute Maximum Ratings  
Stresses beyond those listed in Table 1 may cause permanent damage to the device. These are stress ratings only,  
and functional operation of the device at these or any other conditions beyond those indicated in Section 5 Electrical  
Characteristics on page 3 is not implied. Exposure to absolute maximum rating conditions for extended periods may  
affect device reliability.  
Table 1. Absolute Maximum Ratings  
Parameter  
All Pins to GND  
LX Current  
Min  
Max  
7
Units  
V
Comments  
-0.3  
1
A
Latch-Up  
-100  
100  
mA  
JEDEC 78  
Package Power Dissipation  
(TAMB = +70ºC)  
500  
mW  
(ΘJA = 9.1mW/ºC above +70ºC)  
Operating Temperature Range  
Electrostatic Discharge  
-40  
-500  
5
+85  
+500  
85  
ºC  
V
HBM MIL-Std. 883E 3015.7 methods  
Humidity (Non-Condensing)  
Storage Temperature Range  
Junction Temperature  
%
ºC  
ºC  
-55  
125  
150  
The reflow peak soldering temperature (body  
temperature) specified is in compliance with  
IPC/JEDEC J-STD-020C “Moisture/ Reflow  
Sensitivity Classification for Non-Hermetic  
Solid State Surface Mount Devices”.  
Package Body Temperature  
260  
ºC  
www.austriamicrosystems.com  
Revision 1.00  
2 - 16  
AS1325  
austriamicrosystems  
Data Sheet  
5 Electrical Characteristics  
3.3V Output  
TAMB = -40 to +85ºC, VBATT = +2V, VOUT = +3.3, VSHDNN = +1.5V (unless otherwise specified). Typ values @ TAMB = +25ºC.  
Table 2. Electrical Characteristics  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
3.5  
Unit  
Battery Input Range  
VBATT  
1.5  
V
RLOAD = 47, TAMB = +25ºC  
RLOAD = 47, TAMB = -40 to +85ºC  
TAMB = +25ºC  
1.22  
1.24  
1.5  
Startup Battery Input Voltage 1  
Output Voltage 2  
VSU  
V
V
3.267 3.300 3.333  
VOUT  
RNCH  
RPCH  
TAMB = -40 to +85ºC  
3.217  
3.373  
1.2  
ILX = 100mA, TAMB = +25ºC  
ILX = 100mA, TAMB = -40 to +85ºC  
ILX = 100mA, TAMB = +25ºC  
ILX = 100mA, TAMB = -40 to +85ºC  
0.3  
0.4  
N-Channel  
On-Resistance  
1.5  
1.3  
P-Channel On-Resistance  
1.6  
Light Load N-Channel Switch  
Current Limit  
400  
700  
mA  
mA  
Maximum N-Channel Switch  
Current Limit 1  
TAMB = +25ºC  
TAMB = -40 to +85ºC  
TAMB = +25ºC  
550  
450  
5
850  
950  
9
IMAX  
tON  
7
N-Channel Maximum  
On-Time  
µs  
µs  
TAMB = -40 to +85ºC  
4
10  
P-Channel Minimum On-Time  
2
TAMB = +25ºC  
8
0
30  
60  
65  
55  
60  
1
Synchronous Rectifier  
Zero-Crossing Current  
mA  
TAMB = -40 to +85ºC  
VOUT = +3.5V, TAMB = +25ºC  
VOUT = +3.5V, TAMB = -40 to +85ºC  
VSHDNN = 0V, TAMB = +25ºC  
VSHDNN = 0V, TAMB = -40 to +85ºC  
VSHDNN = 0V, TAMB = +25ºC  
VSHDNN = 0V, TAMB = -40 to +85ºC  
35  
Quiescent Current into OUT  
Shutdown Current into OUT  
Shutdown Current into BATT  
µA  
µA  
0.01  
0.01  
2
1
µA  
V
2
SHDNN Logic Low 1  
SHDNN Threshold  
VBATT = +1.5 to +3.5V  
0.3  
Rising Edge, TAMB = +25ºC  
1.185 1.228 1.271  
1.170 1.286  
V
V
V
Rising Edge, TAMB = -40 to +85ºC  
SHDNN Threshold Hysteresis  
RESETN Threshold  
0.02  
2.830 3.000 3.110  
Falling Edge, TAMB = +25ºC  
Falling Edge, TAMB = -40 to +85ºC  
2.800  
3.140  
IRESETN = 1mA, VOUT = +2.5V,  
TAMB = +25ºC  
0.15  
RESETN Voltage Low  
V
IRESETN = 1mA, VOUT = +2.5V,  
TAMB = -40 to +85ºC  
0.2  
VRESETN = +5.5V, TAMB = +25ºC  
VRESETN = +5.5V, TAMB = +85ºC  
TAMB = +25ºC  
0.1  
1
100  
RESETN Leakage Current  
LX Leakage Current  
nA  
nA  
0.1  
10  
1000  
TAMB = +85ºC  
Maximum Load Current  
Efficiency  
ILOAD  
VBATT = +2V  
300  
96  
mA  
%
η
VBATT = +3V, ILOAD = 100mA  
1. Guaranteed by design.  
2. Voltage which triggers next loading cycle. Ripple and rms value depend on external components.  
www.austriamicrosystems.com Revision 1.00  
3 - 16  
AS1325  
austriamicrosystems  
Data Sheet  
5.0V Output  
TAMB = -40 to +85ºC, VBATT = +2V, VOUT = +5.0, VSHDNN = +1.5V (unless otherwise specified). Typ values @ TAMB = +25ºC.  
Table 3. Electrical Characteristics  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
5.0  
Unit  
Battery Input Range  
VBATT  
1.5  
V
RLOAD = 100, TAMB = +25ºC  
RLOAD = 100, TAMB = -40 to +85ºC  
TAMB = +25ºC  
1.22  
1.24  
1.5  
Startup Battery Input Voltage 1  
Output Voltage 2  
VSU  
V
V
4.950 5.000 5.050  
VOUT  
RNCH  
RPCH  
TAMB = -40 to +85ºC  
4.875  
5.125  
1.2  
ILX = 100mA, TAMB = +25ºC  
ILX = 100mA, TAMB = -40 to +85ºC  
ILX = 100mA, TAMB = +25ºC  
ILX = 100mA, TAMB = -40 to +85ºC  
0.3  
0.4  
N-Channel  
On-Resistance  
1.5  
1.3  
P-Channel On-Resistance  
1.6  
Light Load N-Channel Switch  
Current Limit  
400  
700  
mA  
mA  
TAMB = +25ºC  
TAMB = -40 to +85ºC  
TAMB = +25ºC  
550  
450  
5
850  
950  
9
N-Channel Switch Current Limit 1  
IMAX  
tON  
7
Switch Maximum  
On-Time  
µs  
µs  
TAMB = -40 to +85ºC  
4
10  
P-Channel Minimum On-Time  
1
TAMB = +25ºC  
8
0
30  
60  
65  
55  
60  
1
Synchronous Rectifier  
Zero-Crossing Current  
mA  
TAMB = -40 to +85ºC  
VOUT = +5.5V, TAMB = +25ºC  
VOUT = +5.5V, TAMB = -40 to +85ºC  
VSHDNN = 0V, TAMB = +25ºC  
VSHDNN = 0V, TAMB = -40 to +85ºC  
VSHDNN = 0V, TAMB = +25ºC  
VSHDNN = 0V, TAMB = -40 to +85ºC  
35  
Quiescent Current into OUT  
Shutdown Current into OUT  
Shutdown Current into BATT  
µA  
µA  
0.01  
0.01  
2
1
µA  
V
2
SHDNN Logic Low 1  
SHDNN Threshold  
VBATT = +1.5 to +5.0V  
0.3  
Rising Edge, TAMB = +25ºC  
1.185 1.228 1.271  
1.170 1.286  
V
V
V
Rising Edge, TAMB = -40 to +85ºC  
SHDNN Threshold Hysteresis  
RESETN Threshold  
0.02  
4.288 4.500 4.712  
Falling Edge, TAMB = +25ºC  
Falling Edge, TAMB = -40 to +85ºC  
4.242  
4.758  
IRESETN = 1mA, VOUT = +2.5V,  
TAMB = +25ºC  
0.15  
RESETN Voltage Low  
V
IRESETN = 1mA, VOUT = +2.5V,  
TAMB = -40 to +85ºC  
0.2  
VRESETN = +5.5V, TAMB = +25ºC  
VRESETN = +5.5V, TAMB = +85ºC  
TAMB = +25ºC  
0.1  
1
100  
RESETN Leakage Current  
LX Leakage Current  
nA  
nA  
0.1  
10  
1000  
TAMB = +85ºC  
Maximum Load Current  
Efficiency  
ILOAD  
VBATT = +2V  
185  
91  
mA  
%
η
VBATT = +3V, ILOAD = 100mA  
1. Guaranteed by design.  
2. Voltage which triggers next loading cycle. Ripple and rms value depend on external components.  
www.austriamicrosystems.com  
Revision 1.00  
4 - 16  
AS1325  
austriamicrosystems  
Data Sheet  
6 Typical Operating Characteristics  
3.3V Characteristics  
VOUT = 3.3V, VBATT = +2V, TAMB = +25ºC.  
Figure 2. VOUT vs. VBATT; On, 16Ω  
Figure 3. VOUT vs. VBATT; On, 330Ω  
4
4
3
2
1
0
3
2
1
0
0
1
2
3
4
0
1
2
3
4
BatteryVoltage (V)  
BatteryVoltage (V)  
Figure 4. VOUT vs. VBATT; Shutdown, 300mA Load  
Figure 5. VOUT vs. VBATT; Shutdown, No Load  
5
5
4
3
2
1
0
4
3
2
1
0
1
2
3
4
5
6
0
1
2
3
4
5
Battery Voltage (V)  
BatteryVoltage (V)  
Figure 6. Maximum Output Current vs. VBATT  
Figure 7. Startup Voltage vs. Load Resistance  
3
800  
2.5  
2
700  
600  
500  
400  
300  
200  
1.5  
1
0.5  
0
10  
100  
1000  
10000  
1
1.5  
2
2.5  
3
3.5  
Load Resistance (Ohm)  
Battery Voltage (V)  
www.austriamicrosystems.com  
Revision 1.00  
5 - 16  
AS1325  
austriamicrosystems  
Data Sheet  
Figure 8. Line Transient  
Figure 9. Load Transient  
200mA  
2mA  
100µs/Div  
500µs/Div  
Figure 10. On/Off Response; RLOAD = 33Ω  
Figure 11. Shutdown Response; RLOAD = 33Ω  
2ms/Div  
200µs/Div  
Figure 12. Waveforms; RLOAD = 33Ω  
Figure 13. Efficiency vs. Load Current  
100  
VBATT = 3V  
95  
VBATT = 2.5V  
90  
VBATT = 2V  
85  
VBATT = 1.5V  
80  
75  
1
10  
100  
1000  
10µs/Div  
Load Current (mA)  
www.austriamicrosystems.com  
Revision 1.00  
6 - 16  
AS1325  
austriamicrosystems  
Data Sheet  
5.0V Characteristics  
VOUT = 5.0V, VBATT = +2V, TAMB = +25ºC.  
Figure 14. VOUT vs. VBATT; On, 39Ω  
6
Figure 15. VOUT vs. VBATT; On, 470Ω  
6
5
4
3
2
1
0
5
4
3
2
1
0
0
1
2
3
4
5
0
1
2
3
4
5
Battery Voltage (V)  
Battery Voltage (V)  
Figure 16. VOUT vs. VBATT; Shutdown, 180mA Load  
Figure 17. VOUT vs. VBATT; Shutdown, No Load  
5
6
5
4
3
2
1
0
4
3
2
1
0
1
2
3
4
5
0
1
2
3
4
5
6
Battery Voltage (V)  
BatteryVoltage (V)  
Figure 18. Maximum Output Current vs. VBATT  
Figure 19. Startup Voltage vs. Load Resistance  
600  
4
3.5  
3
500  
400  
300  
200  
100  
2.5  
2
1.5  
1
0.5  
1
1.5  
2
2.5  
3
3.5  
4
4.5  
10  
100  
1000  
10000  
Battery Voltage (V)  
Load Resistance (Ohm)  
www.austriamicrosystems.com  
Revision 1.00  
7 - 16  
AS1325  
austriamicrosystems  
Data Sheet  
Figure 20. Line Transient  
Figure 21. Load Transient  
130mA  
2mA  
100µs/Div  
500µs/Div  
Figure 22. On/Off Response; RLOAD = 100Ω  
Figure 23. Shutdown Response; RLOAD = 100Ω  
2ms/Div  
200µs/Div  
Figure 24. Waveforms; RLOAD = 68Ω  
Figure 25. Efficiency vs. Load Current  
100  
VBATT = 4.5V  
95  
VBATT = 3.5V  
VBATT = 3V  
90  
VBATT = 2.5V  
85  
VBATT = 2V  
VBATT = 1.5V  
80  
75  
1
10  
100  
1000  
4µs/Div  
Load Current (mA)  
www.austriamicrosystems.com  
Revision 1.00  
8 - 16  
AS1325  
austriamicrosystems  
Data Sheet  
Control Circuitry  
7 Detailed Description  
The AS1325 is a high-efficiency, compact step-up converter with 35µA quiescent supply current which ensures the  
highest efficiency over a wide load range. With a minimum of +1.5V input voltage, the device is well suited for applica-  
tions with one- or two-cells, such as lithium ion (Li+), nickel-metal-hydride (NiMH), or alkaline.  
Figure 26. Block Diagram  
+5.0V Output only  
+1.5 to +3.3V or  
+3.3 or  
+5.0V  
Output  
Zero  
Crossing  
Detector  
+1.5 to +5.0V  
Battery  
CIN  
4
5
10µH  
LX  
OUT  
COUT  
22µF  
22µF  
Startup  
Circuitry  
Anti-  
Ring-  
ing  
Driver  
and  
Control  
Logic  
+
Switch  
+1.228V  
2
BATT  
VREF  
Current  
Limiter  
6
+
1
RESETN  
+1.1V  
AS1325  
SHDNN  
GND  
3
The input battery is connected to the device through an inductor and an internal P-FET when pin SHDNN is low. In this  
state, the step-up converter is off and the voltage drop across the P-FET body diode is eliminated, and the input bat-  
tery can be used as a battery-backup or real-time-clock supply.  
The built-in synchronous rectifier significantly improves efficiency.  
Control Circuitry  
The AS1325 integrated current-limited key circuitry provides low quiescent current and extremely-high efficiency over  
a wide VOUT range without the need for an oscillator.  
Light Loads:  
Inductor current is limited by the 0.4A N-channel current limit or by the 7µs switch maximum on-time. The lower current  
limit reduces the ripple of the output voltage. At each cycle, the inductor current must ramp down to zero before the  
next cycle may start. When the error comparator senses that the output has fallen below the regulation threshold,  
another cycle begins.  
Higher Loads:  
If after the first light load cycle the output voltage has not reached its target value of 3.3V or 5.0V, the inductor current  
limit is increased to 0.7A. After the P-channel minimum on-time the next loading cycle is started if the output voltage is  
still below its target value. If the target value is reached, the inductor current must ramp down to zero before the next  
cycle may start. When the error comparator senses that the output has fallen below the regulation threshold, another  
load cycle begins (see Figure 12 on page 6 and Figure 24 on page 8).  
www.austriamicrosystems.com  
Revision 1.00  
9 - 16  
AS1325  
austriamicrosystems  
Data Sheet  
Shutdown  
Shutdown  
When pin SHDNN is low the AS1325 is switched off and no current is drawn from battery; when pin SHDNN is high the  
device is switched on. If SHDNN is driven from a logic-level output, the logic high-level (on) should be referenced to  
VOUT to avoid intermittently switching the device on.  
Note: If pin SHDNN is not used, it should be connected directly to pin OUT.  
In shutdown the battery input is connected to the output through the inductor and the internal synchronous rectifier P-  
FET. This allows the input battery to provide backup power for devices such as an idle microcontroller, memory, or real-  
time-clock, without the usual diode forward drop. In this way a separate backup battery is not needed.  
In cases where there is residual voltage during shutdown, some small amount of energy will be transferred from pin  
OUT to pin BATT immediately after shutdown, resulting in a momentary spike of the voltage at pin BATT. The ratio of  
CIN and COUT partly determine the size and duration of this spike, as does the current-sink ability of the input device.  
Low-Battery Cutoff  
The AS1325 SHDNN trip threshold (1.228V) can be used as an input voltage detector that disables the device when  
the battery input voltage falls to a pre-set level. An external resistor-divider network can be used to set the battery-  
detection voltage (see Figure 27).  
Figure 27. Low-Battery Cutoff Application Diagram  
+5.0V Output only  
+1.5 to +3.3V or  
+1.5 to +5.0V  
Battery  
+3.3V or +5.0V  
Output  
2
5
BATT  
OUT  
COUT  
22µF  
CIN  
22µF  
R3  
100kΩ  
4
6
Power-On  
Reset  
AS1325  
L1  
LX  
RESETN  
10µH  
R1  
220kΩ  
1
3
SHDNN  
GND  
R2  
10nF  
1MΩ  
For the resistor-divider network shown in Figure 27, calculate the value for R1 by:  
R1 = R2 x ((VOFF/VSHDNN) - 1)  
(EQ 1)  
Where:  
VOFF is the battery voltage at which the AS1325 shuts down.  
VSHDNN = 1.228V  
The value of R2 should be between 100kand 1Mto minimize battery drain.  
Note: Input ripple can cause false shutdowns, therefore to minimize the effect of ripple, a low-value capacitor from  
SHDNN to GND should be used to filter out input noise. The value of the capacitor should be such that the R/C  
time constant is > 2ms.  
www.austriamicrosystems.com  
Revision 1.00  
10 - 16  
AS1325  
austriamicrosystems  
Data Sheet  
Power-On Reset  
The AS1325 provides a power-on reset output (RESETN) that goes high-impedance when the output reaches 90% of  
its regulation point. RESETN goes low when the output is below 90% of the regulation point. A 100kto 1Mpullup  
resistor between pin RESETN and pin OUT can provide a microprocessor logic control signal.  
Note: Connect pin RESETN to GND when the power-on reset feature is not used.  
Antiringing Control  
If the inductor current falls to zero, an internal 100(typ) antiringing switch is connected from LX to BATT to minimize  
EMI. The antiringing control can be deactivated by not connecting the pin BATT. The device is supplied by the pin OUT  
- no supply current flows into pin BATT.  
www.austriamicrosystems.com  
Revision 1.00  
11 - 16  
AS1325  
austriamicrosystems  
Data Sheet  
8 Application Information  
Inductor Selection  
The control circuitry of the AS1325 permits a wide range of inductor values to be selected – from 4.7 to 22µH; The sys-  
tem is optimized for 10µH.  
The intended application should dictate the value of L. The trade-off between required PCB surface area and desired  
output ripple are the determining factors: smaller values for L require less PCB space, larger values of L reduce output  
ripple. If the value of L is large enough to prevent IMAX from being reached before tON expires, the AS1325 output  
power will be reduced.  
Note: Coils should be able to handle 500mARMS and have a ISAT 1A and should have a RIND 100m.  
Capacitor Selection  
Low ESR capacitors (X5R or X7R) should be used to minimize the output voltage ripple.  
COUT Selection  
Choose a COUT value to achieve the desired output ripple. A 22µF ceramic capacitor is a good initial value. A larger  
value for COUT can be used to further reduce ripple and improve AS1325 efficiency.  
CIN Selection  
CIN reduces the peak current drawn from the battery and can be the same value as COUT.  
External Diode (5V Output only)  
An external Schottky diode must be connected, in parallel with the on-chip synchronous rectifier, from LX to OUT. Use  
diodes such as MBR0520L, EP05Q03L, or the generic 1N5817. The diode should be rated for 500mA, since it carries  
current during startup and after the synchronous rectifier turns off. The Schottky diode must be connected as close to  
the IC as possible. Ordinary rectifier diodes must not be used, since the slow recovery rate will compromise efficiency.  
PC Board Layout and Grounding  
Well-designed printed circuit-board layout is important for minimizing ground bounce and noise.  
Place pin GND lead and the ground leads of CIN and COUT as close to the device as possible.  
Keep the lead to pin LX as short as possible.  
To maximize output power and efficiency and minimize output ripple voltage, use a ground plane and solder the  
GND pin directly to the ground plane.  
www.austriamicrosystems.com  
Revision 1.00  
12 - 16  
AS1325  
austriamicrosystems  
Data Sheet  
Pin Assignments  
9 Pinout and Packaging  
Pin Assignments  
Figure 28. Pin Assignments (Top View)  
SHDNN  
RESETN  
OUT  
1
2
6
5
BATT  
GND  
AS1325  
LX  
3
4
Pin Descriptions  
Table 4. Pin Descriptions  
Name  
Pin Number  
Description  
Active-Low Logic Shutdown Input  
0 = The AS1325 is off and the supply current is 1µA (typ).  
SHDNN  
1
1 = The AS1325 is on.  
Battery Voltage Input  
Ground  
BATT  
GND  
2
3
4
5
6
External Inductor Connection  
Output Voltage  
LX  
OUT  
Active-Low reset output  
RESETN  
www.austriamicrosystems.com  
Revision 1.00  
13 - 16  
AS1325  
austriamicrosystems  
Data Sheet  
Package Drawings and Markings  
Package Drawings and Markings  
The AS1325 is available in a 6-pin SOT23 package.  
Figure 29. 6-pin SOT23 Package  
Notes:  
Symbol  
Min  
0.90  
0.00  
0.90  
0.35  
0.08  
2.80  
2.60  
1.50  
0.35  
Max  
1.45  
0.15  
1.30  
0.50  
0.20  
3.00  
3.00  
1.75  
0.55  
1. All dimensions are in millimeters.  
A
A1  
A2  
b
2. Foot length is measured at the intercept point between datum  
A and lead surface.  
3. Package outline exclusive of mold flash and metal burr.  
4. Pin 1 is the lower left pin when reading the top mark from left  
to right.  
C
D
5. Pin 1 identifier dot is 0.3mm.φ min and is located above pin 1.  
6. Meets JEDEC MO178.  
E
E1  
L
e
0.95 REF  
α
0º  
10º  
www.austriamicrosystems.com  
Revision 1.00  
14 - 16  
AS1325  
austriamicrosystems  
Data Sheet  
Package Drawings and Markings  
10 Ordering Information  
The AS1325 is available as the standard products shown in Table 5.  
Table 5. Ordering Information  
Part  
Marking  
ASKY  
Description  
Delivery Form  
Package  
AS1325-BSTT-33  
AS1325-BSTT-50  
300mA Step-Up DC-DC Converter  
185mA Step-Up DC-DC Converter  
Tape and Reel  
Tape and Reel  
6-pin SOT23  
6-pin SOT23  
ASK6  
www.austriamicrosystems.com  
Revision 1.00  
15 - 16  
AS1325  
austriamicrosystems  
Data Sheet  
Package Drawings and Markings  
Copyrights  
Copyright © 1997-2006, austriamicrosystems AG, Schloss Premstaetten, 8141 Unterpremstaetten, Austria-Europe.  
Trademarks Registered ®. All rights reserved. The material herein may not be reproduced, adapted, merged, trans-  
lated, stored, or used without the prior written consent of the copyright owner.  
All products and companies mentioned are trademarks or registered trademarks of their respective companies.  
Disclaimer  
Devices sold by austriamicrosystems AG are covered by the warranty and patent indemnification provisions appearing  
in its Term of Sale. austriamicrosystems AG makes no warranty, express, statutory, implied, or by description regarding  
the information set forth herein or regarding the freedom of the described devices from patent infringement. austriami-  
crosystems AG reserves the right to change specifications and prices at any time and without notice. Therefore, prior  
to designing this product into a system, it is necessary to check with austriamicrosystems AG for current information.  
This product is intended for use in normal commercial applications. Applications requiring extended temperature  
range, unusual environmental requirements, or high reliability applications, such as military, medical life-support or life-  
sustaining equipment are specifically not recommended without additional processing by austriamicrosystems AG for  
each application. For shipments of less than 100 parts the manufacturing flow might show deviations from the standard  
production flow, such as test flow or test location.  
The information furnished here by austriamicrosystems AG is believed to be correct and accurate. However,  
austriamicrosystems AG shall not be liable to recipient or any third party for any damages, including but not limited to  
personal injury, property damage, loss of profits, loss of use, interruption of business or indirect, special, incidental or  
consequential damages, of any kind, in connection with or arising out of the furnishing, performance or use of the tech-  
nical data herein. No obligation or liability to recipient or any third party shall arise or flow out of  
austriamicrosystems AG rendering of technical or other services.  
Contact Information  
Headquarters  
austriamicrosystems AG  
A-8141 Schloss Premstaetten, Austria  
Tel: +43 (0) 3136 500 0  
Fax: +43 (0) 3136 525 01  
For Sales Offices, Distributors and Representatives, please visit:  
http://www.austriamicrosystems.com  
austriamicrosystems – a leap ahead  
www.austriamicrosystems.com  
Revision 1.00  
16 - 16  

相关型号:

AS1325-BSTT-33

300mA Step-Up DC-DC Converter
AMSCO

AS1325-BSTT-50

300mA Step-Up DC-DC Converter
AMSCO

AS1326

High Current, 0.8A DC-DC Step-Up Converters
AMSCO

AS1326A

High Current, 0.8A DC-DC Step-Up Converters
AMSCO

AS1326A-BTDR

High Current, 0.8A DC-DC Step-Up Converters
AMSCO

AS1326A-BTDT

High Current, 0.8A DC-DC Step-Up Converters
AMSCO

AS1326B

High Current, 0.8A DC-DC Step-Up Converters
AMSCO

AS1326B-BTDR

High Current, 0.8A DC-DC Step-Up Converters
AMSCO

AS1326B-BTDT

High Current, 0.8A DC-DC Step-Up Converters
AMSCO

AS1326_04

High Current, 0.8A DC-DC Step-Up Converters
AMSCO

AS1326_1

High Current, 0.8A DC-DC Step-Up Converters
AMSCO

AS1329

Low Voltage, Micropower, DC-DC Step-Up Converters
AMSCO