HCPL-5301 [AGILENT]

Intelligent Power Module and Gate Drive Interface Optocouplers; 智能功率模块和门驱动接口光电耦合器
HCPL-5301
型号: HCPL-5301
厂家: AGILENT TECHNOLOGIES, LTD.    AGILENT TECHNOLOGIES, LTD.
描述:

Intelligent Power Module and Gate Drive Interface Optocouplers
智能功率模块和门驱动接口光电耦合器

光电 输出元件 栅 驱动
文件: 总15页 (文件大小:260K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
H
Intelligent Power Module and  
Gate Drive Interface Optocouplers  
HCPL-4506  
HCPL-0466  
HCNW4506  
Technical Data  
Features  
Applications  
• IPM Isolation  
• Isolated IGBT/MOSFET Gate  
Drive  
• AC and Brushless DC Motor  
Drives  
gation delay difference between  
devices make these optocouplers  
excellent solutions for improving  
inverter efficiency through  
• Performance Specified for  
Common IPM Applications  
over Industrial Temperature  
Range: -40°C to 100°C  
• Fast Maximum Propagation  
Delays  
reduced switching dead time.  
An on chip 20 koutput pull-up  
resistor can be enabled by short-  
ing output pins 6 and 7, thus  
eliminating the need for an  
external pull-up resistor in  
common IPM applications. Speci-  
fications and performance plots  
are given for typical IPM  
• Industrial Inverters  
tPHL = 400 ns  
t
PLH = 550 ns  
Description  
• Minimized Pulse Width  
Distortion (PWD = 450 ns)  
• 15 kV/µs Minimum Common  
Mode Transient Immunity at  
The HCPL-4506 and HCPL-0466  
contain a GaAsP LED while the  
HCNW4506 contains an AlGaAs  
LED. The LED is optically  
coupled to an integrated high gain  
photo detector. Minimized propa-  
VCM = 1500 V  
applications.  
• CTR > 44% at IF = 10 mA  
• Safety Approval  
UL Recognized - 2500 V rms  
for 1 minute (5000 V rms for  
1 minute for HCNW4506 and  
HCPL-4506 Option 020) per  
UL1577  
Functional Diagram  
Truth Table  
LED  
ON  
VO  
L
NC  
1
2
8
7
V
V
CC  
20 k  
CSA Approved  
OFF  
H
ANODE  
L
VDE 0884 Approved  
-VIORM = 630 V peak for  
HCPL-4506 Option 060  
-VIORM = 1414 V peak for  
HCNW4506  
3
4
6
5
CATHODE  
NC  
V
O
GND  
SHIELD  
BSI Certified (HCNW4506)  
Selection Guide  
Operating Temperature  
TA [°C]  
Single Channel Packages  
8-Pin DIP  
(300 Mil)  
Small Outline  
SO-8  
Widebody  
(400 Mil)  
Min.  
-40  
Max.  
100  
Hermetic*  
HCPL-4506  
HCPL-0466  
HCNW4506  
-55  
125  
HCPL-5300  
HCPL-5301  
*Technical data for these products are on separate HP publications.  
The connection of a 0.1 µF bypass capacitor between pins 5 and 8 is recommended.  
CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to  
prevent damage and/or degradation which may be induced by ESD.  
1-49  
5965-3603E  
Ordering Information  
Specify Part Number followed by Option Number (if desired).  
Example:  
HCPL-4506#XXX  
020 = UL 5000 V rms/1 Minute Option*  
060 = VDE 0884 VIORM = 630 V peak Option*  
300 = Gull Wing Surface Mount Option†  
500 = Tape and Reel Packaging Option  
*For HCPL-4506 only. Combination of Option 020 and  
Option 060 is not available.  
†Gull wing surface mount option applies to through  
hole parts only.  
Option data sheets are available. Contact your Hewlett-Packard sales representative or authorized  
distributor for information.  
Package Outline Drawings  
7.62 ± 0.25  
(0.300 ± 0.010)  
9.65 ± 0.25  
(0.380 ± 0.010)  
8
7
6
5
6.35 ± 0.25  
(0.250 ± 0.010)  
TYPE NUMBER  
OPTION CODE*  
DATE CODE  
HP XXXXZ  
YYWW  
U R  
4
UL  
1
2
3
RECOGNITION  
1.78 (0.070) MAX.  
1.19 (0.047) MAX.  
+ 0.076  
0.254  
5° TYP.  
- 0.051  
+ 0.003)  
- 0.002)  
(0.010  
4.70 (0.185) MAX.  
0.51 (0.020) MIN.  
2.92 (0.115) MIN.  
DIMENSIONS IN MILLIMETERS AND (INCHES).  
0.65 (0.025) MAX.  
1.080 ± 0.320  
(0.043 ± 0.013)  
* MARKING CODE LETTER FOR OPTION NUMBERS.  
"L" = OPTION 020  
"V" = OPTION 060  
2.54 ± 0.25  
(0.100 ± 0.010)  
OPTION NUMBERS 300 AND 500 NOT MARKED.  
Figure 1. HCPL-4506 Outline Drawing (Standard DIP Package).  
PAD LOCATION (FOR REFERENCE ONLY)  
9.65 ± 0.25  
(0.380 ± 0.010)  
1.016 (0.040)  
1.194 (0.047)  
8
7
6
5
4.826  
(0.190)  
TYP.  
6.350 ± 0.25  
(0.250 ± 0.010)  
9.398 (0.370)  
9.906 (0.390)  
1
3
2
4
0.381 (0.015)  
0.635 (0.025)  
1.194 (0.047)  
1.778 (0.070)  
1.780  
(0.070)  
MAX.  
9.65 ± 0.25  
(0.380 ± 0.010)  
1.19  
(0.047)  
MAX.  
7.62 ± 0.25  
(0.300 ± 0.010)  
+ 0.076  
4.19  
(0.165)  
0.254  
MAX.  
- 0.051  
+ 0.003)  
- 0.002)  
(0.010  
1.080 ± 0.320  
(0.043 ± 0.013)  
0.635 ± 0.25  
(0.025 ± 0.010)  
12° NOM.  
0.635 ± 0.130  
(0.025 ± 0.005)  
2.54  
(0.100)  
BSC  
DIMENSIONS IN MILLIMETERS (INCHES).  
LEAD COPLANARITY = 0.10 mm (0.004 INCHES).  
Figure 2. HCPL-4506 Gull Wing Surface Mount Option #300 Outline Drawing.  
1-50  
8
1
7
2
6
5
4
5.842 ± 0.203  
(0.236 ± 0.008)  
XXX  
YWW  
3.937 ± 0.127  
(0.155 ± 0.005)  
TYPE NUMBER  
(LAST 3 DIGITS)  
DATE CODE  
3
0.381 ± 0.076  
(0.016 ± 0.003)  
1.270  
(0.050)  
BSG  
0.432  
(0.017)  
7°  
5.080 ± 0.127  
(0.200 ± 0.005)  
45° X  
3.175 ± 0.127  
(0.125 ± 0.005)  
0.228 ± 0.025  
(0.009 ± 0.001)  
1.524  
(0.060)  
0.152 ± 0.051  
(0.006 ± 0.002)  
DIMENSIONS IN MILLIMETERS (INCHES).  
LEAD COPLANARITY = 0.10 mm (0.004 INCHES).  
0.305  
(0.012)  
MIN.  
Figure 3. HCPL-0466 Outline Drawing (8-Pin Small Outline Package).  
Pin Location (for reference only)  
11.00  
(0.433)  
11.15 ± 0.15  
MAX.  
(0.442 ± 0.006)  
9.00 ± 0.15  
(0.354 ± 0.006)  
7
6
5
8
TYPE NUMBER  
DATE CODE  
HP  
HCNWXXXX  
YYWW  
1
3
2
4
10.16 (0.400)  
TYP.  
1.55  
(0.061)  
MAX.  
7° TYP.  
+ 0.076  
- 0.0051  
+ 0.003)  
- 0.002)  
0.254  
(0.010  
5.10  
(0.201)  
MAX.  
3.10 (0.122)  
3.90 (0.154)  
0.51 (0.021) MIN.  
2.54 (0.100)  
TYP.  
1.78 ± 0.15  
(0.070 ± 0.006)  
0.40 (0.016)  
0.56 (0.022)  
DIMENSIONS IN MILLIMETERS (INCHES).  
Figure 4a. HCNW4506 Outline Drawing (8-Pin Widebody Package).  
11.15 ± 0.15  
(0.442 ± 0.006)  
PAD LOCATION (FOR REFERENCE ONLY)  
7
6
5
4
8
1
6.15  
(0.242)  
TYP.  
9.00 ± 0.15  
(0.354 ± 0.006)  
12.30 ± 0.30  
(0.484 ± 0.012)  
2
3
0.9  
(0.035)  
1.3  
(0.051)  
1.55  
(0.061)  
MAX.  
12.30 ± 0.30  
(0.484 ± 0.012)  
11.00  
MAX.  
(0.433)  
4.00  
(0.158)  
MAX.  
1.78 ± 0.15  
(0.070 ± 0.006)  
1.00 ± 0.15  
(0.039 ± 0.006)  
0.75 ± 0.25  
(0.030 ± 0.010)  
+ 0.076  
0.254  
2.54  
(0.100)  
BSC  
- 0.0051  
+ 0.003)  
- 0.002)  
(0.010  
DIMENSIONS IN MILLIMETERS (INCHES).  
7° NOM.  
LEAD COPLANARITY = 0.10 mm (0.004 INCHES).  
Figure 4b. HCNW4506 Outline Drawing (8-Pin Widebody Package with Gull Wing Surface Mount Option 300).  
1-51  
Solder Reflow Temperature Profile  
260  
240  
220  
T = 145°C, 1°C/SEC  
T = 115°C, 0.3°C/SEC  
200  
180  
160  
140  
120  
100  
80  
T = 100°C, 1.5°C/SEC  
60  
40  
20  
0
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
TIME – MINUTES  
Note: Use of nonchlorine activated fluxes is recommended.  
Regulatory Information  
CSA  
BSI  
The devices contained in this data  
sheet have been approved by the  
following organizations:  
Approved under CSA Component  
Acceptance Notice #5, File CA  
88324.  
Certification according to  
BS451:1994  
(BS EN60065:1994);  
BS EN60950:1992  
UL  
VDE  
(BS7002:1992) and  
EN41003:1993 for Class II  
applications (HCNW4506 only).  
Recognized under UL 1577,  
Component Recognition  
Program, File E55361.  
Approved according to VDE  
0884/06.92 (HCNW4506 and  
HCPL-4506 Option 060 only).  
InsulationandSafetyRelatedSpecifications  
8-PinDIP  
Widebody  
(300 Mil) SO-8 (400Mil)  
Parameter  
Symbol  
Value  
Value  
Value  
Units  
Conditions  
MinimumExternal  
AirGap(External  
Clearance)  
L(101)  
7.1  
4.9  
9.6  
mm  
Measuredfrominputterminals  
tooutputterminals,shortest  
distancethroughair.  
MinimumExternal  
Tracking(External  
Creepage)  
L(102)  
7.4  
4.8  
10.0  
1.0  
mm  
mm  
Measuredfrominputterminals  
tooutputterminals,shortest  
distancepathalongbody.  
MinimumInternal  
PlasticGap  
(InternalClearance)  
0.08  
0.08  
Throughinsulationdistance,  
conductortoconductor,usually  
the direct distance between the  
photoemitterandphotodetector  
insidetheoptocouplercavity.  
MinimumInternal  
Tracking(Internal  
Creepage)  
NA  
200  
IIIa  
NA  
200  
IIIa  
4.0  
200  
IIIa  
mm  
Measuredfrominputterminals  
tooutputterminals, along  
internalcavity.  
TrackingResistance  
(Comparative  
TrackingIndex)  
CTI  
Volts DIN IEC 112/VDE 0303 Part 1  
IsolationGroup  
MaterialGroup  
(DIN VDE 0110, 1/89, Table 1)  
Option 300 - surface mount classification is Class A in accordance with CECC 00802.  
1-52  
VDE 0884 Insulation Related Characteristics  
(HCPL-4506 OPTION 060 ONLY)  
Description  
Symbol  
Characteristic  
Units  
Installation classification per DIN VDE 0110/1.89, Table 1  
for rated mains voltage 300 V rms  
for rated mains voltage 450 V rms  
Climatic Classification  
Pollution Degree (DIN VDE 0110/1.89)  
Maximum Working Insulation Voltage  
Input to Output Test Voltage, Method b*  
I-IV  
I-III  
55/100/21  
2
V
630  
V peak  
V peak  
IORM  
V
IORM x 1.875 = VPR, 100% Production Test with tm = 1 sec,  
VPR  
VPR  
1181  
945  
Partial Discharge < 5 pC  
Input to Output Test Voltage, Method a*  
V
IORM x 1.5 = VPR, Type and sample test,  
V peak  
V peak  
tm = 60 sec, Partial Discharge < 5 pC  
Highest Allowable Overvoltage*  
(Transient Overvoltage, tini = 10 sec)  
V
6000  
IOTM  
Safety Limiting Values  
(Maximum values allowed in the event of a failure,  
also see Figure 18, Thermal Derating curve.)  
Case Temperature  
Input Current  
Output Power  
TS  
IS,INPUT  
PS,OUTPUT  
175  
230  
600  
109  
°C  
mA  
mW  
Insulation Resistance at TS, V = 500 V  
RS  
IO  
VDE 0884 Insulation Related Characteristics (HCNW4506 ONLY)  
Description  
Installation classification per DIN VDE 0110/1.89, Table 1  
for rated mains voltage 600 V rms  
for rated mains voltage 1000 V rms  
Climatic Classification  
Symbol Characteristic Units  
I-IV  
I-III  
55/100/21  
2
Pollution Degree (DIN VDE 0110/1.89)  
Maximum Working Insulation Voltage  
Input to Output Test Voltage, Method b*  
V
1414  
V peak  
V peak  
IORM  
VIORM x 1.875 = VPR, 100% Production Test with tm = 1 sec,  
VPR  
VPR  
2652  
Partial Discharge < 5 pC  
Input to Output Test Voltage, Method a*  
VIORM x 1.5 = VPR, Type and sample test,  
2121  
8000  
V peak  
V peak  
tm = 60 sec, Partial Discharge < 5 pC  
Highest Allowable Overvoltage*  
(Transient Overvoltage, tini = 10 sec)  
V
IOTM  
Safety Limiting Values  
(Maximum values allowed in the event of a failure,  
also see Figure 18, Thermal Derating curve.)  
Case Temperature  
Input Current  
Output Power  
TS  
150  
400  
700  
109  
°C  
mA  
mW  
IS,INPUT  
PS,OUTPUT  
Insulation Resistance at TS, V = 500 V  
RS  
IO  
*Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section (VDE 0884), for a  
detailed description.  
Note: Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in  
application.  
1-53  
Absolute Maximum Ratings  
Parameter  
Storage Temperature  
Symbol  
TS  
Min.  
-55  
-40  
Max.  
125  
100  
25  
50  
1.0  
5
Units  
°C  
°C  
mA  
mA  
A
Operating Temperature  
TA  
Average Input Current[1]  
IF(avg)  
IF(peak)  
IF(tran)  
VR  
Peak Input Current[2] (50% duty cycle, 1 ms pulse width)  
Peak Transient Input Current (<1 µs pulse width, 300 pps)  
Reverse Input Voltage (Pin 3-2)  
HCPL-4506, HCPL-0466  
HCNW4506  
Volts  
3
Average Output Current (Pin 6)  
Resistor Voltage (Pin 7)  
Output Voltage (Pin 6-5)  
Supply Voltage (Pin 8-5)  
Output Power Dissipation[3]  
Total Power Dissipation[4]  
IO(avg)  
V7  
VO  
VCC  
PO  
PT  
15  
VCC  
30  
30  
100  
145  
mA  
Volts  
Volts  
Volts  
mW  
-0.5  
-0.5  
-0.5  
mW  
Lead Solder Temperature (HCPL-4506)  
Lead Solder Temperature (HCNW4506)  
Infrared and Vapor Phase Reflow Temperature  
(HCPL-0466 and Option 300)  
260°C for 10s, 1.6 mm below seating plane  
260°C for 10 s (up to seating plane)  
See Package Outline Drawings Section  
Recommended Operating Conditions  
Parameter  
Power Supply Voltage  
Output Voltage  
Input Current (ON)  
Input Voltage (OFF)  
Operating Temperature  
Symbol  
Min.  
4.5  
0
10  
-5  
Max.  
30  
30  
20  
0.8  
100  
Units  
VCC  
VO  
IF(on)  
Volts  
Volts  
mA  
V
VF(off)  
TA  
*
-40  
°C  
*Recommended VF(OFF) = -3 V to 0.8 V for HCNW4506.  
Electrical Specifications  
Over recommended operating conditions unless otherwise specified:  
TA = -40°C to +100°C, VCC = +4.5 V to 30 V, IF(on) = 10 mA to 20 mA, VF(off) = -5 V to 0.8 V†  
Parameter  
Symbol Min. Typ.* Max. Units  
Test Conditions  
IF = 10 mA, VO = 0.6 V  
IF = 10 mA, VO = 0.6 V  
IO = 2.4 mA  
VO = 0.8 V, IO = 0.75 mA  
VF = 0.8 V  
VF = 0.8 V, VO = Open  
IF = 10 mA, VO = Open  
HCPL-4506 IF = 10 mA  
HCPL-0466  
Fig. Note  
Current Transfer Ratio  
Low Level Output Current  
Low Level Output Voltage  
Input Threshold Current  
High Level Output Current  
High Level Supply Current  
Low Level Supply Current  
Input Forward Voltage  
CTR  
IOL  
VOL  
ITH  
IOH  
ICCH  
ICCL  
VF  
44  
4.4  
90  
9.0  
0.3  
1.5  
5
0.6  
0.6  
1.5  
%
mA  
V
mA  
µA  
mA  
mA  
V
5
5,6  
0.6  
5.0  
50  
1.3  
1.3  
1.8  
5
7
14  
14  
14  
8
9
1.6  
1.85  
HCNW4506  
Temperature Coefficient  
of Forward Voltage  
VF/T  
-1.6  
mV/°C HCPL-4506 IF = 10 mA  
A
HCPL-0466  
-1.3  
HCNW4506  
Input Reverse Breakdown  
Voltage  
BVR  
CIN  
5
3
V
HCPL-4506 IR = 100 µA  
HCPL-0466  
HCNW4506  
Input Capacitance  
60  
pF  
HCPL-4506 f = 1 MHz,  
HCPL-0466 V = 0 V  
F
72  
20  
0.014  
HCNW4506  
TA = 25°C  
Internal Pull-up Resistor  
Internal Pull-up Resistor  
Temperature Coefficient  
RL  
RL/T  
14  
25  
kΩ  
k/°C  
10,11  
A
*All typical values at 25°C, VCC = 15 V.  
VF(off) = -3 V to 0.8 V for HCNW4506.  
1-54  
Switching Specifications (RL= 20 kExternal)  
Over recommended operating conditions unless otherwise specified:  
TA = -40°C to +100°C, VCC = +4.5 V to 30 V, IF(on) = 10 mA to 20 mA, VF(off) = -5 V to 0.8 V†  
Parameter  
Symbol Min. Typ.* Max. Units  
Test Conditions  
Fig. Note  
Propagation Delay  
Time to Low  
Output Level  
Propagation Delay  
Time to High  
tPHL  
IF(on) = 10 mA,  
VF(off) = 0.8 V,  
VCC = 15.0 V,  
VTHLH = 2.0 V,  
VTHHL = 1.5 V  
10,  
12,  
14-17 14  
9,  
12,  
30  
200 400  
100  
ns  
ns  
CL = 100 pF  
CL = 10 pF  
tPLH  
270 400 550  
ns  
CL = 100 pF  
Output Level  
130  
CL = 10 pF  
Pulse Width  
Distortion  
PWD  
200 450  
ns  
ns  
CL = 100 pF  
18  
15  
Propagation Delay tPLH-tPHL -150 200 450  
Difference Between  
Any 2 Parts  
Output High Level  
Common Mode  
Transient Immunity  
Output Low Level  
Common Mode  
|CMH|  
|CML|  
15  
15  
30  
30  
kV/µs IF = 0 mA,  
VCC = 15.0 V,  
CL = 100 pF,  
VCM = 1500 V  
11  
16  
17  
VO > 3.0 V  
P-P  
T = 25°C  
kV/µs IF = 10 mA  
A
VO < 1.0 V  
Transient Immunity  
Switching Specifications (RL = Internal Pull-up)  
Over recommended operating conditions unless otherwise specified:  
TA = -40°C to +100°C, VCC = +4.5 V to 30 V, IF(on) = 10 mA to 20 mA, VF(off) = -5 V to 0.8 V†  
Parameter  
Symbol Min. Typ.* Max. Units  
Test Conditions  
Fig. Note  
Propagation Delay  
Time to Low  
Output Level  
tPHL  
20  
200 400  
ns  
IF(on) = 10 mA, VF(off) = 0.8 V,  
VCC = 15.0 V, CL = 100 pF,  
VTHLH = 2.0 V, VTHHL = 1.5 V  
10, 9-12,  
13  
14  
Propagation Delay  
Time to High  
Output Level  
Pulse Width  
Distortion  
tPLH  
220 450 650  
250 500  
ns  
PWD  
ns  
ns  
18  
15  
Propagation Delay tPLH-tPHL -150 250 500  
Difference Between  
Any 2 Parts  
Output High Level  
Common Mode  
Transient Immunity  
Output Low Level  
Common Mode  
Transient Immunity  
|CMH|  
|CML|  
PSR  
30  
30  
kV/µs IF = 0 mA,  
VCC = 15.0 V,  
CL = 100 pF,  
VCM = 1500 V ,  
11  
16  
17  
14  
VO > 3.0 V  
P-P  
T = 25°C  
kV/µs IF = 16 mA,  
A
VO < 1.0 V  
Power Supply  
Rejection  
1.0  
VP-P  
Square Wave, tRISE, tFALL  
> 5 ns, no bypass capacitors  
*All typical values at 25°C, VCC = 15 V.  
VF(off) = -3 V to 0.8 V for HCNW4506.  
1-55  
Package Characteristics  
Over recommended temperature (TA = -40°C to 100°C) unless otherwise specified.  
Parameter  
Sym. Min. Typ.* Max. Units  
TestConditions  
Fig. Note  
Input-OutputMomentary  
Withstand Voltage†  
V
2500  
5000  
5000  
V rms HCPL-4506  
RH < 50%,  
t = 1 min.  
TA = 25°C  
6, 7, 8  
ISO  
HCPL-0466  
HCNW4506  
Option020  
6, 8, 13  
HCNW4506  
6, 8  
6
Resistance  
(Input-Output)  
RI-O  
1012  
HCPL-4506  
HCPL-0466  
VI-O = 500 Vdc  
f = 1 MHz  
1012 1013  
0.6  
HCNW4506  
Capacitance  
(Input-Output)  
CI-O  
pF  
HCPL-4506  
HCPL-0466  
6
0.5  
HCNW4506  
*All typical values at 25°C, VCC = 15 V.  
†The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output  
continuous voltage rating. For the continuous voltage rating refer to the VDE 0884 Insulation Related Characteristics Table (if  
applicable), your equipment level safety specification or HP Application Note 1074 entitled “Optocoupler Input-Output Endurance  
Voltage,” publication number 5963-2203E.  
Notes:  
8. For option 020, in accordance with  
UL 1577, each optocoupler is proof  
tested by applying an insulation test  
voltage 6000 V rms for 1 second  
(leakage detection current limit, II-O  
5 µA). This test is performed before  
the 100% Production test for partial  
discharge (method b) shown in the  
VDE 0884 Insulation Related  
Characteristics Table, if applicable.  
9. Pulse: f = 20 kHz, Duty Cycle = 10%.  
10. The internal 20 kresistor can be  
used by shorting pins 6 and 7  
14. Use of a 0.1 µF bypass capacitor  
connected between pins 5 and 8 can  
improve performance by filtering  
power supply line noise.  
15. The difference between tPLH and tPHL  
between any two devices under the  
same test condition. (See IPM Dead  
Time and Propagation Delay  
1. Derate linearly above 90°C free-air  
temperature at a rate of 0.8 mA/°C.  
2. Derate linearly above 90°C free-air  
temperature at a rate of 1.6 mA/°C.  
3. Derate linearly above 90°C free-air  
temperature at a rate of 3.0 mW/°C.  
4. Derate linearly above 90°C free-air  
temperature at a rate of 4.2 mW/°C.  
5. CURRENT TRANSFER RATIO in  
percent is defined as the ratio of  
output collector current (IO) to the  
forward LED input current (IF) times  
100.  
6. Device considered a two-terminal  
device: Pins 1, 2, 3, and 4 shorted  
together and Pins 5, 6, 7, and 8  
shorted together.  
7. In accordance with UL 1577, each  
optocoupler is proof tested by  
applying an insulation test voltage  
3000 V rms for 1 second (leakage  
detection current limit, II-O 5 µA).  
This test is performed before the  
100% Production test shown in the  
VDE 0884 Insulation Related  
Specifications section.)  
16. Common mode transient immunity in  
a Logic High level is the maximum  
tolerable dVCM/dt of the common  
mode pulse, VCM, to assure that the  
output will remain in a Logic High  
state (i.e., VO > 3.0 V).  
17. Common mode transient immunity in  
a Logic Low level is the maximum  
tolerable dVCM/dt of the common  
mode pulse, VCM, to assure that the  
output will remain in a Logic Low  
state (i.e., VO < 1.0 V).  
together.  
11. Due to tolerance of the internal  
resistor, and since propagation delay  
is dependent on the load resistor  
value, performance can be improved  
by using an external 20 k1% load  
resistor. For more information on  
how propagation delay varies with  
load resistance, see Figure 12.  
12. The RL = 20 k, CL = 100 pF load  
represents a typical IPM (Intelligent  
Power Module) load.  
18. Pulse Width Distortion (PWD) is  
defined as |tPHL - tPLH| for any given  
device.  
13. See Option 020 data sheet for more  
information.  
Characteristics Table, if applicable.  
1-56  
10  
1.05  
1.00  
0.95  
0.90  
20.0  
15.0  
10.0  
5.0  
V
V
= 0.8 V  
F
= V = 4.5 V OR 30 V  
CC  
O
8
6
4
4.5 V  
30 V  
I
V
= 10 mA  
F
V
= 0.6 V  
O
= 0.6 V  
O
2
0
0.85  
0.80  
100 °C  
25 °C  
-40 °C  
0
20  
– TEMPERATURE – °C  
20  
T – TEMPERATURE – °C  
A
0
5
10  
15  
20  
-40 -20  
0
40  
60 80 100  
-40 -20  
0
40  
60 80 100  
I
– FORWARD LED CURRENT – mA  
T
F
A
Figure 5. Typical Transfer  
Characteristics.  
Figure 6. Normalized Output Current  
vs. Temperature.  
Figure 7. High Level Output  
Current vs. Temperature.  
100  
1000  
T
= 25°C  
A
T
= 25 °C  
A
100  
10  
10  
1
I
F
I
F
+
V
+
F
V
F
1.0  
0.1  
0.1  
0.01  
0.01  
0.001  
0.001  
0.8  
1.0  
1.2  
1.4  
1.6  
1.8  
2.0  
1.10 1.20  
1.30  
1.40  
1.50  
1.60  
V
– INPUT FORWARD VOLTAGE – V  
V
– FORWARD VOLTAGE – VOLTS  
F
F
Figure 8. HCPL-4506 and HCPL-0466  
Input Current vs. Forward Voltage.  
Figure 9. HCNW4506 Input Current  
vs. Forward Voltage.  
1
8
7
20 k  
0.1 µF  
20 k  
I
=10 mA  
5 V  
F(ON)  
+
+
2
3
4
I
f
V
= 15 V  
t
t
r
CC  
f
V
O
6
5
V
OUT  
90%  
10%  
90%  
10%  
C *  
L
V
V
THHL  
THLH  
SHIELD  
*TOTAL LOAD CAPACITANCE  
t
t
PLH  
PHL  
Figure 10. Propagation Delay Test Circuit.  
1-57  
V
1
2
8
7
CM  
0.1 µF  
20 kΩ  
V
δV  
δt  
CM  
t  
20 k  
I
F
=
+
OV  
V
= 15 V  
CC  
A
B
t  
3
4
6
5
V
OUT  
100 pF*  
V
O
V
V
CC  
+
SWITCH AT A: I = 0 mA  
SHIELD  
F
V
FF  
*100 pF TOTAL  
CAPACITANCE  
V
O
OL  
SWITCH AT B: I = 10 mA  
F
+
V
= 1500 V  
CM  
Figure 11. CMR Test Circuit. Typical CMR Waveform.  
500  
400  
300  
200  
100  
500  
400  
300  
200  
100  
800  
I
V
= 10 mA  
F
I
V
= 10 mA  
F
= 15 V  
CC  
= 15 V  
CC  
CL = 100 pF  
RL = 20 kΩ  
(INTERNAL)  
I
V
= 10 mA  
= 15 V  
CL = 100 pF  
RL = 20 k(EXTERNAL)  
F
CC  
CL = 100 pF  
= 25 °C  
600  
400  
200  
T
A
t
t
t
t
PLH  
PHL  
t
t
PLH  
PHL  
PLH  
PHL  
20  
– TEMPERATURE – °C  
20  
T – TEMPERATURE – °C  
A
20  
RL – LOAD RESISTANCE – K  
-40 -20  
0
40  
60 80 100  
-40 -20  
0
40  
60 80 100  
0
10  
30  
40  
50  
T
A
Figure 12. Propagation Delay with  
External 20 kRL vs. Temperature.  
Figure 13. Propagation Delay with  
Internal 20 kRL vs. Temperature.  
Figure 14. Propagation Delay vs. Load  
Resistance.  
1400  
500  
1400  
1200  
1000  
800  
I
V
= 10 mA  
= 15 V  
I
= 10 mA  
V
= 15 V  
CC  
F
F
t
t
PLH  
PHL  
CL = 100 pF  
RL = 20 kΩ  
T
CL = 100 pF  
RL = 20 kΩ  
CC  
RL = 20 kΩ  
= 25°C  
1200  
1000  
800  
T
= 25°C  
T = 25°C  
A
A
400  
300  
200  
100  
A
t
t
t
t
PLH  
PHL  
PLH  
PHL  
600  
600  
400  
400  
200  
0
200  
0
0
100  
200  
300  
400  
500  
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
CL – LOAD CAPACITANCE – pF  
I
– FORWARD LED CURRENT – mA  
V
– SUPPLY VOLTAGE – V  
F
CC  
Figure 15. Propagation Delay vs. Load  
Capacitance.  
Figure 16. Propagation Delay vs.  
Supply Voltage.  
Figure 17. Propagation Delay vs. Input  
Current.  
1-58  
HCNW4506  
(mW)  
HCPL-4506 OPTION 060  
1000  
800  
700  
600  
500  
400  
300  
P
P
I
(mW)  
S
S
1
2
8
7
900  
800  
700  
600  
500  
400  
300  
200  
I
(mA)  
(mA)  
S
S
20 k  
C
LEDP  
3
4
6
5
C
LEDN  
(230)  
200  
SHIELD  
100  
0
100  
0
0
25  
50 75 100 125 150 175  
0
25 50 75 100 125 150 175 200  
– CASE TEMPERATURE – °C  
T
– CASE TEMPERATURE – °C  
T
S
S
Figure 20. Optocoupler Input to  
Output Capacitance Model for  
Unshielded Optocouplers.  
Figure 18. Thermal Derating Curve, Dependence of Safety Limiting Value with  
Case Temperature per VDE 0884.  
1
2
8
7
20 k  
C
LEDP  
1
2
8
7
C
LED02  
C
20 k  
0.1 µF  
20 k  
LED01  
+
+5 V  
310 Ω  
CMOS  
V
= 15 V  
CC  
3
4
6
5
C
LEDN  
3
4
6
5
V
OUT  
SHIELD  
100 pF  
SHIELD  
*100 pF TOTAL  
CAPACITANCE  
Figure 21. Optocoupler Input to  
Output Capacitance Model for  
Shielded Optocouplers.  
Figure 19. Recommended LED Drive Circuit.  
1
2
8
7
20  
20 kΩ  
I
I
TOTAL*  
CLEDP  
kΩ  
C
LED02  
C
I
LEDP  
F
310 Ω  
C
1
2
8
7
LED01  
+5 V  
I
CLED01  
V
OUT  
20 kΩ  
0.1 µF  
20 kΩ  
3
4
6
5
+
C
LEDN  
V
= 15 V  
CC  
100 pF  
310 Ω  
SHIELD  
3
4
6
5
V
OUT  
CMOS  
* THE ARROWS INDICATE THE DIRECTION OF CURRENT  
FLOW FOR +dV /dt TRANSIENTS.  
100 pF  
CM  
+
SHIELD  
*100 pF TOTAL  
CAPACITANCE  
V
CM  
Figure 22. LED Drive Circuit with Resistor Connected to LED  
Anode (Not Recommended).  
Figure 23. AC Equivalent Circuit for Figure 22 During  
Common Mode Transients.  
1-59  
1
2
8
7
1
2
8
7
20  
+5 V  
kΩ  
20 kΩ  
C
20 kΩ  
LEDP  
C
LED02  
C
LED01  
310 Ω  
V
OUT  
C
LEDN  
3
4
6
5
3
4
6
5
I
CLEDN*  
Q1  
100 pF  
+ V ** –  
R
SHIELD  
SHIELD  
* THE ARROWS INDICATE THE DIRECTION OF CURRENT  
FLOW FOR +dV /dt TRANSIENTS.  
CM  
** OPTIONAL CLAMPING DIODE FOR IMPROVED CMH  
PERFORMANCE.  
V
< V  
DURING +dV /dt.  
R
F (OFF)  
CM  
Figure 25. Not Recommended Open  
Collector LED Drive Circuit.  
+
V
CM  
Figure 24. AC Equivalent Circuit for Figure 19 During  
Common Mode Transients.  
1
2
8
7
20  
kΩ  
C
20 kΩ  
LEDP  
C
1
8
7
LED02  
C
+5 V  
LED01  
20 k  
V
C
Q1  
OUT  
LEDN  
2
3
3
4
6
5
I
CLEDN*  
100 pF  
6
5
SHIELD  
4
* THE ARROWS INDICATE THE DIRECTION OF CURRENT  
SHIELD  
FLOW FOR +dV /dt TRANSIENTS.  
CM  
+
V
CM  
Figure 27. Recommended LED Drive  
Circuit for Ultra High CMR.  
Figure 26. AC Equivalent Circuit for Figure 25 During  
Common Mode Transients.  
HCPL-4506  
1
2
8
7
V
CC1  
0.1 µF  
20 k  
IPM  
I
LED1  
20 k  
+5 V  
+HV  
V
310 Ω  
CMOS  
OUT1  
3
4
6
5
Q1  
Q2  
M
SHIELD  
HCPL-4506  
HCPL-4506  
1
2
8
7
V
CC2  
-HV  
0.1 µF  
20 kΩ  
HCPL-4506  
HCPL-4506  
HCPL-4506  
HCPL-4506  
I
LED2  
20 kΩ  
+5 V  
310 Ω  
CMOS  
V
OUT2  
3
4
6
5
SHIELD  
Figure 28. Typical Application Circuit.  
1-60  
I
LED1  
Q1 OFF  
Q2 ON  
Q1 ON  
I
V
V
LED1  
OUT1  
OUT2  
Q2 OFF  
Q1 OFF  
Q2 ON  
Q1 ON  
V
V
OUT1  
OUT2  
I
LED2  
Q2 OFF  
t
PLH  
MIN.  
t
PLH  
MAX.  
I
LED2  
t
PHL  
PDD*  
MAX.  
t
PLH MAX.  
MIN.  
t
t
PHL  
PHL  
MIN.  
MAX.  
MAX.  
DEAD TIME  
PDD* MAX. =  
(t  
t
)
t
t
PLH- PHL MAX. = PLH MAX. - PHL MIN.  
MAXIMUM DEAD TIME (DUE TO OPTOCOUPLER)  
*PDD = PROPAGATION DELAY DIFFERENCE  
= (t  
= (t  
t
t
) + (t  
) - (t  
t
)
PLH MAX.  
-
-
PLH MIN.  
PHL MAX.  
-
t
PHL MIN.  
)
PLH MAX.  
PHL MIN.  
PLH MIN.  
-
PHL MAX.  
NOTE: THE PROPAGATION DELAYS USED TO CALCULATE  
PDD ARE TAKEN AT EQUAL TEMPERATURES.  
= PDD* MAX. - PDD* MIN.  
*PDD = PROPAGATION DELAY DIFFERENCE  
Figure 29. Minimum LED Skew for Zero Dead Time.  
NOTE: THE PROPAGATION DELAYS USED TO CALCULATE THE MAXIMUM  
DEAD TIME ARE TAKEN AT EQUAL TEMPERATURES.  
Figure 30. Waveforms for Dead Time Calculation.  
(Figure 19), can achieve 15 kV/µs  
CMR while minimizing component  
complexity. Note that a CMOS  
gate is recommended in Figure 19  
to keep the LED off when the gate  
is in the high state.  
achieved by overdriving the LED  
current beyond the input  
LED Drive Circuit  
Considerations for Ultra  
High CMR Performance  
threshold so that it is not pulled  
below the threshold during a  
transient. The recommended  
minimum LED current of 10 mA  
provides adequate margin over  
the maximum ITH of 5.0 mA (see  
Figure 5) to achieve 15 kV/µs  
CMR. Capacitive coupling is  
higher when the internal load  
Without a detector shield, the  
dominant cause of optocoupler  
CMR failure is capacitive coupling  
from the input side of the opto-  
coupler, through the package, to  
the detector IC as shown in  
Another cause of CMR failure for  
a shielded optocoupler is direct  
coupling to the optocoupler  
output pins through CLEDO1 and  
CLEDO2 in Figure 21. Many factors  
influence the effect and magni-  
tude of the direct coupling includ-  
ing: the use of an internal or  
external output pull-up resistor,  
the position of the LED current  
setting resistor, the connection of  
the unused input package pins,  
and the value of the capacitor at  
the optocoupler output (CL).  
Figure 20. The HCPL-4506,  
HCPL-0466 and HCNW4506  
improve CMR performance by  
using a detector IC with an optic-  
ally transparent Faraday shield,  
which diverts the capacitively  
coupled current away from the  
sensitive IC circuitry. However,  
this shield does not eliminate the  
capacitive coupling between the  
LED and the optocoupler output  
pins and output ground as shown  
in Figure 21. This capacitive  
resistor is used (due to CLEDO2  
)
and an IF = 16 mA is required to  
obtain 10 kV/µs CMR.  
The placement of the LED current  
setting resistor effects the ability of  
the drive circuit to keep the LED on  
during transients and interacts with  
the direct coupling to the  
optocoupler output. For example,  
the LED resistor in Figure 22 is  
connected to the anode. Figure 23  
shows the AC equivalent circuit for  
Figure 22 during common mode  
transients. During a +dVcm/dt in  
Figure 23, the current available at  
the LED anode (Itotal) is limited by  
the series resistor. The LED current  
(IF) is reduced from its DC value by  
an amount equal to the current that  
Techniques to keep the LED in  
the proper state and minimize the  
effect of the direct coupling are  
discussed in the next two  
sections.  
coupling causes perturbations in  
the LED current during common  
mode transients and becomes the  
major source of CMR failures for  
a shielded optocoupler. The main  
design objective of a high CMR  
LED drive circuit becomes keep-  
ing the LED in the proper state  
(on or off) during common mode  
transients. For example, the  
CMR with the LED On  
(CMRL)  
A high CMR LED drive circuit  
must keep the LED on during  
common mode transients. This is  
flows through CLEDP and CLEDO1  
The situation is made worse  
.
recommended application circuit  
1-61  
because the current through CLEDO1  
has the effect of trying to pull the  
output high (toward a CMR failure)  
at the same time the LED current is  
being reduced. For this reason, the  
recommended LED drive circuit  
(Figure 19) places the current set-  
ting resistor in series with the LED  
cathode. Figure 24 is the AC equiv-  
alent circuit for Figure 19 during  
common mode transients. In this  
case, the LED current is not  
reduced during a +dVcm/dt tran-  
sient because the current flowing  
through the package capacitance is  
supplied by the power supply.  
During a -dVcm/dt transient, how-  
ever, the LED current is reduced by  
the amount of current flowing  
through CLEDN. But, better CMR  
performance is achieved since the  
current flowing in CLEDO1 during a  
negative transient acts to keep the  
output low.  
during a 15 kV/µs transient with  
CM = 1500 V. Additionalmargin  
specifications, preferably over the  
desired operating temperature  
range.  
V
can be obtained by adding a diode  
in parallel with the resistor, as  
shown by the dashed line connec-  
tion in Figure 24, to clamp the  
voltage across the LED below  
The limiting case of zero dead time  
occurs when the input to Q1 turns  
off at the same time that the input  
to Q2 turns on. This case  
determines the minimum delay  
between LED1 turn-off and LED2  
turn-on, which is related to the  
worst case optocoupler propagation  
delay waveforms, as shown in  
VF(OFF)  
.
Since the open collector drive cir-  
cuit, shown in Figure 25, cannot  
keep the LED off during a +dVcm/  
dt transient, it is not desirable for  
applications requiring ultra high  
CMRH performance. Figure 26 is  
the AC equivalent circuit for Figure  
25 during common mode  
transients. Essentially all the  
current flowing through CLEDN  
during a +dVcm/dt transient must  
be supplied by the LED. CMRH  
failures can occur at dV/dt rates  
where the current through the LED  
and CLEDN exceeds the input  
threshold. Figure 27 is an  
Figure 29. A minimum dead time of  
zero is achieved in Figure 29 when  
the signal to turn on LED2 is  
delayed by (tPLH max - tPHL min) from  
the LED1 turn off. Note that the  
propagation delays used to calcu-  
late PDD are taken at equal temper-  
atures since the optocouplers under  
consideration are typically mounted  
in close proximity to each other.  
(Specifically, tPLH max and tPHL min  
in the previous equation are not the  
Coupling to the LED and output  
pins is also affected by the connec-  
tion of pins 1 and 4. If CMR is  
limited by perturbations in the LED  
on current, as it is for the recom-  
mended drive circuit (Figure 19),  
pins 1 and 4 should be connected to  
the input circuit common. However,  
if CMR performance is limited by  
direct coupling to the output when  
the LED is off, pins 1 and 4 should  
be left unconnected.  
alternative drive circuit which does  
achieve ultra high CMR  
performance by shunting the LED  
in the off state.  
same as the tPLH max and tPHL min,  
over the full operating temperature  
range, specified in the data sheet.)  
This delay is the maximum value for  
the propagation delay difference  
specification which is specified at  
450 ns for the HCPL-4506, HCPL-  
0466 and HCNW4506 over an  
operating temperature range of  
-40°C to 100°C.  
IPM Dead Time and  
Propagation Delay  
Specifications  
The HCPL-4506, HCPL-0466 and  
HCNW4506 include a Propagation  
Delay Difference specification  
intended to help designers minimize  
“dead time” in their power inverter  
designs. Dead time is the time  
period during which both the high  
and low side power transistors (Q1  
and Q2 in Figure 28) are off. Any  
overlap in Q1 and Q2 conduction  
will result in large currents flowing  
through the power devices between  
the high and low voltage motor rails.  
Delaying the LED signal by the  
maximum propagation delay dif-  
ference ensures that the minimum  
dead time is zero, but it does not  
tell a designer what the maximum  
dead time will be. The maximum  
dead time occurs in the highly  
unlikely case where one optocoup-  
ler with the fastest tPLH and another  
with the slowest tPHL are in the  
same inverter leg. The maximum  
dead time in this case becomes the  
sum of the spread in the tPLH and  
CMR with the LED Off  
(CMRH)  
A high CMR LED drive circuit must  
keep the LED off (VF VF(OFF)  
)
during common mode transients.  
For example, during a +dVcm/dt  
transient in Figure 24, the current  
flowing through CLEDN is supplied  
by the parallel combination of the  
LED and series resistor. As long as  
the voltage developed across the  
resistor is less than VF(OFF) the LED  
will remain off and no common  
mode failure will occur. Even if the  
LED momentarily turns on, the 100  
pF capacitor from pins 6-5 will  
keep the output from dipping below  
the threshold. The recommended  
LED drive circuit (Figure 19) pro-  
vides about 10 V of margin between  
the lowest optocoupler output  
To minimize dead time the designer  
must consider the propagation  
delay characteristics of the opto-  
coupler as well as the characteris-  
tics of the IPM IGBT gate drive  
circuit. Considering only the delay  
characteristics of the optocoupler  
(the characteristics of the IPM  
IGBT gate drive circuit can be  
analyzed in the same way) it is  
important to know the minimum  
and maximum turn-on (tPHL) and  
turn-off (tPLH) propagation delay  
t
PHL propagation delays as shown in  
Figure 30. The maximum dead time  
is also equivalent to the difference  
between the maximum and mini-  
mum propagation delay difference  
specifications. The maximum dead  
time (due to the optocouplers) for  
the HCPL-4506, HCPL-0466 and  
HCNW4506 is 600 ns (= 450ns -  
(-150 ns)) over an operating  
temperature range of -40°C to  
100°C.  
voltage and a 3 V IPM threshold  
1-62  
WWW.ALLDATASHEET.COM  
Copyright © Each Manufacturing Company.  
All Datasheets cannot be modified without permission.  
This datasheet has been download from :  
www.AllDataSheet.com  
100% Free DataSheet Search Site.  
Free Download.  
No Register.  
Fast Search System.  
www.AllDataSheet.com  

相关型号:

HCPL-5301#100

SCHMITT-TRIGGER-OUTPUT OPTOCOUPLER
ETC

HCPL-5301#200

Intelligent Power Module and Gate Drive Interface. Hermetically Sealed Optocoupler
ETC

HCPL-5301#300

SCHMITT-TRIGGER-OUTPUT OPTOCOUPLER
ETC

HCPL-5301-100

Intelligent Power Module and Gate Drive Interface Hermetically Sealed Optocouplers
AGILENT

HCPL-5301-100

Intelligent Power Module and Gate Drive Interface Hermetically Sealed Optocouplers
HP

HCPL-5301-200

Intelligent Power Module and Gate Drive Interface Hermetically Sealed Optocouplers
AGILENT

HCPL-5301-200

Intelligent Power Module and Gate Drive Interface Hermetically Sealed Optocouplers
HP

HCPL-5301-300

Intelligent Power Module and Gate Drive Interface Hermetically Sealed Optocouplers
AGILENT

HCPL-5301-300

Intelligent Power Module and Gate Drive Interface Hermetically Sealed Optocouplers
HP

HCPL-530K

Intelligent Power Module and Gate Drive Interface Hermetically Sealed Optocouplers
AGILENT

HCPL-530K

Intelligent Power Module and Gate Drive Interface Hermetically Sealed Optocouplers
AVAGO

HCPL-530K

Intelligent Power Module and Gate Drive Interface Hermetically Sealed Optocouplers
HP