ALD1721E_11 [ALD]

EPAD® MICROPOWER CMOS OPERATIONAL AMPLIFIER; EPAD®微功耗CMOS运算放大器
ALD1721E_11
型号: ALD1721E_11
厂家: ADVANCED LINEAR DEVICES    ADVANCED LINEAR DEVICES
描述:

EPAD® MICROPOWER CMOS OPERATIONAL AMPLIFIER
EPAD®微功耗CMOS运算放大器

运算放大器
文件: 总13页 (文件大小:108K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TM  
A
L
D
DVANCED  
INEAR  
EVICES, INC.  
®
e
EPAD  
ALD1721E  
®
EPAD MICROPOWER CMOS OPERATIONAL AMPLIFIER  
KEY FEATURES  
BENEFITS  
EPAD (Electrically Programmable Analog Device)  
trimmer  
Computer-assisted trimming  
Rail-to-rail input/output  
Compatible with standard EPAD Programmer  
High precision through in-system circuit precision trimming  
• Eliminates manual and elaborate  
system trimming procedures  
• Remote controlled automated trimming  
• In-System Programming capability  
• No external components  
• No internal chopper clocking noise  
• No chopper dynamic power dissipation  
• Simple and cost effective  
• Small package size  
• Extremely small total functional  
volume size  
• Low system implementation cost  
• Micropower and Low Voltage  
User programmable V  
OS  
Reduces or eliminates V , PSRR, CMRR and TCV  
errors  
OS  
OS  
System level “calibration” capability  
Application Specific Programming mode  
In-System Programming mode  
Electrically programmable to compensate for external  
component tolerances  
Achieves 0.01pA input bias current and 35µV input offset  
voltage simultaneously  
Compatible with industry standard pinout  
APPLICATIONS  
GENERAL DESCRIPTION  
• Sensor interface circuits  
The ALD1721E is a monolithic rail-to-rail precision CMOS operational  
amplifier with integrated user programmable EPAD (Electrically Program-  
mable Analog Device) based offset voltage adjustment. The ALD1721E  
operational amplifier is a direct replacement of the ALD1701 operational  
amplifier, with the added feature of user-programmable offset voltage  
trimming resulting in significantly enhanced total system performance and  
user flexibility. EPAD technology is an exclusive ALD design which has  
been refined for analog applications where precision voltage trimming is  
necessary to achieve a desired performance. It utilizes CMOS FETs as in-  
circuit elements for trimming of offset voltage bias characteristics with the  
aidofapersonal computerundersoftwarecontrol. Onceprogrammed,the  
set parameters are stored indefinitely within the device even after power-  
down. EPAD offers the circuit designer a convenient and cost-effective  
trimming solution for achieving the very highest amplifier/system perfor-  
mance.  
• Transducer biasing circuits  
• Capacitive and charge integration circuits  
• Biochemical probe interface  
• Signal conditioning  
• Portable instruments  
• High source impedance electrode  
amplifiers  
• Precision Sample and Hold amplifiers  
• Precision current to voltage converter  
• Error correction circuits  
• Sensor compensation circuits  
• Precision gain amplifiers  
• Periodic In-system calibration  
• System output level shifter  
The ALD1721E operational amplifier features rail-to-rail input and output  
voltage ranges, tolerance to over-voltage input spikes of 300mV beyond  
supply rails, capacitive loading up to 50pF, extremely low input currents of  
0.01pA typical, high open loop voltage gain, useful bandwidth of 700KHz,  
slew rate of 0.7V/µs, and low typical supply current of 120µA.  
PIN CONFIGURATION  
VE1  
-IN  
1
8
7
6
5
VE2  
+
2
V
ORDERING INFORMATION (“L” suffix denotes lead-free (RoHS))  
Operating Temperature Range  
+IN  
3
4
OUT  
N/C  
0°C to +70°C  
0°C to +70°C  
-55°C to +125°C  
-
V
8-Pin  
8-Pin  
8-Pin  
Small Outline  
Package (SOIC)  
Plastic Dip  
Package  
CERDIP  
Package  
TOP VIEW  
SAL, PAL, DA PACKAGES  
ALD1721ESAL  
ALD1721EPAL  
ALD1721EDA  
* N/C Pin is internally connected. Do not connect externally.  
* Contact factory for leaded (non-RoHS) or high temperature versions.  
Rev 2.1 ©2011 Advanced Linear Devices, Inc. 415 Tasman Drive, Sunnyvale, CA 94089-1706 Tel: (408) 747-1155 Fax: (408) 747-1286  
www.aldinc.com  
FUNCTIONAL DESCRIPTION  
USER PROGRAMMABLE V  
FEATURE  
OS  
The ALD1721E uses EPADs as in-circuit elements for trim-  
ming of offset voltage bias characteristics. Each ALD1721E  
has a pair of EPAD-based circuits connected such that one  
EachALD1721EhastwopinsnamedVE1andVE2whichare  
internally connected to an internal offset bias circuit. VE1/  
VE2 have initial typical values of 1.2V/1.7V. The voltage on  
these pins can be programmed using the ALD E100 EPAD  
ProgrammerandtheappropriateAdapterModule.Theuseful  
programming range of VE1 and VE2 is 1.2V to 3.0V.  
circuit is used to adjust V  
in one direction and the other  
OS  
circuitisusedtoadjustV intheotherdirection. Whileeach  
OS  
of the EPAD devices is a monotonically adjustable program-  
mable device, the V  
of the ALD1721E can be adjusted  
OS  
many times in both directions. Once programmed, the set  
levels are stored permanently, even when the device  
VE1 and VE2 pins are programming pins, used during  
programming mode to inject charge into the internal EPADs.  
Increasing voltage on VE1 decreases the offset voltage  
whereas increasing voltage on VE2 increases the offset  
voltage of the operational amplifier. The injected charge is  
permanently stored and determines the offset voltage of the  
operational amplifier. After programming, VE1 and VE2  
terminals must be left open to settle on a voltage determined  
by internal bias currents.  
V
OS  
power is removed.  
The ALD1721E is pre-programmed at the factory under  
standard operating conditions for minimum equivalent input  
offset voltage. It also has a guaranteed offset voltage  
program range, which is ideal for applications that require  
electrical offset voltage programming.  
The ALD1721E is an operational amplifier that can be  
trimmed with user application-specific programming or in-  
system programming conditions. User application-specific  
circuit programming refers to the situation where the Total  
Input Offset Voltage of the ALD1721E can be trimmed with  
the actual intended operating conditions.  
During programming, the voltages on VE1 or VE2 are in-  
creased incrementally to set the offset voltage of the opera-  
tional amplifier to the desired Vos. Note that desired Vos can  
be any value within the offset voltage programmable ranges,  
and can be zero, a positive value or a negative value. This  
V
OS  
value can also be reprogrammed to a different value at  
a later time, provided that the useful VE1 or VE2 program-  
mingvoltagerangehasnotbeenexceeded. VE1orVE2pins  
can also serve as capacitively coupled input pins.  
For example, an application circuit may have +6V and -2.5V  
power supplies, and the operational amplifier input is biased  
at +0.7V, and an average operating temperature at 55°C.  
The circuit can be wired up to these conditions within an  
environmental chamber with the ALD1721E inserted into a  
test socket connected to this circuit while it is being electri-  
Internally, VE1 and VE2 are programmed and connected  
differentially. Temperature drift effects between the two  
internal offset bias circuits cancel each other and introduce  
less net temperature drift coefficient change than offset  
voltage trimming techniques such as offset adjustment with  
an external trimmer potentiometer.  
cally trimmed. Any error in V  
due to these bias conditions  
OS  
can be automatically zeroed out. The Total V  
error is now  
OS  
limited only by the adjustable range and the stability of V  
,
OS  
and the input noise voltage of the operational amplifier.  
Therefore, this Total V error now includes V as V is  
While programming, V+, VE1 and VE2 pins may be alter-  
nately pulsed with 12V (approximately) pulses generated by  
the EPAD Programmer. In-system programming requires  
the ALD1721E application circuit to accommodate these  
programming pulses. This can be accomplished by adding  
resistors at certain appropriate circuit nodes. For more  
information, see Application Note AN1700.  
OS  
traditionally specified; plus the V  
OS  
OS  
error contributions from  
OS  
PSRR, CMRR, TCV , and noise. Typically this total V  
OS OS  
)isapproximately±35µVfortheALD1721E.  
errorterm(V  
OST  
The V  
contribution due to PSRR, CMRR, TCV  
and  
OS  
OS  
external components can be large for operational amplifiers  
without trimming. Therefore the ALD1721E with EPAD trim-  
ming is able to provide much improved system performance  
by reducing these other sources of error to provide signifi-  
cantly reduced V  
OST.  
In-System Programming refers to the condition where the  
EPAD adjustment is made after the ALD1721E has been  
inserted into a circuit board. In this case, the circuit design  
must provide for the ALD1721E to operate in normal mode  
and in programming mode. One of the benefits of in-system  
programming is that not only is the ALD1721E offset voltage  
from operating bias conditions accounted for, any residual  
errors introduced by other circuit components, such as resis-  
tor or sensor induced voltage errors, can also be corrected.  
In this way, the “in-system” circuit output can be adjusted to  
a desired level, eliminating the need for another trimming  
function.  
ALD1721E  
Advanced Linear Devices  
2 of 13  
ABSOLUTE MAXIMUM RATINGS  
+
Supply voltage, V  
10.6V  
-0.3V to V +0.3V  
600 mW  
+
Differential input voltage range  
Power dissipation  
Operating temperature range SAL, PAL packages  
0°C to +70°C  
-55°C to +125°C  
-65°C to +150°C  
+260°C  
DA package  
Storage temperature range  
Lead temperature, 10 seconds  
CAUTION: ESD Sensitive Device. Use static control procedures in ESD controlled environment.  
OPERATING ELECTRICAL CHARACTERISTICS  
T = 25oC V = ±2.5V unless otherwise specified  
A
S
1721E  
Typ  
Parameter  
Symbol  
Min  
Max  
Unit  
Test Conditions  
Supply Voltage  
V
V
±1.0  
±5.0  
V
V
S
+
2.0  
10.0  
Single Supply  
Initial Input Offset Voltage1  
V
35  
90  
µV  
mV  
µV  
R 100KΩ  
S
OS i  
Offset Voltage Program Range 2  
V  
±10  
±15  
50  
OS  
Programmed Input Offset  
Voltage Error3  
V
V
I
90  
90  
At user specified  
OS  
target offset voltage  
Total Input Offset Voltage 4  
Input Offset Current 5  
Input Bias Current 5  
50  
µV  
At user specified  
OST  
target offset voltage  
0.01  
0.01  
10  
pA  
pA  
T
= 25°C  
A
OS  
240  
0°C T +70°C  
A
I
B
10  
pA  
pA  
T
= 25°C  
A
240  
0°C T +70°C  
A
Input Voltage Range 6  
V
-0.3  
-2.8  
5.3  
V
V
V
V
= +5V  
+
IR  
+2.8  
= ±2.5V  
S
14  
Input Resistance  
R
IN  
10  
Input Offset Voltage Drift 7  
TCV  
OS  
5
µV/°C  
dB  
R
R
100KΩ  
100KΩ  
S
Initial Power Supply  
Rejection Ratio 8  
PSRR  
80  
i
S
Initial Common Mode  
Rejection Ratio 8  
CMRR  
83  
dB  
R
R
100KΩ  
=100KΩ  
i
S
Large Signal Voltage Gain  
A
32  
20  
100  
V/mV  
V/mV  
V
L
0°C T +70°C  
A
+
R =1MV = 5V  
L
0°C T +70°C  
A
V
V
low  
0.001  
4.999  
0.01  
V
V
O
O
Output Voltage Range  
high  
4.99  
2.40  
V
V
low  
-2.48  
2.48  
-2.40  
V
V
R =100KΩ  
L
0°C T +70°C  
A
O
O
high  
Output Short Circuit Current  
I
1
mA  
SC  
* NOTES 1 through 9, see "Definitions and Design Notes" on page 6.  
ALD1721E  
Advanced Linear Devices  
3 of 13  
OPERATING ELECTRICAL CHARACTERISTICS (cont'd)  
T = 25oC V = ±2.5V unless otherwise specified  
A
S
1721E  
Typ  
Parameter  
Symbol  
Min  
Max  
Unit  
Test Conditions  
Supply Current  
I
S
120  
200  
µA  
V
= 0V  
IN  
No Load  
Power Dissipation  
Input Capacitance  
P
0.6  
1
1.00  
mW  
pF  
V = ±2.5V  
S
D
C
C
IN  
Maximum Load Capacitance  
50  
pF  
L
Equivalent Input Noise Voltage  
Equivalent Input Current Noise  
Bandwidth  
e
55  
nV/Hz  
fA/Hz  
KHz  
f = 1KHz  
f =10Hz  
n
i
n
0.6  
700  
0.7  
B
S
400  
0.3  
W
R
Slew Rate  
V/µs  
A
= +1  
V
R
= 10KΩ  
L
Rise time  
t
r
0.2  
20  
µs  
R
= 10KΩ  
L
Overshoot Factor  
%
R
C
= 100K,  
L
L
= 50pF  
Settling Time  
t
s
10  
µs  
0.1%  
A
= 1,R =100KΩ  
V
L
C
= 50pF  
L
T = 25oC V = ±2.5V unless otherwise specified  
A
S
1721E  
Typ  
Parameter  
Symbol  
Min  
Max  
Unit  
Test Conditions  
Average Long Term Input Offset  
Voltage Stability 9  
V  
0.02  
1.2  
2.5  
0.1  
-5  
µV/  
OS  
time  
1000 hrs  
Initial VE Voltage  
VE1 , VE2  
V
i
i
Programmable VE Range  
Programmed VE Voltage Error  
VE Pin Leakage Current  
VE1, VE2  
1.5  
V
e(VE1-VE2)  
%
µA  
i
eb  
ALD1721E  
Advanced Linear Devices  
4 of 13  
OPERATING ELECTRICAL CHARACTERISTICS (cont'd)  
V = ±2.5V -55°C T +125°C unless otherwise specified  
S
A
1721E  
Typ  
Parameter  
Symbol  
Min  
Max  
Unit  
mV  
nA  
Test Conditions  
Initial Input offset Voltage  
Input Offset Current  
Input Bias Current  
V
0.5  
R
S
100KΩ  
OS i  
I
I
2.0  
2.0  
OS  
nA  
B
Initial Power Supply  
Rejection Ratio 8  
PSRR  
75  
83  
50  
dB  
R
S
R
S
R
L
R
L
100KΩ  
100KΩ  
= 100KΩ  
= 100KΩ  
i
Initial Common Mode  
Rejection Ratio 8  
CMRR  
dB  
i
Large Signal Voltage Gain  
Output Voltage Range  
A
15  
V/mV  
V
V
V
low  
-2.47  
2.45  
-2.40  
V
V
O
O
high  
2.35  
T = 25oC V = ±5.0V unless otherwise specified  
A
S
1721E  
Typ  
Parameter  
Symbol  
PSRR  
Min  
Max  
Unit  
Test Conditions  
Initial Power Supply  
Rejection Ratio 8  
83  
dB  
R
R
100KΩ  
100KΩ  
i
S
Initial Common Mode  
Rejection Ratio 8  
CMRR  
83  
dB  
i
S
Large Signal Voltage Gain  
Output Voltage Range  
A
250  
V/mV  
V
R
R
= 100KΩ  
= 100KΩ  
V
L
V
V
low  
-4.98  
4.98  
-4.90  
O
O
L
high  
4.90  
Bandwidth  
Slew Rate  
B
S
1.0  
1.0  
MHz  
W
R
V/µs  
A
= +1, C = 50pF  
V
L
ALD1721E  
Advanced Linear Devices  
5 of 13  
DEFINITIONS AND DESIGN NOTES:  
ADDITIONAL DESIGN NOTES:  
1. Initial Input Offset Voltage is the initial offset voltage of the  
ALD1721Eoperationalamplifierwhenshippedfromthefactory.  
The device has been pre-programmed and tested for program-  
mability.  
A. The ALD1721E is internally compensated for unity gain  
stability using a novel scheme which produces a single pole role  
off in the gain characteristics while providing more than 70  
degrees of phase margin at unity gain frequency. A unity gain  
buffer using the ALD1721E will typically drive 50pF of external  
load capacitance.  
2. Offset Voltage Program Range is the range of adjustment of  
user specified target offset voltage. This is typically an adjust-  
ment in either the positive or the negative direction of the input  
offsetvoltagefromaninitialinputoffsetvoltage. Theinputoffset  
programming pins, VE1 or VE2, change the input offset voltage  
in the negative or positive direction, respectively. User specified  
target offset voltage can be any offset voltage within this  
programming range.  
B.TheALD1721Ehascomplementaryp-channelandn-channel  
input differential stages connected in parallel to accomplish rail-  
to-rail input common mode voltage range. The switching point  
betweenthetwodifferentialstagesis1.5Vbelowpositivesupply  
voltage. For applications such as inverting amplifiers or non-  
invertingamplifierswithagainlargerthan2.5(5Voperation),the  
common mode voltage does not make excursions below this  
switching point. However, this switching does take place if the  
operational amplifier is connected as a rail-to-rail unity gain  
buffer and the design must allow for input offset voltage varia-  
tions.  
3. Programmed Input Offset Voltage Error is the final offset  
voltage error after programming when the Input Offset Voltage  
is at target Offset Voltage. This parameter is sample tested.  
4. Total Input Offset Voltage is the same as Programmed Input  
Offset Voltage, corrected for system offset voltage error. Usu-  
ally this is an all inclusive system offset voltage, which also  
includes offset voltage contributions from input offset voltage,  
C. The output stage consists of class AB complementary output  
drivers. The oscillation resistant feature, combined with the rail-  
to-rail input and output feature, makes the ALD1721E an effec-  
tive analog signal buffer for high source impedance sensors,  
transducers, and other circuit networks.  
PSRR, CMRR, TCV  
and noise. It can also include errors  
OS  
introduced by external components, at a system level. Pro-  
grammed Input Offset Voltage and Total Input Offset Voltage is  
not necessarily zero offset voltage, but an offset voltage set to  
compensate for other system errors as well. This parameter is  
sample tested.  
D. The ALD1721E has static discharge protection. However,  
caremustbeexercisedwhenhandlingthedevicetoavoidstrong  
static fields that may degrade a diode junction, causing in-  
creasedinputleakagecurrents. Theuserisadvisedtopowerup  
the circuit before, or simultaneously with, any input voltages  
applied and to limit input voltages not to exceed 0.3V of the  
power supply voltage levels.  
5. The Input Offset and Bias Currents are essentially input  
protection diode reverse bias leakage currents. This low input  
bias current assures that the analog signal from the source will  
not be distorted by it. For applications where source impedance  
is very high, it may be necessary to limit noise and hum pickup  
through proper shielding.  
E. VE1 and VE2 are high impedance terminals, as the internal  
biascurrentsaresetverylowtoafewmicroamperestoconserve  
power. For some applications, these terminals may need to be  
shielded from external coupling sources. For example, digital  
signals running nearby may cause unwanted offset voltage  
fluctuations. Care during the printed circuit board layout, to  
place ground traces around these pins and to isolate them from  
digital lines, will generally eliminate such coupling effects. In  
addition, optional decoupling capacitors of 1000pF or greater  
value can be added to VE1 and VE2 terminals.  
6. Input Voltage Range is determined by two parallel comple-  
mentary input stages that are summed internally, each stage  
having a separate input offset voltage. While Total Input Offset  
Voltage can be trimmed to a desired target value, it is essential  
to note that this trimming occurs at only one user selected input  
bias voltage. Depending on the selected input bias voltage  
relative to the power supply voltages, offset voltage trimming  
may affect one or both input stages. For the ALD1721E, the  
switchingpointbetweenthetwostagesoccursatapproximately  
1.5V below positive supply voltage.  
F.TheALD1721Eisdesignedforuseinlowvoltage,micropower  
circuits. The maximum operating voltage during normal opera-  
tion should remain below 10V at all times. Care should be taken  
toinsurethattheapplicationinwhichthedeviceisuseddoesnot  
experience any positive or negative transient voltages that will  
cause any of the terminal voltages to exceed this limit.  
7. Input Offset Voltage Drift is the average change in Total Input  
Offset Voltage as a function of ambient temperature. This  
parameter is sample tested.  
8. Initial PSRR and initial CMRR specifications are provided as  
reference information. After programming, error contribution to  
theoffsetvoltagefromPSRRandCMRRissettozerounderthe  
specific power supply and common mode conditions, and  
becomes part of the Programmed Input Offset Voltage Error.  
G. All inputs or unused pins except VE1 and VE2 pins should be  
connectedtoasupplyvoltagesuchasGroundsothattheydonot  
becomefloatingpins,sinceinputimpedanceatthesepinsisvery  
high. If any of these pins are left undefined, they may cause  
unwanted oscillation or intermittent excessive current drain. As  
thesedevicesarebuiltwithCMOStechnology,normaloperating  
and storage temperature limits, ESD and latchup handling  
precautions pertaining to CMOS device handling should be  
observed.  
9. Average Long Term Input Offset Voltage Stability is based on  
input offset voltage shift through operating life test at 125°C  
extrapolatedtoTA =25°C, assumingactivationenergyof1.0eV.  
This parameter is sample tested.  
ALD1721E  
Advanced Linear Devices  
6 of 13  
TYPICAL PERFORMANCE CHARACTERISTICS  
OPEN LOOP VOLTAGE GAIN AS A FUNCTION  
OF SUPPLY VOLTAGE AND TEMPERATURE  
OUTPUT VOLTAGE SWING AS A FUNCTION  
OF SUPPLY VOLTAGE  
±6  
1000  
-55°C T +125°C  
A
±5  
±4  
R
= 100KΩ  
L
100  
±3  
10  
1
±2  
±1  
-55°C T +125°C  
A
R
= 100KΩ  
L
0
±1  
±2  
±3  
±4  
±5  
±6  
±7  
0
±2  
±4  
±6  
±8  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
SUPPLY CURRENT AS A FUNCTION  
OF SUPPLY VOLTAGE  
INPUT BIAS CURRENT AS A FUNCTION  
OF AMBIENT TEMPERATURE  
1000  
100  
500  
400  
300  
INPUTS GROUNDED  
+25°C  
OUTPUT UNLOADED  
V
= ±2.5V  
S
-25°C  
10  
T
= -55°C  
A
1.0  
200  
100  
0
0.1  
+125°C  
±5  
+70°C  
0.01  
-50 -25  
0
25  
50  
75  
100  
125  
0
±1  
±2  
±3  
±4  
±6  
AMBIENT TEMPERATURE (°C)  
SUPPLY VOLTAGE (V)  
ADJUSTMENT IN INPUT OFFSET VOLTAGE  
AS A FUNCTION OF CHANGE IN VE1 AND VE2  
OPEN LOOP VOLTAGE GAIN  
AS A FUNCTION OF FREQUENCY  
10  
8
120  
100  
80  
V
T
= ±2.5V  
= 25°C  
S
A
6
4
VE2  
2
0
0
60  
40  
45  
-2  
-4  
90  
135  
180  
20  
0
-6  
-8  
VE1  
-10  
-20  
0.0  
0.25  
0.5  
0.75  
1.0  
1.25 1.50  
1
10  
100  
1K  
10K 100K  
1M  
10M  
FREQUENCY (Hz)  
CHANGE IN VE1 AND VE2 (V)  
ALD1721E  
Advanced Linear Devices  
7 of 13  
TYPICAL PERFORMANCE CHARACTERISTICS (cont'd)  
COMMON MODE INPUT VOLTAGE RANGE  
AS A FUNCTION OF SUPPLY VOLTAGE  
OPEN LOOP VOLTAGE GAIN AS A  
FUNCTION OF LOAD RESISTANCE  
1000  
100  
10  
±7  
±6  
T
= 25°C  
A
±5  
±4  
±3  
±2  
±1  
0
V
T
= ±2.5V  
= 25°C  
S
A
1
0
±1  
±2  
±3  
±4  
±5  
±6  
±7  
10K  
100K  
1M  
10M  
SUPPLY VOLTAGE (V)  
LOAD RESISTANCE ()  
LARGE - SIGNAL TRANSIENT  
RESPONSE  
LARGE - SIGNAL TRANSIENT  
RESPONSE  
5V/div  
V
T
R
= ±2.5V  
S
2V/div  
V
T
R
= ±1.0V  
= 25°C  
= 100KΩ  
= 50pF  
S
A
L
L
= 25°C  
A
= 100KΩ  
= 50pF  
L
L
C
C
500mV/div  
5µs/div  
2V/div  
5µs/div  
SMALL - SIGNAL TRANSIENT  
RESPONSE  
DISTRIBUTION OF TOTAL INPUT OFFSET VOLTAGE  
BEFORE AND AFTER EPAD PROGRAMMING  
100  
80  
EXAMPLE B:  
AFTER EPAD  
EXAMPLE A:  
V AFTER EPAD  
100mV/div  
V
T
= ±2.5V  
= 25°C  
S
A
V
OST  
PROGRAMMING  
TARGET = -750µV  
OST  
PROGRAMMING  
V TARGET = 0.0µV  
OST  
V
R
C
= 100KΩ  
= 50pF  
OST  
L
L
60  
40  
V
BEFORE EPAD  
OST  
PROGRAMMING  
20  
0
20mV/div  
2µs/div  
-2500 -2000  
-1500  
-500  
0
500  
1000  
1500  
2000  
2500  
-1000  
TOTAL INPUT OFFSET VOLTAGE (µV)  
ALD1721E  
Advanced Linear Devices  
8 of 13  
TYPICAL PERFORMANCE CHARACTERISTICS (cont'd)  
TWO EXAMPLES OF EQUIVALENT INPUT OFFSET VOLTAGE DUE TO  
CHANGE IN SUPPLY VOLTAGE vs. SUPPLY VOLTAGE  
500  
PSRR = 80 dB  
400  
300  
200  
EXAMPLE A:  
EPAD PROGRAMMED  
V
OS  
AT V  
= +5V  
SUPPLY  
EXAMPLE B:  
EPAD  
V
OS  
PROGRAMMED  
AT V  
= +8V  
SUPPLY  
100  
0
0
1
2
3
4
5
6
7
8
9
10  
SUPPLY VOLTAGE (V)  
THREE EXAMPLES OF EQUIVALENT INPUT OFFSET VOLTAGE DUE TO  
CHANGE IN COMMON MODE VOLTAGE vs. COMMON MODE VOLTAGE  
500  
400  
V
= ±5V  
SUPPLY  
CMRR = 80dB  
300  
200  
EXAMPLE B:  
EPAD  
EXAMPLE A:  
V EPAD PROGRAMMED  
V
OS  
PROGRAMMED  
OS  
AT V = 0V  
IN  
AT V = -4.3V  
IN  
100  
0
EXAMPLE C:  
EPAD PROGRAMMED  
V
OS  
AT V = +5V  
IN  
-5  
-4  
-3  
-1  
0
1
2
3
4
5
-2  
COMMON MODE VOLTAGE (V)  
EXAMPLE OF MINIMIZING EQUIVALENT INPUT OFFSET VOLTAGE  
FOR A COMMON MODE VOLTAGE RANGE OF 0.5V  
50  
40  
COMMON MODE VOLTAGE RANGE OF 0.5V  
30  
20  
V
EPAD  
OS  
PROGRAMMED  
AT COMMON MODE  
VOLTAGE OF 0.25V  
CMRR = 80dB  
10  
0
-0.5  
-0.4  
-0.3  
-0.2  
-0.1  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
COMMON MODE VOLTAGE (V)  
ALD1721E  
Advanced Linear Devices  
9 of 13  
TYPICAL PERFORMANCE CHARACTERISTICS (cont'd)  
APPLICATION SPECIFIC / IN-SYSTEM PROGRAMMING  
Examples of applications where accumulated total input offset voltage from various  
contributing sources is minimized under different sets of user-specified operating conditions  
2500  
2000  
1500  
2500  
2000  
V
BUDGET AFTER  
OS  
1500  
1000  
500  
0
EPAD PROGRAMMING  
V
BUDGET AFTER  
OS  
1000  
500  
0
EPAD PROGRAMMING  
+
X
-500  
-500  
+
X
-1000  
-1000  
V
BUDGET BEFORE  
OS  
-1500  
-2000  
-2500  
-1500  
-2000  
-2500  
EPAD PROGRAMMING  
V
BUDGET BEFORE  
OS  
EPAD PROGRAMMING  
EXAMPLE B  
EXAMPLE A  
2500  
2000  
1500  
2500  
2000  
1500  
V
OS  
BUDGET AFTER  
EPAD PROGRAMMING  
V
BUDGET BEFORE  
OS  
1000  
500  
0
1000  
500  
0
EPAD PROGRAMMING  
+
X
-500  
-500  
+
-1000  
-1000  
X
-1500  
-2000  
-2500  
-1500  
-2000  
-2500  
V
BUDGET AFTER  
OS  
V
BUDGET BEFORE  
OS  
EPAD PROGRAMMING  
EPAD PROGRAMMING  
EXAMPLE C  
EXAMPLE D  
Total Input V  
after EPAD  
Device input V  
OS  
OS  
PSRR equivalent V  
OS  
Programming  
+
CMRR equivalent V  
OS  
T
equivalent V  
OS  
A
X
Noise equivalent V  
OS  
External Error equivalent V  
OS  
ALD1721E  
Advanced Linear Devices  
10 of 13  
SOIC-8 PACKAGE DRAWING  
8 Pin Plastic SOIC Package  
E
Millimeters  
Inches  
Dim  
A
Min  
Max  
Min  
Max  
1.75  
0.25  
0.45  
0.25  
5.00  
4.05  
0.053  
0.069  
1.35  
0.004  
0.014  
0.007  
0.185  
0.140  
0.010  
0.018  
0.010  
0.196  
0.160  
0.10  
0.35  
0.18  
4.69  
3.50  
A
1
S (45°)  
b
C
D-8  
E
D
1.27 BSC  
0.050 BSC  
0.224  
e
6.30  
0.937  
8°  
0.248  
0.037  
8°  
5.70  
0.60  
0°  
H
0.024  
0°  
L
A
ø
S
0.50  
0.010  
0.020  
0.25  
A
1
e
b
S (45°)  
C
H
L
ø
ALD1721E  
Advanced Linear Devices  
11 of 13  
PDIP-8 PACKAGE DRAWING  
8 Pin Plastic DIP Package  
E
E
1
Millimeters  
Inches  
Dim  
A
Min  
Max  
Min  
Max  
5.08  
1.27  
2.03  
1.65  
0.51  
0.30  
11.68  
7.11  
8.26  
2.79  
7.87  
3.81  
2.03  
15°  
0.105  
0.200  
3.81  
0.015  
0.050  
0.035  
0.015  
0.008  
0.370  
0.220  
0.300  
0.090  
0.290  
0.110  
0.040  
0°  
0.050  
0.080  
0.065  
0.020  
0.012  
0.460  
0.280  
0.325  
0.110  
0.310  
0.150  
0.080  
15°  
0.38  
1.27  
0.89  
0.38  
0.20  
9.40  
5.59  
7.62  
2.29  
7.37  
2.79  
1.02  
0°  
A
1
2
A
b
b
1
D
c
S
D-8  
E
A
2
A
E
1
L
A
1
e
e
b
e
1
L
b
1
S-8  
ø
c
ø
e
1
ALD1721E  
Advanced Linear Devices  
12 of 13  
CERDIP-8 PACKAGE DRAWING  
8 Pin CERDIP Package  
E
E
1
Millimeters  
Inches  
Dim  
A
Min  
Max  
Min  
Max  
5.08  
0.140  
0.200  
3.55  
1.27  
0.97  
0.36  
0.20  
--  
D
A
1
2.16  
1.65  
0.58  
0.38  
10.29  
7.87  
8.26  
0.050  
0.038  
0.014  
0.008  
--  
0.085  
0.065  
0.023  
0.015  
0.405  
0.310  
0.325  
b
b
1
C
A
1
s
D-8  
E
5.59  
7.73  
0.220  
0.290  
A
E
1
e
L
1
0.100 BSC  
0.300 BSC  
L
2.54 BSC  
7.62 BSC  
3.81  
L
2
e
1
b
b
L
5.08  
--  
0.150  
0.200  
--  
1
L
L
3.18  
0.38  
--  
0.125  
0.015  
--  
1
2
e
1.78  
2.49  
15°  
0.070  
0.098  
15°  
S
Ø
0°  
0°  
C
ø
e
1
ALD1721E  
Advanced Linear Devices  
13 of 13  

相关型号:

ALD1721PA

EPAD⑩ MICROPOWER OPERATIONAL AMPLIFIER
ALD

ALD1721SA

EPAD⑩ MICROPOWER OPERATIONAL AMPLIFIER
ALD

ALD1722

EPAD⑩ OPERATIONAL AMPLIFIER
ALD

ALD1722DA

EPAD⑩ OPERATIONAL AMPLIFIER
ALD

ALD1722E

EPAD⑩ OPERATIONAL AMPLIFIER
ALD

ALD1722EDA

EPAD⑩ OPERATIONAL AMPLIFIER
ALD

ALD1722EPA

EPAD⑩ OPERATIONAL AMPLIFIER
ALD

ALD1722EPAL

EPAD® LOW POWER CMOS OPERATIONAL AMPLIFIER
ALD

ALD1722ESA

EPAD⑩ OPERATIONAL AMPLIFIER
ALD

ALD1722ESAL

EPAD® LOW POWER CMOS OPERATIONAL AMPLIFIER
ALD

ALD1722E_11

EPAD® LOW POWER CMOS OPERATIONAL AMPLIFIER
ALD

ALD1722PA

EPAD⑩ OPERATIONAL AMPLIFIER
ALD