ALD110804SCL [ALD]

QUAD/DUAL N-CHANNEL ENHANCEMENT MODE EPAD PRECISION MATCHED PAIR MOSFET ARRAY; QUAD /双N沟道增强型EPAD精密匹配的一对MOSFET阵列
ALD110804SCL
型号: ALD110804SCL
厂家: ADVANCED LINEAR DEVICES    ADVANCED LINEAR DEVICES
描述:

QUAD/DUAL N-CHANNEL ENHANCEMENT MODE EPAD PRECISION MATCHED PAIR MOSFET ARRAY
QUAD /双N沟道增强型EPAD精密匹配的一对MOSFET阵列

PC
文件: 总11页 (文件大小:108K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TM  
A
L
D
DVANCED  
INEAR  
EVICES, INC.  
®
e
EPAD  
A
ALD110804/ALD110904  
QUAD/DUAL N-CHANNEL ENHANCEMENT MODE EPAD®  
PRECISION MATCHED PAIR MOSFET ARRAY  
V
= +0.40V  
GS(th)  
GENERAL DESCRIPTION  
APPLICATIONS  
ALD110804/ALD110904 are high precision monolithic quad/dual enhance-  
ment mode N-Channel MOSFETS matched at the factory using ALD’s  
proven EPAD® CMOS technology. These devices are intended for low  
voltage, small signal applications. TheALD110804/ALD110904 MOSFETS  
are designed and built for exceptional device electrical characteristics  
matching. Since these devices are on the same monolithic chip, they also  
exhibit excellent tempco tracking characteristics. They are versatile circuit  
elements useful as design components for a broad range of analog appli-  
cations, such as basic building blocks for current sources, differential am-  
plifier input stages, transmission gates, and multiplexer applications. For  
• Ultra low power (nanowatt) analog and digital  
circuits  
• Ultra low operating voltage(<0.40V) circuits  
• Sub-threshold biased and operated circuits  
• Precision current mirrors and current sources  
• Nano-Amp current sources  
• High impedance resistor simulators  
• Capacitive probes and sensor interfaces  
• Differential amplifier input stages  
• Discrete Voltage comparators and level shifters  
• Voltage bias circuits  
-
most applications, connect the V and IC pins to the most negative volt-  
+
age in the system and the V pin to the most positive voltage. All other  
• Sample and Hold circuits  
pins must have voltages within these voltage limits at all times.  
• Analog and digital inverters  
• Charge detectors and charge integrators  
• Source followers and High Impedance buffers  
• Current multipliers  
The ALD110804/ALD110904 devices are built for minimum offset voltage  
and differential thermal response, and they are suited for switching and  
amplifying applications in <+0.1V to +10V systems where low input bias  
current, low input capacitance and fast switching speed are desired, as  
these devices exhibit well controlled turn-off and sub-threshold character-  
istics and can be biased and operated in the sub-threshold region. Since  
these are MOSFET devices, they feature very large (almost infinite) cur-  
rent gain in a low frequency, or near DC, operating environment.  
• Discrete Analog switches / multiplexers  
PIN CONFIGURATION  
ALD110804  
The ALD110804/ALD110904 are suitable for use in very low operating  
voltage or very low power (nanowatt), precision applications which require  
very high current gain, beta, such as current mirrors and current sources.  
The high input impedance and the high DC current gain of the Field Effect  
Transistors result from extremely low current loss through the control gate.  
The DC current gain is limited by the gate input leakage current, which is  
specified at 30pA at room temperature. For example, DC beta of the de-  
vice at a drain current of 3mA and input leakage current of 30pA at 25°C  
is = 3mA/30pA = 100,000,000.  
-
-
V
V
1
2
3
4
5
6
7
8
IC*  
G
16  
15  
14  
13  
12  
11  
10  
9
IC*  
G
N2  
N1  
M 2  
M 1  
D
V
S
D
S
N2  
N1  
+
+
V
12  
-
-
V
V
34  
D
D
N4  
N3  
M 4  
FEATURES  
M 3  
G
N4  
G
N3  
• Enhancement-mode (normally off)  
• Precision Gate Threshold Voltage of +0.40V  
• Matched MOSFET to MOSFET characteristics  
• Tight lot to lot parametric control  
IC*  
IC*  
-
-
V
V
SCL, PCL PACKAGES  
• Low input capacitance  
• V  
match (V ) to 10mV  
GS(th)  
OS  
• High input impedance — 1012typical  
ALD110904  
-
• Positive, zero, and negative V  
temperature coefficient  
GS(th)  
• DC current gain >108  
-
V
V
1
2
3
4
8
7
6
5
IC*  
G
IC*  
G
• Low input and output leakage currents  
N2  
N1  
ORDERING INFORMATION (“L” suffix denotes lead-free (RoHS))  
M 1  
M 2  
D
S
D
V
N1  
N2  
Operating Temperature Range*  
0°C to +70°C  
0°C to +70°C  
-
-
V
12  
16-Pin  
SOIC  
Package  
16-Pin  
Plastic Dip  
Package  
8-Pin  
SOIC  
Package  
8-Pin  
Plastic Dip  
Package  
SAL, PAL PACKAGES  
*IC pins are internally connected.  
Connect to V-  
ALD110804SCL ALD110804PCL ALD110904SAL ALD110904PAL  
* Contact factory for industrial temp. range or user-specified threshold voltage values.  
Rev 2.1 ©2012 Advanced Linear Devices, Inc. 415 Tasman Drive, Sunnyvale, CA 94089-1706 Tel: (408) 747-1155 Fax: (408) 747-1286  
www.aldinc.com  
ABSOLUTE MAXIMUM RATINGS  
Drain-Source voltage, V  
Gate-Source voltage, V  
Power dissipation  
10.6V  
10.6V  
500 mW  
DS  
GS  
Operating temperature range SCL, PCL, SAL, PAL package  
Storage temperature range  
Lead temperature, 10 seconds  
0°C to +70°C  
-65°C to +150°C  
+260°C  
CAUTION: ESD Sensitive Device. Use static control procedures in ESD controlled environment.  
OPERATING ELECTRICAL CHARACTERISTICS  
+
-
V = +5V V = GND T = 25°C unless otherwise specified  
A
ALD110804/ALD110904  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions  
Gate Threshold Voltage  
Offset Voltage  
V
V
0.38  
0.40  
2
0.42  
10  
V
I
= 1µA, V = 0.1V  
DS  
GS(th)  
OS  
DS  
mV  
V
-V  
GS(th)1 GS(th)2  
Offset VoltageTempco  
TC  
TC  
5
µV/ °C  
mV/ °C  
V
= V  
DS1  
VOS  
DS2  
= 1µA, V = 0.1V  
DS  
GateThreshold Voltage Tempco  
-1.7  
0.0  
+1.6  
I
D
I
D
I
D
VGS(th)  
= 20µA, V  
= 40µA, V  
= 0.1V  
= 0.1V  
DS  
DS  
On Drain Current  
I
12.0  
3.0  
mA  
V
V
= +9.9V, V  
= +4.2V, V  
= +5V  
= +5V  
DS (ON)  
GS  
GS  
DS  
DS  
Forward Transconductance  
G
FS  
1.4  
mmho  
V
V
= +4.4V  
= +9.4V  
GS  
DS  
Transconductance Mismatch  
Output Conductance  
G  
1.8  
68  
%
FS  
G
OS  
µmho  
V
V
= +4.4V  
= +9.4V  
GS  
DS  
Drain Source On Resistance  
R
500  
0.5  
%
V
V
V
= +0.1V  
= +4.4V  
DS (ON)  
DS  
GS  
Drain Source On Resistance  
Mismatch  
R  
BV  
I
DS (ON)  
DSX  
Drain Source Breakdown  
Voltage  
10  
I
V
= 1.0µA  
DS  
= -0.6V  
GS  
Drain Source Leakage Current1  
10  
3
400  
4
pA  
nA  
V
= -0.6V, V  
=+5V  
DS (OFF)  
GS  
DS  
-
V = -5V  
T
= 125°C  
A
Gate Leakage Current1  
I
200  
1
pA  
nA  
V
= 0V, V  
=125°C  
= 5V  
GS  
GSS  
DS  
T
A
Input Capacitance  
C
2.5  
0.1  
10  
pF  
pF  
ns  
ns  
ISS  
Transfer Reverse Capacitance  
Turn-on Delay Time  
C
RSS  
+
+
t
on  
V
V
= 5V, R = 5KΩ  
L
Turn-off Delay Time  
t
off  
10  
= 5V, R = 5KΩ  
L
Crosstalk  
60  
dB  
f = 100KHz  
1
Notes:  
Consists of junction leakage currents  
ALD110804/ALD110904  
Advanced Linear Devices  
2 of 11  
PERFORMANCE CHARACTERISTICS OF EPAD®  
PRECISION MATCHED PAIR MOSFET FAMILY  
ALD1108xx/ALD1109xx/ALD1148xx/ALD1149xx are monolithic  
currents and channel/junction leakage currents. When negative  
signal voltages are applied to the gate terminal, the designer/user  
can depend on the EPAD MOSFET device to be controlled, modu-  
lated and turned off precisely. The device can be modulated and  
turned-off under the control of the gate voltage in the same manner  
as the enhancement mode EPAD MOSFET and the same device  
equations apply.  
quad/dual N-Channel MOSFETs matched at the factory usingALD’s  
proven EPAD® CMOS technology. These devices are intended for  
low voltage, small signal applications.  
ALD’s Electrically Programmable Analog Device (EPAD) technol-  
ogy provides the industry’s only family of matched transistors with  
a range of precision threshold values. All members of this family  
are designed and actively programmed for exceptional matching of  
device electrical characteristics. Threshold values range from -  
3.50V Depletion to +3.50V Enhancement devices, including stan-  
dard products specified at -3.50V, -1.30V, -0.40V, +0.00V, +0.20V,  
+0.40V, +0.80V, +1.40V, and +3.30V. ALD can also provide any  
customer desired value between -3.50V and +3.50V. For all these  
devices, even the depletion and zero threshold transistors, ALD  
EPAD technology enables the same well controlled turn-off, sub-  
threshold, and low leakage characteristics as standard enhance-  
ment mode MOSFETs. With the design and active programming,  
even units from different batches and different date of manufacture  
have well matched characteristics. As these devices are on the  
same monolithic chip, they also exhibit excellent tempco tracking.  
EPAD MOSFETs are ideal for minimum offset voltage and differen-  
tial thermal response, and they are used for switching and amplify-  
ing applications in low voltage (1V to 10V or +/-0.5V to +/-5V) or  
ultra low voltage (less than 1V or +/- 0.5V) systems. They feature  
low input bias current (less than 30pA max.), ultra low power  
(microWatt) or Nanopower (power measured in nanoWatt) opera-  
tion, low input capacitance and fast switching speed. These de-  
vices can be used where a combination of these characteristics  
are desired.  
KEY APPLICATION ENVIRONMENT  
EPAD( MOSFET Array products are for circuit applications in one  
or more of the following operating environments:  
* Low voltage: 1V to 10V or +/- 0.5V to +/- 5V  
This EPAD MOSFETArray product family (EPAD MOSFET) is avail-  
able in the three separate categories, each providing a distinctly  
different set of electrical specifications and characteristics. The first  
* Ultra low voltage: less than 1V or +/- 0.5V  
* Low power: voltage x current = power measured in microwatt  
* Nanopower: voltage x current = power measured in nanowatt  
* Precision matching and tracking of two or more MOSFETs  
category is the ALD110800/ALD110900 Zero-Thresholdmode  
EPAD MOSFETs. The second category is the ALD1108xx/  
ALD1109xx enhancement mode EPAD MOSFETs. The third cat-  
egory is the ALD1148xx/ALD1149xx depletion mode EPAD  
MOSFETs. (The suffix “xx” denotes threshold voltage in 0.1 V steps,  
for example, xx=08 denotes 0.80V).  
ELECTRICAL CHARACTERISTICS  
The turn-on and turn-off electrical characteristics of the EPAD  
MOSFET products are shown in the Drain-Source On Current vs  
Drain-Source On Voltage and Drain-Source On Current vs Gate-  
Source Voltage graphs. Each graph show the Drain-Source On  
Current versus Drain-Source On Voltage characteristics as a func-  
tion of Gate-Source voltage in a different operating region under  
different bias conditions. As the threshold voltage is tightly speci-  
fied, the Drain-Source On Current at a given gate input voltage is  
better controlled and more predictable when compared to many  
other types of MOSFETs.  
The ALD110800/ALD110900 (quad/dual) are EPAD MOSFETs in  
which the individual threshold voltage of each MOSFET is fixed at  
zero. The threshold voltage is defined as I = 1uA @ V = 0.1V  
DS DS  
when the gate voltage V  
= 0.00V. Zero threshold devices oper-  
GS  
ate in the enhancement region when operated above threshold volt-  
age and current level (V > 0.00V and I > 1uA) and subthresh-  
GS DS  
old region when operated at or below threshold voltage and cur-  
rent level (V <= 0.00V and I < 1uA). This device, along with  
GS  
DS  
other very low threshold voltage members of the product family,  
constitute a class of EPAD MOSFETs that enable ultra low supply  
voltage operation and nanopower type of circuit designs, applicable  
in either analog or digital circuits.  
EPAD MOSFETs behave similarly to a standard MOSFET, there-  
fore classic equations for a n-channel MOSFET applies to EPAD  
MOSFET as well. The Drain current in the linear region (V  
<
DS  
The ALD1108xx/ALD1109xx (quad/dual) product family features  
precision matched enhancement mode EPAD MOSFET devices,  
which require a positive bias voltage to turn on. Precision threshold  
values such as +1.40V, +0.80V, +0.20V are offered. No conductive  
channel exists between the source and drain at zero applied gate  
voltage for these devices, except that the +0.20V version has a  
subthreshold current at about 20nA.  
V
GS  
- V ) is given by:  
GS(th)  
I
D
= u . C  
. W/L . [V  
- V  
- V /2] . V  
DS DS  
OX  
GS  
GS(th)  
where:  
u = Mobility  
C
V
= Capacitance / unit area of Gate electrode  
= Gate to Source voltage  
OX  
GS  
V
= Turn-on threshold voltage  
= Drain to Source voltage  
W = Channel width  
L = Channel length  
GS(th)  
The ALD1148xx/ALD1149xx (quad/dual) features depletion mode  
EPAD MOSFETs, which are normally-on devices when the gate  
bias voltage is at zero volt. The depletion mode threshold voltage  
is at a negative voltage level at which the EPAD MOSFET turns off.  
V
DS  
Without a supply voltage and/or with V  
MOSFET device is already turned on and exhibits a defined and  
controlled on-resistance between the source and drain terminals.  
= 0.0V the EPAD  
GS  
In this region of operation the I value is proportional to V value  
DS DS  
and the device can be used as gate-voltage controlled resistor.  
For higher values of V where V >= V - V  
DS DS GS GS(th)  
, the satura-  
The ALD1148xx/ALD1149xx depletion mode EPAD MOSFETs are  
different from most other types of depletion mode MOSFETs and  
certain types of JFETs in that they do not exhibit high gate leakage  
tion current I  
is now given by (approx.):  
DS  
2
]
GS(th)  
I
= u . C  
OX  
. W/L . [V  
- V  
DS  
GS  
ALD110804/ALD110904  
Advanced Linear Devices  
3 of 11  
PERFORMANCE CHARACTERISTICS OF EPAD®  
PRECISION MATCHED PAIR MOSFET FAMILY (cont.)  
SUB-THRESHOLD REGION OF OPERATION  
ZERO TEMPERATURE COEFFICIENT (ZTC) OPERATION  
Low voltage systems, namely those operating at 5V, 3.3V or less,  
typically require MOSFETs that have threshold voltage of 1V or  
less. The threshold, or turn-on, voltage of the MOSFET is a voltage  
below which the MOSFET conduction channel rapidly turns off. For  
analog designs, this threshold voltage directly affects the operating  
signal voltage range and the operating bias current levels.  
For an EPAD MOSFET in this product family, there exist operating  
points where the various factors that cause the current to increase  
as a function of temperature balance out those that cause the cur-  
rent to decrease, thereby canceling each other, and resulting in net  
temperature coefficient of near zero. One of this temperature stable  
operating point is obtained by a ZTC voltage bias condition, which  
is 0.55V above a threshold voltage when V  
= V , resulting in a  
GS  
DS  
At or below threshold voltage, an EPAD MOSFET exhibits a turn-  
off characteristic in an operating region called the subthreshold re-  
gion. This is when the EPAD MOSFET conduction channel rapidly  
turns off as a function of decreasing applied gate voltage. The con-  
duction channel induced by the gate voltage on the gate electrode  
decreases exponentially and causes the drain current to decrease  
exponentially. However, the conduction channel does not shut off  
abruptly with decreasing gate voltage, but decreases at a fixed rate  
of approximately 116mV per decade of drain current decrease. Thus  
if the threshold voltage is +0.20V, for example, the drain current is  
temperature stable current level of about 68uA. For other ZTC op-  
erating points, see ZTC characteristics.  
PERFORMANCE CHARACTERISTICS  
Performance characteristics of the EPAD MOSFET product family  
are shown in the following graphs. In general, the threshold voltage  
shift for each member of the product family causes other affected  
electrical characteristics to shift with an equivalent linear shift in  
1uA at V  
= +0.20V. At V  
= +0.09V, the drain current would  
V
GS(th)  
bias voltage. This linear shift in V  
causes the subthresh-  
GS  
GS  
GS  
decrease to 0.1uA. Extrapolating from this, the drain current is  
0.01uA (10nA) at V = -0.03V, 1nA at V = -0.14V, and so forth.  
old I-V curves to shift linearly as well. Accordingly, the subthreshold  
operating current can be determined by calculating the gate volt-  
GS  
GS  
This subthreshold characteristic extends all the way down to cur-  
rent levels below 1nA and is limited by other currents such as junc-  
tion leakage currents.  
age drop relative from its threshold voltage, V  
.
GS(th)  
RDS(ON) AT VGS=GROUND  
At a drain current to be declared “zero current” by the user, the Vgs  
voltage at that zero current can now be estimated. Note that using  
Several of the EPAD MOSFETs produce a fixed resistance when  
their gate is grounded. For ALD110800, the drain current at V  
the above example, with V  
= +0.20V, the drain current still  
=
GS(th)  
DS  
0.1V is at 1uAat V = 0.0V. Thus just by grounding the gate of the  
hovers around 20nA when the gate is at zero volt, or ground.  
GS  
ALD110800, a resistor with R  
= ~100KOhm is produced.  
DS(ON)  
When anALD114804 gate is grounded, the drain current I = 18.5  
DS  
= 5.4KOhm. Similarly,  
LOW POWER AND NANOPOWER  
uA@ V  
= 0.1V, producing R  
DS  
ALD114813 and ALD114835 produces 77uA and 185uA, respec-  
tively, at V = 0.0V, producing R values of 1.3KOhm and  
DS(ON)  
When supply voltages decrease, the power consumption of a given  
load resistor decreases as the square of the supply voltage. So  
one of the benefits in reducing supply voltage is to reduce power  
consumption. While decreasing power supply voltages and power  
consumption go hand-in-hand with decreasing usefulAC bandwidth  
and at the same time increases noise effects in the circuit, a circuit  
designer can make the necessary tradeoffs and adjustments in any  
given circuit design and bias the circuit accordingly.  
GS  
DS(ON)  
540Ohm, respectively.  
MATCHING CHARACTERISTICS  
A key benefit of using matched-pair EPAD MOSFET is to maintain  
temperature tracking. In general, for EPAD MOSFET matched pair  
devices, one device of the matched pair has gate leakage currents,  
junction temperature effects, and drain current temperature coeffi-  
cient as a function of bias voltage that cancel out similar effects of  
the other device, resulting in a temperature stable circuit. As men-  
tioned earlier, this temperature stability can be further enhanced by  
biasing the matched-pairs at Zero Tempco (ZTC) point, even though  
that could require special circuit configuration and power consump-  
tion design consideration.  
With EPAD MOSFETs, a circuit that performs a specific function  
can be designed so that power consumption can be minimized. In  
some cases, these circuits operate in low power mode where the  
power consumed is measure in micro-watts. In other cases, power  
dissipation can be reduced to nano-watt region and still provide a  
useful and controlled circuit function operation.  
ALD110804/ALD110904  
Advanced Linear Devices  
4 of 11  
TYPICAL PERFORMANCE CHARACTERISTICS  
DRAIN-SOURCE ON RESISTANCE  
vs. DRAIN-SOURCE ON CURRENT  
OUTPUT CHARACTERISTICS  
2500  
2000  
5
4
T
A
= 25°C  
V
-V  
=+5V  
=+4V  
T
= +25°C  
GS GS(TH)  
A
V
-V  
GS GS(TH)  
1500  
1000  
3
2
1
V
= V +4V  
GS(TH)  
GS  
V
V
-V  
=+3V  
GS GS(TH)  
-V  
=+2V  
=+1V  
GS GS(TH)  
500  
0
V
-V  
GS GS(TH)  
V
= V +6V  
GS(TH)  
GS  
0
100  
10000  
1000  
10  
0
2
4
6
8
10  
DRAIN-SOURCE ON CURRENT (µA)  
DRAIN-SOURCE ON VOLTAGE (V)  
TRANSCONDUCTANCE vs.  
AMBIENT TEMPERATURE  
FORWARD TRANSFER CHARACTERISTICS  
2.5  
20  
V
= -3.5V  
GS(TH)  
= -1.3V  
T
DS  
= 25°C  
A
2.0  
V
= +10V  
V
GS(TH)  
15  
V
= -0.4V  
GS(TH)  
1.5  
1.0  
10  
5
V
= 0.0V  
GS(TH)  
= +0.2V  
V
GS(TH)  
0.5  
0
V
= +1.4V  
GS(TH)  
V
= +0.8V  
GS(TH)  
0
-50 -25  
25  
50  
75  
100  
125  
0
-4  
-2  
0
6
10  
2
4
8
AMBIENT TEMPERATURE (°C)  
GATE-SOURCE VOLTAGE (V)  
SUBTHRESHOLD FORWARD TRANSFER  
CHARACTERISTICS  
SUBTHRESHOLD FORWARD TRANSFER  
CHARACTERISTICS  
100000  
10000  
V
=0.0V  
GS(TH)  
T
= +25°C  
=+0.1V  
A
V
=0.1V  
~
DS  
V
1000  
100  
DS  
Slope = 110mV/decade  
1000  
V
=-1.3V  
GS(TH)  
100  
10  
1
10  
1
0.1  
0.1  
V
=-3.5V  
GS(TH)  
V
=+0.8V  
GS(TH)  
V
=+0.2V  
GS(TH)  
0.01  
V
0.01  
V
V
V
GS(th)  
V
V
GS(th)  
GS(th)  
GS(th)  
GS(th)  
-0.3  
GS(th)  
-4  
-2  
-1  
0
1
2
-3  
-0.5  
-0.4  
-0.2  
-0.1  
GATE-SOURCE VOLTAGE (V)  
GATE-SOURCE VOLTAGE (V)  
ALD110804/ALD110904  
Advanced Linear Devices  
5 of 11  
TYPICAL PERFORMANCE CHARACTERISTICS (cont.)  
DRAIN SOURCE ON CURRENT, BIAS  
CURRENT vs. AMBIENT TEMPERATURE  
DRAIN SOURCE ON CURRENT, BIAS  
CURRENT vs. AMBIENT TEMPERATURE  
100  
50  
5
4
Zero Temperature  
Coefficient (ZTC)  
-55°C  
-25°C  
125°C  
3
2
0°C  
1
0
- 25°C  
70°C  
125°C  
0
V
V
V
V
GS(TH)  
V
V
GS(TH)  
GS(TH)  
GS(TH)  
GS(TH)  
GS(TH)  
V
+4  
GS(TH)  
V
-1  
GS(TH)  
V
+1  
GS(TH)  
V
+2  
GS(TH)  
V
+3  
GS(TH)  
V
+0.0  
+0.4  
+1.0  
GS(TH)  
+0.2  
+0.6  
+0.8  
GATE AND DRAIN SOURCE VOLTAGE  
(VGS = VDS) (V)  
GATE AND DRAIN SOURCE VOLTAGE  
(VGS = VDS) (V)  
GATE SOURCE VOLTAGE vs. DRAIN  
SOURCE ON CURRENT  
DRAIN-SOURCE ON CURRENT vs. ON RESISTANCE  
V +4  
GS(TH)  
100000  
V
DS  
D
V
A
= 0.5V  
DS  
= +125°C  
T
= 25°C  
=-4.0V to +5.4V  
A
V
=+10V  
10000  
1000  
V +3  
GS(TH)  
DS  
T
V
I
GS  
V
DS(ON)  
GS  
V
+2  
+1  
GS(TH)  
100  
10  
1
V
T
= 0.5V  
= +25°C  
DS  
A
V
GS(TH)  
V
= 5V  
DS  
= +25°C  
T
A
V
=+5V  
V
=+0.1V  
DS  
DS  
V
GS(TH)  
V
=+1V  
DS  
V
= 5V  
DS  
= +125°C  
V
DS  
= R  
• I  
0.1  
ON DS(ON)  
T
A
V
-1  
GS(TH)  
0.01  
1
0.1  
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
DRAIN SOURCE ON CURRENT (µA)  
ON RESISTANCE (K)  
OFFSET VOLTAGE vs.  
AMBIENT TEMPERATURE  
DRAIN SOURCE ON CURRENT vs.  
OUTPUT VOLTAGE  
4
5
4
T
A
= 25°C  
3
2
REPRESENTATIVE UNITS  
V
= +10V  
DS  
1
3
2
1
V
= +5V  
0
DS  
-1  
-2  
-3  
-4  
V
= +1V  
DS  
0
V
V
+1  
GS(TH)  
V
+3  
GS(TH)  
V
+2  
GS(TH)  
V
+4  
V
+5  
GS(TH)  
-50  
-25  
0
25  
50  
75  
100  
125  
GS(TH)  
GS(TH)  
OUTPUT VOLTAGE (V)  
AMBIENT TEMPERATURE (°C)  
GATE SOURCE VOLTAGE  
vs. ON - RESISTANCE  
GATE LEAKAGE CURRENT  
vs. AMBIENT TEMPERATURE  
V
+4  
GS(TH)  
600  
D
V
DS  
500  
400  
V
+3  
GS(TH)  
GS(TH)  
+125°C  
I
DS(ON)  
V
GS  
S
V
+2  
300  
200  
100  
0
0.0V V  
5.0V  
DS  
+25°C  
I
GSS  
V
V
+1  
GS(TH)  
GS(TH)  
0.1  
10  
100  
1000  
-50  
0
25  
50  
75  
100  
125  
1
10000  
-25  
ON - RESISTANCE (K)  
AMBIENT TEMPERATURE (°C)  
ALD110804/ALD110904  
Advanced Linear Devices  
6 of 11  
TYPICAL PERFORMANCE CHARACTERISTICS (cont.)  
DRAIN - GATE DIODE CONNECTED VOLTAGE  
TEMPCO vs. DRAIN SOURCE ON CURRENT  
TRANSFER CHARACTERISTICS  
1.6  
1.2  
0.8  
0.4  
0.0  
5
T
DS  
= 25°C  
V
= -3.5V  
V
A
GS(TH)  
-55°C T +125°C  
V
= +10V  
A
= -1.3V  
2.5  
GS(TH)  
V
= -0.4V  
GS(TH)  
V
= 0.0V  
GS(TH)  
0
-2.5  
-5  
V
= +0.2V  
GS(TH)  
V
= +1.4V  
GS(TH)  
V
= +0.8V  
GS(TH)  
1
10  
100  
1000  
-4  
-2  
0
2
4
6
8
10  
GATE-SOURCE VOLTAGE (V)  
DRAIN SOURCE ON CURRENT (µA)  
ZERO TEMPERETURE COEFFICIENT CHARACTERISTIC  
SUBTHRESHOLD CHARACTERISTICS  
2.5  
0.6  
V
=-3.5V  
GS(TH)  
2.0  
1.5  
1.0  
0.5  
0.0  
0.5  
0.3  
V
=-1.3V, -0.4V, 0.0V, +0.2V, +0.8V, +1.4V  
GS(TH)  
25°C  
V
= 0.4V  
GS(th)  
0.2  
0.0  
55°C  
V
= 0.2V  
GS(th)  
-0.5  
10000  
100000  
1
1000  
100  
10  
0.1  
0.1  
0.2  
0.5  
2.0  
5.0  
1.0  
DRAIN-SOURCE ON VOLTAGE (V)  
DRAIN -SOURCE CURRENT (nA)  
THRESHOLD VOLTAGE vs.  
AMBIENT TEMPERATURE  
TRANCONDUCTANCE vs. DRAIN-SOURCE  
ON CURRENT  
1.2  
0.9  
4.0  
T
DS  
= 25°C  
A
V
= +0.1V  
I
= 1.0  
D µA  
DS  
V
= +10V  
3.0  
2.0  
1.0  
0.6  
0.3  
V = 1.4V  
t
V = 0.8V  
t
V = 0.0V  
t
V = 0.2V  
t
V = 0.4V  
t
0.0  
0
2
6
8
10  
0
4
-50  
-25  
0
25  
50  
75  
100  
125  
AMBIENT TEMPERATURE (°C)  
DRAIN -SOURCE ON CURRENT(mA)  
NORMALIZED SUBTHRESHOLD  
CHARACTERISTICS RELATIVE  
GATE THRESHOLD VOLTAGE  
THRESHOLD VOLTAGES  
vs. AMBIENT TEMPERATURES  
2.0  
1.0  
0.3  
0.2  
0.1  
I
V
= +1µA  
DS  
V
= 0.1V  
D
= +0.1V  
DS  
V
= 0.0V  
GS(th)  
0.0  
V
= -0.4V  
= -1.3V  
GS(th)  
0
-0.1  
-0.2  
-1.0  
-2.0  
-3.0  
V
GS(th)  
25°C  
55°C  
-0.3  
-0.4  
V
= -3.5V  
GS(th)  
-4.0  
-25  
25  
75  
125  
10000  
10  
1
0.1  
1000  
100  
AMBIENT TEMPERATURE (OC)  
DRAIN-SOURCE CURRENT (nA)  
ALD110804/ALD110904  
Advanced Linear Devices  
7 of 11  
SOIC-16 PACKAGE DRAWING  
16 Pin Plastic SOIC Package  
E
Millimeters  
Inches  
Dim  
A
Min  
Max  
Min  
Max  
1.75  
0.25  
0.45  
0.25  
10.00  
4.05  
0.053  
0.069  
1.35  
S (45°)  
0.004  
0.014  
0.007  
0.385  
0.140  
0.010  
0.018  
0.010  
0.394  
0.160  
0.10  
0.35  
0.18  
9.80  
3.50  
A
1
b
C
D-16  
E
D
1.27 BSC  
0.050 BSC  
0.224  
e
6.30  
0.937  
8°  
0.248  
0.037  
8°  
5.70  
0.60  
0°  
H
0.024  
0°  
L
A
ø
0.50  
0.010  
0.020  
0.25  
S
A
e
1
b
S (45°)  
C
H
L
ø
ALD110804/ALD110904  
Advanced Linear Devices  
8 of 11  
PDIP-16 PACKAGE DRAWING  
16 Pin Plastic DIP Package  
E
E
1
Millimeters  
Inches  
Dim  
A
Min  
Max  
Min  
Max  
5.08  
0.105  
0.200  
3.81  
0.38  
1.27  
0.89  
0.38  
0.20  
18.93  
5.59  
7.62  
2.29  
7.37  
2.79  
0.38  
0°  
1.27  
2.03  
1.65  
0.51  
0.30  
21.33  
7.11  
8.26  
2.79  
7.87  
3.81  
1.52  
15°  
0.015  
0.050  
0.035  
0.015  
0.008  
0.745  
0.220  
0.300  
0.090  
0.290  
0.110  
0.015  
0°  
0.050  
0.080  
0.065  
0.020  
0.012  
0.840  
0.280  
0.325  
0.110  
0.310  
0.150  
0.060  
15°  
A
A
1
2
b
b
1
c
D
D-16  
E
S
E
1
A
2
e
A
e
1
L
L
A
1
S-16  
ø
e
b
b
1
c
ø
e
1
ALD110804/ALD110904  
Advanced Linear Devices  
9 of 11  
SOIC-8 PACKAGE DRAWING  
8 Pin Plastic SOIC Package  
E
Millimeters  
Inches  
Dim  
A
Min  
Max  
Min  
Max  
1.75  
0.25  
0.45  
0.25  
5.00  
4.05  
0.053  
0.069  
1.35  
S (45°)  
0.004  
0.014  
0.007  
0.185  
0.140  
0.010  
0.018  
0.010  
0.196  
0.160  
0.10  
0.35  
0.18  
4.69  
3.50  
A
1
b
C
D-8  
E
D
1.27 BSC  
0.050 BSC  
0.224  
e
6.30  
0.937  
8°  
0.248  
0.037  
8°  
5.70  
0.60  
0°  
H
A
0.024  
0°  
L
A
1
e
ø
S
b
0.50  
0.010  
0.020  
0.25  
S (45°)  
C
H
L
ø
ALD110804/ALD110904  
Advanced Linear Devices  
10 of 11  
PDIP-8 PACKAGE DRAWING  
8 Pin Plastic DIP Package  
E
E
1
Millimeters  
Inches  
Dim  
A
Min  
Max  
Min  
Max  
5.08  
0.105  
0.200  
3.81  
0.38  
1.27  
0.89  
0.38  
0.20  
9.40  
5.59  
7.62  
2.29  
7.37  
2.79  
1.02  
0°  
1.27  
2.03  
1.65  
0.51  
0.30  
11.68  
7.11  
8.26  
2.79  
7.87  
3.81  
2.03  
15°  
0.015  
0.050  
0.035  
0.015  
0.008  
0.370  
0.220  
0.300  
0.090  
0.290  
0.110  
0.040  
0°  
0.050  
0.080  
0.065  
0.020  
0.012  
0.460  
0.280  
0.325  
0.110  
0.310  
0.150  
0.080  
15°  
A
A
1
2
b
b
1
D
c
S
D-8  
E
A
2
E
1
A
e
L
A
1
e
1
e
b
L
S-8  
ø
b
1
c
ø
e
1
ALD110804/ALD110904  
Advanced Linear Devices  
11 of 11  

相关型号:

ALD110804_12

QUAD/DUAL N-CHANNEL ENHANCEMENT MODE EPAD PRECISION MATCHED PAIR MOSFET ARRAY
ALD

ALD110804_16

QUAD/DUAL N-CHANNEL ENHANCEMENT MODE EPAD
ALD

ALD110808

QUAD/DUAL N-CHANNEL ENHANCEMENT MODE EPAD MATCHED PAIR MOSFET ARRAY
ALD

ALD110808A

QUAD/DUAL N-CHANNEL ENHANCEMENT MODE EPAD MATCHED PAIR MOSFET ARRAY
ALD

ALD110808APC

QUAD/DUAL N-CHANNEL ENHANCEMENT MODE EPAD MATCHED PAIR MOSFET ARRAY
ALD

ALD110808APCL

QUAD/DUAL N-CHANNEL ENHANCEMENT MODE EPAD PRECISION MATCHED PAIR MOSFET ARRAY
ALD

ALD110808ASC

QUAD/DUAL N-CHANNEL ENHANCEMENT MODE EPAD MATCHED PAIR MOSFET ARRAY
ALD

ALD110808ASCL

QUAD/DUAL N-CHANNEL ENHANCEMENT MODE EPAD PRECISION MATCHED PAIR MOSFET ARRAY
ALD

ALD110808PC

QUAD/DUAL N-CHANNEL ENHANCEMENT MODE EPAD MATCHED PAIR MOSFET ARRAY
ALD

ALD110808PCL

QUAD/DUAL N-CHANNEL ENHANCEMENT MODE EPAD PRECISION MATCHED PAIR MOSFET ARRAY
ALD

ALD110808SC

QUAD/DUAL N-CHANNEL ENHANCEMENT MODE EPAD MATCHED PAIR MOSFET ARRAY
ALD

ALD110808SCL

QUAD/DUAL N-CHANNEL ENHANCEMENT MODE EPAD PRECISION MATCHED PAIR MOSFET ARRAY
ALD