ALD1722ESA [ALD]

EPAD⑩ OPERATIONAL AMPLIFIER; EPAD ™运算放大器
ALD1722ESA
型号: ALD1722ESA
厂家: ADVANCED LINEAR DEVICES    ADVANCED LINEAR DEVICES
描述:

EPAD⑩ OPERATIONAL AMPLIFIER
EPAD ™运算放大器

运算放大器 光电二极管
文件: 总10页 (文件大小:68K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
A
L
D
DVANCED  
INEAR  
EVICES, INC.  
ALD1722E/ALD1722  
EPAD™ OPERATIONAL AMPLIFIER  
BENEFITS  
KEY FEATURES  
• Eliminates manual and elaborate  
system trimming procedures  
• Remote controlled automated trimming  
• In-System Programming capability  
• No external components  
• No internal chopper clocking noise  
• No chopper dynamic power dissipation  
• Simple and cost effective  
• Small package size  
• EPAD ( Electrically Programmable Analog Device)  
• User programmable V  
trimmer  
• Computer-assisted trimming  
• Rail-to-rail input/output  
• Compatible with standard EPAD Programmer  
• High precision through in-situ circuit precision trimming  
OS  
• Reduce or eliminate V , PSRR, CMRR and TCV  
errors  
OS  
OS  
• System level “calibration” capability  
• In-System Programming capable  
• Extremely small total functional  
volume size  
• Electrically programmable to compensate for external  
component tolerances  
• Low system implementation cost  
• Low power  
• Achieve 0.01pA input bias current and 25µV  
input offset voltage simultaneously  
• Compatible with industry standard pinout  
APPLICATIONS  
GENERAL DESCRIPTION  
The ALD1722E/ALD1722 is a monolithic rail-to-rail precision CMOS  
operational amplifier with integrated user programmable EPAD (Electri-  
callyProgrammableAnalogDevice)basedoffsetvoltageadjustment. The  
ALD1722E/ALD1722 is a direct replacement of the ALD1702 operational  
amplifier, with the added feature of user-programmable offset voltage  
trimming resulting in significantly enhanced total system performance and  
user flexibility. EPAD technology is an exclusive ALD design which has  
been refined for analog applications where precision voltage trimming is  
necessary to achieve a desired performance. It utilizes CMOS FETs as  
in-circuit elements for trimming of offset voltage bias characteristics with  
the aid of a personal computer under software control. Once pro-  
grammed,thesetparametersarestoredindefinitelywithinthedeviceeven  
afterpower-down. EPADoffersthecircuitdesigneraconvenientandcost-  
effective trimming solution for achieving the very highest amplifier/system  
performance.  
• Sensor interface circuits  
• Transducer biasing circuits  
• Capacitive and charge integration circuits  
• Biochemical probe interface  
• Signal conditioning  
• Portable instruments  
• High source impedance electrode  
amplifiers  
• Precision Sample and Hold amplifiers  
• Precision current to voltage converter  
• Error correction circuits  
• Sensor compensation circuits  
• Precision gain amplifiers  
• Periodic In-system calibration  
• System output level shifter  
The ALD1722E/ALD1722 operational amplifier features rail-to-rail input  
and output voltage ranges, tolerance to over-voltage input spikes of  
300mV beyond supply rails, high capacitive loading up to 4000pF, ex-  
tremely low input currents of 0.01pA typical, high open loop voltage gain,  
useful bandwidth of 1.5 MHz, slew rate of 2.1 V/µs, and low supply current  
of 0.8mA.  
PIN CONFIGURATION  
VE1  
-IN  
1
8
7
6
5
VE2  
ORDERING INFORMATION  
Operating Temperature Range*  
+
V
2
-55°C to +125°C  
0°C to +70°C  
0°C to +70°C  
+IN  
3
4
OUT  
N/C  
8-Pin  
8-Pin  
8-Pin  
CERDIP  
Small Outline  
Plastic Dip  
-
V
Package  
Package (SOIC)  
Package  
TOP VIEW  
DA, PA, SA PACKAGE  
ALD1722E DA  
ALD1722 DA  
ALD1722E SA  
ALD1722 SA  
ALD1722E PA  
ALD1722 PA  
* Contact factory for industrial temperature range  
ALD1722E/ALD1722  
Advanced Linear Devices  
1
FUNCTIONAL DESCRIPTION  
Functional Description of ALD1722  
The ALD1722E/ALD1722 uses EPADs as in-circuit ele-  
ments for trimming of offset voltage bias characteristics.  
Each ALD1722E/ALD1722 has a pair of EPAD-based cir-  
The ALD1722 is pre-programmed at the factory under stan-  
dard operating conditions for minimum equivalent input off-  
set voltage.  
The ALD1722 offers similar programmable  
cuits connected such that one circuit is used to adjust V  
OS  
features as the ALD1722E, but with more limited offset  
voltage program range. It is intended for standard opera-  
tional amplifier applications where little or no electrical pro-  
gramming by the user is necessary.  
in one direction and the other is used to adjust V  
other direction.  
in the  
OS  
Functional Description of ALD1722E  
While each of the EPAD devices is a monotonically adjust-  
able programmable device, the V of the ALD1722E can  
USER PROGRAMMABLE Vos FEATURE  
OS  
be adjusted many times in both directions. Once pro-  
grammed, the set V levels are stored permanently, even  
Each ALD1722E/ALD1722 has two pins named VE1 and  
VE2 which are internally connected to an internal offset bias  
circuit. VE1/VE2 have initial typical values of 1.6 Volt. The  
voltage on these pins can be programmed using the ALD  
E100 EPAD Programmer and the appropriate Adapter Mod-  
ule. The useful programming range of VE1 and VE2 is 1.6  
Volt to 3.5 Volts. VE1 and VE2 pins are programming pins,  
used during programming mode. The Programming pin is  
used during electrical programming to inject charge into the  
internal EPADs. Increases of VE1 decrease the offset volt-  
age while increases of VE2 increase the offset voltage of the  
operational amplifier. The injected charge is permanently  
stored and determines the offset voltage of the operational  
amplifier. After programming, VE1 and VE2 terminals must  
be left open to settle on a voltage determined by internal bias  
currents.  
OS  
when the device power is removed.  
The ALD1722E provides the user with an operational ampli-  
fier that can be trimmed with user application-specific pro-  
gramming or in-system programming conditions. User appli-  
cation-specific circuit programming refers to the situation  
where the Total Input Offset Voltage of the ALD1722E can  
be trimmed with the actual intended operating conditions.  
The ALD1722E is pre-programmed at the factory under  
standard operating conditions for minimum equivalent input  
offset voltage. It also has a guaranteed offset voltage  
program range, which is ideal for applications that require  
electrical offset voltage programming.  
For example, an application circuit may have +6V and -2.5V  
power supplies, and the operational amplifier input is biased  
at +0.7V, and the average operating temperature is at 55°C.  
The circuit can be wired up to these conditions within an  
environmental chamber, and the ALD1722E can be inserted  
into a test socket connected to this circuit while it is being  
During programming, the voltages on VE1 or VE2 are  
increased incrementally to set the offset voltage of the  
operational amplifier to the desired V . Note that desired  
OS  
V
can be any value within the offset voltage program-  
OS  
mable ranges, and can be either zero, a positive value or a  
negative value. This V value can also be reprogrammed  
electrically trimmed. Any error in V  
due to these bias  
OS  
conditions can be automatically zeroed out. The Total V  
OS  
to a different value at a later time, provided that the useful  
VE1 or VE2 programming voltage range has not been  
exceeded. VE1 or VE2 pins can also serve as capacitively  
coupled input pins.  
OS  
error is now limited only by the adjustable range and the  
stabilityofV , andtheinputnoisevoltageoftheoperational  
OS  
amplifier. Therefore, this Total V  
OS  
as V is traditionally specified; plus the V  
error now includes V  
OS  
error contribu-  
OS  
OS  
tions from PSRR, CMRR, TCV , and noise. Typically this  
Internally, VE1 and VE2 are programmed and connected  
differentially. Temperature drift effects between the two  
internal offset bias circuits cancel each other and introduce  
less net temperature drift coefficient change than offset  
voltage trimming techniques such as offset adjustment with  
an external trimmer potentiometer.  
OS  
) is approximately ± 25µV for the  
total V  
error term (V  
OS  
ALD1722E.  
OST  
The V contribution due to PSRR, CMRR, TCV  
and  
OS  
OS  
external components can be large for operational amplifiers  
without trimming. Therefore the ALD1722E with EPAD trim-  
ming is able to provide much improved system performance  
by reducing these other sources of error to provide signifi-  
While programming, V+, VE1 and VE2 pins may be alter-  
nately pulsed with 12V (approximately) pulses generated by  
the EPAD Programmer. In-system programming requires  
the ALD1722E/ALD1722 application circuit to accommo-  
date these programming pulses. This can be accomplished  
by adding resistors at certain appropriate circuit nodes. For  
more information, see Application Note AN1700.  
cantly reduced V  
OST.  
In-System Programming refers to the condition where the  
EPAD adjustment is made after the ALD1722E has been  
inserted into a circuit board. In this case, the circuit design  
must provide for the ALD1722E to operate in normal mode  
and in programming mode. One of the benefits of in-system  
programming is that not only is the ALD1722E offset voltage  
from operating bias conditions accounted for, any residual  
errors introduced by other circuit components, such as  
resistor or sensor induced voltage errors, can also be cor-  
rected. In this way, the “in-system” circuit output can be  
adjusted to a desired level eliminating other trimming com-  
ponents.  
2
Advanced Linear Devices  
ALD1722E/ALD1722  
ABSOLUTE MAXIMUM RATINGS  
+
Supply voltage, V  
13.2V  
+
Differential input voltage range  
Power dissipation  
-0.3V to V +0.3V  
600 mW  
Operating temperature range PA,SA package  
DA package  
Storage temperature range  
Lead temperature, 10 seconds  
0°C to +70°C  
-55°C to +125°C  
-65°C to +150°C  
+260°C  
OPERATING ELECTRICAL CHARACTERISTICS  
T = 25oC V = ±2.5V unless otherwise specified  
A
S
1722E  
Typ  
1722  
Typ  
Parameter  
Symbol  
Min  
Max  
Min  
Max  
Unit  
Test Conditions  
Supply Voltage  
V
V
±2.0  
±5.0  
±2.0  
±5.0  
V
V
S
+
4.0  
10.0  
4.0  
10.0  
Single Supply  
Initial Input Offset Voltage1  
V
25  
±8  
25  
50  
40  
±3  
40  
90  
µV  
mV  
µV  
R 100KΩ  
S
OS i  
Offset Voltage Program Range 2  
V  
±5  
±0.5  
OS  
Programmed Input Offset  
Voltage Error3  
V
V
I
50  
50  
90  
90  
At user specified  
OS  
target offset voltage  
Total Input Offset Voltage 4  
Input Offset Current5  
Input Bias Current5  
25  
0.01  
0.01  
40  
0.01  
0.01  
µV  
At user specified  
OST  
target offset voltage  
10  
10  
pA  
pA  
T
A
= 25°C  
OS  
280  
280  
0°C T +70°C  
A
I
B
10  
10  
pA  
pA  
T
A
= 25°C  
280  
280  
0°C T +70°C  
A
Input Voltage Range 6  
V
-0.3  
-2.8  
5.3  
-0.3  
-2.8  
5.3  
V
V
V
V
= +5V; notes 2,5  
+
IR  
+2.8  
+2.8  
= ±2.5V  
S
14  
10  
14  
10  
Input Resistance  
R
IN  
Input Offset Voltage Drift 7  
TCV  
OS  
5
7
µV/°C  
dB  
R
R
100KΩ  
100KΩ  
S
S
Initial Power Supply  
Rejection Ratio 8  
PSRR  
85  
85  
i
Initial Common Mode  
Rejection Ratio 8  
CMRR  
97  
97  
dB  
R
100KΩ  
i
S
Large Signal Voltage Gain  
A
50  
250  
500  
50  
250  
500  
V/mV  
V/mV  
R
R
=10KΩ  
1MΩ  
V
L
L
+
=1MV = 5V  
V
V
V
V
low  
0.002  
4.998  
-2.44  
2.44  
0.01  
0.002  
4.998  
-2.44  
2.44  
0.01  
V
V
V
V
R
O
O
O
O
L
high  
low  
4.99  
2.35  
4.99  
2.35  
0°C T +70°C  
A
R =10KΩ  
L
0°C T +70°C  
A
Output Voltage Range  
-2.35  
-2.35  
high  
Output Short Circuit Current  
I
8
8
mA  
SC  
* NOTES 1 through 9, see section titled "Definitions and Design Notes".  
ALD1722E/ALD1722  
Advanced Linear Devices  
3
OPERATING ELECTRICAL CHARACTERISTICS (cont'd)  
T = 25oC V = ±2.5V unless otherwise specified  
A
S
1722E  
Typ  
1722  
Typ  
Parameter  
Symbol  
Min  
Max  
Min  
Max  
Unit  
Test Conditions  
Supply Current  
I
S
0.8  
1.5  
0.8  
1.5  
mA  
V
= 0V  
IN  
No Load  
Power Dissipation  
P
4.0  
1
7.5  
4.0  
1
7.5  
mW  
pF  
V
= ±2.5V  
S
D
Input Capacitance  
C
C
IN  
L
Maximum Load Capacitance  
400  
400  
pF  
pF  
Gain = 1  
Gain = 5  
4000  
4000  
Input Noise Voltage  
Input Current Noise  
Bandwidth  
e
26  
0.6  
1.5  
2.1  
26  
0.6  
1.5  
2.1  
nV/Hz f = 1KHz  
fA/Hz f =10Hz  
MHz  
n
i
n
B
S
1.0  
1.4  
1.0  
1.4  
W
R
Slew Rate  
V/µs  
A
= +1  
V
R
= 10KΩ  
L
Rise time  
t
r
0.2  
10  
0.2  
10  
µs  
R
= 10KΩ  
L
Overshoot Factor  
%
R
C
= 10K,  
L
L
= 100pF  
Settling Time  
t
s
8.0  
3.0  
8.0  
3.0  
µs  
µs  
0.01%  
0.1%  
A
= -1, R = 5KΩ  
V
L
C
= 50pF  
L
T = 25oC V = ±2.5V unless otherwise specified  
A
S
1722E  
Typ  
1722  
Typ  
Parameter  
Symbol  
Min  
Max  
Min  
Max  
Unit  
Test Conditions  
Average Long Term Input Offset  
Voltage Stability 9  
V  
0.02  
1.6  
2.0  
-5  
0.02  
2.6  
0.5  
-5  
µV/  
OS  
time  
1000 hrs  
Initial VE Voltage  
VE1  
VE2  
V
i
i
Programmable VE Range  
VE Pin Leakage Current  
VE1  
VE2  
1.5  
V
i
µA  
eb  
4
Advanced Linear Devices  
ALD1722E/ALD1722  
V = ±2.5V -55°C T +125°C unless otherwise specified  
S
A
1722E  
Typ  
1722  
Typ  
Parameter  
Symbol  
Min  
Max  
Min  
Max  
Unit  
mV  
nA  
Test Conditions  
Initial Input Offset Voltage  
Input Offset Current  
Input Bias Current  
V
0.5  
0.7  
R
100KΩ  
OS i  
S
I
I
2.0  
2.0  
2.0  
2.0  
OS  
nA  
B
Initial Power Supply  
Rejection Ratio 8  
PSRR  
CMRR  
85  
97  
25  
85  
97  
25  
dB  
R
R
100KΩ  
100KΩ  
i
S
S
Initial Common Mode  
RejectionRatio 8  
dB  
i
Large Signal Voltage Gain  
Output Voltage Range  
A
10  
10  
V/mV  
R
R
10KΩ  
10KΩ  
V
L
L
V
V
low  
-2.4  
2.4  
-2.3  
-2.4  
2.4  
-2.3  
V
V
O
O
high  
2.3  
2.3  
T = 25oC V = ±5.0V unless otherwise specified  
A
S
1722E  
Typ  
1722  
Typ  
Parameter  
Symbol  
PSRR  
Min  
Max  
Min  
Max  
Unit  
Test Conditions  
Initial Power Supply  
Rejection Ratio 8  
85  
85  
dB  
R
100KΩ  
i
S
Initial Common Mode  
Rejection Ratio 8  
CMRR  
97  
97  
dB  
R
100KΩ  
i
S
Large Signal Voltage Gain  
Output Voltage Range  
A
250  
250  
V/mV  
V
R
R
= 10KΩ  
= 10KΩ  
V
L
L
V
low  
high  
-4.90  
4.93  
-4.80  
-4.90  
4.93  
-4.80  
O
V
O
4.80  
4.80  
Bandwidth  
Slew Rate  
B
1.7  
2.8  
1.7  
MHz  
W
S
R
2.8  
V/µs  
A
= +1, C = 50pF  
L
V
ALD1722E/ALD1722  
Advanced Linear Devices  
5
TYPICAL PERFORMANCE CHARACTERISTICS  
COMMON MODE INPUT VOLTAGE RANGE  
AS A FUNCTION OF SUPPLY VOLTAGE  
OPEN LOOP VOLTAGE GAIN AS A FUNCTION  
OF SUPPLY VOLTAGE AND TEMPERATURE  
±7  
±6  
1000  
}
-55°C  
+25°C  
T
= 25°C  
A
±5  
±4  
}
100  
}
+125°C  
±3  
±2  
±1  
0
10  
1
R = 10KΩ  
R = 5KΩ  
L
L
0
±1  
±2  
±3  
±4  
±5  
±6  
±7  
0
±2  
±4  
±6  
±8  
SUPPLY VOLTAGE (V)  
SUPPLY VOLTAGE (V)  
INPUT BIAS CURRENT AS A FUNCTION  
OF AMBIENT TEMPERATURE  
SUPPLY CURRENT AS A FUNCTION  
OF SUPPLY VOLTAGE  
1000  
100  
2.5  
2.0  
INPUTS GROUNDED  
OUTPUT UNLOADED  
V
S
= ±2.5V  
10  
T
A
= -55ºC  
1.5  
1.0  
0.5  
0
1.0  
-25°C  
+25°C  
+80°C  
+125°C  
0.1  
0.01  
-50 -25  
0
25  
50  
75  
100  
125  
AMBIENT TEMPERATURE (°C)  
0
±1  
±2  
±3  
±4  
±5  
±6  
SUPPLY VOLTAGE (V)  
CHANGE IN INPUT OFFSET VOLTAGE AS  
A FUNCTION OF CHANGE IN VE1 AND VE2  
OPEN LOOP VOLTAGE AS A  
FUNCTION OF FREQUENCY  
5
4
3
2
120  
100  
80  
VE2  
V
T
= ±2.5V  
= 25°C  
S
A
1
0
0
60  
40  
45  
-1  
-2  
90  
135  
180  
20  
0
-3  
-4  
-5  
VE1  
-20  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
1
10  
100  
1K  
10K 100K  
1M  
10M  
CHANGE IN VE1 AND VE2 (V)  
FREQUENCY (Hz)  
6
Advanced Linear Devices  
ALD1722E/ALD1722  
TYPICAL PERFORMANCE CHARACTERISTICS  
OUTPUT VOLTAGE SWING AS A  
FUNCTION OF SUPPLY VOLTAGE  
LARGE - SIGNAL TRANSIENT  
RESPONSE  
±7  
±6  
5V/div  
±25°C T 125°C  
A
V
T
R
C
= ±2.5V  
= 25°C  
= 10KΩ  
= 50pF  
S
A
L
L
±5  
R
L
= 10KΩ  
±4  
±3  
±2  
R
L
= 2KΩ  
2µs/div  
1V/div  
±4  
SUPPLY VOLTAGE (V)  
0
±1  
±2  
±3  
±5  
±6  
±7  
OPEN LOOP VOLTAGE GAIN AS A  
FUNCTION OF LOAD RESISTANCE  
SMALL - SIGNAL TRANSIENT  
RESPONSE  
1000  
100  
10  
V
T
R
C
= ±2.5V  
= 25°C  
= 10KΩ  
= 50pF  
100mV/div  
S
A
L
L
V
T
= ±2.5V  
= 25°C  
S
A
20mV/div  
2µs/div  
1
1K  
10K  
100K  
1000K  
LOAD RESISTANCE ()  
DISTRIBUTION OF TOTAL INPUT OFFSET VOLTAGE  
BEFORE AND AFTER EPAD PROGRAMMING  
100  
80  
EXAMPLE B:  
AFTER EPAD  
EXAMPLE A:  
V AFTER EPAD  
V
OST  
PROGRAMMING  
TARGET = -750µV  
OST  
PROGRAMMING  
V TARGET = 0.0µV  
OST  
V
OST  
60  
40  
V
BEFORE EPAD  
OST  
PROGRAMMING  
20  
0
-2500 -2000  
-1500  
-500  
0
500  
1000  
1500  
2000  
2500  
-1000  
TOTAL INPUT OFFSET VOLTAGE (µV)  
ALD1722E/ALD1722  
Advanced Linear Devices  
7
TWO EXAMPLES OF EQUIVALENT INPUT OFFSET VOLTAGE DUE TO  
CHANGE IN SUPPLY VOLTAGE vs. SUPPLY VOLTAGE  
500  
400  
PSRR = 80 dB  
EXAMPLE A:  
EPAD PROGRAMMED  
V
OS  
AT V  
= +5V  
SUPPLY  
300  
200  
EXAMPLE B:  
EPAD  
V
OS  
PROGRAMMED  
AT V  
= +8V  
SUPPLY  
100  
0
0
1
2
3
4
5
6
7
8
9
10  
SUPPLY VOLTAGE (V)  
THREE EXAMPLES OF EQUIVALENT INPUT OFFSET VOLTAGE DUE TO  
CHANGE IN COMMON MODE VOLTAGE vs. COMMON MODE VOLTAGE  
500  
400  
V
= ±5V  
SUPPLY  
CMRR = 80dB  
300  
200  
EXAMPLE B:  
EPAD  
EXAMPLE A:  
V EPAD PROGRAMMED  
V
OS  
PROGRAMMED  
OS  
AT V = 0V  
IN  
AT V = -4.3V  
IN  
100  
0
EXAMPLE C:  
EPAD PROGRAMMED  
V
OS  
AT V = +5V  
IN  
-5  
-4  
-3  
-1  
0
1
2
3
4
5
-2  
COMMON MODE VOLTAGE (V)  
EXAMPLE OF MINIMIZING EQUIVALENT INPUT OFFSET VOLTAGE  
FOR A COMMON MODE VOLTAGE RANGE OF 0.5V  
50  
40  
COMMON MODE VOLTAGE RANGE OF 0.5V  
30  
20  
V
EPAD  
OS  
PROGRAMMED  
AT COMMON MODE  
VOLTAGE OF 0.25V  
CMRR = 80dB  
10  
0
-0.5  
-0.4  
-0.3  
-0.2  
-0.1  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
COMMON MODE VOLTAGE (V)  
8
Advanced Linear Devices  
ALD1722E/ALD1722  
APPLICATION SPECIFIC / IN-SYSTEM PROGRAMMING  
Examples of applications where accumulated total input offset voltage from various  
contributing sources is minimized under different sets of user-specified operating conditions  
2500  
2000  
1500  
2500  
2000  
V
BUDGET AFTER  
OS  
1500  
1000  
500  
0
EPAD PROGRAMMING  
V
BUDGET AFTER  
OS  
1000  
500  
0
EPAD PROGRAMMING  
+
X
-500  
-500  
+
X
-1000  
-1000  
V
BUDGET BEFORE  
OS  
-1500  
-2000  
-2500  
-1500  
-2000  
-2500  
EPAD PROGRAMMING  
V
BUDGET BEFORE  
OS  
EPAD PROGRAMMING  
EXAMPLE B  
EXAMPLE A  
2500  
2000  
1500  
2500  
2000  
1500  
V
BUDGET AFTER  
OS  
EPAD PROGRAMMING  
V
BUDGET BEFORE  
OS  
1000  
500  
0
1000  
500  
0
EPAD PROGRAMMING  
+
X
-500  
-500  
+
-1000  
-1000  
X
-1500  
-2000  
-2500  
-1500  
-2000  
-2500  
V
BUDGET AFTER  
OS  
V
BUDGET BEFORE  
OS  
EPAD PROGRAMMING  
EPAD PROGRAMMING  
EXAMPLE D  
EXAMPLE C  
Total Input V  
after EPAD  
Device input V  
OS  
OS  
PSRR equivalent V  
OS  
Programming  
+
CMRR equivalent V  
OS  
T
equivalent V  
A
OS  
X
Noise equivalent V  
OS  
External Error equivalent V  
OS  
ALD1722E/ALD1722  
Advanced Linear Devices  
9
DEFINITIONS AND DESIGN NOTES:  
ADDITIONAL DESIGN NOTES:  
1. Initial Input Offset Voltage is the offset voltage of the  
ALD1722E/ALD1722 operational amplifier as shipped from the  
factory. The device has been pre-programmed and tested for  
programmability.  
A. The ALD1722E/ALD1722 is internally compensated for unity  
gainstabilityusinganovelschemewhichproducesasinglepole  
role off in the gain characteristics while providing more than 70  
degrees of phase margin at unity gain frequency. A unity gain  
buffer using the ALD1722E/ALD1722 will typically drive 400pF  
of external load capacitance; in the inverting unity gain configu-  
ration, it can drive up to 800pF of load capacitance.  
2. Offset Voltage Program Range is the range of adjustment of  
user specified target offset voltage. This is typically an adjust-  
ment in either the positive or the negative direction of the input  
offset voltage from an initial offset voltage. The input offset  
programpins, VE1orVE2, changetheinputoffsetvoltageinthe  
negativeorpositivedirection,respectively.Userspecifiedtarget  
offset voltage can be any offset voltage within this programming  
range.  
B. The ALD1722E/ALD1722 has complementary p-channel  
and n-channel input differential stages connected in parallel to  
accomplish rail to rail input common mode voltage range. The  
switching point between the two differential stages is 1.5V  
above negative supply voltage. For applications such as invert-  
ingamplifierornon-invertingamplifierwithagainlargerthan2.5  
(5V operation), the common mode voltage does not make  
excursions below this switching point. However, this switching  
doestakeplaceiftheoperationalamplifierisconnectedasarail-  
to-railunitygainbufferandthedesignmustallowforinputoffset  
voltage variations.  
3. Programmed Input Offset Voltage Error is the final offset  
voltage error after programming, when the Input Offset Voltage  
is at target Offset Voltage. This parameter is sample tested.  
4. Total Input Offset Voltage is the same as Programmed Input  
Offset Voltage, corrected for system offset voltage error. Usu-  
ally this is an all inclusive system offset voltage, which also  
includes offset voltage contributions from input offset voltage,  
PSRR, CMRR, TCVos and noise. It can also include errors  
introduced by external components, at a system level. Pro-  
grammed Input Offset Voltage and Total Input Offset Voltage is  
not necessarily zero offset voltage, but an offset voltage set to  
compensate for other system errors as well. This parameter is  
sample tested.  
C. The output stage consists of class AB complementary output  
drivers. The oscillation resistant feature, combined with the rail-  
to-railinputandoutputfeature, makestheALD1722E/ALD1722  
an effective analog signal buffer for high source impedance  
sensors, transducers, and other circuit networks.  
D. The ALD1722E/ALD1722 has static discharge protection.  
However, care must be exercised when handling the device to  
avoid strong static fields that may degrade a diode junction,  
causing increased input leakage currents. The user is advised  
to power up the circuit before, or simultaneously with, any input  
voltages applied and to limit input voltages to not exceed 0.3V  
of the power supply voltage levels.  
5. The Input Offset and Bias Currents are essentially input  
protection diode reverse bias leakage currents. This low input  
bias current assures that the analog signal from the source will  
not be distorted by it. For applications where source impedance  
is very high, it may be necessary to limit noise and hum pickup  
through proper shielding.  
E. VE1 and VE2 are high impedance terminals, as the internal  
bias currents are set very low to a few microamperes to  
conserve power. For some applications, these terminals may  
need to be shielded from external coupling sources. For ex-  
ample, digital signals running nearby may cause unwanted  
offset voltage fluctuations. Care during the printed circuit board  
layout to place ground traces around these pins and to isolate  
them from digital lines would generally eliminate such coupling  
effects. In addition, optional decoupling capacitors of 1000pF or  
greater value can be added to VE1 and VE2 terminals.  
6. Input Voltage Range is determined by two parallel comple-  
mentary input stages that are summed internally, each stage  
having a separate input offset voltage. While Total Input Offset  
Voltage can be trimmed to a desired target value, it is essential  
to note that this trimming occurs at only one selected input bias  
voltage. Dependingontheselectedinputbiasvoltagerelativeto  
the power supply voltages, offset voltage trimming may affect  
one or both input stages. For the ALD1722E/ALD1722, the  
switching point between the two stages occur at approximately  
1.5V above the negative supply voltage  
F. The ALD1722E/ALD1722 is designed for use in low voltage,  
micro-power circuits. The maximum operating voltage during  
normaloperationshouldremainbelow10Voltsatalltimes.Care  
should be taken to insure that the application in which the  
devices are used would not experience any positive or negative  
transient voltages that cause any of the terminal voltages to  
exceed this limit.  
7. Input Offset Voltage Drift is the average change in Total Input  
Offset Voltage as a function of ambient temperature. This  
parameter is sample tested.  
8. Initial PSRR and initial CMRR specifications are provided as  
reference information. After programming, error contribution to  
theoffsetvoltagefromPSRRandCMRRissettozerounderthe  
specific power supply and common mode conditions, and  
becomes part of the Programmed Input Offset Voltage Error.  
G. All inputs or unused pins except VE1 and VE2 pins should be  
connected to a supply voltage such as Ground so that they do  
not become floating pins, since input impedance at these pins  
is very high. If any of these pins are left undefined, they may  
cause unwanted oscillation or intermittent excessive current  
drain. As these devices are built with CMOS technology, normal  
operating and storage temperature limits, ESD and latchup  
handling precautions pertaining to CMOS device handling  
should be observed.  
9. Average Long Term Input Offset Voltage Stability is based on  
input offset voltage shift through operating life test at 125  
degrees C extrapolated to Ta = 25 degrees C, assuming  
activation energy of 1.0eV. This parameter is sample tested.  
10  
Advanced Linear Devices  
ALD1722E/ALD1722  

相关型号:

ALD1722ESAL

EPAD® LOW POWER CMOS OPERATIONAL AMPLIFIER
ALD

ALD1722E_11

EPAD® LOW POWER CMOS OPERATIONAL AMPLIFIER
ALD

ALD1722PA

EPAD⑩ OPERATIONAL AMPLIFIER
ALD

ALD1722SA

EPAD⑩ OPERATIONAL AMPLIFIER
ALD

ALD1726

EPAD⑩ ULTRA MICROPOWER OPERATIONAL AMPLIFIER
ALD

ALD1726DA

EPAD⑩ ULTRA MICROPOWER OPERATIONAL AMPLIFIER
ALD

ALD1726E

EPAD⑩ ULTRA MICROPOWER OPERATIONAL AMPLIFIER
ALD

ALD1726EDA

EPAD⑩ ULTRA MICROPOWER OPERATIONAL AMPLIFIER
ALD

ALD1726EPA

EPAD⑩ ULTRA MICROPOWER OPERATIONAL AMPLIFIER
ALD

ALD1726EPAL

EPAD® ULTRA MICROPOWER CMOS OPERATIONAL AMPLIFIER
ALD

ALD1726ESA

EPAD⑩ ULTRA MICROPOWER OPERATIONAL AMPLIFIER
ALD

ALD1726ESAL

EPAD® ULTRA MICROPOWER CMOS OPERATIONAL AMPLIFIER
ALD