HSDL7001 [AGILENT]

IR 3/16 Encode/Decode IC; IR 3/16编码/解码IC
HSDL7001
型号: HSDL7001
厂家: AGILENT TECHNOLOGIES, LTD.    AGILENT TECHNOLOGIES, LTD.
描述:

IR 3/16 Encode/Decode IC
IR 3/16编码/解码IC

文件: 总8页 (文件大小:131K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IR 3/16 Encode/Decode IC  
Technical Data  
HSDL-7001-2500 pc, tape  
and reel  
HSDL-7001#100-100pc,  
50/tube  
Features  
• Compliant with IrDA 1.0  
Physical Layer Specs  
• Interfaces with IrDA 1.0  
Compliant IR Transceivers  
• Used in Conjunction with  
Standard 16550 UART  
• Transmits/Receives either  
1.63 µs or 3/16 Pulse Mode  
• Internal or External Clock  
Modes  
• Programmable Baud Rate  
• 2.7-5.5 V Operation  
Description  
Schematic  
The HSDL-7001 modulates and  
demodulates electrical pulses  
from Hewlett-Packard’s  
TXD  
IR_TXD  
SIR  
ENCODE  
HSDL-1001 Infrared transceiver  
module and other IrDA-compliant  
transceivers. The HSDL-7001 can  
be used with a microcontroller/  
microprocessor that has a serial  
communication interface (UART).  
Prior to communication, the  
processor selects the transmis-  
sion baud rate. Serial data is then  
transmitted or received at the  
prescribed data rate.  
/NRST  
RCD  
IR_RCV  
SIR  
DECODE  
INT_CLOCK  
A0  
A1  
CLOCK  
DIVIDE  
A2  
• 16 Pin SOIC Package  
16XCLK  
The HSDL-7001 consists of two  
state machines – the SIR (Serial  
InfraRed) Encode and SIR Decode  
blocks. It also contains a  
sequential block Clock Divide  
which synthesizes the required  
internal signal.  
Applications  
• Interfaces with IR  
Transceivers in:  
- Computer Applications:  
Notebook Computers  
Sub-notebooks  
Desktop PCs  
PDAs  
Printers  
Dongle or other RS-232  
adapter  
- Telecom Applications:  
Modems  
Fax Machines  
Pagers  
PULSEMOD  
CLK_SEL  
Pin Out  
The HSDL-7001 can be placed  
into the Internal Clock Mode or  
External Clock Mode. An external  
crystal is needed for the Internal  
Clock Mode. In applications  
where the external 16XCLK  
signal is provided, a crystal is not  
needed.  
1
16  
15  
14  
13  
12  
11  
10  
9
V
16XCLK  
CC  
2
OSCIN  
TXD  
3
OSCOUT  
POWERDN  
PULSEMOD  
IR_TXD  
RCV  
4
A0  
5
A1  
Phones  
6
- Handheld Data Collection:  
Industrial  
Medical  
A2  
There are two data transmission  
modes. Data can be transmitted  
and received in either a standard  
3/16 modulation mode or a  
1.63 µs pulse mode.  
7
IR_RCV  
CLK_SEL  
8
Transportation  
NRST  
GND  
2
I/O Pinout List  
Pin  
Name  
Type  
Function  
1
16XCLK  
(SIXTNCK)  
DIGIN  
Positive edge triggered input clock that is set to 16 times the data  
transmission baud rate. The encode and decode schemes require this  
signal. The signal is usually tied to a UART’s BAUDOUT signal. The  
16XCLK may be provided by application circuitry if BAUDOUT is not  
available. This signal is required when the internal clock is not used.  
2
3
/TXD  
RCV  
DIGIN  
Negative edge triggered input signal that is normally tied to the SOUT  
signal of the UART (serial data to be transmitted). Data is modulated  
and output as IR_TXD.  
DIGOUT Output signal normally tied to SIN signal of a UART (received serial  
data). RCV is the demodulated output of IR_RVC.  
4
5
6
7
A0  
A1  
A2  
DIGIN  
DIGIN  
DIGIN  
DIGIN  
Clock Multiplex Signal  
Clock Multiplex Signal  
Clock Multiplex Signal  
Used to activate either the Internal or External Clock. A high on this  
line activates the External clock (16XCLK) and a low activates the  
Internal clock. When the External clock is activated, the internal  
oscillator is put in POWERDOWN MODE.  
CLK_SEL  
8
9
GND  
/NRST  
Chip Ground  
DIGIN  
DIGIN  
Active low signal used to reset the IrDA-SIR ENCODE & DECODE  
state machine. This signal can be tied to POR (Power On Reset) or V  
Input from SIR optoelectronics. Input signal is a 3/16th or 1.6 µs pulse  
.
CC  
10  
/IR_RCV  
which is demodulated to generate RCV output signal.  
11  
12  
IR_TXD  
PULSEMOD  
DIGOUT This is the modulated TXD signal.  
DIGIN  
(with  
A high level on this input puts the chip into the monoshot transmit  
mode. In this mode, when there is a negative transition on the TXD  
pulldown) input, a rising edge on the internal transmit modulation state machine  
will activate a high pulse on IR_TXD for 6 crystal clock cycles. With a  
3.6864 MHz crystal, this corresponds to 1.63 µs. This mode cannot be  
used in conjunction with the 16XCLK clock. It is meant to be used with  
the external crystal clock. By default, this input pin is pulled to GND.  
13  
POWERDN  
DIGIN  
(with  
A high on this input puts only the internal oscillator cell (OSCII) in  
POWERDOWN MODE. The cell is normally not powered down.  
pulldown)  
14  
15  
16  
OSCOUT  
OSCIN  
ANAOUT Oscillator Output  
ANAIN  
Oscillator Input  
Power  
V
CC  
Note: There are two methods of putting the internal oscillator cell in POWERDOWN MODE. Whenever the CLKSEL Pin is asserted  
high (External clock selected) the oscillator cell is automatically put in powerdown mode, or whenever the POWERDN Pin is asserted  
high.  
3
Table 1. Selection of Internal Clock Rate from Crystal Oscillator  
Selected Clock Rate (bps)  
A2  
0
0
A1  
0
0
A0  
0
1
Crystal Freq. Division  
Divided by 2  
115200  
57600  
Divided by 4  
19200  
9600  
38400  
0
0
1
1
1
0
0
1
0
Divided by 12  
Divided by 24  
Divided by 6  
4800  
2400  
TEST PURPOSE  
1
1
1
0
1
1
1
0
1
Divided by 48  
Divided by 96  
No division  
Package Dimensions  
–A–  
NOTES:  
1. DIMENSIONS A AND B ARE DATUMS  
AND T IS A DATUM SURFACE.  
2. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
3. CONTROLLING DIMENSION: MILLIMETER.  
4. DIMENSION A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
16  
9
8
φ
P
0.25 (0.010) M B M  
–B–  
8 PL.  
16  
5. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
1
MILLIMETERS  
INCHES  
1
DIM. MIN.  
MAX.  
10.00  
4.00  
1.75  
0.49  
1.25  
MIN.  
MAX.  
0.393  
0.157  
0.068  
0.019  
0.049  
G
A
B
C
D
F
9.80  
3.80  
1.35  
0.35  
0.40  
0.386  
0.150  
0.054  
0.014  
0.016  
R X 45°  
C
K
J
–T–  
SEATING  
PLANE  
F
M
G
J
1.27 BSC  
0.060 BSC  
D
16 PL.  
0.19  
0.10  
0°  
0.25  
0.25  
7°  
0.008  
0.004  
0°  
0.009  
0.009  
7°  
φ
0.25 (0.010) M  
T B S A S  
K
M
P
5.80  
0.25  
6.20  
0.50  
0.229  
0.010  
0.244  
0.019  
R
R
4
Encoding Scheme  
16 CYCLES  
16 CYCLES  
16 CYCLES  
16 CYCLES  
16XCLK  
TXD  
7 CS  
IRTXD  
3 CS  
The encoding scheme relies on a  
clock being present, which is set  
to 16 times the data transmission  
baud rate (16XCLX). The encoder  
sends a pulse for every space or  
“0” that is sent on the TXD line.  
On a high to low transition of the  
TXD line, the generation of the  
pulse is delayed for 7 clock cycles  
of the 16XCLK before the pulse is  
set high for 3 clock cycles (or  
3/16th of a bit time) and then  
subsequently pulled low. This  
generates a 3/16th bit time pulse  
centered around the bit of  
information (“0”) that is being  
transmitted.  
For consecutive spaces, pulses  
with a 1 bit time delay are gener-  
ated in series. If a logic 1 (mark)  
is sent then the encoder does not  
generate a pulse.  
Decoding Scheme  
16 CYCLES  
16 CYCLES  
16 CYCLES  
16 CYCLES  
16XCLK  
IRRXD  
RXD  
3 CS  
arrival of a pulse. This pulse  
needs to be stretched to  
Note 1: The stretched pulse must  
be at least 3/4 of a bit time in  
duration to be correctly inter-  
preted by a UART.  
The IrDA-SIR (Serial InfraRed)  
decoding modulation method can  
be thought of as a pulse stretch-  
ing scheme.  
accommodate 1 bit time (or 16  
16XCLK cycles). Every pulse that  
is received is translated into a “0”  
or space on the RXD line equal to  
1 bit time.  
Note 2: It is recommended that  
TXD remains high when not  
transmitting. This ensures the  
LED is off and will not interfere  
with signal reception.  
Every high to low transition of  
the IR_RXD line signifies the  
5
Monoshot Operation  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26  
CRYSTAL  
CLK  
INT CLK  
(DIVBY2)  
TXD  
INTERNAL  
IRTXD  
OUTPUT  
6 CRYSTAL CYCLES  
IRTXD  
(MONOSHOT)  
The figure above illustrates the  
With a 3.6864 MHz clock, this  
corresponds to a pulse of 1.63 µs.  
The duration of this pulse is  
independent of the code A2,  
A1,A0 and is always 6 clock  
cycles of the crystal, corre-  
sponding to the monoshot  
operation.  
operation of the monoshot when  
the internal clock is set to divide  
by 2 mode, i.e., when A2=0,  
A1=0, and A0=0. A rising edge  
on the internal modulation state  
machine (IRTXD OUTPUT), will  
cause the output on the IRTXD to  
go up for 6 crystal clock cycles.  
6
Absolute Maximum Ratings  
Parameter  
Storage Temperature  
Operating Temperature  
Output Current  
Symbol  
Min.  
-65  
-40  
Max.  
+150  
+85  
100  
0.46  
V + 0.5  
CC  
Units  
°C  
°C  
mA  
W
V
V
V
T
S
T
A
I
-100  
O
[1]  
Power Dissipation  
Input/Output Voltage  
P
MAX  
[2]  
V /V  
-0.5  
-0.5  
I
O
Power Supply Voltage  
Electrostatic Protection  
V
7.0  
4000  
CC  
V
ESD  
Notes:  
1. Maximum power dissipation is given for Rth = 140 C/W (SO 16 Plastic).  
2. All pins are protected from damage to static discharge by internal diode clamps to  
and GND.  
V
CC  
Switching Specifications  
(V = 2.7 to 5.5 V, T = -20 to +85°C)  
CC  
A
Parameter  
Propagation Delay Time  
Symbol  
Min. Typ.  
Max. Units  
Conditions  
[1]  
t
pd  
80  
11.6  
24  
ns  
ns  
[2]  
Output Rise Time  
t
rise  
3.7  
10  
7.25  
16  
V
= 5.5 V, CL = 50 pF  
= 2.7 V, CL = 50 pF  
= 5.5 V, CL = 50 pF  
= 2.7 V, CL = 50 pF  
CC  
V
CC  
[3]  
Output Fall Time  
t
fall  
4.4  
11  
8.35  
16  
11.2  
26  
ns  
V
CC  
V
CC  
Output Capacitance on Output  
Pads Used for Simulation  
C
OUT  
50  
pF  
Notes:  
1. Propagation Delay Time in the output buffer is the time taken from the input passing V /2 to the time of the output reaching  
CC  
V
/2 with 50 pF as the output load.  
CC  
2. The Output Rise Time is the time taken for the outputs (RCV, IR_TXD) to rise from 10% of the original value to 90% of the final  
value.  
3. The Output Fall Time is the time taken for the outputs (RCV, IR_TXD) to fall from 90% of the original value to 10% of the final  
value.  
7
Recommended Operating Conditions  
(V = 2.7 to 5.5 V, T = -20 to +85°C)  
CC  
A
Parameter  
Symbol  
Min.  
2.7  
0.0  
Typ.  
5
Max. Units Conditions  
Supply Voltage  
Input Voltage  
V
5.5  
V
V
CC  
V
I
V
CC  
Ambient Temperature  
High Level Input Voltage  
Low Level Input Voltage  
Output High Voltage  
T
-20  
+85  
V
CC  
°C  
V
V
A
V
0.7 V  
IH  
CC  
V
0
2.2  
0.3 V  
IL  
CC  
V
OH  
V
V
CC  
= 2.7 V  
ioh = 2 mA  
V = 2.7 V  
CC  
iol = 2 mA  
V = 5.5 V  
CC  
ioh = 2 mA  
V = 5.5 V  
CC  
Output Low Voltage  
V
0.5  
V
V
V
OL  
Output High Voltage  
V
OH  
4.5  
Output Low Voltage  
V
OL  
0.5  
iol = 2 mA  
Static Power Dissipation  
Dynamic Power Dissipation  
Static Current Consumption  
Dynamic Current Consumption  
P
0.44  
0.11  
11  
5.4  
80  
40  
0.61  
0.15  
16.5  
8.1  
110  
54  
3
3
mW  
mW  
mW  
mW  
µA  
µA  
mA  
mA  
V
= 5.5 V  
= 2.7 V  
= 5.5 V  
= 2.7 V  
= 5.5 V  
= 2.7 V  
= 5.5 V  
= 2.7 V  
STAT  
CC  
V
CC  
P
V
DYN  
CC  
V
CC  
I
V
STAT  
CC  
V
CC  
I
2
2
V
DYN  
CC  
V
CC  
[1]  
Max Clk Frequency (16XCLK)  
Minimum Pulse Width (IR_TXD)  
f
2
MHz  
ns  
ns  
16XCLK  
[2]  
t
t
1630  
1630  
mpw  
mpw  
Pulse Width on Monoshot  
(IR_TXD and IR_RCV)  
Value of Pulldown Resistor Used on  
POWERDOWN & PULSEMOD Input Pins  
Trigger Low Level Input Voltage  
(For /NRST Input Pin)  
1710  
152  
1730  
256  
R
114  
KΩ  
V
DWN  
VIL_TRIG  
VIH_TRIG  
0.7  
1.9  
1.7  
0.8  
1.95  
1.85  
3.4  
0.9  
2.00  
1.9  
3.60  
V
= 2.7 V  
= 5.5 V  
= 2.7 V  
= 5.5 V  
CC  
V
CC  
Trigger High Level Input Voltage  
(For /NRST Input Pin)  
V
V
CC  
3.25  
V
CC  
Notes:  
1. IrDA Parameters. The Max Clk Frequency represents the maximum clock frequency to drive the HSDL-7001’s internal state  
machine. Under normal circumstances, the clock input should not exceed 16* 115.2 Kbps or 1.8432 MHz. This product can  
operate at higher clock rates, but the above is the recommended rate.  
2. The Minimum Pulse Width (t  
) represents the minimum pulse width of the encoded IR_TXD pulse (and the IR_RCV pulse). As  
mpw  
per the IrDA specifications, the minimum pulse width of the IR_TXD and IR_RCV pulses should be 3*(1/1.8432 MHz) or 1.63 µs.  
Application Circuits  
HSDL-7001 Connection to UART  
HSDL-1001  
TXD  
HSDL-7001  
UART 16550  
IR_TXD  
IR_RCV  
TXD  
RCV  
SOUT  
SIN  
RCV  
16XCLK  
NRST  
BAUDOUT  
10 k  
V
CC  
0.1 µF  
HSDL-7001 Connected to Microcontroller  
HSDL-1001  
HSDL-7001  
MICROCONTROLLER  
TXD  
RCV  
IR_TXD  
IR_RCV  
TXD  
RCV  
SDO  
SDI  
A0  
A1  
A2  
I01  
I02  
I03  
I04  
I05  
I06  
CLK_SEL  
PULSEMOD  
POWERDN  
15 pF  
OSCIN  
F = 3.6864 MHz  
10 M  
NRST  
OSCOUT  
10 kΩ  
15 pF  
V
CC  
0.1 µF  
NOTE: POWERDN CAN BE USED AS A BASIC CHIP SELECT.  
THE HSDL-7001 WILL NOT BE ABLE TO RECEIVE OR TRANSMIT DATA WHILE POWERDN IS ASSERTED.  
www.hp.com/go/ir  
For technical assistance or the location of  
your nearest Hewlett-Packard sales office,  
distributor or representative call:  
Americas/Canada: 1-800-235-0312 or  
408-654-8675  
Far East/Australasia: Call your local HP  
sales office.  
Japan: (81 3) 3335-8152  
Europe: Call your local HP sales office.  
Data subject to change.  
Copyright © 1999 Hewlett-Packard Co.  
Obsoletes 5965-5150E (11/96)  
5968-7456E (8/99)  

相关型号:

HSDL9000

Miniature Surface-Mount Ambient Light Photo Sensor
AGILENT

HSDP2110S

Alphanumeric Intelligent Display Devices
OSRAM

HSDP2111S

Alphanumeric Intelligent Display Devices
OSRAM

HSDP2112S

Alphanumeric Intelligent Display Devices
OSRAM

HSDP2113S

Alphanumeric Intelligent Display Devices
OSRAM

HSDP2114S

Alphanumeric Intelligent Display Devices
OSRAM

HSDP2115S

Alphanumeric Intelligent Display Devices
OSRAM

HSE-B1711-032

HEAT SINK
CUI

HSE-B1711-057

HEAT SINK
CUI

HSE-B18254-035H

Extruded Heat Sink, TO-218
CUI

HSE-B18254-0396H

Extruded Heat Sink, TO-218
CUI