EVB-EP53A7LQI [ALTERA]

1A PowerSoC Light Load Mode Buck Regulator with Integrated Inductor;
EVB-EP53A7LQI
型号: EVB-EP53A7LQI
厂家: ALTERA CORPORATION    ALTERA CORPORATION
描述:

1A PowerSoC Light Load Mode Buck Regulator with Integrated Inductor

文件: 总19页 (文件大小:998K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Enpirion® Power Datasheet  
EP53A7LQI/EP53A7HQI 1A PowerSoC  
Light Load Mode Buck Regulator  
with Integrated Inductor  
Description  
Features  
The EP53A7xQI (x = L or H) is a 1000mA  
PowerSOC. The EP53A7xQI integrates MOSFET  
switches, control, compensation, and the  
magnetics in an advanced 3mm x 3mm QFN  
Package.  
Integrated Inductor Technology  
3mm x 3mm x 1.1mm QFN package  
Total Solution Footprint < 21mm2  
Low VOUT ripple for RF compatibility  
High efficiency, up to 94%  
Integrated magnetics enables a tiny solution  
footprint, low output ripple, low part-count, and  
high reliability, while maintaining high efficiency.  
The complete solution can be implemented in as  
little as 21mm2.  
1000mA continuous output current  
55µA quiescent current  
Less than 1µA standby current  
A proprietary light load mode (LLM) provides high 5 MHz switching frequency  
efficiency in light load conditions.  
3 pin VID for glitch free voltage scaling  
The EP53A7xQI uses a 3-pin VID to easily select  
the output voltage setting. Output voltage  
settings are available in 2 optimized ranges  
providing coverage for typical VOUT settings.  
VOUT Range 0.6V to V – 0.5V  
IN  
Short circuit and over current protection  
UVLO and thermal protection  
IC level reliability in a PowerSOC solution  
The VID pins can be changed on the fly for fast  
dynamic voltage scaling. EP53A7LQI further has  
the option to use an external voltage divider.  
Application  
Portable wireless and RF applications  
The EP53A7xQI offers the optimal combination  
of very small solution footprint and advanced  
performance features.  
Solid state storage applications  
Space constrained applications requiring high  
efficiency and very small solution size  
3.5mm  
100 ohm  
4.7uF  
VOUT  
100 Ohm  
PVIN  
VOUT  
VIN  
VSENSE  
AVIN  
ENABLE  
LLM  
10µF  
4.7µF  
VFB  
VS0  
EP53A7xQI  
6mm  
VS1  
VS2  
AGND  
PGND  
10uF  
Figure 2: Typical Application Schematic  
Figure 1: Total Solution Footprint  
www.altera.com/enpirion  
01543  
October 11, 2013  
Rev D  
EP53A7LQI/EP53A7HQI  
Pin Assignments(Top View)  
Ordering Information  
Part Number  
Comment  
Package  
EP53A7LQI  
LOW VID Range 16-pin QFN T&R  
HIGH VID Range 16-pin QFN T&R  
EP53A7LQI Evaluation Board  
EP53A7HQI  
EVB-EP53A7LQI  
EVB-EP53A7HQI  
EP53A7HQI Evaluation Board  
Figure 3: EP53A7LQI Pin Out Diagram (Top View)  
Figure 4: EP53A7HQI Pin Out Diagram (Top View)  
Pin Description  
PIN  
NAME  
FUNCTION  
NO CONNECT – These pins are internally connected to the common switching node of the  
internal MOSFETs. NC (SW) pins are not to be electrically connected to any external signal,  
ground, or voltage. However, they must be soldered to the PCB. Failure to follow this  
guideline may result in part malfunction or damage to the device.  
Power ground. Connect this pin to the ground electrode of the Input and output filter  
capacitors.  
1, 15,  
16  
NC(SW)  
2
3
PGND  
LLM  
LLM ( Light load mode – “LLM”) pin. Logic-High enables automatic LLM/PWM and logic-  
low places the device in fixed PWM operation.  
VFB  
NC  
VSENSE  
EP53A7LQI: Feed back pin for external resistor divider option.  
EP53A7HQI: No Connect  
Sense pin for preset output voltages. Refer to application section for proper configuration.  
4
5
Analog ground. This is the quiet ground for the internal control circuitry, and the ground  
return for external feedback voltage divider  
Regulated Output Voltage. Refer to application section for proper layout and decoupling.  
6
AGND  
VOUT  
7, 8  
2
www.altera.com/enpirion  
01543  
October 11, 2013  
Rev D  
EP53A7LQI/EP53A7HQI  
PIN  
NAME  
FUNCTION  
Output voltage select. VS2 = pin 9, VS1 = pin 10, VS0 = pin 11.  
EP53A7LQI: Selects one of seven preset output voltages or an external resistor divider.  
EP53A7HQI: Selects one of eight preset output voltages.  
9, 10,  
11  
VS2, VS1,  
VS0  
(Refer to section on output voltage select for more details.)  
Output Enable. Enable = logic high; Disable = logic low  
Input power supply for the controller circuitry. Connect to PVIN through a 100 Ohm resistor.  
Input Voltage for the MOSFET switches.  
12  
13  
14  
ENABLE  
AVIN  
PVIN  
Absolute Maximum Ratings  
CAUTION: Absolute Maximum ratings are stress ratings only. Functional operation beyond the  
recommended operating conditions is not implied. Stress beyond the absolute maximum ratings may  
cause permanent damage to the device. Exposure to absolute maximum rated conditions for  
extended periods may affect device reliability.  
PARAMETER  
SYMBOL MIN  
MAX  
UNITS  
Input Supply Voltage  
VIN  
-0.3  
-0.3  
-0.3  
6.0  
V
VIN+ 0.3  
2.7  
V
V
Voltages on: ENABLE, VSENSE, VSO – VS2  
Voltages on: VFB (EP53A7LQI)  
Maximum Operating Junction Temperature  
Storage Temperature Range  
TJ-ABS  
TSTG  
150  
150  
°C  
°C  
°C  
V
-65  
Reflow Temp, 10 Sec, MSL3 JEDEC J-STD-020C  
ESD Rating (based on Human Body Mode)  
260  
2000  
Recommended Operating Conditions  
PARAMETER  
Input Voltage Range  
SYMBOL MIN  
MAX UNITS  
VIN  
TA  
TJ  
2.4  
- 40  
- 40  
5.5  
V
Operating Ambient Temperature  
+85  
°C  
°C  
Operating Junction Temperature  
+125  
Thermal Characteristics  
PARAMETER  
Thermal Resistance: Junction to Ambient –0 LFM (Note 1)  
SYMBOL  
θJA  
TYP  
UNITS  
°C/W  
80  
+155  
25  
Thermal Overload Trip Point  
TJ-TP  
°C  
°C  
Thermal Overload Trip Point Hysteresis  
Note 1: Based on a four layer copper board and proper thermal design per JEDEC EIJ/JESD51 standards  
3
www.altera.com/enpirion  
01543  
October 11, 2013  
Rev D  
EP53A7LQI/EP53A7HQI  
Electrical Characteristics  
NOTE: TA = -40°C to +85°C unless otherwise noted. Typical values are at TA = 25°C, VIN = 3.6V.  
CIN = -4.7µF MLCC, COUT = 10µF MLCC  
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX UNITS  
Operating Input Voltage  
VIN  
2.4  
5.5  
V
Under Voltage Lock-out –  
VIN Rising  
VUVLO_R  
2.0  
V
Under Voltage Lock-out –  
VIN Falling  
VUVLO_F  
RDO  
1.9  
V
mΩ  
V
Drop Out Resistance  
Input to Output Resistance  
350  
500  
VIN-VDO  
3.3  
0.6  
1.8  
EP53A7LQI (VDO = ILOAD X RDO  
EP53A7HQI  
)
Output Voltage Range  
VOUT  
Dynamic VoltageSlew  
Rate  
EP53A7LQI  
EP53A7HQI  
4
8
V/mS  
%
VSLEW  
TA = 25°C, VIN = 3.6V;  
ILOAD = 100mA ;  
0.8V ≤ VOUT 3.3V  
VID Preset VOUT Initial  
Accuracy  
VOUT  
-2  
+2  
TA = 25°C, VIN = 3.6V;  
ILOAD = 100mA ;  
0.8V ≤ VOUT ≤ 3.3V  
Feedback Pin Voltage  
Initial Accuracy  
VFB  
.588  
0.6  
0.612  
V
Line Regulation  
2.4V ≤ VIN 5.5V  
0.03  
0.6  
30  
%/V  
%/A  
VOUT_LINE  
VOUT_LOAD  
VOUT_TEMPL  
Load Regulation  
0A ≤ ILOAD 1000mA  
Temperature Variation  
ppm/°C  
-40°C ≤ TA +85°C  
Output Current  
IOUT  
ISD  
1000  
mA  
µA  
Shut-down Current  
Enable = Low  
0.75  
55  
EP53A7HQI Operating  
Quiescent Current  
ILOAD=0; Preset Output Voltages,  
IQ  
µA  
LLM=High  
EP53A7LQI Operating  
Quiescent Current  
I
LOAD=0; Preset Output Voltages,  
IQ  
65  
1.4  
µA  
A
LLM=High  
2.4V ≤ VIN 5.5V  
0.6V ≤ VOUT 3.3V  
OCP Threshold  
ILIM  
IFB  
1.25  
Feedback Pin Input  
Current  
Note 1  
Note 1  
<100  
nA  
VS0-VS2, Pin Logic Low  
VS0-VS2, Pin Logic High  
VVSLO  
VVSHI  
0.0  
1.4  
0.3  
VIN  
V
V
VS0-VS2, Pin Input  
Current  
IVSX  
<100  
<100  
nA  
Enable Pin Logic Low  
Enable Pin Logic High  
Enable Pin Current  
VENLO  
VENHI  
IENABLE  
0.3  
V
V
1.4  
700  
1.4  
Note 1  
nA  
Minimum difference between VIN  
LLM Engage Headroom  
mV  
and VOUT to ensure proper LLM  
operation  
LLM Pin Logic Low  
LLM Pin Logic High  
VLLMLO  
VLLMHI  
0.3  
V
V
4
www.altera.com/enpirion  
01543  
October 11, 2013  
Rev D  
EP53A7LQI/EP53A7HQI  
PARAMETER  
LLM Pin Current  
SYMBOL  
ILLM  
TEST CONDITIONS  
MIN  
TYP  
<100  
5
MAX UNITS  
nA  
Operating Frequency  
FOSC  
MHz  
Soft Start Operation  
EP53A7LQI (VID only)  
EP53A7HQI (VID only)  
4
8
Soft Start Slew Rate  
V/mS  
VSS  
TSS  
Soft Start Rise Time  
EP53A7LQI (VFB mode); Note 2  
170  
225  
280  
µS  
Note 1: Parameter guaranteed by design  
Note 2: Measured from when VIN VUVLO_R & ENABLE pin crosses its logic High threshold.  
Typical PerformanceCharacteristics  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
LLM  
LLM  
VOUT=1.2V  
VOUT=1.8V  
PWM  
PWM  
10  
100  
Load Current (mA)  
1000  
10  
100  
Load Current (mA)  
1000  
Efficiency vs. Load Current: VOUT = 1.2V, VIN (from  
top to bottom) = 2.5, 3.3, 3.7, 4.3, 5.0V  
Efficiency vs. Load Current: VOUT = 1.8V, VIN (from  
top to bottom) = 2.5, 3.3, 3.7, 4.3, 5.0V  
95  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
95  
LLM  
LLM  
90  
85  
80  
75  
70  
65  
60  
55  
50  
45  
VOUT=2.5V  
VOUT=3.3V  
PWM  
PWM  
10  
100  
Load Current (mA)  
1000  
10  
100  
1000  
Load Current (mA)  
Efficiency vs. Load Current: VOUT = 2.5V, VIN (from  
top to bottom) = 3.3, 3.7, 4.3, 5.0V  
Efficiency vs. Load Current: VOUT = 3.3V, VIN (from  
top to bottom) = 3.7, 4.3, 5.0V  
5
www.altera.com/enpirion  
01543  
October 11, 2013  
Rev D  
EP53A7LQI/EP53A7HQI  
Start Up Waveform: VIN = 5.0V, VOUT = 3.3V;  
ILOAD = 1000mA; VID Mode  
Start Up Waveform: VIN = 5.0V, VOUT = 3.3V;  
ILOAD = 10mA; VID Mode  
Shut-down Waveform: VIN = 5.0V, VOUT = 3.3V;  
ILOAD = 1000mA, PWM  
Shut-down Waveform: VIN = 5.0V, VOUT = 3.3V;  
ILOAD = 10mA, PWM  
5mV/Div  
50mV/Div  
Output Ripple: VIN = 5.0V, VOUT = 1.2V, Load = 10mA  
LLM enabled  
Output Ripple: VIN = 5.0V, VOUT = 1.2V,  
Load = 1A  
6
www.altera.com/enpirion  
01543  
October 11, 2013  
Rev D  
EP53A7LQI/EP53A7HQI  
50mV/Div  
5mV/Div  
Output Ripple: VIN = 5.0V, VOUT = 3.3V,  
Load = 1A  
Output Ripple: VIN = 5.0V, VOUT = 3.3V, Load = 10mA  
LLM enabled  
50mV/Div  
5mV/Div  
Output Ripple: VIN = 3.3V, VOUT = 1.8V, Load = 10mA  
LLM enabled  
Output Ripple: VIN = 3.3V, VOUT = 1.8V  
Load = 1A  
5mV/Div  
50mV/Div  
Output Ripple: VIN = 3.3V, VOUT = 1.2V,  
Load = 1A  
Output Ripple: VIN = 3.3V, VOUT = 1.2V, Load = 10mA  
LLM enabled  
7
www.altera.com/enpirion  
01543  
October 11, 2013  
Rev D  
EP53A7LQI/EP53A7HQI  
Load Transient: VIN = 5.0V, VOUT = 3.3V  
Load stepped from 0mA to 1000mA  
Load Transient: VIN = 5.0V, VOUT = 3.3V  
Load steppedfrom 10mA to 1000mA, LLM enabled  
Load Transient: VIN = 5.0V, VOUT = 1.2V  
Load stepped from 0mA to 1000mA  
Load Transient: VIN = 5.0V, VOUT = 1.2V  
Load steppedfrom 10mA to 1000mA, LLM enabled  
8
www.altera.com/enpirion  
01543  
October 11, 2013  
Rev D  
EP53A7LQI/EP53A7HQI  
Load Transient: VIN = 3.7V, VOUT = 1.2V  
Load stepped from 0mA to 1000mA  
Load Transient: VIN = 3.7V, VOUT = 1.2V  
Load steppedfrom 10mA to 1000mA, LLM enabled  
Load Transient: VIN = 3.3V, VOUT = 1.8V  
Load steppedfrom 10mA to 1000mA, LLM enabled  
Load Transient: VIN = 3.3V, VOUT = 1.8V  
Load stepped from 0mA to 1000mA  
9
www.altera.com/enpirion  
01543  
October 11, 2013  
Rev D  
EP53A7LQI/EP53A7HQI  
Functional Block Diagram  
LLM  
PVIN  
UVLO  
Thermal Limit  
Current Limit  
Mode Logic  
NC(SW)  
VOUT  
ENABLE  
Soft Start  
P-Drive  
N-Drive  
Logic  
(-)  
PWM  
Comp  
(+)  
PGND  
VSENSE  
Sawtooth  
Generator  
Compensation  
Network  
(-)  
Switch  
VFB  
Error  
Amp  
(+)  
DAC  
Voltage  
Select  
VREF  
Package Boundry  
AVIN AGND  
VS0 VS1 VS2  
Figure 5: Functional Block Diagram  
10  
www.altera.com/enpirion  
01543  
October 11, 2013  
Rev D  
EP53A7LQI/EP53A7HQI  
Detailed Description  
Functional Overview  
Integrated Inductor  
The EP53A7xQI utilizes a proprietary low loss  
integrated inductor. The integration of the  
inductor greatly simplifies the power supply  
design process. The integrated inductor  
provides the optimal solution to the complexity,  
output ripple, and noise that plague low power  
DCDC converter design.  
The EP53A7xQI requires only 2 small MLCC  
capacitors and an 0201 resistor for a complete  
DC-DC converter solution.  
integrates MOSFET switches, PWM controller,  
Gate-drive, compensation, and inductor into a  
tiny 3mm x 3mm x 1.1mm QFN package.  
Advanced package design, along with the high  
level of integration, provides very low output  
The device  
Voltage Mode Control  
ripple and noise.  
The EP53A7xQI uses  
voltage mode control for high noise immunity  
and load matching to advanced ≤90nm loads.  
A 3-pin VID allows the user to choose from one  
of 8 output voltage settings. The EP53A7xQI  
comes with two VID output voltage ranges.  
The EP53A7HQI provides VOUT settings from  
1.8V to 3.3V, the EP53A7LQI provides VID  
settings from 0.8V to 1.5V, and also has an  
external resistor divider option to program  
The EP53A7xQI utilizes an integrated type III  
compensation network. Voltage mode control  
is inherently impedance matched to the sub  
90nm process technology that is used in  
today’s advanced ICs. Voltage mode control  
also provides a high degree of noise immunity  
at light load currents so that low ripple and high  
accuracy are maintained over the entire load  
range.  
The very high switching frequency  
output setting over the 0.6V to V -0.5V range.  
allows for a very wide control loop bandwidth  
IN  
The EP53A7xQI provides the industry’s highest  
power density of any 1A DCDC converter  
solution.  
and hence excellent transient performance.  
Light Load Mode (LLM) Operation  
The EP53A7xQI uses a proprietary light load  
mode to provide high efficiency in the low load  
operating condition. When the LLM pin is high,  
the device is in automatic LLM/PWM mode.  
When the LLM pin is low, the device is in PWM  
mode. In automatic LLM/PWM mode, when a  
light load condition is detected, the device will  
(1) step VOUT up by approximately 1.5% above  
the nominal operating output voltage setting,  
The key enabler of this revolutionary  
integration is Altera Enpirion’s proprietary  
power MOSFET technology. The advanced  
MOSFET switches are implemented in deep-  
submicron CMOS to supply very low switching  
loss at high switching frequencies and to allow  
a high level of integration. The semiconductor  
process allows seamless integration of all  
switching, control, and compensation circuitry.  
VNOM, and then (2) shut down unnecessary  
The proprietary magnetics design provides  
high-density/high-value magnetics in a very  
small footprint. Altera Enpirion magnetics are  
carefully matched to the control and  
compensation circuitry yielding an optimal  
solution with assured performance over the  
entire operating range.  
circuitry, and (3) monitor VOUT. When VOUT falls  
below VNOM, the device will repeat (1), (2), and  
(3). The voltage step up, or pre-positioning,  
improves transient droop when a load transient  
causes a transition from LLM mode to PWM  
mode. If a load transient occurs, causing VOUT  
to fall below the threshold VMIN, the device will  
exit LLM operation and begin normal PWM  
Protection features include under-voltage lock-  
out (UVLO), over-current protection (OCP),  
short circuit protection, and thermal overload  
protection.  
operation. Figure  
6
demonstrates VOUT  
behavior during transition into and out of LLM  
operation.  
11  
www.altera.com/enpirion  
01543  
October 11, 2013  
Rev D  
EP53A7LQI/EP53A7HQI  
LLM  
LLM Threshold Current vs. VOUT  
Ripple  
VMAX  
250  
200  
150  
100  
50  
PWM  
Ripple  
VNOM  
VMIN  
VOUT  
VIN=5V (top curve)  
VIN=4.2V  
Load  
Step  
VIN=3.7V  
VIN=3.3V (bottom curve)  
0
IOUT  
0.8  
1.1  
1.4  
1.7  
2.0  
2.3  
2.6  
2.9  
3.2  
VOUT (V)  
Figure 6: VOUT Behavior in LLM Operation  
Figure 8: Typical load current for LLM engage and  
disengage versus VOUT for selected input voltages  
Table 1: Load current below which the device can be  
certain to be in LLM operation. These values are  
guaranteed by design  
VIN  
VOUT  
3.30  
3.00  
2.90  
2.60  
2.50  
2.20  
2.10  
1.80  
1.50  
1.45  
1.20  
1.15  
1.10  
1.05  
0.80  
3.3  
3.7  
4.3  
105  
122  
126  
136  
138  
141  
141  
138  
130  
128  
117  
114  
111  
108  
92  
5.0  
147  
156  
158  
162  
162  
160  
158  
150  
138  
136  
122  
119  
116  
113  
94  
62  
89  
Device exits LLM,  
tests load current  
56  
69  
106  
111  
120  
122  
124  
120  
119  
111  
108  
106  
104  
89  
101  
105  
111  
111  
111  
105  
103  
101  
99  
Figure 7: VOUT Droop during Periodic LLM Exit  
Many multi-mode DCDC converters suffer from  
a condition that occurs when the load current  
increases only slowly so that there is no load  
transient driving VOUT below the VMIN threshold  
(shown in Figure 6). In this condition, the  
device would never exit LLM operation. This  
could adversely affect efficiency and cause  
unwanted ripple. To prevent this from  
occurring, the EP53A7xQI periodically exits  
LLM mode into PWM mode and measures the  
load current. If the load current is above the  
LLM threshold current, the device will remain in  
PWM mode. If the load current is below the  
LLM threshold, the device will re-enter LLM  
operation. There will be a small droop in VOUT  
at the point where the device exits and re-  
enters LLM, as shown in Figure 7.  
87  
which the device will enter LLM operation. The  
actual load current at which the device will  
enter LLM operation can vary by +/-30%. Table  
1 shows the minimum load current below which  
the device is guaranteed to be in LLM  
operating mode.  
To ensure normal LLM operation, LLM mode  
should be enabled/disabled with specific  
sequencing. For applications with explicit LLM  
pin control, enable LLM after VIN ramp up  
complete; disable LLM before VIN ramp down.  
For applications with ENABLE control, tie LLM  
to ENABLE; enable device after VIN ramp up  
complete and disable device before VIN ramp  
The load current at which the device will enter  
LLM mode is a function of input and output  
voltage. Figure 8 shows the typical value at  
12  
www.altera.com/enpirion  
01543  
October 11, 2013  
Rev D  
 
 
 
 
EP53A7LQI/EP53A7HQI  
down begins. For devices with ENABLE and  
LLM tied to VIN, contact Altera Applications  
engineering for specific recommendations.  
EP53A7LUI in external divider mode:  
OUT_TOTAL_MAX = 2.25x10-4/VOUT Farads  
C
Increased output filter capacitance and/or  
increased bulk capacitance at the load will  
decrease the magnitude of the LLM ripple.  
Refer to the section on output filter capacitance  
for maximum values of output filter capacitance  
and the Soft-Start section for maximum bulk  
capacitance at the load.  
The nominal value for COUT is 10uF. See the  
applications section for more details.  
Over Current/Short Circuit Protection  
The current limit function is achieved by  
sensing the current flowing through a sense P-  
MOSFET which is compared to a reference  
current. When this level is exceeded the P-  
FET is turned off and the N-FET is turned on,  
pulling VOUT low. This condition is maintained  
for approximately 0.5mS and then a normal  
NOTE: For proper LLM operation the  
EP53A7xQI requires a minimum difference  
between V and VOUT of 700mV.  
If this  
IN  
condition is not met, the device cannot be  
assured proper LLM operation.  
soft start is initiated.  
If the over current  
NOTE: Automatic LLM/PWM is not available  
when using the external resistor divider option  
for VOUT programming.  
condition still persists, this cycle will repeat.  
Under Voltage Lockout  
During initial power up, an under voltage  
lockout circuit will hold-off the switching  
circuitry until the input voltage reaches a  
sufficient level to insure proper operation. If  
the voltage drops below the UVLO threshold,  
the lockout circuitry will again disable the  
switching. Hysteresis is included to prevent  
chattering between states.  
Soft Start  
Internal soft start circuits limit in-rush current  
when the device starts up from a power down  
condition or when the “ENABLE” pin is  
asserted “high”. Digital control circuitry limits  
the VOUT ramp rate to levels that are safe for  
the Power MOSFETS and the integrated  
inductor.  
Enable  
The EP53A7HQI has a soft-start slew rate that  
is twice that of the EP53A7LQI.  
The ENABLE pin provides a means to shut  
down the converter or enable normal  
When the EP53A7LUI is configured in external  
resistor divider mode, the device has a fixed  
VOUT ramp time. Therefore, the ramp rate will  
vary with the output voltage setting. Output  
voltage ramp time is given in the Electrical  
Characteristics Table.  
operation.  
A logic low will disable the  
converter and cause it to shut down. A logic  
high will enable the converter into normal  
operation.  
NOTE: The ENABLE pin must not be left  
floating.  
Excess bulk capacitance on the output of the  
device can cause an over-current condition at  
startup. The maximum total capacitance on  
the output, including the output filter capacitor  
and bulk and decoupling capacitance, at the  
load, is given as:  
Thermal Shutdown  
When excessive power is dissipated in the  
chip, the junction temperature rises. Once the  
junction temperature exceeds the thermal  
shutdown temperature, the thermal shutdown  
circuit turns off the converter output voltage  
thus allowing the device to cool. When the  
junction temperature decreases by 25C°, the  
device will go through the normal startup  
process.  
EP53A7LQI:  
C
OUT_TOTAL_MAX = COUT_Filter + COUT_BULK = 200uF  
EP53A7HQI:  
OUT_TOTAL_MAX = COUT_Filter + COUT_BULK = 100uF  
C
13  
www.altera.com/enpirion  
01543  
October 11, 2013  
Rev D  
EP53A7LQI/EP53A7HQI  
Application Information  
which in turn is connected to the non-inverting  
input of the error amplifier. This allows the use  
of a single feedback divider with constant loop  
gain and optimum compensation, independent  
of the output voltage selected.  
100 ohm  
VOUT  
PVIN  
VOUT  
VIN  
VSENSE  
AVIN  
ENABLE  
10µF  
4.7µF  
LLM  
VS0  
VS1  
VS2  
NOTE: The VID pins must not be left floating.  
AGND  
PGND  
EP53A7L Low VID Range Programming  
The EP53A7LQI is designed to provide a high  
degree of flexibility in powering applications  
that require low VOUT settings and dynamic  
voltage scaling (DVS). The device employs a  
3-pin VID architecture that allows the user to  
choose one of seven (7) preset output voltage  
settings, or the user can select an external  
voltage divider option. The VID pin settings  
can be changed on the fly to implement glitch-  
free voltage scaling.  
Figure 9: ApplicationCircuit, EP53A7HQI. Note that  
all control signals should be connected to an  
external control signal, AVIN or AGND.  
100 ohm  
VOUT  
PVIN  
VOUT  
VIN  
VSENSE  
AVIN  
ENABLE  
LLM  
10µF  
4.7µF  
VFB  
VS0  
VS1  
VS2  
Table 2: EP53A7LQI VID Voltage Select Settings  
AGND  
PGND  
VS2  
0
0
0
0
1
1
1
VS1  
0
0
1
1
0
0
1
VS0  
0
1
0
1
0
1
0
VOUT  
1.50  
1.45  
1.20  
1.15  
1.10  
1.05  
0.8  
Figure 10: Application Circuit, EP53A7LQI showing  
the VFB function.  
Output Voltage Programming  
1
1
1
EXT  
The EP53A7xQI utilizes a 3-pin VID to program  
the output voltage value. The VID is available  
in two sets of output VID programming ranges.  
The VID pins should be connected either to an  
external control signal, AVIN or to AGND to  
avoid noise coupling into the device. The VID  
pins must not be left floating.  
Table 2 shows the VS2-VS0 pin logic states for  
the EP53A7LQI and the associated output  
voltage levels.  
A logic “1” indicates a  
connection to AVIN or to a “high” logic voltage  
level. A logic “0” indicates a connection to  
AGND or to a “low” logic voltage level. These  
pins can be either hardwired to AVIN or AGND  
or alternatively can be driven by standard logic  
levels. Logic levels are defined in the electrical  
characteristics table. Any level between the  
logic high and logic low is indeterminate.  
The “Low” range is optimized for low voltage  
applications. It comes with preset VID settings  
ranging from 0.80V and 1.5V. This VID set  
also has an external divider option.  
To specify this VID range, order part number  
EP53A7LQI.  
EP53A7LQI External Voltage Divider  
The external divider option is chosen by  
connecting VID pins VS2-VS0 to AVIN or a  
logic “1” or “high”. The EP53A7LQI uses a  
separate feedback pin, VFB, when using the  
external divider. VSENSE must be connected to  
VOUT as indicated in Figure 11.  
The “High” VID set provides output voltage  
settings ranging from 1.8V to 3.3V.  
This  
version does not have an external divider  
option. To specify this VID range, order part  
number EP53A7HQI.  
Internally, the output of the VID multiplexer  
sets the value for the voltage reference DAC,  
14  
www.altera.com/enpirion  
01543  
October 11, 2013  
Rev D  
 
EP53A7LQI/EP53A7HQI  
or alternatively can be driven by standard logic  
levels. Logic levels are defined in the electrical  
characteristics table. Any level between the  
logic high and logic low is indeterminate.  
These pins must not be left floating.  
100 Ohm  
PVIN  
VSense  
VOUT  
VOUT  
VIN  
10µF  
AVIN  
4.7uF  
Ra  
Rb  
ENABLE  
Table 3: EP53A7HQI VID Voltage Select Settings  
VFB  
VS0  
VS1  
VS2  
VS2  
0
VS1  
0
VS0  
0
VOUT  
3.3  
LLM  
PGND AGND  
0
0
1
3.0  
0
1
0
2.9  
0
1
1
2.6  
1
0
0
2.5  
1
1
0
1
1
0
2.2  
2.1  
Figure 11: EP53A7LQI using external divider  
1
1
1
1.8  
The output voltage is selected by the following  
formula:  
Power-Up/Down Sequencing  
Ra  
Rb  
VOUT = 0.6V  
(
1+  
)
During power-up, ENABLE should not be  
asserted before PVIN, and PVIN should not be  
asserted before AVIN. The PVIN should never  
be powered when AVIN is off. During power  
down, the AVIN should not be powered down  
before the PVIN. Tying PVIN and AVIN or all  
three pins (AVIN, PVIN, ENABLE) together  
during power up or power down meets these  
requirements.  
Ra must be chosen as 237Kto maintain loop  
gain. Then Rb is given as:  
142.2x103  
=
Rb  
VOUT 0.6  
VOUT can be programmed over the range of  
0.6V to (V – 0.5V).  
IN  
NOTE: Dynamic Voltage Scaling is not allowed  
between internal preset voltages and external  
divider.  
Pre-Bias Start-up  
NOTE: LLM is not functional when using the  
external divider option. Tie the LLM pin to  
AGND when using this option.  
The EP53A7xQI does not support startup into  
a pre-biased condition. Be sure the output  
capacitors are not charged or the output of the  
EP53A7xQI is not pre-biased when the  
EP53A7xQI is first enabled.  
EP53A7HQI High VID Range  
Programming  
Input Filter Capacitor  
The EP53A7HQI VOUT settings are optimized  
for higher nominal voltages such as those  
required to power IO, RF, or IC memory. The  
preset voltages range from 1.8V to 3.3V.  
There are eight (8) preset output voltage  
settings. The EP53A7HQI does not have an  
The input filter capacitor requirement is a  
4.7µF 0402 or 0603 low ESR MLCC capacitor.  
Output Filter Capacitor  
The output filter capacitor requirement is a  
external divider option.  
As with the  
minimum of 10µF 0805 MLCC.  
Ripple  
EP53A7LQI, the VID pin settings can be  
changed while the device is enabled.  
performance can be improved by using 2x10µF  
0603 or 2x10µF 0805 MLCC capacitors.  
Table 3 shows the VS0-VS2 pin logic states for  
the EP53A7HQI and the associated output  
The maximum output filter capacitance next to  
the output pins of the device is 60µF low ESR  
MLCC capacitance. VOUT has to be sensed at  
the last output filter capacitor next to the  
EP53A7xQI.  
voltage levels.  
A logic “1” indicates a  
connection to AVIN or to a “high” logic voltage  
level. A logic “0” indicates a connection to  
AGND or to a “low” logic voltage level. These  
pins can be either hardwired to AVIN or AGND  
Additional bulk capacitance for decoupling and  
15  
www.altera.com/enpirion  
01543  
October 11, 2013  
Rev D  
 
 
EP53A7LQI/EP53A7HQI  
bypass can be placed at the load as long as  
there is sufficient separation between the VOUT  
Sense point and the bulk capacitance. The  
separation provides an inductance that isolates  
the control loop from the bulk capacitance.  
section on Soft-Start for the maximum total  
capacitance on the output.  
NOTE: The Input and Output capacitors must  
use a X5R or X7R or equivalent dielectric  
formulation.  
Y5V or equivalent dielectric  
NOTE: Excess total capacitance on the output  
(Output Filter + Bulk) can cause an over-  
formulations lose capacitance with frequency,  
bias, and temperature and are not suitable for  
switch-mode DC-DC converter filter applications.  
current condition at startup.  
Refer to the  
16  
www.altera.com/enpirion  
01543  
October 11, 2013  
Rev D  
EP53A7LQI/EP53A7HQI  
Layout Recommendation  
Figure 12 shows critical components and layer  
1 traces of a recommended minimum footprint  
EP53A7LQI/EP53A7HQI layout with ENABLE  
tied to V . Alternate ENABLE configurations,  
IN  
and other small signal pins need to be  
connected and routed according to specific  
customer application. Please see the Gerber  
files  
on  
the  
Altera  
website  
www.altera.com/enpirion for exact dimensions  
and other layers. Please refer to Figure 12  
while reading the layout recommendations in  
this section.  
Figure 12:Top PCB Layer Critical Components  
and Copper for Minimum Footprint  
Recommendation 1: Input and output filter  
capacitors should be placed on the same side  
of the PCB, and as close to the EP53A7QI  
package as possible. They should be  
connected to the device with very short and  
wide traces. Do not use thermal reliefs or  
spokes when connecting the capacitor pads to  
the respective nodes. The +V and GND traces  
between the capacitors and the EP53A7QI  
should be as close to each other as possible  
so that the gap between the two nodes is  
minimized, even under the capacitors.  
Recommendation 4: Multiple small vias  
should be used to connect the ground traces  
under the device to the system ground plane  
on another layer for heat dissipation. The drill  
diameter of the vias should be 0.33mm, and  
the vias must have at least 1 oz. copper plating  
on the inside wall, making the finished hole  
size around 0.20-0.26mm. Do not use thermal  
reliefs or spokes to connect the vias to the  
ground plane. It is preferred to put these vias  
under the capacitors along the edge of the  
GND copper closest to the +V copper. Please  
see Figure 12. These vias connect the  
input/output filter capacitors to the GND plane  
and help reduce parasitic inductances in the  
input and output current loops. If the vias  
cannot be placed under CIN and COUT, then put  
them just outside the capacitors along the  
GND. Do not use thermal reliefs or spokes to  
connect these vias to the ground plane.  
Recommendation 2: Input and output grounds  
are separated until they connect at the PGND  
pins. The separation shown on Figure 12  
between the input and output GND circuits  
helps minimize noise coupling between the  
converter input and output switching loops.  
Recommendation 3: The system ground  
plane should be the first layer immediately  
below the surface layer. This ground plane  
should be continuous and un-interrupted below  
the converter and the input/output capacitors.  
Please see the Gerber files on the Altera  
website www.altera.com/enpirion.  
Recommendation 5: AVIN is the power supply  
for the internal small-signal control circuits. It  
should be connected to the input voltage at a  
quiet point. In Figure 12 this connection is  
made with RAVIN at the input capacitor close  
to the V connection.  
IN  
17  
www.altera.com/enpirion  
01543  
October 11, 2013  
Rev D  
EP53A7LQI/EP53A7HQI  
Recommended PCB Footprint  
Figure 123: EP53A7xQI Package PCB Footprint  
18  
www.altera.com/enpirion  
01543  
October 11, 2013  
Rev D  
EP53A7LQI/EP53A7HQI  
Package and Mechanical  
Figure 14: EP53A7xQI Package Dimensions  
Contact Information  
Altera Corporation  
101 Innovation Drive  
San Jose, CA 95134  
Phone: 408-544-7000  
www.altera.com  
© 2013 Altera Corporation—Confidential. All rightsreserved. ALTERA, ARRIA, CYCLONE, ENPIRION, HARDCOPY, MAX,MEGACORE, NIOS,  
QUARTUS and STRATIXwordsand logosare trademarksof Altera Corporation andregistered inthe U.S. Patent andTrademarkOffice and inother  
countries. All other wordsand logosidentifiedastrademarksor service marks are the property of their respective holdersasdescribed at  
www.altera.com/common/legal.html. Altera warrantsperformance of itssemiconductor productsto current specificationsin accordancewith Altera's  
standard warranty, but reserves the right to make changesto any productsand servicesat any time without notice. Altera assumesno responsibility or  
liability arisingout of the applicationor use of any information, product, or service described herein except asexpressly agreed to in writing by Altera.  
Altera customersare advised to obtain thelatest version of device specificationsbefore relying on any publishedinformation andbefore placing orders  
for products or services.  
19  
www.altera.com/enpirion  
01543  
October 11, 2013  
Rev D  

相关型号:

EVB-EP53A8HQI

1A PowerSoC Synchronous Buck Regulator with Integrated Inductor
ALTERA

EVB-EP53A8LQI

1A PowerSoC Synchronous Buck Regulator with Integrated Inductor
ALTERA

EVB-JQKR15A14

Slide Potentiometers/EVA(B)JQ/EVA(B)NA/EVA(B)NB
PANASONIC

EVB-LAN9353

EVAL BOARD FOR LAN9353
MICROCHIP

EVB-SHM12

Ultra-Fast, 12-Bit Linear Monolithic Sample-Hold Amplifiers
ETC

EVB-USB3330

EVAL BOARD USB3330
MICROCHIP

EVB10803_01

BOARD EVALUATION FOR MLX10803
MELEXIS

EVB10803_03

BOARD EVALUATION FOR MLX10803
MELEXIS

EVB20020

Industrial ARCNET AT Adapter Card
SMSC

EVB20022

Industrial ARCNET AT Adapter Card
SMSC

EVB3011

1 GHz Quadrature Modulator
AGERE

EVB3013A

W3013 Indirect Quadrature Modulator with Gain Control
AGERE