ALD110804_16 [ALD]

QUAD/DUAL N-CHANNEL ENHANCEMENT MODE EPAD;
ALD110804_16
型号: ALD110804_16
厂家: ADVANCED LINEAR DEVICES    ADVANCED LINEAR DEVICES
描述:

QUAD/DUAL N-CHANNEL ENHANCEMENT MODE EPAD

文件: 总12页 (文件大小:111K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TM  
A
L
D
DVANCED  
INEAR  
EVICES, INC.  
®
e
EPAD  
A
ALD110802/ALD110902  
QUAD/DUAL N-CHANNEL ENHANCEMENT MODE EPAD®  
PRECISION MATCHED PAIR MOSFET ARRAY  
V
= +0.20V  
GS(th)  
GENERAL DESCRIPTION  
APPLICATIONS  
ALD110802/ALD110902 are high precision monolithic quad/dual enhance-  
ment mode N-Channel MOSFETS matched at the factory using ALD’s  
proven EPAD CMOS technology. These devices are intended for low volt-  
• Ultra low power (nanowatt) analog and digital  
circuits  
• Ultra low operating voltage (<0.20V) circuits  
• Sub-threshold biased and operated circuits  
• Precision current mirrors and current sources  
• Nano-Amp current sources  
• High impedance resistor simulators  
• Capacitive probes and sensor interfaces  
• Differential amplifier input stages  
• Discrete Voltage comparators and level shifters  
• Voltage bias circuits  
®
age, small signal applications. TheALD110802/ALD110902 MOSFETS are  
designed and built for exceptional device electrical characteristics match-  
ing. Since these devices are on the same monolithic chip, they also exhibit  
excellent tempco tracking characteristics. They are versatile circuit elements  
useful as design components for a broad range of analog applications,  
such as basic building blocks for current sources, differential amplifier input  
stages, transmission gates, and multiplexer applications. For most applica-  
tions, connect the V+ pin to the most positive voltage and the V- and IC  
pins to the most negative voltage in the system. All other pins must have  
voltages within these voltage limits at all times.  
• Sample and Hold circuits  
• Analog and digital inverters  
• Charge detectors and charge integrators  
• Source followers and High Impedance buffers  
• Current multipliers  
The ALD110802/ALD110902 devices are built for minimum offset voltage  
and differential thermal response, and they are suited for switching and  
amplifying applications in <+0.1V to +10V systems where low input bias  
current, low input capacitance and fast switching speed are desired, as  
these devices exhibit well controlled turn-off and sub-threshold character-  
istics and can be biased and operated in the sub-threshold region. Since  
these are MOSFET devices, they feature very large (almost infinite) cur-  
rent gain in a low frequency, or near DC, operating environment.  
• Discrete Analog switches / multiplexers  
PIN CONFIGURATION  
ALD110802  
TheALD110802/ALD110902 are suitable for use in very low operating volt-  
age or very low power (nanowatt), precision applications which require very  
high current gain, beta, such as current mirrors and current sources. The  
high input impedance and the high DC current gain of the Field Effect Tran-  
sistors result from extremely low current loss through the control gate. The  
DC current gain is limited by the gate input leakage current, which is speci-  
fied at 30pA at room temperature. For example, DC beta of the device at a  
drain current of 3mA, input leakage current of 30pA, and 25°C is  
3mA/30pA = 100,000,000.  
-
-
V
V
1
2
3
4
5
6
7
8
IC*  
G
16  
15  
14  
13  
12  
11  
10  
9
IC*  
G
N2  
N1  
M 2  
M 1  
D
V
S
D
S
N2  
N1  
+
+
V
12  
-
-
V
V
34  
D
D
N4  
FEATURES  
N3  
M 4  
M 3  
G
N4  
G
N3  
• Enhancement-mode (normally off)  
• Precision Gate Threshold Voltage of +0.20V  
• Matched MOSFET-to-MOSFET characteristics  
• Tight lot-to-lot parametric control  
IC*  
IC*  
-
-
V
V
SCL, PCL PACKAGES  
• Low input capacitance  
• V  
match (V ) to 10mV  
GS(th)  
OS  
• High input impedance — 1012typical  
ALD110902  
-
• Positive, zero, and negative V  
temperature coefficient  
GS(th)  
• DC current gain >108  
-
V
V
• Low input and output leakage currents  
1
2
3
4
8
7
6
5
IC*  
G
IC*  
G
N2  
N1  
ORDERING INFORMATION (“L” suffix denotes lead-free (RoHS))  
M 1  
M 2  
D
S
D
N1  
N2  
Operating Temperature Range*  
0°C to +70°C  
-
-
V
V
0°C to +70°C  
12  
16-Pin  
SOIC  
Package  
16-Pin  
Plastic Dip  
Package  
8-Pin  
SOIC  
Package  
8-Pin  
Plastic Dip  
Package  
SAL, PAL PACKAGES  
*IC pins are internally connected.  
Connect to V-  
ALD110802SCL ALD110802PCL ALD110902SAL ALD110902PAL  
* Contact factory for industrial temp. range or user-specified threshold voltage values.  
©2016 Advanced Linear Devices, Inc., Vers. 2.3  
www.aldinc.com  
1 of 12  
ABSOLUTE MAXIMUM RATINGS  
Drain-Source voltage, V  
Gate-Source voltage, V  
Power dissipation  
10.6V  
10.6V  
500 mW  
DS  
GS  
Operating temperature range SCL, PCL, SAL, PAL  
Storage temperature range  
Lead temperature, 10 seconds  
0°C to +70°C  
-65°C to +150°C  
+260°C  
CAUTION: ESD Sensitive Device. Use static control procedures in ESD controlled environment.  
OPERATING ELECTRICAL CHARACTERISTICS  
+
-
V = +5V V = GND T = 25°C unless otherwise specified  
A
ALD110802/ALD110902  
Parameter  
Symbol  
Min  
Typ  
Max  
Unit  
Test Conditions  
Gate Threshold Voltage  
Offset Voltage  
V
V
0.18  
0.20  
2
0.22  
10  
V
I
= 1µA, V  
= 0.1V  
GS(th)  
OS  
DS  
DS  
mV  
V
-V  
GS(th)1 GS(th)2  
Offset VoltageTempco  
TC  
TC  
5
µV/ °C  
mV/ °C  
V
= V  
VOS  
DS1  
DS2  
Gate Threshold Voltage  
Tempco  
-1.7  
0.0  
+1.6  
I
I
I
= 1µA, V  
= 20µA, V  
= 40µA, V  
= 0.1V  
VGS(th)  
DS  
DS  
DS  
DS  
= 0.1V  
= 0.1V  
DS  
DS  
Drain Source On Current  
Forward Transconductance  
I
12.0  
3.0  
mA  
V
V
= +9.7V, V  
= +4.2V, V  
= +5V  
= +5V  
DS(ON)  
GS  
GS  
DS  
DS  
G
1.4  
mmho  
V
V
= +4.2V  
= +9.2V  
FS  
GS  
DS  
Transconductance Mismatch  
Output Conductance  
G  
1.8  
68  
%
FS  
G
µmho  
V
V
= +4.2V  
= +9.2V  
OS  
GS  
DS  
Drain Source On Resistance  
R
500  
0.5  
%
V
V
V
= +4.2V  
= +0.1V  
DS(ON)  
GS  
DS  
Drain Source On Resistance  
Mismatch  
R  
BV  
I
DS(ON)  
DSX  
-
Drain Source Breakdown  
Voltage  
10  
V = V  
= -0.8V  
GS  
= 1.0µA  
I
DS  
Drain Source Leakage Current1  
10  
3
400  
4
pA  
nA  
V
= -0.8V, V  
=+5V  
DS(OFF)  
GS  
DS  
-
V = -5V  
T
= 125°C  
A
Gate Leakage Current1  
I
200  
1
pA  
nA  
V
= +5V, V  
=125°C  
= 0V  
DS  
GSS  
GS  
T
A
Input Capacitance  
C
C
2.5  
0.1  
10  
pF  
pF  
ns  
ns  
ISS  
Transfer Reverse Capacitance  
Turn-on Delay Time  
RSS  
+
+
t
on  
t
off  
V
V
= 5V, R = 5KΩ  
L
Turn-off Delay Time  
10  
= 5V, R = 5KΩ  
L
Crosstalk  
60  
dB  
f = 100KHz  
1
Notes:  
Consists of junction leakage currents  
ALD110802/ALD110902, Vers. 2.3  
Advanced Linear Devices  
2 of 12  
PERFORMANCE CHARACTERISTICS OF EPAD®  
PRECISION MATCHED PAIR MOSFET FAMILY  
ALD1108xx/ALD1109xx/ALD1148xx/ALD1149xx are monolithic  
signal voltages are applied to the gate terminal, the designer/user  
can depend on the EPAD MOSFET device to be controlled, modu-  
lated and turned off precisely. The device can be modulated and  
turned-off under the control of the gate voltage in the same manner  
as the enhancement mode EPAD MOSFET and the same device  
equations apply.  
quad/dual N-Channel MOSFETs matched at the factory usingALD’s  
®
proven EPAD CMOS technology. These devices are intended for  
low voltage, small signal applications.  
ALD’s Electrically Programmable Analog Device (EPAD) technol-  
ogy provides a family of matched transistors with a range of preci-  
sion threshold values. All members of this family are designed and  
actively programmed for exceptional matching of device electrical  
characteristics. Threshold values range from -3.50V Depletion to  
+3.50V Enhancement devices, including standard products speci-  
fied at -3.50V, -1.30V, -0.40V, +0.00V, +0.20V, +0.40V, +0.80V,  
+1.40V, and +3.30V. ALD can also provide any customer desired  
value between -3.50V and +3.50V. For all these devices, even the  
depletion and zero threshold transistors, ALD EPAD technology  
enables the same well controlled turn-off, subthreshold, and low  
leakage characteristics as standard enhancement mode MOSFETs.  
With the design and active programming, even units from different  
batches and different dates of manufacture have well matched char-  
acteristics. As these devices are on the same monolithic chip, they  
also exhibit excellent tempco tracking.  
EPAD MOSFETs are ideal for minimum offset voltage and differen-  
tial thermal response, and they are used for switching and amplify-  
ing applications in low voltage (1V to 10V or +/-0.5V to +/-5V) or  
ultra low voltage (less than 1V or +/-0.5V) systems. They feature  
low input bias current (less than 30pA max.), ultra low power  
(microWatt) or Nanopower (power measured in nanoWatt) opera-  
tion, low input capacitance and fast switching speed. These de-  
vices can be used where a combination of these characteristics  
are desired.  
KEY APPLICATION ENVIRONMENT  
EPAD MOSFETArray products are for circuit applications in one or  
more of the following operating environments:  
This EPAD MOSFETArray product family (EPAD MOSFET) is avail-  
able in the three separate categories, each providing a distinctly  
different set of electrical specifications and characteristics. The first  
category is the ALD110800/ALD110900 Zero-Threshold™ mode  
EPAD MOSFETs. The second category is the ALD1108xx/  
ALD1109xx enhancement mode EPAD MOSFETs. The third cat-  
egory is the ALD1148xx/ALD1149xx depletion mode EPAD  
MOSFETs. (The suffix “xx” denotes threshold voltage in 0.1V steps,  
for example, xx = 08 denotes 0.80V).  
* Low voltage: 1V to 10V or +/-0.5V to +/-5V  
* Ultra low voltage: less than 1V or +/-0.5V  
* Low power: voltage x current = power measured in microwatt  
* Nanopower: voltage x current = power measured in nanowatt  
* Precision matching and tracking of two or more MOSFETs  
ELECTRICAL CHARACTERISTICS  
The turn-on and turn-off electrical characteristics of the EPAD  
MOSFET products are shown in the Drain-Source On Current vs  
Drain-Source On Voltage and Drain-Source On Current vs Gate-  
Source Voltage graphs. Each graph shows the Drain-Source On  
Current versus Drain-Source On Voltage characteristics as a func-  
tion of Gate-Source voltage in a different operating region under  
different bias conditions. As the threshold voltage is tightly speci-  
fied, the Drain-Source On Current at a given gate input voltage is  
better controlled and more predictable when compared to many  
other types of MOSFETs.  
The ALD110800/ALD110900 (quad/dual) are EPAD MOSFETs in  
which the individual threshold voltage of each MOSFET is fixed at  
zero. The threshold voltage is defined as I = 1µA @ V = 0.1V  
DS DS  
when the gate voltage V  
= 0.00V. Zero threshold devices oper-  
GS  
ate in the enhancement region when operated above threshold volt-  
age and current level (V > 0.00V and I > 1µA) and subthresh-  
GS DS  
old region when operated at or below threshold voltage and cur-  
rent level (V <= 0.00V and I < 1µA). This device, along with  
GS DS  
other very low threshold voltage members of the product family,  
constitute a class of EPAD MOSFETs that enable ultra low supply  
voltage operation and nanopower type of circuit designs, applicable  
in either analog or digital circuits.  
EPAD MOSFETs behave similarly to a standard MOSFET, there-  
fore classic equations for a n-channel MOSFET applies to EPAD  
MOSFET as well. The Drain current in the linear region (V  
<
DS  
The ALD1108xx/ALD1109xx (quad/dual) product family features  
precision matched enhancement mode EPAD MOSFET devices,  
which require a positive bias voltage to turn on. Precision threshold  
values such as +1.40V, +0.80V, +0.20V are offered. No conductive  
channel exists between the source and drain at zero applied gate  
voltage for these devices, except that the +0.20V version has a  
subthreshold current at about 20nA.  
V
- V  
) is given by:  
GS  
GS(th)  
I
= u . C  
. W/L . [V  
- V - V /2] . V  
GS(th) DS DS  
DS  
OX  
GS  
where:  
u = Mobility  
C
V
= Capacitance / unit area of Gate electrode  
= Gate to Source voltage  
OX  
GS  
V
= Turn-on threshold voltage  
GS(th)  
The ALD1148xx/ALD1149xx (quad/dual) features depletion mode  
EPAD MOSFETs, which are normally-on devices when the gate  
bias voltage is at zero volts. The depletion mode threshold voltage  
is at a negative voltage level at which the EPAD MOSFET turns off.  
V
= Drain to Source voltage  
W = Channel width  
L = Channel length  
DS  
Without a supply voltage and/or with V = 0.0V the EPAD MOSFET  
In this region of operation the I value is proportional to V value  
DS DS  
GS  
device is already turned on and exhibits a defined and controlled  
on-resistance between the source and drain terminals.  
and the device can be used as a gate-voltage controlled resistor.  
For higher values of V where V >= V - V  
DS DS GS GS(th)  
, the satura-  
The ALD1148xx/ALD1149xx depletion mode EPAD MOSFETs are  
different from most other types of depletion mode MOSFETs and  
certain types of JFETs in that they do not exhibit high gate leakage  
currents and channel/junction leakage currents. When negative  
tion current I is now given by (approx.):  
DS  
2
]
GS(th)  
I
= u . C  
OX  
. W/L . [V  
- V  
DS  
GS  
ALD110802/ALD110902, Vers. 2.3  
Advanced Linear Devices  
3 of 12  
PERFORMANCE CHARACTERISTICS OF EPAD®  
PRECISION MATCHED PAIR MOSFET FAMILY (cont.)  
ZERO TEMPERATURE COEFFICIENT (ZTC) OPERATION  
SUB-THRESHOLD REGION OF OPERATION  
For an EPAD MOSFET in this product family, there exist operating  
points where the various factors that cause the current to increase  
as a function of temperature balance out those that cause the cur-  
rent to decrease, thereby canceling each other, and resulting in net  
temperature coefficient of near zero. One of these temperature  
stable operating points is obtained by a ZTC voltage bias condi-  
Low voltage systems, namely those operating at 5V, 3.3V or less,  
typically require MOSFETs that have threshold voltage of 1V or  
less. The threshold, or turn-on, voltage of the MOSFET is a voltage  
below which the MOSFET conduction channel rapidly turns off. For  
analog designs, this threshold voltage directly affects the operating  
signal voltage range and the operating bias current levels.  
tion, which is 0.55V above a threshold voltage when V  
= V ,  
GS  
DS  
resulting in a temperature stable current level of about 68µA. For  
other ZTC operating points, see ZTC characteristics.  
At or below threshold voltage, an EPAD MOSFET exhibits a turn-  
off characteristic in an operating region called the subthreshold re-  
gion. This is when the EPAD MOSFET conduction channel rapidly  
turns off as a function of decreasing applied gate voltage. The con-  
duction channel induced by the gate voltage on the gate electrode  
decreases exponentially and causes the drain current to decrease  
exponentially. However, the conduction channel does not shut off  
abruptly with decreasing gate voltage. Rather, it decreases at a  
fixed rate of approximately 116mV per decade of drain current de-  
crease. Thus, if the threshold voltage is +0.20V, for example, the  
PERFORMANCE CHARACTERISTICS  
Performance characteristics of the EPAD MOSFET product family  
are shown in the following graphs. In general, the threshold voltage  
shift for each member of the product family causes other affected  
electrical characteristics to shift with an equivalent linear shift in  
V
GS(th)  
bias voltage. This linear shift in V causes the subthresh-  
drain current is 1µA at V  
= +0.20V. At V = +0.09V, the drain  
GS  
GS  
GS  
old I-V curves to shift linearly as well. Accordingly, the subthreshold  
operating current can be determined by calculating the gate volt-  
current would decrease to 0.1µA. Extrapolating from this, the drain  
current is 0.01µA (10nA) at V = -0.03V, 1nA at V = -0.14V,  
GS  
GS  
age drop relative to its threshold voltage, V  
.
and so forth. This subthreshold characteristic extends all the way  
down to current levels below 1nA and is limited by other currents  
such as junction leakage currents.  
GS(th)  
R
AT V = GROUND  
GS  
DS(ON)  
At a drain current to be declared “zero current” by the user, the  
Several of the EPAD MOSFETs produce a fixed resistance when  
their gate is grounded. For ALD110800, the drain current is 1µA at  
V
voltage at that zero current can now be estimated. Note that  
GS  
using the above example, with V  
= +0.20V, the drain current  
GS(th)  
V
DS  
= 0.1V and V  
= 0.0V. Thus, just by grounding the gate of  
still hovers around 20nA when the gate is at zero volts, or ground.  
GS  
the ALD110800, a resistor with R  
= ~100Kis produced.  
DS(ON)  
When an ALD114804 gate is grounded, the drain current I  
=
DS  
= 5.4K. Similarly,  
18.5µA @ V  
= 0.1V, producing R  
LOW POWER AND NANOPOWER  
DS  
ALD114813 and ALD114835 produce drain currents of 77µA and  
DS(ON)  
185µA, respectively, at V  
and 540, respectively.  
= 0.0V, and R  
values of 1.3KΩ  
When supply voltages decrease, the power consumption of a given  
load resistor decreases as the square of the supply voltage. So  
one of the benefits in reducing supply voltage is to reduce power  
consumption. While decreasing power supply voltages and power  
consumption go hand-in-hand with decreasing usefulAC bandwidth  
and at the same time increases noise effects in the circuit, a circuit  
designer can make the necessary tradeoffs and adjustments in any  
given circuit design and bias the circuit accordingly.  
GS  
DS(ON)  
MATCHING CHARACTERISTICS  
A key benefit of using a matched pair EPAD MOSFET is to main-  
tain temperature tracking. In general, for EPAD MOSFET matched  
pair devices, one device of the matched pair has gate leakage cur-  
rents, junction temperature effects, and drain current temperature  
coefficient as a function of bias voltage that cancel out similar ef-  
fects of the other device, resulting in a temperature stable circuit.  
As mentioned earlier, this temperature stability can be further en-  
hanced by biasing the matched-pairs at Zero Tempco (ZTC) point,  
even though that could require special circuit configuration and  
power consumption design consideration.  
With EPAD MOSFETs, a circuit that performs a specific function  
can be designed so that power consumption can be minimized. In  
some cases, these circuits operate in low power mode where the  
power consumed is measure in micro-watts. In other cases, power  
dissipation can be reduced to the nano-watt region and still provide  
a useful and controlled circuit function operation.  
ALD110802/ALD110902, Vers. 2.3  
Advanced Linear Devices  
4 of 12  
TYPICAL PERFORMANCE CHARACTERISTICS  
OUTPUT CHARACTERISTICS  
DRAIN-SOURCE ON RESISTANCE  
vs. DRAIN-SOURCE ON CURRENT  
5
4
2500  
2000  
V
- V  
- V  
= +5V  
= +4V  
T
= +25°C  
GS  
GS(th)  
A
T
= +25°C  
A
V
GS  
GS(th)  
3
2
1
1500  
1000  
V
- V  
= +3V  
V
= V + 4V  
GS(th)  
GS  
GS  
GS(th)  
GS  
V
- V  
GS(th)  
= +2V  
= +1V  
500  
0
V
- V  
GS  
GS(th)  
V
= V  
GS(th)  
+ 6V  
10000  
GS  
0
0
2
4
6
8
10  
100  
10  
1000  
DRAIN-SOURCE ON VOLTAGE (V)  
DRAIN-SOURCE ON CURRENT (µA)  
TRANSCONDUCTANCE vs.  
AMBIENT TEMPERATURE  
FORWARD TRANSFER CHARACTERISTICS  
2.5  
2.0  
20  
15  
V
= -3.5V  
GS(th)  
T
DS  
= +25°C  
A
V
= +10V  
V
= -1.3V  
GS(th)  
1.5  
1.0  
0.5  
0
V
= -0.4V  
GS(th)  
= 0.0V  
10  
V
GS(th)  
= +0.2V  
V
GS(th)  
5
0
V
= +0.8V  
GS(th)  
V
= +1.4V  
GS(th)  
-50  
-25  
0
25  
50  
75  
100  
125  
-4  
-2  
0
6
10  
2
4
8
AMBIENT TEMPERATURE (°C)  
GATE-SOURCE VOLTAGE (V)  
SUBTHRESHOLD FORWARD TRANSFER  
CHARACTERISTICS  
SUBTHRESHOLD FORWARD TRANSFER  
CHARACTERISTICS  
10000  
1000  
100000  
10000  
T
V
= +25°C  
A
= +0.1V  
DS  
V
= +0.1V  
DS  
Slope = 110mV/decade  
~
1000  
100  
10  
100  
10  
1
=
0.0V  
= +1.4V  
=
-0.4V  
=
-3.5V  
= +0.8V  
=
-1.3V  
=
+0.2V  
GS(th)  
GS(th)  
GS(th)  
GS(th)  
GS(th)  
GS(th)  
GS(th)  
V
V
V
V
1
V
V
V
0.1  
0.01  
0.1  
0.01  
-4  
-3  
-2  
-1  
0
1
2
V
-0.5  
GS(th)  
V
-0.4  
GS(th)  
V
-0.3  
GS(th)  
V
-0.2  
GS(th)  
V
-0.1  
GS(th)  
V
GS(th)  
GATE-SOURCE VOLTAGE (V)  
GATE-SOURCE VOLTAGE (V)  
ALD110802/ALD110902, Vers. 2.3  
Advanced Linear Devices  
5 of 12  
TYPICAL PERFORMANCE CHARACTERISTICS (cont.)  
DRAIN-SOURCE ON CURRENT, BIAS  
CURRENT vs. AMBIENT TEMPERATURE  
DRAIN-SOURCE ON CURRENT, BIAS  
CURRENT vs. AMBIENT TEMPERATURE  
5
4
100  
Zero Temperature  
Coefficient (ZTC)  
-55°C  
-25°C  
+125°C  
3
2
1
0°C  
50  
-25°C  
+70°C  
+125°C  
0
0
V
V
+3  
V
GS(th)  
V
-1  
GS(th)  
V
+1  
GS(th)  
V
+2  
GS(th)  
+4  
GS(th)  
V
GS(th)  
V
+0.2  
GS(th)  
V
+0.4  
GS(th)  
V
+0.6  
GS(th)  
V
+0.8  
GS(th)  
V
+1.0  
GS(th)  
GS(th)  
GATE- AND DRAIN-SOURCE VOLTAGE  
(V = V ) (V)  
GATE- AND DRAIN-SOURCE VOLTAGE  
(V = V ) (V)  
GS DS  
GS  
DS  
DRAIN-SOURCE ON CURRENT vs.  
DRAIN-SOURCE ON RESISTANCE  
GATE-SOURCE VOLTAGE vs.  
DRAIN-SOURCE ON CURRENT  
V
+4  
GS(th)  
100000  
10000  
V
= +0.5V  
V
= R  
• I  
DS  
T = +125°C  
A
DS  
ON DS(ON)  
T
V
= +25°C  
A
V
+3  
+2  
= -4.0V to +5.4V  
GS(th)  
GS  
D
V
1000  
DS  
V
= +0.5V  
= +25°C  
DS  
T
A
V
GS(th)  
100  
10  
1
V
GS  
I
DS(ON)  
V
V
= +10V  
DS  
V
= +5V  
DS  
= +125°C  
V
+1  
GS(th)  
T
A
V
= +0.1V  
= +5V  
= +1V  
DS  
DS  
DS  
V
= +5V  
= +25°C  
DS  
V
V
GS(th)  
T
A
0.1  
V
-1  
GS(th)  
0.01  
1
0.1  
10  
100  
1000  
10000  
0.1  
1
10  
100  
1000  
10000  
DRAIN-SOURCE ON CURRENT (µA)  
DRAIN-SOURCE ON RESISTANCE (K)  
OFFSET VOLTAGE vs.  
AMBIENT TEMPERATURE  
DRAIN-SOURCE ON CURRENT  
vs. OUTPUT VOLTAGE  
5
4
4
3
2
1
V
= +10V  
DS  
REPRESENTATIVE UNITS  
T
= +25°C  
A
3
2
1
0
-1  
-2  
V
= +5V  
DS  
V
= +1V  
DS  
-3  
-4  
0
V
V
+3  
GS(th)  
-50  
-25  
0
25  
50  
75  
100  
125  
V
+1  
GS(th)  
V
+2  
GS(th)  
V
+4  
GS(th)  
V
+5  
GS(th)  
GS(th)  
AMBIENT TEMPERATURE (°C)  
OUTPUT VOLTAGE (V)  
ALD110802/ALD110902, Vers. 2.3  
Advanced Linear Devices  
6 of 12  
TYPICAL PERFORMANCE CHARACTERISTICS (cont.)  
GATE SOURCE VOLTAGE vs.  
DRAIN-SOURCE ON RESISTANCE  
GATE LEAKAGE CURRENT  
vs. AMBIENT TEMPERATURE  
V
V
+4  
+3  
+2  
+1  
GS(th)  
10000  
1000  
0.0V V  
5.0V  
DS  
+125°C  
GS(th)  
D
V
100  
DS  
V
GS(th)  
10  
1
I
DS(ON)  
V
GS  
S
+25°C  
I
GSS  
V
V
GS(th)  
0.1  
0.01  
GS(th)  
-50  
-25  
0
25  
50  
75  
100  
125  
0
2
4
6
8
10  
AMBIENT TEMPERATURE (°C)  
DRAIN-SOURCE ON RESISTANCE (K)  
DRAIN-GATE DIODE CONNECTED VOLTAGE  
TEMPCO vs. DRAIN-SOURCE ON CURRENT  
TRANSFER CHARACTERISTICS  
1.6  
1.2  
0.8  
5
V
= -3.5V  
GS(th)  
T
DS  
= +25°C  
A
-55°C T +125°C  
A
V
= +10V  
V
= -1.3V  
GS(th)  
2.5  
0
V
= -0.4V  
GS(th)  
V
V
= 0.0V  
GS(th)  
-2.5  
-5  
0.4  
0.0  
= +0.2V  
= +0.8V  
= +1.4V  
GS(th)  
V
V
GS(th)  
GS(th)  
100  
1
10  
1000  
2
4
6
10  
-4  
-2  
0
8
DRAIN-SOURCE ON CURRENT (µA)  
GATE-SOURCE VOLTAGE (V)  
ZERO TEMPERATURE  
SUBTHRESHOLD CHARACTERISTICS  
COEFFICIENT CHARACTERISTICS  
0.6  
2.5  
2.0  
V
= -3.5V  
GS(th)  
0.5  
0.3  
0.2  
0.0  
V
= -1.3V, -0.4V, 0.0V, +0.2V, +0.8V, +1.4V  
GS(th)  
1.5  
V
= +0.4V  
GS(th)  
= +25°C  
T
A
1.0  
0.5  
V
= +0.4V  
GS(th)  
= +55°C  
T
A
0.0  
V
= +0.2V  
GS(th)  
= +25°C  
V
= +0.2V  
GS(th)  
= +55°C  
T
A
T
A
-0.5  
0.1  
0.2  
0.5  
1.0  
2.0  
5.0  
10000  
100000  
1000  
100  
10  
1
0.1  
DRAIN-SOURCE ON VOLTAGE (V)  
DRAIN-SOURCE ON CURRENT (nA)  
ALD110802/ALD110902, Vers. 2.3  
Advanced Linear Devices  
7 of 12  
TYPICAL PERFORMANCE CHARACTERISTICS (cont.)  
TRANCONDUCTANCE vs.  
DRAIN-SOURCE ON CURRENT  
THRESHOLD VOLTAGE vs.  
AMBIENT TEMPERATURE  
4.0  
1.2  
T
DS  
= +25°C  
A
V
= +10V  
I
V
= +1µA  
DS  
3.0  
2.0  
1.0  
0.0  
0.9  
0.6  
= +0.1V  
DS  
V
= +1.4V  
t
0.3  
0.0  
V
= 0.0V  
-25  
V
= +0.8V  
= +0.4V  
t
t
V
= +0.2V  
t
V
t
0
2
4
6
8
10  
-50  
0
25  
50  
75  
100  
125  
AMBIENT TEMPERATURE (°C)  
DRAIN-SOURCE ON CURRENT (mA)  
NORMALIZED SUBTHRESHOLD  
CHARACTERISTICS RELATIVE TO  
GATE THRESHOLD VOLTAGE  
SUBTHRESHOLD FORWARD  
TRANSFER CHARACTERISTICS  
2.0  
1.0  
0.0  
0.3  
0.2  
I
V
= +1µA  
DS  
= +0.1V  
DS  
V
DS  
= +0.1V  
0.1  
V
= 0.0V  
GS(th)  
0
-0.1  
-0.2  
V
V
= -0.4V  
= -1.3V  
GS(th)  
-1.0  
-2.0  
GS(th)  
+25°C  
+55°C  
-3.0  
-4.0  
-0.3  
-0.4  
V
= -3.5V  
GS(th)  
75  
AMBIENT TEMPERATURE (°C)  
125  
1
0.1  
25  
100  
10  
-25  
10000  
1000  
DRAIN-SOURCE ON CURRENT (nA)  
ALD110802/ALD110902, Vers. 2.3  
Advanced Linear Devices  
8 of 12  
SOIC-16 PACKAGE DRAWING  
16 Pin Plastic SOIC Package  
E
Millimeters  
Inches  
Dim  
A
Min  
Max  
Min  
Max  
1.75  
0.25  
0.45  
0.25  
10.00  
4.05  
0.053  
0.069  
1.35  
S (45°)  
0.004  
0.014  
0.007  
0.385  
0.140  
0.010  
0.018  
0.010  
0.394  
0.160  
0.10  
0.35  
0.18  
9.80  
3.50  
A
1
b
C
D-16  
E
D
1.27 BSC  
0.050 BSC  
0.224  
e
6.30  
0.937  
8°  
0.248  
0.037  
8°  
5.70  
0.60  
0°  
H
0.024  
0°  
L
A
ø
0.50  
0.010  
0.020  
0.25  
S
A
e
1
b
S (45°)  
C
H
L
ø
ALD110802/ALD110902, Vers. 2.3  
Advanced Linear Devices  
9 of 12  
PDIP-16 PACKAGE DRAWING  
16 Pin Plastic DIP Package  
E
E
1
Millimeters  
Inches  
Dim  
A
Min  
Max  
Min  
Max  
5.08  
0.105  
0.200  
3.81  
0.38  
1.27  
0.89  
0.38  
0.20  
18.93  
5.59  
7.62  
2.29  
7.37  
2.79  
0.38  
0°  
1.27  
2.03  
1.65  
0.51  
0.30  
21.33  
7.11  
8.26  
2.79  
7.87  
3.81  
1.52  
15°  
0.015  
0.050  
0.035  
0.015  
0.008  
0.745  
0.220  
0.300  
0.090  
0.290  
0.110  
0.015  
0°  
0.050  
0.080  
0.065  
0.020  
0.012  
0.840  
0.280  
0.325  
0.110  
0.310  
0.150  
0.060  
15°  
A
A
1
2
b
b
1
c
D
D-16  
E
S
E
1
A
2
e
A
e
1
L
L
A
1
S-16  
ø
e
b
b
1
c
ø
e
1
ALD110802/ALD110902, Vers. 2.3  
Advanced Linear Devices  
10 of 12  
SOIC-8 PACKAGE DRAWING  
8 Pin Plastic SOIC Package  
E
Millimeters  
Inches  
Dim  
A
Min  
Max  
Min  
Max  
1.75  
0.25  
0.45  
0.25  
5.00  
4.05  
0.053  
0.069  
1.35  
S (45°)  
0.004  
0.014  
0.007  
0.185  
0.140  
0.010  
0.018  
0.010  
0.196  
0.160  
0.10  
0.35  
0.18  
4.69  
3.50  
A
1
b
C
D-8  
E
D
1.27 BSC  
0.050 BSC  
0.224  
e
6.30  
0.937  
8°  
0.248  
0.037  
8°  
5.70  
0.60  
0°  
H
0.024  
0°  
A
L
ø
S
A
1
e
0.50  
0.010  
0.020  
0.25  
b
S (45°)  
C
H
L
ø
ALD110802/ALD110902, Vers. 2.3  
Advanced Linear Devices  
11 of 12  
PDIP-8 PACKAGE DRAWING  
8 Pin Plastic DIP Package  
E
E
1
Millimeters  
Inches  
Dim  
A
Min  
Max  
Min  
Max  
5.08  
0.105  
0.200  
3.81  
0.38  
1.27  
0.89  
0.38  
0.20  
9.40  
5.59  
7.62  
2.29  
7.37  
2.79  
1.02  
0°  
1.27  
2.03  
1.65  
0.51  
0.30  
11.68  
7.11  
8.26  
2.79  
7.87  
3.81  
2.03  
15°  
0.015  
0.050  
0.035  
0.015  
0.008  
0.370  
0.220  
0.300  
0.090  
0.290  
0.110  
0.040  
0°  
0.050  
0.080  
0.065  
0.020  
0.012  
0.460  
0.280  
0.325  
0.110  
0.310  
0.150  
0.080  
15°  
A
A
1
2
b
b
1
D
c
S
D-8  
E
A
2
E
1
A
e
L
A
1
e
1
e
b
L
S-8  
ø
b
1
c
ø
e
1
ALD110802/ALD110902, Vers. 2.3  
Advanced Linear Devices  
12 of 12  

相关型号:

ALD110808

QUAD/DUAL N-CHANNEL ENHANCEMENT MODE EPAD MATCHED PAIR MOSFET ARRAY
ALD

ALD110808A

QUAD/DUAL N-CHANNEL ENHANCEMENT MODE EPAD MATCHED PAIR MOSFET ARRAY
ALD

ALD110808APC

QUAD/DUAL N-CHANNEL ENHANCEMENT MODE EPAD MATCHED PAIR MOSFET ARRAY
ALD

ALD110808APCL

QUAD/DUAL N-CHANNEL ENHANCEMENT MODE EPAD PRECISION MATCHED PAIR MOSFET ARRAY
ALD

ALD110808ASC

QUAD/DUAL N-CHANNEL ENHANCEMENT MODE EPAD MATCHED PAIR MOSFET ARRAY
ALD

ALD110808ASCL

QUAD/DUAL N-CHANNEL ENHANCEMENT MODE EPAD PRECISION MATCHED PAIR MOSFET ARRAY
ALD

ALD110808PC

QUAD/DUAL N-CHANNEL ENHANCEMENT MODE EPAD MATCHED PAIR MOSFET ARRAY
ALD

ALD110808PCL

QUAD/DUAL N-CHANNEL ENHANCEMENT MODE EPAD PRECISION MATCHED PAIR MOSFET ARRAY
ALD

ALD110808SC

QUAD/DUAL N-CHANNEL ENHANCEMENT MODE EPAD MATCHED PAIR MOSFET ARRAY
ALD

ALD110808SCL

QUAD/DUAL N-CHANNEL ENHANCEMENT MODE EPAD PRECISION MATCHED PAIR MOSFET ARRAY
ALD

ALD110808_12

QUAD/DUAL N-CHANNEL ENHANCEMENT MODE EPAD PRECISION MATCHED PAIR MOSFET ARRAY
ALD

ALD110814

QUAD/DUAL N-CHANNEL ENHANCEMENT MODE EPAD MATCHED PAIR MOSFET ARRAY
ALD