ALD1721ESA [ALD]

EPAD⑩ MICROPOWER OPERATIONAL AMPLIFIER; EPAD ™微功耗运算放大器
ALD1721ESA
型号: ALD1721ESA
厂家: ADVANCED LINEAR DEVICES    ADVANCED LINEAR DEVICES
描述:

EPAD⑩ MICROPOWER OPERATIONAL AMPLIFIER
EPAD ™微功耗运算放大器

运算放大器 光电二极管
文件: 总10页 (文件大小:70K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
A
L
D
DVANCED  
INEAR  
EVICES, INC.  
ALD1721E/ALD1721  
EPAD™ MICROPOWER OPERATIONAL AMPLIFIER  
BENEFITS  
KEY FEATURES  
• Eliminates manual and elaborate  
EPAD ( Electrically Programmable Analog Device)  
User programmable V  
trimmer  
Computer-assisted trimming  
Rail-to-rail input/output  
Compatible with standard EPAD Programmer  
High precision through in-system circuit precision trimming  
system trimming procedures  
• Remote controlled automated trimming  
• In-System Programming capability  
• No external components  
• No internal chopper clocking noise  
• No chopper dynamic power dissipation  
• Simple and cost effective  
• Small package size  
• Extremely small total functional  
volume size  
OS  
Reduces or eliminates V , PSRR, CMRR and TCV  
errors  
OS  
OS  
System level “calibration” capability  
Application Specific Programming mode  
In-System Programming mode  
Electrically programmable to compensate for  
external component tolerances  
Achieves 0.01pA input bias current and 35µV  
input offset voltage simultaneously  
Compatible with industry standard pinout  
• Low system implementation cost  
• Micropower and Low Voltage  
APPLICATIONS  
GENERAL DESCRIPTION  
• Sensor interface circuits  
The ALD1721E/ALD1721 is a monolithic rail-to-rail precision CMOS  
operational amplifier with integrated user programmable EPAD (Electri-  
callyProgrammableAnalogDevice)basedoffsetvoltageadjustment. The  
ALD1721E/ALD1721 operational amplifier is a direct replacement of the  
ALD1701 operational amplifier, with the added feature of user-program-  
mable offset voltage trimming resulting in significantly enhanced total  
system performance and user flexibility. EPAD technology is an exclusive  
ALD design which has been refined for analog applications where preci-  
sion voltage trimming is necessary to achieve a desired performance. It  
utilizes CMOS FETs as in-circuit elements for trimming of offset voltage  
bias characteristics with the aid of a personal computer under software  
control. Once programmed, the set parameters are stored indefinitely  
within the device even after power-down. EPAD offers the circuit designer  
a convenient and cost-effective trimming solution for achieving the very  
highest amplifier/system performance.  
• Transducer biasing circuits  
• Capacitive and charge integration circuits  
• Biochemical probe interface  
• Signal conditioning  
• Portable instruments  
• High source impedance electrode  
amplifiers  
• Precision Sample and Hold amplifiers  
• Precision current to voltage converter  
• Error correction circuits  
• Sensor compensation circuits  
• Precision gain amplifiers  
• Periodic In-system calibration  
• System output level shifter  
The ALD1721E/ALD1721 operational amplifier features rail-to-rail input  
and output voltage ranges, tolerance to over-voltage input spikes of  
300mV beyond supply rails, capacitive loading up to 50pF, extremely low  
input currents of 0.01pA typical, high open loop voltage gain, useful  
bandwidth of 700KHz, slew rate of 0.7 V/µs, and low typical supply current  
of 120 uA.  
PIN CONFIGURATION  
VE1  
-IN  
1
8
7
6
5
VE2  
ORDERING INFORMATION  
Operating Temperature Range  
+
V
2
-55°C to +125°C  
0°C to +70°C  
0°C to +70°C  
+IN  
3
4
OUT  
N/C  
8-Pin  
8-Pin  
8-Pin  
-
CERDIP  
Small Outline  
Plastic Dip  
V
Package  
Package (SOIC)  
Package  
TOP VIEW  
DA, PA, SA PACKAGE  
ALD1721E DA  
ALD1721 DA  
ALD1721E SA  
ALD1721 SA  
ALD1721E PA  
ALD1721 PA  
* Contact factory for industrial temperature range  
© 1998 Advanced Linear Devices, Inc. 415Tasman Drive, Sunnyvale, California 94089 -1706 Tel: (408) 747-1155 Fax: (408) 747-1286 http://www.aldinc.com  
errors introduced by other circuit components, such as resis-  
tor or sensor induced voltage errors, can also be corrected.  
In this way, the “in-system” circuit output can be adjusted to  
a desired level eliminating other trimming components.  
FUNCTIONAL DESCRIPTION  
TheALD1721E/ALD1721usesEPADsasin-circuitelements  
for trimming of offset voltage bias characteristics. Each  
ALD1721E/ALD1721 has a pair of EPAD-based circuits  
connected such that one circuit is used to adjust V  
direction and the other circuit is used to adjust V  
other direction.  
in one  
in the  
OS  
OS  
Functional Description of ALD1721  
The ALD1721 is pre-programmed at the factory under stan-  
dardoperatingconditionsforminimumequivalentinputoffset  
voltage. TheALD1721offerssimilarprogrammablefeatures  
as the ALD1721E, but with more limited offset voltage pro-  
gram range. It is intended for standard operational amplifier  
applications where little or no electrical programming by the  
user is necessary.  
Functional Description of ALD1721E  
While each of the EPAD devices is a monotonically adjust-  
ableprogrammabledevice,theV oftheALD1721E canbe  
OS  
adjusted many times in both directions. Once programmed,  
the set V  
levels are stored permanently, even when the  
OS  
device power is removed.  
USER PROGRAMMABLE Vos FEATURE  
The ALD1721E provides the user with an operational ampli-  
fier that can be trimmed with user application-specific pro-  
gramming or in-system programming conditions. User appli-  
cation-specific circuit programming refers to the situation  
wheretheTotalInputOffsetVoltageoftheALD1721E canbe  
trimmed with the actual intended operating conditions.  
Each ALD1721E/ALD1721 has two pins named VE1 and  
VE2 which are internally connected to an internal offset bias  
circuit. VE1/VE2 have initial typical values of 1.2 /1.7 Volt.  
ThevoltageonthesepinscanbeprogrammedusingtheALD  
E100 EPAD Programmer and the appropriate Adapter Mod-  
ule. The useful programming range of VE1 and VE2 is 1.2  
Volt to 3.0 Volts. VE1 and VE2 pins are programming pins,  
used during programming mode. The Programming pin is  
used during electrical programming to inject charge into the  
internal EPADs. Increases of VE1 decrease the offset volt-  
age while increases of VE2 increase the offset voltage of the  
operational amplifier. The injected charge is permanently  
stored and determines the offset voltage of the operational  
amplifier. After programming, VE1 and VE2 terminals must  
be left open to settle on a voltage determined by internal bias  
currents.  
The ALD1721E is pre-programmed at the factory under  
standard operating conditions for minimum equivalent input  
offset voltage. It also has a guaranteed offset voltage  
program range, which is ideal for applications that require  
electrical offset voltage programming.  
For example, an application circuit may have +6V and -2.5V  
power supplies, and the operational amplifier input is biased  
at +0.7V, and the average operating temperature is at 55°C.  
The circuit can be wired up to these conditions within an  
environmental chamber, and the ALD1721E can be inserted  
into a test socket connected to this circuit while it is being  
During programming, the voltages on VE1 or VE2 are in-  
creased incrementally to set the offset voltage of the opera-  
tionalamplifiertothedesiredV . NotethatdesiredV can  
electrically trimmed. Any error in V  
due to these bias  
OS  
conditions can be automatically zeroed out. The Total V  
OS  
OS  
OS  
error is now limited only by the adjustable range and the  
be any value within the offset voltage programmable ranges,  
and can be either zero, a positive value or a negative value.  
stability of V , and the input noise voltage of the operational  
OS  
amplifier. Therefore, this Total V  
error now includes V  
OS  
This V  
value can also be reprogrammed to a different  
OS  
is traditionally specified; plus the V error contribu-  
OS  
as V  
value at a later time, provided that the useful VE1 or VE2  
programming voltage range has not been exceeded. VE1 or  
VE2 pins can also serve as capacitively coupled input pins.  
OS  
OS  
tions from PSRR, CMRR, TCV , and noise. Typically this  
OS  
) is approximately ±35µV for the  
total V  
ALD1721E.  
error term (V  
OS  
OST  
Internally, VE1 and VE2 are programmed and connected  
differentially. Temperature drift effects between the two  
internal offset bias circuits cancel each other and introduce  
less net temperature drift coefficient change than offset  
voltage trimming techniques such as offset adjustment with  
an external trimmer potentiometer.  
The V contribution due to PSRR, CMRR, TCV  
and  
OS  
OS  
external components can be large for operational amplifiers  
without trimming. Therefore the ALD1721E with EPAD trim-  
ming is able to provide much improved system performance  
by reducing these other sources of error to provide signifi-  
cantly reduced V  
OST.  
In-System Programming refers to the condition where the  
EPAD adjustment is made after the ALD1721E has been  
inserted into a circuit board. In this case, the circuit design  
must provide for the ALD1721E to operate in normal mode  
and in programming mode. One of the benefits of in-system  
programming is that not only is the ALD1721E offset voltage  
from operating bias conditions accounted for, any residual  
While programming, V+, VE1 and VE2 pins may be alter-  
nately pulsed with 12V (approximately) pulses generated by  
theEPADProgrammer. In-systemprogrammingrequiresthe  
ALD1721E/ALD1721 application circuit to accommodate  
these programming pulses. This can be accomplished by  
adding resistors at certain appropriate circuit nodes. For  
more information, see Application Note AN1700.  
2
Advanced Linear Devices  
ALD1721E/ALD1721  
ABSOLUTE MAXIMUM RATINGS  
+
Supply voltage, V  
13.2V  
-0.3V to V +0.3V  
600 mW  
+
Differential input voltage range  
Power dissipation  
Operating temperature range PA,SA package  
0°C to +70°C  
-55°C to +125°C  
-65°C to +150°C  
+260°C  
DA package  
Storage temperature range  
Lead temperature, 10 seconds  
OPERATING ELECTRICAL CHARACTERISTICS  
T = 25oC V = ±2.5V unless otherwise specified  
A
S
1721E  
Typ  
1721  
Typ  
Parameter  
Symbol  
Min  
Max  
Min  
Max  
Unit  
Test Conditions  
Supply Voltage  
V
+
V
±1.0  
±5.0  
±1.0  
±5.0  
V
V
S
2.0  
10.0  
2.0  
10.0  
Single Supply  
Initial Input Offset Voltage1  
V
35  
±15  
50  
75  
50  
±5  
50  
150  
µV  
mV  
µV  
R 100KΩ  
S
OS i  
Offset Voltage Program Range 2  
V  
OS  
±10  
±1  
Programmed Input Offset  
Voltage Error 3  
V
OS  
90  
90  
150  
150  
At user specified  
target offset voltage  
Total Input Offset Voltage 4  
Input Offset Current 5  
Input Bias Current 5  
V
50  
0.01  
0.01  
50  
0.01  
0.01  
µV  
At user specified  
OST  
OS  
B
target offset voltage  
I
I
10  
10  
pA  
pA  
T
A
= 25°C  
240  
240  
0°C T +70°C  
A
10  
10  
pA  
pA  
T
A
= 25°C  
240  
240  
0°C T +70°C  
A
Input Voltage Range 6  
V
IR  
-0.3  
-2.8  
5.3  
-0.3  
-2.8  
5.3  
V
V
V
V
= +5V  
+
+2.8  
+2.8  
= ±2.5V  
S
Input Resistance  
R
1014  
5
1014  
IN  
Input Offset Voltage Drift 7  
TCV  
OS  
7
µV/°C  
dB  
R
R
100KΩ  
100KΩ  
S
S
Initial Power Supply  
Rejection Ratio 8  
PSRR  
80  
80  
i
Initial Common Mode  
Rejection Ratio 8  
CMRR  
83  
83  
dB  
R
R
100KΩ  
=100KΩ  
i
S
Large Signal Voltage Gain  
A
V
32  
20  
100  
32  
20  
100  
V/mV  
V/mV  
L
0°C T +70°C  
A
+
R =1MV = 5V  
L
0°C T +70°C  
A
V
low  
0.001  
4.999  
0.01  
0.001  
4.999  
0.01  
V
V
O
Output Voltage Range  
V
O
high  
4.99  
2.40  
4.99  
2.40  
V
O
V
O
low  
-2.48  
2.48  
-2.40  
-2.48  
2.48  
-2.40  
V
V
R =100KΩ  
L
0°C T +70°C  
A
high  
Output Short Circuit Current  
I
1
1
mA  
SC  
\* NOTES 1 through 9, see section titled "Definitions and Design Notes".  
ALD1721E/ALD1721  
Advanced Linear Devices  
3
OPERATING ELECTRICAL CHARACTERISTICS (cont'd)  
T = 25oC V = ±2.5V unless otherwise specified  
A
S
1721E  
Typ  
1721  
Typ  
Parameter  
Symbol  
Min  
Max  
Min  
Max  
Unit  
Test Conditions  
Supply Current  
I
S
120  
200  
120  
200  
µA  
V
= 0V  
IN  
No Load  
Power Dissipation  
Input Capacitance  
P
0.6  
1
1.00  
0.6  
1
1.00  
mW  
pF  
V = ±2.5V  
S
D
C
C
IN  
L
Maximum Load Capacitance  
50  
50  
pF  
Equivalent Input Noise Voltage  
Equivalent Input Current Noise  
Bandwidth  
e
55  
0.6  
700  
0.7  
55  
0.6  
700  
0.7  
nV/Hz  
fA/Hz  
KHz  
f = 1KHz  
f =10Hz  
n
i
n
B
S
400  
0.3  
400  
0.3  
W
R
Slew Rate  
V/µs  
A
= +1  
V
R
L
= 10KΩ  
Rise time  
t
r
0.2  
20  
0.2  
20  
µs  
R
= 10KΩ  
L
Overshoot Factor  
%
R
L
= 100K,  
C
L
= 50pF  
Settling Time  
t
s
10  
10  
µs  
0.1%  
A
V
= 1,R =100KΩ  
L
C
L
= 50pF  
T = 25oC V = ±2.5V unless otherwise specified  
A
S
1721E  
Typ  
1721  
Typ  
Parameter  
Symbol  
Min  
Max  
Min  
Max  
Unit  
Test Conditions  
Average Long Term Input Offset V  
Voltage Stability 9  
0.02  
1.2  
2.5  
0.1  
-5  
0.02  
1.7  
1.0  
0.1  
-5  
µV/  
OS  
time  
1000 hrs  
Initial VE Voltage  
VE1 , VE2  
V
i
i
Programmable VE Range  
Programmed VE Voltage Error  
VE Pin Leakage Current  
VE1, VE2  
1.5  
V
e(VE1-VE2)  
%
µA  
i
eb  
4
Advanced Linear Devices  
ALD1721E/ALD1721  
V = ±2.5V -55°C T +125°C unless otherwise specified  
S
A
1721E  
Typ  
1721  
Typ  
Parameter  
Symbol  
Min  
Max  
Min  
Max  
Unit  
mV  
nA  
Test Conditions  
Initial Input offset Voltage  
Input Offset Current  
Input Bias Current  
V
0.5  
0.8  
R
100KΩ  
OS i  
S
I
I
2.0  
2.0  
2.0  
2.0  
OS  
nA  
B
Initial Power Supply  
Rejection Ratio 8  
PSRR  
75  
83  
50  
75  
83  
50  
dB  
R
100KΩ  
100KΩ  
= 100KΩ  
= 100KΩ  
i
S
Initial Common Mode  
Rejection Ratio 8  
CMRR  
dB  
R
S
i
Large Signal Voltage Gain  
Output Voltage Range  
A
15  
15  
V/mV  
R
L
V
V
V
low  
-2.47  
2.45  
-2.40  
-2.47  
2.45  
-2.40  
V
V
O
O
high  
2.35  
2.35  
R
L
T = 25oC V = ±5.0V unless otherwise specified  
A
S
1721E  
Typ  
1721  
Typ  
Parameter  
Symbol  
Min  
Max  
Min  
Max  
Unit  
Test Conditions  
Initial Power Supply  
Rejection Ratio 8  
PSRR  
CMRR  
83  
83  
83  
83  
dB  
R
R
100KΩ  
100KΩ  
i
S
S
Initial Common Mode  
Rejection Ratio 8  
dB  
i
Large Signal Voltage Gain  
Output Voltage Range  
A
250  
250  
V/mV  
V
R
R
= 100KΩ  
= 100KΩ  
V
L
L
V
V
low  
-4.98  
4.98  
-4.90  
-4.98  
4.98  
-4.90  
O
O
high  
4.90  
4.90  
Bandwidth  
Slew Rate  
B
S
1.0  
1.0  
1.0  
1.0  
MHz  
W
R
V/µs  
A
= +1, C = 50pF  
V
L
ALD1721E/ALD1721  
Advanced Linear Devices  
5
TYPICAL PERFORMANCE CHARACTERISTICS  
OPEN LOOP VOLTAGE GAIN AS A FUNCTION  
OF SUPPLY VOLTAGE AND TEMPERATURE  
OUTPUT VOLTAGE SWING AS A FUNCTION  
OF SUPPLY VOLTAGE  
±6  
±5  
±4  
1000  
±25°C T +125°C  
A
R
= 100KΩ  
L
100  
±3  
10  
1
±2  
±1  
±55°C T +125°C  
A
R
= 100KΩ  
L
0
±2  
±4  
±6  
±8  
0
±1  
±2  
±3  
±4  
±5  
±6  
±7  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
SUPPLY CURRENT AS A FUNCTION  
OF SUPPLY VOLTAGE  
INPUT BIAS CURRENT AS A FUNCTION  
OF AMBIENT TEMPERATURE  
500  
1000  
100  
+25°C  
INPUTS GROUNDED  
OUTPUT UNLOADED  
-25°C  
V
= ±2.5V  
S
400  
300  
200  
100  
T
= -55°C  
A
10  
1.0  
+70°C  
+125°C  
0.1  
0
0.01  
0
±1  
±2  
±3  
±4  
±5  
±6  
-50 -25  
0
25  
50  
75  
100  
125  
SUPPLY VOLTAGE (V)  
AMBIENT TEMPERATURE (°C)  
ADJUSTMENT IN INPUT OFFSET VOLTAGE  
AS A FUNCTION OF CHANGE IN VE1 AND VE2  
OPEN LOOP VOLTAGE GAIN  
AS A FUNCTION OF FREQUENCY  
10  
8
120  
100  
80  
V
T
= ±2.5V  
= 25°C  
S
A
6
4
VE2  
2
0
0
60  
40  
45  
-2  
-4  
90  
135  
180  
20  
0
-6  
-8  
VE1  
-10  
-20  
0.0  
0.25  
0.5  
0.75  
1.0  
1.25 1.50  
1
10  
100  
1K  
10K 100K  
1M  
10M  
CHANGE IN VE1 AND VE2 (V)  
FREQUENCY (Hz)  
6
Advanced Linear Devices  
ALD1721E/ALD1721  
TYPICAL PERFORMANCE CHARACTERISTICS  
COMMON MODE INPUT VOLTAGE RANGE  
AS A FUNCTION OF SUPPLY VOLTAGE  
LARGE - SIGNAL TRANSIENT  
RESPONSE  
±7  
±6  
2V/div  
V
= ±1.0V  
= 25°C  
= 100KΩ  
= 50pF  
S
T
A
T
= 25°C  
A
R
C
±5  
±4  
L
L
±3  
±2  
±1  
0
500mV/div  
5µs/div  
0
±1  
±2  
±3  
±4  
±5  
±6  
±7  
SUPPLY VOLTAGE (V)  
OPEN LOOP VOLTAGE GAIN AS A  
FUNCTION OF LOAD RESISTANCE  
SMALL - SIGNAL TRANSIENT  
RESPONSE  
1000  
100  
10  
100mV/div  
V
= ±2.5V  
= 25°C  
= 100KΩ  
= 50pF  
S
T
A
R
C
L
L
V
T
= ±2.5V  
= 25°C  
S
A
20mV/div  
2µs/div  
1
10K  
100K  
1M  
10M  
LOAD RESISTANCE ()  
LARGE - SIGNAL TRANSIENT  
RESPONSE  
DISTRIBUTION OF TOTAL INPUT OFFSET VOLTAGE  
BEFORE AND AFTER EPAD PROGRAMMING  
100  
80  
EXAMPLE B:  
AFTER EPAD  
EXAMPLE A:  
V AFTER EPAD  
5V/div  
V
= ±2.5V  
= 25°C  
S
V
OST  
PROGRAMMING  
TARGET = -750µV  
OST  
PROGRAMMING  
V TARGET = 0.0µV  
OST  
T
A
V
OST  
R
L
C
L
= 100KΩ  
= 50pF  
60  
40  
V
BEFORE EPAD  
OST  
PROGRAMMING  
20  
0
2V/div  
5µs/div  
-2500 -2000  
-1500  
-500  
0
500  
1000  
1500  
2000  
2500  
-1000  
TOTAL INPUT OFFSET VOLTAGE (µV)  
ALD1721E/ALD1721  
Advanced Linear Devices  
7
TWO EXAMPLES OF EQUIVALENT INPUT OFFSET VOLTAGE DUE TO  
CHANGE IN SUPPLY VOLTAGE vs. SUPPLY VOLTAGE  
500  
400  
PSRR = 80 dB  
EXAMPLE A:  
EPAD PROGRAMMED  
V
OS  
AT V  
= +5V  
SUPPLY  
300  
200  
EXAMPLE B:  
EPAD  
V
OS  
PROGRAMMED  
AT V  
= +8V  
SUPPLY  
100  
0
0
1
2
3
4
5
6
7
8
9
10  
SUPPLY VOLTAGE (V)  
THREE EXAMPLES OF EQUIVALENT INPUT OFFSET VOLTAGE DUE TO  
CHANGE IN COMMON MODE VOLTAGE vs. COMMON MODE VOLTAGE  
500  
400  
V
= ±5V  
SUPPLY  
CMRR = 80dB  
300  
200  
EXAMPLE B:  
EPAD  
EXAMPLE A:  
V EPAD PROGRAMMED  
V
OS  
PROGRAMMED  
OS  
AT V = 0V  
IN  
AT V = -4.3V  
IN  
100  
0
EXAMPLE C:  
EPAD PROGRAMMED  
V
OS  
AT V = +5V  
IN  
-5  
-4  
-3  
-1  
0
1
2
3
4
5
-2  
COMMON MODE VOLTAGE (V)  
EXAMPLE OF MINIMIZING EQUIVALENT INPUT OFFSET VOLTAGE  
FOR A COMMON MODE VOLTAGE RANGE OF 0.5V  
50  
40  
COMMON MODE VOLTAGE RANGE OF 0.5V  
30  
20  
V
EPAD  
OS  
PROGRAMMED  
AT COMMON MODE  
VOLTAGE OF 0.25V  
CMRR = 80dB  
10  
0
-0.5  
-0.4  
-0.3  
-0.2  
-0.1  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
COMMON MODE VOLTAGE (V)  
8
Advanced Linear Devices  
ALD1721E/ALD1721  
APPLICATION SPECIFIC / IN-SYSTEM PROGRAMMING  
Examples of applications where accumulated total input offset voltage from various  
contributing sources is minimized under different sets of user-specified operating conditions  
2500  
2000  
1500  
2500  
2000  
V
BUDGET AFTER  
OS  
1500  
1000  
500  
0
EPAD PROGRAMMING  
V
BUDGET AFTER  
OS  
1000  
500  
0
EPAD PROGRAMMING  
+
X
-500  
-500  
+
X
-1000  
-1000  
V
BUDGET BEFORE  
OS  
-1500  
-2000  
-2500  
-1500  
-2000  
-2500  
EPAD PROGRAMMING  
V
BUDGET BEFORE  
OS  
EPAD PROGRAMMING  
EXAMPLE B  
EXAMPLE A  
2500  
2000  
1500  
2500  
2000  
1500  
V
OS  
BUDGET AFTER  
EPAD PROGRAMMING  
V
BUDGET BEFORE  
OS  
1000  
500  
0
1000  
500  
0
EPAD PROGRAMMING  
+
X
-500  
-500  
+
-1000  
-1000  
X
-1500  
-2000  
-2500  
-1500  
-2000  
-2500  
V
BUDGET AFTER  
OS  
V
BUDGET BEFORE  
OS  
EPAD PROGRAMMING  
EPAD PROGRAMMING  
EXAMPLE C  
EXAMPLE D  
Total Input V  
after EPAD  
Device input V  
OS  
OS  
PSRR equivalent V  
OS  
Programming  
+
CMRR equivalent V  
OS  
T
equivalent V  
A
OS  
X
Noise equivalent V  
OS  
External Error equivalent V  
OS  
ALD1721E/ALD1721  
Advanced Linear Devices  
9
DEFINITIONS AND DESIGN NOTES:  
ADDITIONAL DESIGN NOTES:  
A. TheALD1721E/ALD1721isinternallycompensatedforunity  
gainstabilityusinganovelschemewhichproducesasinglepole  
role off in the gain characteristics while providing more than 70  
degrees of phase margin at unity gain frequency. A unity gain  
buffer using the ALD1721E/ALD1721 will typically drive 50pF of  
external load capacitance.  
1. Initial Input Offset Voltage is the initial offset voltage of the  
ALD1721E/ALD1721 operational amplifier when shipped from  
the factory. The device has been pre-programmed and tested  
for programmability.  
2. Offset Voltage Program Range is the range of adjustment of  
user specified target offset voltage. This is typically an adjust-  
ment in either the positive or the negative direction of the input  
offset voltage from an initial input offset voltage. The input  
offset programming pins, VE1 or VE2, change the input offset  
voltage in the negative or positive direction, respectively. User  
specified target offset voltage can be any offset voltage within  
this programming range.  
B. The ALD1721E/ALD1721 has complementary p-channel  
and n-channel input differential stages connected in parallel to  
accomplish rail-to-rail input common mode voltage range. The  
switchingpointbetweenthetwodifferentialstagesis1.5Vbelow  
positive supply voltage. For applications such as inverting  
amplifier or non-inverting amplifier with a gain larger than 2.5  
(5V operation), the common mode voltage does not make  
excursions below this switching point. However, this switching  
doestakeplaceiftheoperationalamplifierisconnectedasarail-  
to-rail unity gain buffer and the design must allow for input offset  
voltage variations.  
3. Programmed Input Offset Voltage Error is the final offset  
voltage error after programming when the Input Offset Voltage  
is at target Offset Voltage. This parameter is sample tested.  
4. Total Input Offset Voltage is the same as Programmed Input  
Offset Voltage, corrected for system offset voltage error. Usu-  
ally this is an all inclusive system offset voltage, which also  
includes offset voltage contributions from input offset voltage,  
C. TheoutputstageconsistsofclassABcomplementaryoutput  
drivers. The oscillation resistant feature, combined with the rail-  
to-railinputandoutputfeature, makestheALD1721E/ALD1721  
an effective analog signal buffer for high source impedance  
sensors, transducers, and other circuit networks.  
PSRR, CMRR, TCV  
and noise. It can also include errors  
OS  
introduced by external components, at a system level. Pro-  
grammed Input Offset Voltage and Total Input Offset Voltage is  
not necessarily zero offset voltage, but an offset voltage set to  
compensate for other system errors as well. This parameter is  
sample tested.  
D. The ALD1721E/ALD1721 has static discharge protection.  
Care must be exercised when handling the device to avoid  
strong static fields that may degrade a diode junction, causing  
increased input leakage currents. The user is advised to power  
up the circuit before, or simultaneously with, any input voltages  
applied and to limit input voltages not to exceed 0.3V of the  
power supply voltage levels.  
5. The Input Offset and Bias Currents are essentially input  
protection diode reverse bias leakage currents. This low input  
bias current assures that the analog signal from the source will  
not be distorted by it. For applications where source impedance  
is very high, it may be necessary to limit noise and hum pickup  
through proper shielding.  
E. VE1 and VE2 are high impedance terminals, as the internal  
bias currents are set very low to a few microamperes to  
conserve power. For some applications, these terminals may  
need to be shielded from external coupling sources. For ex-  
ample, digital signals running nearby may cause unwanted  
offset voltage fluctuations. Care during the printed circuit board  
layout to place ground traces around these pins and to isolate  
them from digital lines will generally eliminate such coupling  
effects. In addition, optional decoupling capacitors of 1000pF or  
greater value can be added to VE1 and VE2 terminals.  
6. Input Voltage Range is determined by two parallel comple-  
mentary input stages that are summed internally, each stage  
having a separate input offset voltage. While Total Input Offset  
Voltage can be trimmed to a desired target value, it is essential  
to note that this trimming occurs at only one user selected input  
bias voltage. Depending on the selected input bias voltage  
relative to the power supply voltages, offset voltage trimming  
may affect one or both input stages. For the ALD1721E/  
ALD1721, the switching point between the two stages occur at  
approximately 1.5V below positive supply voltage.  
F. The ALD1721E/ALD1721 is designed for use in low voltage,  
micropower circuits. The maximum operating voltage during  
normaloperationshouldremainbelow10Voltsatalltimes.Care  
shouldbetakentoinsurethattheapplicationinwhichthedevice  
is used do not experience any positive or negative transient  
voltages that will cause any of the terminal voltages to exceed  
this limit.  
7. Input Offset Voltage Drift is the average change in Total Input  
Offset Voltage as a function of ambient temperature. This  
parameter is sample tested.  
8. Initial PSRR and initial CMRR specifications are provided as  
reference information. After programming, error contribution to  
theoffsetvoltagefromPSRRandCMRRissettozerounderthe  
specific power supply and common mode conditions, and  
becomes part of the Programmed Input Offset Voltage Error.  
G. AllinputsorunusedpinsexceptVE1andVE2pinsshouldbe  
connected to a supply voltage such as Ground so that they do  
not become floating pins, since input impedance at these pins  
is very high. If any of these pins are left undefined, they may  
cause unwanted oscillation or intermittent excessive current  
drain. As these devices are built with CMOS technology, normal  
operating and storage temperature limits, ESD and latchup  
handling precautions pertaining to CMOS device handling  
should be observed.  
9. AverageLongTermInputOffsetVoltageStabilityisbasedon  
input offset voltage shift through operating life test at 125°C  
extrapolated to TA = 25 °C, assuming activation energy of  
1.0eV. This parameter is sample tested.  
10  
Advanced Linear Devices  
ALD1721E/ALD1721  

相关型号:

ALD1721ESAL

EPAD® MICROPOWER CMOS OPERATIONAL AMPLIFIER
ALD

ALD1721E_11

EPAD® MICROPOWER CMOS OPERATIONAL AMPLIFIER
ALD

ALD1721PA

EPAD⑩ MICROPOWER OPERATIONAL AMPLIFIER
ALD

ALD1721SA

EPAD⑩ MICROPOWER OPERATIONAL AMPLIFIER
ALD

ALD1722

EPAD⑩ OPERATIONAL AMPLIFIER
ALD

ALD1722DA

EPAD⑩ OPERATIONAL AMPLIFIER
ALD

ALD1722E

EPAD⑩ OPERATIONAL AMPLIFIER
ALD

ALD1722EDA

EPAD⑩ OPERATIONAL AMPLIFIER
ALD

ALD1722EPA

EPAD⑩ OPERATIONAL AMPLIFIER
ALD

ALD1722EPAL

EPAD® LOW POWER CMOS OPERATIONAL AMPLIFIER
ALD

ALD1722ESA

EPAD⑩ OPERATIONAL AMPLIFIER
ALD

ALD1722ESAL

EPAD® LOW POWER CMOS OPERATIONAL AMPLIFIER
ALD