HCPL-5301-200 [AGILENT]

Intelligent Power Module and Gate Drive Interface Hermetically Sealed Optocouplers; 智能功率模块和门驱动接口密封式光电耦合器
HCPL-5301-200
型号: HCPL-5301-200
厂家: AGILENT TECHNOLOGIES, LTD.    AGILENT TECHNOLOGIES, LTD.
描述:

Intelligent Power Module and Gate Drive Interface Hermetically Sealed Optocouplers
智能功率模块和门驱动接口密封式光电耦合器

光电 栅 驱动
文件: 总17页 (文件大小:223K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Intelligent Power Module  
and Gate Drive Interface  
Hermetically Sealed  
Optocouplers  
HCPL-5300  
HCPL-5301  
HCPL-530K  
Technical Data  
5962-96852  
Features  
Applications  
• Military and Space  
• High Reliability Systems  
• Harsh Industrial  
Environments  
• Transportation, Medical, and  
Life Critical Systems  
• IPM Isolation  
• Isolated IGBT/MOSFET Gate  
Drive  
• AC and Brushless DC Motor  
Drives  
capable of operation and storage  
over the full military temperature  
range and can be purchased as  
either standard product or with  
full MIL-PRF-38534 Class Level  
H or K testing or from the DSCC  
Drawing 5962-96852. All devices  
are manufactured and tested on a  
MIL-PRF-38534 certified line and  
are included in the DSCC  
Qualified Manufacturers List  
QML-38534 for Hybrid Micro-  
circuits. Minimized propagation  
delay difference between devices  
make these optocouplersexcellent  
solutions for improving inverter  
efficiency through reduced  
switching dead time. An on chip  
20 koutput pull-up resistor can  
be enabled by shorting output  
pins 6 and 7, thus eliminating the  
need for an external pull-up  
resistor in common IPM applica-  
tions. Specifications and  
performance plots are given for  
typical IPM applications.  
• Performance Specified Over  
Full Military Temperature  
Range: -55°C to +125°C  
• Fast Maximum Propagation  
Delays  
tPHL = 450 ns,  
tPLH = 650 ns  
• Minimized Pulse Width  
Distortion (PWD = 450 ns)  
• High Common Mode  
Rejection (CMR): 10 kV/µs at  
VCM = 1000 V  
• CTR > 30% at IF = 10 mA  
• 1500 Vdc Withstand Test  
Voltage  
• Manufactured and Tested on  
a MIL-PRF-38534 Certified  
Line  
• Hermetically Sealed  
Packages  
• Dual Marked with Device  
Part Number and DSCC  
Drawing Number  
• Industrial Inverters  
Description  
The HCPL-530X devices consist  
of a GaAsP LED optically coupled  
to an integrated high gain photo  
detector in a hermetically sealed  
package. The products are  
Schematic Diagram  
• QML-38534, Class H and K  
• HCPL-4506 Function  
Compatibility  
1
2
8
7
20 k  
Truth Table  
3
4
6
5
LED  
ON  
VO  
L
SHIELD  
OFF  
H
The connection of a 0.1 µF bypass capacitor between pins 5 and 8 is recommended.  
CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to  
prevent damage and/or degradation which may be induced by ESD.  
2
Selection Guide-Package Styles and Lead  
Configuration Options  
Agilent Part # and Options  
Commercial  
MIL-PRF-38534, Class H  
MIL-PRF-38534, Class K  
Standard Lead Finish  
Solder Dipped  
HCPL-5300  
HCPL-5301  
HCPL-530K  
Gold Plate  
Option #200  
Option #100  
Option #300  
Butt Cut/Gold Plate  
Gull Wing/Soldered  
Class H SMD Part #  
Prescript for all below  
Either Gold or Solder  
Gold Plate  
5962-  
9685201HPX  
9685201HPC  
9685201HPA  
9685201HYC  
9685201HYA  
9685201HXA  
Solder Dipped  
Butt Cut/Gold Plate  
Butt Cut/Soldered  
Gull Wing/Soldered  
Class K SMD Part #  
Prescript for all below  
Either Gold or Solder  
Gold Plate  
5962-  
9685201KPX  
9685201KPC  
9685201KPA  
9685201KYC  
9685201KYA  
9685201KXA  
Solder Dipped  
Butt Cut/Gold Plate  
Butt Cut/Soldered  
Gull Wing/Soldered  
Outline Drawing  
9.40 (0.370)  
9.91 (0.390)  
8.13 (0.320)  
MAX.  
0.76 (0.030)  
1.27 (0.050)  
7.16 (0.282)  
7.57 (0.298)  
4.32 (0.170)  
MAX.  
0.51 (0.020)  
3.81 (0.150)  
MIN.  
MIN.  
0.20 (0.008)  
0.33 (0.013)  
7.36 (0.290)  
7.87 (0.310)  
2.29 (0.090)  
2.79 (0.110)  
0.51 (0.020)  
MAX.  
NOTE: DIMENSIONS IN MILLIMETERS (INCHES).  
3
Device Marking  
Agilent DESIGNATOR  
Agilent P/N  
A QYYWWZ  
XXXXXX  
XXXXXXX  
XXX XXX  
50434  
COMPLIANCE INDICATOR,*  
DATE CODE, SUFFIX (IF NEEDED)  
DSCC SMD*  
DSCC SMD*  
PIN ONE/  
COUNTRY OF MFR.  
Agilent CAGE CODE*  
ESD IDENT  
* QUALIFIED PARTS ONLY  
Hermetic Optocoupler Options  
Option  
Description  
100  
Surface mountable hermetic optocoupler with leads trimmed for butt joint assembly. This  
option is available on commercial and hi-rel product in 8 pin DIP (see drawings below for  
details).  
4.32 (0.170)  
MAX.  
0.51 (0.020)  
1.14 (0.045)  
MIN.  
0.20 (0.008)  
0.33 (0.013)  
1.40 (0.055)  
2.29 (0.090)  
2.79 (0.110)  
0.51 (0.020)  
MAX.  
7.36 (0.290)  
7.87 (0.310)  
NOTE: DIMENSIONS IN MILLIMETERS (INCHES).  
200  
300  
Lead finish is solder dipped rather than gold plated. This option is available on commercial  
and hi-rel product in 8 pin DIP. DSCC Drawing part numbers contain provisions for lead  
finish.  
Surface mountable hermetic optocoupler with leads cut and bent for gull wing assembly.  
This option is available on commercial and hi-rel product in 8 pin DIP (see drawings below  
for details). This option has solder dipped leads.  
4.57 (0.180)  
MAX.  
4.57 (0.180)  
MAX.  
0.20 (0.008)  
0.33 (0.013)  
0.51 (0.020)  
MIN.  
5° MAX.  
1.40 (0.055)  
1.65 (0.065)  
9.65 (0.380)  
9.91 (0.390)  
2.29 (0.090)  
2.79 (0.110)  
0.51 (0.020)  
MAX.  
NOTE: DIMENSIONS IN MILLIMETERS (INCHES).  
4
Absolute Maximum Ratings  
Storage Temperature (TS) ............................................................................................................. -65 to 150°C  
Operating Temperature (TA) ......................................................................................................... -55 to 125°C  
Junction Temperature (TJ) ...................................................................................................................... 175°C  
Average Input Current (IF(AVG)) ............................................................................................................... 25 mA  
Peak Input Current (50% duty cycle, 1 ms pulse width) (IF(PEAK)) ........................................................ 50 mA  
Peak Transient Input Current (<1 µs pulse width, 300 pps) (IF(TRAN)) ..................................................... 1.0 A  
Reverse Input Voltage (Pin 3-2) (VR)............................................................................................................ 5 V  
Average Output Current (Pin 6) (IO(AVG)) ................................................................................................ 15 mA  
Resistor Voltage (Pin 7) (V7) ......................................................................................................... -0.5 V to VCC  
Output Voltage (Pin 6-5) (VO) ........................................................................................................ -0.5 to 30 V  
Supply Voltage (Pin 8-5) (VCC) ....................................................................................................... -0.5 to 30 V  
Output Power Dissipation (PO)............................................................................................................. 100 mW  
Total Power Dissipation (PT)................................................................................................................ 145 mW  
Lead Solder Temperature (soldering, 10 seconds) .................................................................................. 260°C  
ESD Classification  
(MIL-STD-883,  
Method 3015).....................(),Class 1  
Recommended Operating Conditions  
Parameter  
Power Supply Voltage  
Output Voltage  
Symbol  
VCC  
Min.  
4.5  
0
Max.  
30  
Units  
Volts  
Volts  
mA  
VO  
30  
Input Current (ON)  
Input Voltage (OFF)  
IF(ON)  
VF(OFF)  
10  
-5  
20  
0.8  
V
5
Electrical Specifications  
Over recommended operating conditions (T = -55°C to +125°C, VCC = +4.5 V to 30 V,  
A
IF(ON) = 10 mA to 20 mA, VF(OFF) = -5 V to 0.8 V) unless otherwise specified.  
Group A  
Sub-  
Parameter  
Symbol groups[12] Min. Typ.* Max. Units  
Test Conditions  
Fig. Note  
Current Transfer  
Ratio  
CTR  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
30  
90  
9.0  
0.3  
1.5  
5
%
IF = 10 mA, VO = 0.6 V  
1
Low Level Output  
Current  
IOL  
3.0  
mA IF = 10 mA, VO = 0.6 V 1, 2  
IO = 2.4 mA  
Low Level Output  
Voltage  
VOL  
ITH  
0.6  
5.0  
75  
V
Input Threshold  
Current  
mA VO = 0.8 V,  
IO = 0.75 mA  
1
3
7
High Level  
Output Current  
IOH  
ICCH  
ICCL  
VF  
µA  
VF = 0.8 V  
High Level Supply  
Current  
0.6  
0.6  
1.5  
-1.6  
1.5  
1.5  
1.8  
mA VF = 0.8 V, VO = Open  
mA IF = 10 mA, VO = Open  
7
7
Low Level Supply  
Current  
Input Forward  
Voltage  
1.0  
5
V
IF = 10 mA  
4
Temperature  
Coefficient of  
Forward Voltage  
VF/  
TA  
mV/°C IF = 10 mA  
Input Reverse  
Breakdown Voltage  
BVR  
1, 2, 3  
1
V
IR = 100 µA  
Input Capacitance  
CIN  
II-O  
90  
pF  
f = 1 MHz, VF = 0 V  
RH = 45%, t = 5 sec,  
Input-Output  
Insulation Leakage  
Current  
1.0  
28  
µA  
2
VI-O = 1500 Vdc,  
T = 25°C  
A
Resistance  
(Input-Output)  
RI-O  
CI-O  
RL  
1012  
2.4  
VI-O = 500 Vdc  
2
2
Capacitance  
(Input-Output)  
pF  
f = 1 MHz  
Internal Pull-up  
Resistor  
1
14  
20  
kT = 25°C  
4, 5,  
6
A
Internal Pull-up  
Resistor  
RL/  
TA  
0.014  
k/°C  
Temperature  
Coefficient  
*All typical values at 25°C, VCC = 15 V.  
6
Switching Specifications (RL= 20 kExternal)  
Over recommended operating conditions:  
(TA = -55°C to +125°C, VCC = +4.5 V to 30 V, IF(ON) = 10 mA to 20 mA, VF(OFF) = -5 V to 0.8 V) unless  
otherwise specified.  
Group A  
Parameter  
Symbol Subgrps.[12] Min. Typ.* Max. Units  
Test Conditions  
Fig. Note  
Propagation  
Delay Time to  
Low Output  
Level  
tPHL  
9, 10, 11  
30 180 450  
ns  
CL =  
100 pF  
CL =  
IF(on) = 10 mA, 5, 7,  
3, 4,  
9-12 5, 6,  
7
VF(off) = 0.8 V,  
VCC = 15.0 V,  
VTHLH = 2.0 V,  
VTHHL = 1.5 V  
100  
ns  
10 pF  
Propagation  
Delay Time to  
High Output  
Level  
tPLH  
9, 10, 11  
250 350 650  
130  
ns  
CL =  
100 pF  
CL =  
10 pF  
Pulse Width  
Distortion  
PWD  
9, 10, 11  
9, 10, 11  
150 450  
ns  
ns  
CL =  
100 pF  
11  
8
Propagation  
Delay  
tPLH  
-
-170 140 500  
tPHL  
Difference  
Between Any  
Two Parts  
Output High  
Level Common  
Mode  
Immunity  
Transient  
|CMH|  
9
9
10  
10  
17  
17  
kV/µs IF = 0 mA, VCC = 15.0 V,  
VO > 3.0 V CL = 100 pF,  
VCM = 1000 V  
6, 17, 9, 13  
18, 21  
P-P  
T = 25°C  
A
Output Low  
Level Common  
Mode  
|CML|  
kV/µs IF = 10 mA  
10, 13  
VO < 1.0 V  
Transient  
Immunity  
*All typical values at 25°C, VCC = 15 V.  
7
Switching Specifications (RL= Internal Pull-up)  
Over recommended operating conditions:  
(TA = -55°C to +125°C, VCC = +4.5 V to 30 V, IF(ON) = 10 mA to 20 mA, VF(OFF) = -5 V to 0.8 V) unless  
otherwise specified.  
Group A  
Parameter  
Symbol Subgrps.[12] Min. Typ.* Max. Units Test Conditions  
Fig. Note  
Propagation  
Delay Time to  
Low Output  
Level  
tPHL  
9, 10, 11  
20 185 500  
ns  
IF(on) = 10 mA,  
VF(off) = 0.8 V,  
VCC = 15.0 V,  
CL = 100 pF,  
VTHLH = 2.0 V  
VTHHL = 1.5 V  
5, 8,  
3, 4,  
5, 6,  
7
Propagation  
Delay Time to  
High Output  
Level  
tPLH  
9, 10, 11  
220 415 750  
ns  
Pulse Width  
Distortion  
PWD  
9, 10, 11  
9, 10, 11  
150 600  
ns  
ns  
11  
8
Propagation  
Delay  
Difference  
Between Any  
Two Parts  
tPLH  
-
-225 150 650  
tPHL  
|CMH|  
|CML|  
PSR  
Output High  
Level Common  
Mode Transient  
Immunity  
10  
10  
kV/µs IF = 0 mA, VCC = 15.0 V,  
VO > 3.0 V CL = 100 pF,  
VCM = 1000  
6, 21  
9
10  
7
TA = 25°C  
Output Low  
kV/µs IF =16 mA  
Level Common  
Mode Transient  
Immunity  
VO < 1.0 V  
Power Supply  
Rejection  
1.0  
VP-P Square Wave, tRISE, tFALL  
> 5 ns, no bypass  
capacitors.  
*All typical values at 25°C, VCC = 15 V.  
Notes:  
1. CURRENT TRANSFER RATIO in percent is defined as the ratio of output collector current (IO) to the forward LED input current  
(IF) times 100.  
2. Device considered a two-terminal device: Pins 1, 2, 3 and 4 shorted together and Pins 5, 6, 7 and 8 shorted together.  
3. Pulse: f = 20 kHz, Duty Cycle = 10%  
4. The internal 20 kresistor can be used by shorting pins 6 and 7 together.  
5. Due to the tolerance of the internal resistor, and since propagation delay is dependent on the load resistor value, performance can  
be improved by using an external 20 k1% load resistor. For more information on how propagation delay varies with load  
resistance, see Figure 8.  
6. The RL = 20 k, CL = 100 pF represents a typical IPM (Intelligent Power Module) load.  
7. Use of a 0.1 µF bypass capacitor connected between pins 5 and 8 can improve performance by filtering power supply line noise.  
8. The difference in tPLH and tPHL between any two parts under the same test condition. (See IPM Dead Time and Propagation Delay  
Specifications section.)  
9. Common mode transient immunity in a Logic High level is the maximum tolerable dVCM/dt of the common mode pulse, VCM, to  
assure that the output will remain in a Logic High state (i.e., VO > 3.0 V).  
10. Common mode transient immunity in a Logic Low level is the maximum tolerable dVCM/dt of the common mode pulse, VCM, to  
assure that the output will remain in a Logic Low state (i.e., VO < 1.0 V).  
11. Pulse Width Distortion (PWD) is defined as the difference between tPLH and tPHL for any given device.  
12. Standard parts receive 100% testing at 25°C (Subgroups 1 and 9). Hi-Rel and SMD parts receive 100% testing at 25°C, +125°C,  
and -55°C (Subgroups 1 and 9, 2 and 10, 3 and 11 respectively).  
13. Parameters are tested as part of device initial characterization and after design and process changes. Parameters are guaranteed  
to limits specified for all lots not specifically tested.  
8
LED Drive Circuit  
package pins, and the value of  
the capacitor at the optocoupler  
output (CL).  
(toward a CMR failure) at the  
same time the LED current is  
being reduced. For this reason,  
the recommended LED drive  
circuit (Figure 13) places the  
current setting resistor in series  
with the LED cathode. Figure 18  
is the AC equivalent circuit for  
Figure 13 during common mode  
transients. In this case, the LED  
current is not reduced during a  
+dVCM/dt transient because the  
current flowing through the  
package capacitance is supplied  
by the power supply. During a  
-dVCM/dt transient, however, the  
LED current is reduced by the  
amount of current flowing  
Considerations For Ultra  
High CMR Performance  
Without a detector shield, the  
dominant cause of optocoupler  
CMR failure is capacitive  
coupling from the input side of  
the optocoupler, through the  
package, to the detector IC as  
shown in Figure 14. The HCPL-  
530X improves CMR  
performance by using a detector  
IC with an optically transparent  
Faraday shield, which diverts the  
capacitively coupled current away  
from the sensitive IC circuitry.  
However, this shield does not  
eliminate the capacitive coupling  
between the LED and the opto-  
coupler output pins and output  
ground as shown in Figure 15.  
This capacitive coupling causes  
perturbations in the LED current  
during common mode transients  
and becomes the major source of  
CMR failures for a shielded  
Techniques to keep the LED in  
the proper state and minimize the  
effect of the direct coupling are  
discussed in the next two  
sections.  
CMR With The LED On  
(CMRL)  
A high CMR LED drive circuit  
must keep the LED on during  
common mode transients. This is  
achieved by overdriving the LED  
current beyond the input  
threshold so that it is not pulled  
below the threshold during a  
transient. The recommended  
minimum LED current of 10 mA  
provides adequate margin over  
the maximum ITH of 5.0 mA (see  
Figure 1) to achieve 10 kV/µs  
CMR. Capacitive coupling is  
higher when the internal load  
through CLEDN. But better CMR  
performance is achieved since the  
current flowing in CLEDO1 during  
a negative transient acts to keep  
the output low.  
Coupling to the LED and output  
pins is also affected by the  
connection of pins 1 and 4. If  
CMR is limited by perturbations  
in the LED on current, as it is for  
the recommended drive circuit  
(Figure 13), pins 1 and 4 should  
be connected to the input circuit  
common. However, if CMR  
performance is limited by direct  
coupling to the output when the  
LED is off, pins 1 and 4 should  
be left unconnected.  
optocoupler. The main design  
objective of a high CMR LED  
drive circuit becomes keeping the  
LED in the proper state (on or  
off) during common mode  
transients. For example, the  
recommended application circuit  
(Figure 13), can achieve 10 kV/µs  
CMR while minimizing compo-  
nent complexity. Note that a  
CMOS gate is recommended in  
Figure 13 to keep the LED off  
when the gate is in the high state.  
resistor is used (due to CLEDO2)  
and an IF = 16mA is required to  
obtain 10 kV/µs CMR.  
The placement of the LED  
current setting resistor affects the  
ability of the drive circuit to keep  
the LED on during transients and  
interacts with the direct coupling  
to the optocoupler output. For  
example, the LED resistor in  
Figure 16 is connected to the  
anode. Figure 17 shows the AC  
equivalent circuit for Figure 16  
during common mode transients.  
During a +dVCM/dt in Figure 17,  
the current available at the LED  
anode (ITOTAL) is limited by the  
series resistor. The LED current  
(IF) is reduced from its DC value  
by an amount equal to the current  
that flows through CLEDP and  
CLEDO1. The situation is made  
worse because the current  
CMR With The LED Off  
(CMRH)  
A high CMR LED drive circuit  
must keep the LED off  
(VF VF(OFF)) during common  
mode transients. For example,  
during a +dVCM/dt transient in  
Figure 18, the current flowing  
through CLEDN is supplied by the  
parallel combination of the LED  
and series resistor. As long as the  
voltage developed across the  
resistor is less than VF(OFF) the  
LED will remain off and no  
Another cause of CMR failure for  
a shielded optocoupler is direct  
coupling to the optocoupler  
output pins through CLEDO1 and  
CLEDO2 in Figure 15. Many factors  
influence the effect and magni-  
tude of the direct coupling  
including: the use of an internal  
or external output pull-up  
resistor, the position of the LED  
current setting resistor, the  
through CLEDO1 has the effect of  
trying to pull the output high  
connection of the unused input  
9
common mode failure will occur.  
Even if the LED momentarily  
turns on, the 100 pF capacitor  
from pins 6-5 will keep the  
output from dipping below the  
threshold. The recommended  
LED drive circuit (Figure 13)  
provides about 10 V of margin  
between the lowest optocoupler  
output voltage and a 3 V IPM  
threshold during a 10 kV/µs  
transient with VCM = 1000 V.  
Additional margin can be  
IPM Dead Time and  
Propagation Delay  
Specifications  
turn-on, which is related to the  
worst case optocoupler propaga-  
tion delay waveforms, as shown  
in Figure 23. A minimum dead  
time of zero is achieved in Figure  
23 when the signal to turn on  
These devices include a  
Propagation Delay Difference  
specification intended to help  
designers minimize “dead time” in  
their power inverter designs.  
Dead time is the time period  
during which both the high and  
low side power transistors (Q1  
and Q2 in Figure 22) are off. Any  
overlap in Q1 and Q2 conduction  
will result in large currents  
flowing through the power  
devices between the high and low  
voltage motor rails.  
LED2 is delayed by (tPLH max  
-
tPHL min) from the LED1 turn off.  
This delay is the maximum value  
for the propagation delay  
difference specification which is  
specified at 500 ns for the  
HCPL-530X over an operating  
temperature range of -55°C to  
+125°C.  
obtained by adding a diode in  
parallel with the resistor, as  
shown by the dashed line connec-  
tion in Figure 18, to clamp the  
voltage across the LED below  
Delaying the LED signal by the  
maximum propagation delay  
difference ensures that the mini-  
mum dead time is zero, but it  
does not tell a designer what the  
maximum dead time will be. The  
maximum dead time occurs in the  
highly unlikely case where one  
optocoupler with the fastest tPLH  
and another with the slowest tPHL  
are in the same inverter leg. The  
maximum dead time in this case  
becomes the sum of the spread in  
the tPLH and tPHL propagation  
delays as shown in Figure 24. The  
maximum dead time is also  
VF(OFF)  
.
To minimize dead time the  
designer must consider the  
Since the open collector drive  
circuit, shown in Figure 19,  
cannot keep the LED off during a  
+dVCM/dt transient, it is not  
desirable for applications  
requiring ultra high CMRH  
performance. Figure 20 is the AC  
equivalent circuit for Figure 16  
during common mode transients.  
Essentially all the current flowing  
through CLEDN during a +dVCM/dt  
transient must be supplied by the  
LED. CMRH failures can occur at  
dv/dt rates where the current  
through the LED and CLEDN  
exceeds the input threshold.  
Figure 21 is an alternative drive  
circuit which does achieve ultra  
high CMR performance by  
propagation delay characteristics  
of the optocoupler as well as the  
characteristics of the IPM IGBT  
gate drive circuit. Considering  
only the delay characteristics of  
the optocoupler (the character-  
istics of the IPM IGBT gate drive  
circuit can be analyzed in the  
same way) it is important to  
know the minimum and maximum  
turn-on (tPHL) and turn-off (tPLH  
propagation delay specifications,  
preferably over the desired  
)
equivalent to the difference  
between the maximum and  
operating temperature range.  
minimum propagation delay  
difference specifications. The  
maximum dead time (due to the  
optocouplers) for the HCPL-530X  
is 670 ns (= 500 ns - (-170 ns))  
over an operating temperature  
range of -55°C to +125°C.  
The limiting case of zero dead  
time occurs when the input to Q1  
turns off at the same time that the  
input to Q2 turns on. This case  
determines the minimum delay  
between LED1 turn-off and LED2  
shunting the LED in the off state.  
10  
10  
1.0  
0.9  
25  
V
V
= 0.8 V  
F
= V = 30 V  
CC  
O
8
6
4
20  
15  
10  
5
0.8  
0.7  
0.6  
0.5  
0
V
= 0.6 V  
I
V
= 10 mA  
O
F
= 0.6 V  
O
2
0
125 °C  
25 °C  
-55 °C  
0
0
5
10  
15  
20  
-60 -40 -20  
0
20 40 60 80 100120140  
-60 -40 -20  
0
20 40 60 80 100120140  
I
– FORWARD LED CURRENT – mA  
T
– TEMPERATURE – °C  
T
A
– TEMPERATURE – °C  
F
A
Figure 1. Typical Transfer  
Characteristics.  
Figure 2. Normalized Output Current  
vs. Temperature.  
Figure 3. High Level Output Current  
vs. Temperature.  
1000  
T
= 25°C  
A
100  
10  
I
F
+
V
F
1.0  
0.1  
0.01  
0.001  
1.10 1.20  
1.30  
1.40  
1.50  
1.60  
V
– FORWARD VOLTAGE – VOLTS  
F
Figure 4. Input Current vs. Forward  
Voltage.  
1
8
7
20 k  
0.1 µF  
20 k  
I
=10 mA  
5 V  
F(ON)  
+
+
2
3
4
I
f
V
= 15 V  
t
t
r
CC  
f
V
O
6
5
V
OUT  
90%  
10%  
90%  
10%  
C *  
L
V
V
THHL  
THLH  
SHIELD  
*TOTAL LOAD CAPACITANCE  
t
t
PLH  
PHL  
Figure 5. Propagation Delay Test Circuit.  
11  
1
2
8
7
0.1 µF  
20 k  
20 k  
I
F
V
CM  
+
V
= 15 V  
CC  
A
B
V
δV  
δt  
CM  
t  
=
3
4
6
5
V
OUT  
100 pF*  
OV  
t  
+
SHIELD  
V
FF  
*100 pF TOTAL  
CAPACITANCE  
V
O
V
V
CC  
SWITCH AT A: I = 0 mA  
F
V
O
+
OL  
SWITCH AT B: I = 10 mA  
F
V
= 1000 V  
CM  
Figure 6. CMR Test Circuit. Typical CMR Waveform.  
600  
600  
800  
I
V
= 10 mA  
= 15 V  
I
V
= 10 mA  
= 15 V  
F
CC  
F
CC  
I
V
= 10 mA  
= 15 V  
CL = 100 pF  
RL = 20 k(INTERNAL)  
CL = 100 pF  
RL = 20 k(EXTERNAL)  
F
500  
400  
500  
400  
CC  
CL = 100 pF  
= 25 °C  
600  
400  
200  
T
A
t
t
t
t
t
t
PLH  
PHL  
PLH  
PHL  
PLH  
PHL  
300  
200  
100  
300  
200  
100  
20  
RL – LOAD RESISTANCE – K Ω  
0
10  
30  
40  
50  
-60 -40 -20  
0
20 40 60 80 100120140  
-60 -40 -20  
0
20 40 60 80 100120140  
T – TEMPERATURE – °C  
A
T
– TEMPERATURE – °C  
A
Figure 7. Propagation Delay with  
External 20 kRL vs. Temperature.  
Figure 8. Propagation Delay with  
Internal 20 kRL vs. Temperature.  
Figure 9. Propagation Delay vs. Load  
Resistance.  
1400  
1400  
1200  
1000  
800  
I
= 10 mA  
I
= 10 mA  
= 15 V  
F
F
CL = 100 pF  
RL = 20 kΩ  
T
V
CC  
RL = 20 k  
1200  
1000  
800  
= 25°C  
T
= 25°C  
A
A
t
t
PLH  
PLH  
t
t
PHL  
PHL  
600  
600  
400  
400  
200  
0
200  
0
5
10  
15  
20  
25  
30  
0
100  
200  
300  
400  
500  
V
– SUPPLY VOLTAGE – V  
CL – LOAD CAPACITANCE – pF  
CC  
Figure 11. Propagation Delay vs.  
Supply Voltage.  
Figure 10. Propagation Delay vs. Load  
Capacitance.  
12  
500  
V
= 15 V  
CC  
t
t
PLH  
PHL  
CL = 100 pF  
RL = 20 kΩ  
T
= 25°C  
400  
300  
200  
100  
A
0
5
10  
15  
20  
I
– FORWARD LED CURRENT – mA  
F
Figure 12. Propagation Delay vs. Input  
Current.  
1
8
7
1
2
8
7
20 k  
0.1 µF  
20 k  
20 k  
C
LEDP  
+
2
3
4
+5 V  
310 Ω  
CMOS  
V
= 15 V  
CC  
6
5
V
3
4
6
5
OUT  
C
LEDN  
100 pF  
SHIELD  
SHIELD  
*100 pF TOTAL  
CAPACITANCE  
Figure 13. Recommended LED Drive Circuit.  
Figure 14. Optocoupler Input to  
Output Capacitance Model for  
Unshielded Optocouplers.  
1
8
7
1
2
8
7
+5 V  
20 k  
0.1 µF  
20 kΩ  
20 kΩ  
C
LEDP  
+
C
2
3
4
LED02  
V
= 15 V  
CC  
310 Ω  
C
LED01  
6
5
V
3
4
6
5
OUT  
C
LEDN  
CMOS  
100 pF  
SHIELD  
SHIELD  
*100 pF TOTAL  
CAPACITANCE  
Figure 15. Optocoupler Input to  
Output Capacitance Model for  
Shielded Optocouplers.  
Figure 16. LED Drive Circuit with Resistor Connected to LED Anode (Not  
Recommended).  
13  
1
2
8
7
1
2
8
7
20  
20  
20 kΩ  
I
I
TOTAL*  
CLEDP  
k  
kΩ  
C
20 kΩ  
LEDP  
C
C
LED02  
LED02  
C
I
LEDP  
F
300 Ω  
C
C
LED01  
LED01  
I
CLED01  
300 Ω  
V
OUT  
V
C
OUT  
LEDN  
3
4
6
5
3
4
6
5
C
LEDN  
I
CLEDN*  
100 pF  
100 pF  
+ V ** –  
R
SHIELD  
SHIELD  
* THE ARROWS INDICATE THE DIRECTION OF CURRENT  
* THE ARROWS INDICATE THE DIRECTION OF CURRENT  
FLOW FOR +dV /dt TRANSIENTS.  
FLOW FOR +dV /dt TRANSIENTS.  
CM  
CM  
** OPTIONAL CLAMPING DIODE FOR IMPROVED CMH  
+
PERFORMANCE.  
V
< V  
DURING +dV /dt.  
R
F (OFF)  
CM  
V
CM  
+
V
CM  
Figure 17. AC Equivalent Circuit for  
Figure 16 During Common Mode  
Transients.  
Figure 18. AC Equivalent Circuit for Figure 13 During  
Common Mode Transients.  
1
2
8
7
20  
kΩ  
C
20 kΩ  
LEDP  
C
LED02  
1
8
C
LED01  
+5 V  
20 kΩ  
V
C
Q1  
OUT  
LEDN  
3
4
6
5
2
7
6
5
I
CLEDN*  
100 pF  
3
SHIELD  
Q1  
* THE ARROWS INDICATE THE DIRECTION OF CURRENT  
4
FLOW FOR +dV /dt TRANSIENTS.  
CM  
SHIELD  
+
V
CM  
Figure 19. Not Recommended Open Collector LED Drive  
Circuit.  
Figure 20. AC Equivalent Circuit for Figure 19 During  
Common Mode Transients.  
1
2
8
7
+5 V  
20 k  
3
4
6
5
SHIELD  
Figure 21. Recommended LED Drive  
Circuit for Ultra High CMR.  
14  
HCPL-5300  
1
2
8
7
V
CC1  
0.1 µF  
20 k  
IPM  
I
LED1  
20 k  
+5 V  
+HV  
V
310 Ω  
CMOS  
OUT1  
3
4
6
5
Q1  
Q2  
M
SHIELD  
HCPL-5300  
HCPL-5300  
1
2
8
7
V
CC2  
-HV  
0.1 µF  
20 kΩ  
HCPL-5300  
HCPL-5300  
HCPL-5300  
HCPL-5300  
I
LED2  
20 kΩ  
+5 V  
310 Ω  
CMOS  
V
OUT2  
3
4
6
5
SHIELD  
Figure 22. Typical Application Circuit.  
I
LED1  
Q1 OFF  
Q2 ON  
Q1 ON  
V
V
OUT1  
OUT2  
Q2 OFF  
I
LED2  
t
PLH MAX.  
t
PHL  
MIN.  
PDD* MAX. =  
(t  
t
)
t
t
PLH- PHL MAX. = PLH MAX. - PHL MIN.  
*PDD = PROPAGATION DELAY DIFFERENCE  
NOTE: THE PROPAGATION DELAYS USED TO CALCULATE  
PDD ARE TAKEN AT EQUAL TEMPERATURES.  
Figure 23. Minimum LED Skew for  
Zero Dead Time.  
15  
I
LED1  
MIL-PRF-38534 Class H,  
Class K, and DSCC SMD  
Test Program  
Agilent Technologies’ Hi-Rel  
Optocouplers are in compliance  
with MIL-PRF-38534 Classes H  
and K. Class H and Class K  
Q1 OFF  
Q2 ON  
Q1 ON  
V
V
OUT1  
OUT2  
Q2 OFF  
I
LED2  
devices are also in compliance  
with DSCC drawing 5962-96852.  
t
PLH  
MIN.  
t
PLH  
MAX.  
t
Testing consists of 100% screen-  
ing and quality conformance  
inspection to MIL-PRF-38534.  
PHL  
PDD*  
MAX.  
MIN.  
t
PHL  
MAX.  
MAX.  
DEAD TIME  
MAXIMUM DEAD TIME (DUE TO OPTOCOUPLER)  
= (t  
= (t  
t
) + (t  
) - (t  
t
)
PLH MAX. - PLH MIN.  
PHL MAX. - PHL MIN.  
t
t
)
PLH MAX. - PHL MIN.  
PLH MIN. - PHL MAX.  
= PDD* MAX. - PDD* MIN.  
*PDD = PROPAGATION DELAY DIFFERENCE  
NOTE: THE PROPAGATION DELAYS USED TO CALCULATE THE MAXIMUM  
DEAD TIME ARE TAKEN AT EQUAL TEMPERATURES.  
Figure 24. Waveforms for Dead Time Calculations.  
www.semiconductor.agilent.com  
Data subject to change.  
Copyright © 2000 Agilent Technologies  
Obsoletes 5967-5808E  
5968-9402E (10/00)  
WWW.ALLDATASHEET.COM  
Copyright © Each Manufacturing Company.  
All Datasheets cannot be modified without permission.  
This datasheet has been download from :  
www.AllDataSheet.com  
100% Free DataSheet Search Site.  
Free Download.  
No Register.  
Fast Search System.  
www.AllDataSheet.com  

相关型号:

HCPL-5301-300

Intelligent Power Module and Gate Drive Interface Hermetically Sealed Optocouplers
AGILENT

HCPL-5301-300

Intelligent Power Module and Gate Drive Interface Hermetically Sealed Optocouplers
HP

HCPL-530K

Intelligent Power Module and Gate Drive Interface Hermetically Sealed Optocouplers
AGILENT

HCPL-530K

Intelligent Power Module and Gate Drive Interface Hermetically Sealed Optocouplers
AVAGO

HCPL-530K

Intelligent Power Module and Gate Drive Interface Hermetically Sealed Optocouplers
HP

HCPL-530K#100

SCHMITT-TRIGGER-OUTPUT OPTOCOUPLER
ETC

HCPL-530K#200

SCHMITT-TRIGGER-OUTPUT OPTOCOUPLER
ETC

HCPL-530K#300

SCHMITT-TRIGGER-OUTPUT OPTOCOUPLER
ETC

HCPL-530K-100

Intelligent Power Module and Gate Drive Interface Hermetically Sealed Optocouplers
AGILENT

HCPL-530K-100

Intelligent Power Module and Gate Drive Interface Hermetically Sealed Optocouplers
HP

HCPL-530K-200

Intelligent Power Module and Gate Drive Interface Hermetically Sealed Optocouplers
AGILENT

HCPL-530K-200

Intelligent Power Module and Gate Drive Interface Hermetically Sealed Optocouplers
HP