ATF-521P8-TR2G [AGILENT]

RF Small Signal Field-Effect Transistor, 1-Element, C Band, Silicon, N-Channel, High Electron Mobility FET, MO-229, 2 X 2 MM, 0.75 MM HEIGHT, LPCC-8;
ATF-521P8-TR2G
型号: ATF-521P8-TR2G
厂家: AGILENT TECHNOLOGIES, LTD.    AGILENT TECHNOLOGIES, LTD.
描述:

RF Small Signal Field-Effect Transistor, 1-Element, C Band, Silicon, N-Channel, High Electron Mobility FET, MO-229, 2 X 2 MM, 0.75 MM HEIGHT, LPCC-8

PC
文件: 总24页 (文件大小:248K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Agilent ATF-521P8 High Linearity  
Enhancement Mode[1]  
Pseudomorphic HEMT in  
2x2 mm2 LPCC[3] Package  
Data Sheet  
Features  
Single voltage operation  
High linearity and P1dB  
Low noise figure  
Pin Connections and  
Package Marking  
Description  
Excellent uniformity in product  
specifications  
Agilent Technologies’s ATF-521P8 is a  
single-voltage high linearity, low noise  
E-pHEMT housed in an 8-lead JEDEC-  
standard leadless plastic chip carrier  
(LPCC[3]) package. The device is ideal  
as a medium-power, high-linearity am-  
plifier. Its operating frequency range  
is from 50 MHz to 6 GHz.  
Pin 8  
Pin 7 (Drain)  
Pin 6  
Pin 1 (Source)  
Pin 2 (Gate)  
Pin 3  
Small package size:  
2.0 x 2.0 x 0.75 mm3  
Point MTTF > 300 years[2]  
MSL-1 and lead-free  
Pin 5  
Pin 4 (Source)  
Bottom View  
Tape-and-reel packaging option  
The thermally efficient package mea-  
sures only 2mm x 2mm x 0.75mm. Its  
backside metalization provides excel-  
lent thermal dissipation as well as vi-  
sual evidence of solder reflow. The  
device has a Point MTTF of over 300  
years at a mounting temperature of  
+85°C. All devices are 100% RF & DC  
tested.  
available  
Pin 1 (Source)  
Pin 8  
Specifications  
Pin 2 (Gate)  
Pin 3  
Pin 7 (Drain)  
Pin 6  
2Px  
2 GHz; 4.5V, 200 mA (Typ.)  
42 dBm output IP3  
Pin 4 (Source)  
Pin 5  
Top View  
26.5 dBm output power at 1 dB gain  
compression  
Note:  
Package marking provides orientation and  
identification  
1.5 dB noise figure  
17 dB Gain  
“2P” = Device Code  
12.5 dB LFOM[4]  
“x” = Month code indicates the month of  
manufacture.  
Note:  
1. Enhancement mode technology employs a  
single positive Vgs, eliminating the need of  
negative gate voltage associated with  
conventional depletion mode devices.  
Applications  
Front-end LNA Q2 and Q3, driver or  
pre-driver amplifier for Cellular/  
PCS and WCDMA wireless  
infrastructure  
2. Refer to reliability datasheet for detailed  
MTTF data  
3. Conform to JEDEC reference outline MO229  
for DRP-N  
4. Linearity Figure of Merit (LFOM) is essentially  
OIP3 divided by DC bias power.  
Driver amplifier for WLAN,  
WLL/RLL and MMDS applications  
General purpose discrete E-pHEMT  
for other high linearity applications  
ATF-521P8 Absolute Maximum Ratings[1]  
Notes:  
Absolute  
1. Operation of this device in excess of any one  
of these parameters may cause permanent  
damage.  
Symbol  
Parameter  
Units  
Maximum  
VDS  
VGS  
Drain Source Voltage[2]  
GateSource Voltage[2]  
Gate Drain Voltage[2]  
Drain Current[2]  
V
7
2. Assumes DC quiescent conditions.  
3. Board (package belly) temperatureTB is 25°C.  
Derate 22 mW/°C for TB > 83°C.  
4. Channel to board thermal resistance  
measured using 150°C Liquid Crystal  
Measurement method.  
5. Device can safely handle +27dBm RF Input  
Power provided IGS is limited to 46mA. IGS  
V
-5 to 1  
-5 to 1  
500  
VGD  
IDS  
V
mA  
mA  
W
IGS  
Gate Current  
46  
Pdiss  
Pin max.  
TCH  
Total Power Dissipation[3]  
RF Input Power  
1.5  
at P  
drive level is bias circuit dependent.  
1dB  
dBm  
°C  
27  
Channel Temperature  
Storage Temperature  
Thermal Resistance[4]  
150  
TSTG  
θch_b  
°C  
-65 to 150  
45  
°C/W  
Product Consistency Distribution Charts[5, 6]  
150  
120  
90  
60  
30  
0
180  
150  
120  
90  
600  
500  
400  
300  
200  
100  
Stdev = 0.19  
Cpk = 0.86  
Stdev = 1.32  
0.8V  
0.7V  
-3 Std  
+3 Std  
-3 Std  
+3 Std  
Vgs = 0.6V  
60  
30  
0.5V  
0.4V  
0
0
0
41  
1
37  
39  
43  
45  
47  
49  
0
0.5  
1.5  
2
2.5  
3
2
4
6
8
OIP3 (dBm)  
NF (dB)  
V
DS  
(V)  
Figure 3. OIP3 @ 2 GHz, 4.5 V, 200 mA.  
Nominal = 41.9 dBm, LSL = 38.5 dBm.  
Figure 2. NF @ 2 GHz, 4.5 V, 200 mA.  
Nominal = 1.5 dB.  
Figure 1. Typical I-V Curves.  
(VGS = 0.1 V per step)  
180  
150  
120  
90  
300  
Cpk = 2.13  
Stdev = 0.21  
Cpk = 4.6  
Stdev = 0.11  
250  
200  
-3 Std  
+3 Std  
-3 Std  
+3 Std  
150  
100  
50  
60  
30  
0
0
17  
GAIN (dB)  
26  
P1dB (dBm)  
15  
16  
18  
19  
25  
25.5  
26.5  
27  
27.5  
Figure 4. Gain @ 2 GHz, 4.5 V, 200 mA.  
Nominal = 17.2 dB, LSL = 15.5 dB,  
USL = 18.5 dB.  
Figure 5. P1dB @ 2 GHz, 4.5 V, 200 mA.  
Nominal = 26.5 dBm, LSL = 25 dBm.  
Notes:  
5. Distribution data sample size is 500 samples taken from 5 different wafers. Future wafers allocated  
to this product may have nominal values anywhere between the upper and lower limits.  
6. Measurements are made on production test board, which represents a trade-off between optimal  
OIP3, P1dB and VSWR. Circuit losses have been de-embedded from actual measurements.  
2
ATF-521P8 Electrical Specifications  
TA = 25°C, DC bias for RF parameters is Vds = 4.5V and Ids = 200 mA unless otherwise specified.  
Symbol  
Parameter and Test Condition  
Units  
Min.  
Typ.  
Max.  
Vgs  
Vth  
Idss  
Gm  
Operational Gate Voltage  
Threshold Voltage  
Vds = 4.5V, Ids = 200 mA  
Vds = 4.5V, Ids = 16 mA  
Vds = 4.5V, Vgs = 0V  
V
0.62  
0.28  
14.8  
1300  
V
Saturated Drain Current  
Transconductance  
µA  
Vds = 4.5V, Gm = Idss/Vgs;  
Vgs = Vgs1 - Vgs2  
mmho  
Vgs1 = 0.55V, Vgs2 = 0.5V  
Igss  
NF  
Gate Leakage Current  
Noise Figure[1]  
Vds = 0V, Vgs = -4V  
µA  
-20  
0.49  
f = 2 GHz  
f = 900 MHz  
dB  
dB  
1.5  
1.2  
G
Gain [1]  
f = 2 GHz  
f = 900 MHz  
dB  
dB  
15.5  
17  
17.2  
18.5  
OIP3  
P1dB  
PAE  
Output 3rd Order  
Intercept Point[1]  
f = 2 GHz  
f = 900 MHz  
dBm  
dBm  
38.5  
42  
42.5  
Output 1dB  
Compressed[1]  
f = 2 GHz  
f = 900 MHz  
dBm  
dBm  
25  
26.5  
26.5  
Power Added Efficiency  
f = 2 GHz  
f = 900 MHz  
%
%
45  
60  
56  
ACLR  
Notes:  
Adjacent Channel Leakage  
Power Ratio[1,2]  
Offset BW = 5 MHz  
Offset BW = 10 MHz  
dBc  
dBc  
-51.4  
-61.5  
1. Measurements obtained using production test board described in Figure 6.  
2. ACLR test spec is based on 3GPP TS 25.141 V5.3.1 (2002-06)  
Test Model 1  
Active Channels: PCCPCH + SCH + CPICH + PICH + SCCPCH + 64 DPCH (SF=128)  
Freq = 2140 MHz  
Pin = -5 dBm  
Chan Integ Bw = 3.84 MHz  
50 Ohm  
Input  
Output  
50 Ohm  
Transmission  
Line and  
Drain Bias T  
(0.3 dB loss)  
Input  
Output  
Transmission  
Line Including  
Gate Bias T  
(0.3 dB loss)  
Matching Circuit  
Γ_mag = 0.55  
Γ_ang = -166°  
(1.1 dB loss)  
Matching Circuit  
Γ_mag = 0.35  
Γ_ang = 168°  
(0.9 dB loss)  
DUT  
Figure 6. Block diagram of the 2 GHz production test board used for NF, Gain, OIP3 , P1dB and PAE and ACLR measurements. This circuit achieves a  
trade-off between optimal OIP3, P1dB and VSWR. Circuit losses have been de-embedded from actual measurements.  
3
1 pF  
3.9 nH  
1.5 pF  
110 Ohm  
.03 λ  
50 Ohm  
.02 λ  
50 Ohm  
.02 λ  
110 Ohm  
.03 λ  
1.5 pF  
RF Output  
RF Input  
DUT  
12 nH  
47 nH  
15 Ohm  
2.2 µF  
Drain  
Supply  
2.2 µF  
Gate  
Supply  
Figure 7. Simplified schematic of production test board. Primary purpose is to show 15 Ohm series resistor placement in  
gate supply. Transmission line tapers, tee intersections, bias lines and parasitic values are not shown.  
Gamma Load and Source at Optimum OIP3 and P1dB Tuning Conditions  
The devices optimum OIP3 and P1dB measurements were determined using a Maury load pull system at  
4.5V, 200 mA quiesent bias:  
Optimum OIP3  
Freq  
(GHz)  
Gamma Source  
Mag Ang (deg)  
Gamma Load  
OIP3  
(dBm)  
Gain  
(dB)  
P1dB  
(dBm)  
PAE  
(%)  
Mag  
Ang (deg)  
0.9  
2
0.413  
0.368  
0.318  
0.463  
10.5  
0.314  
0.538  
0.566  
0.495  
179.0  
42.7  
42.5  
42.0  
40.3  
16.0  
15.8  
14.1  
9.6  
27.0  
27.5  
27.4  
27.3  
54.0  
55.3  
53.5  
43.9  
162.0  
169.0  
-134.0  
-176.0  
-169.0  
-159.0  
2.4  
3.9  
Optimum P1dB  
Freq  
(GHz)  
Gamma Source  
Mag Ang (deg)  
Gamma Load  
OIP3  
(dBm)  
Gain  
(dB)  
P1dB  
(dBm)  
PAE  
(%)  
Mag  
Ang (deg)  
0.9  
2
0.587  
0.614  
0.649  
0.552  
12.7  
0.613  
0.652  
0.682  
0.670  
-172.1  
-172.5  
-171.5  
-151.2  
39.1  
39.5  
40.0  
38.1  
14.5  
12.9  
12.0  
9.6  
29.3  
29.3  
29.4  
27.9  
49.6  
49.5  
46.8  
39.1  
126.1  
145.0  
-162.8  
2.4  
3.9  
4
ATF-521P8 Typical Performance Curves (at 25°C unless specified otherwise)  
Tuned for Optimal OIP3  
50  
45  
40  
35  
30  
25  
20  
15  
10  
45  
40  
35  
30  
25  
20  
15  
10  
50  
45  
40  
35  
30  
25  
20  
15  
10  
4.5V  
4V  
3V  
4.5V  
4V  
3V  
4.5V  
4V  
3V  
100  
150  
200  
250  
300  
350  
400  
100  
150  
200  
250  
300  
350  
400  
100  
150  
200  
250  
300  
350  
400  
I
(mA)  
I
(mA)  
d
I
d
(mA)  
d
Figure 10. OIP3 vs. I and V at 3.9 GHz.  
Figure 8. OIP3 vs. I and V at 2 GHz.  
Figure 9. OIP3 vs. I and V at 900 MHz.  
ds  
ds  
ds  
ds  
ds  
ds  
35  
30  
25  
20  
15  
10  
35  
30  
25  
20  
15  
10  
35  
30  
25  
20  
15  
10  
4.5V  
4V  
3V  
4.5V  
4V  
3V  
4.5V  
4V  
3V  
100  
150  
200  
250  
300  
350  
400  
100  
150  
200  
250  
300  
350  
400  
100  
150  
200  
250  
(mA)  
300  
350  
400  
I
(mA)  
I
(mA)  
I
dq  
dq  
dq  
Figure 11. P1dB vs. I and V at 2 GHz.  
Figure 12. P1dB vs. I and V at 900 MHz.  
Figure 13. P1dB vs. I and V at 3.9 GHz.  
dq  
ds  
dq  
ds  
dq  
ds  
17  
16  
15  
14  
13  
12  
11  
10  
17  
16  
15  
14  
13  
12  
11  
10  
12  
11  
10  
9
8
7
4.5V  
4V  
3V  
4.5V  
4V  
3V  
4.5V  
4V  
3V  
6
5
100  
100  
150  
200  
250  
(mA)  
300  
350  
400  
100  
150  
200  
250  
(mA)  
300  
350  
400  
150  
200  
250  
(mA)  
300  
350  
400  
I
I
I
d
d
d
Figure 15. Small Signal Gain vs I and V  
ds  
Figure 16. Small Signal Gain vs I and V  
ds  
Figure 14. Small Signal Gain vs I and V  
ds  
ds  
ds  
ds  
at 900 MHz.  
at 3.9 GHz.  
at 2 GHz.  
Note:  
Bias current for the above charts are quiescent  
conditions. Actual level may increase depending  
on amount of RF drive.  
5
ATF-521P8 Typical Performance Curves, continued (at 25°C unless specified otherwise)  
Tuned for Optimal OIP3  
70  
50  
45  
40  
35  
30  
25  
20  
15  
10  
70  
60  
50  
40  
30  
20  
10  
60  
50  
40  
30  
20  
10  
4.5V  
4V  
3V  
4.5V  
4V  
3V  
4.5V  
4V  
3V  
100  
150  
200  
250  
300  
350  
400  
100  
150  
200  
250  
300  
350  
400  
100  
150  
200  
250  
300  
350  
400  
I
(mA)  
I
(mA)  
I
(mA)  
dq  
dq  
dq  
Figure 18. PAE @ P1dB vs. I and V  
dq  
Figure 17. PAE @ P1dB vs. I and V  
dq  
Figure 19. PAE @ P1dB vs. I and V  
dq  
ds  
ds  
ds  
at 900 MHz.  
at 2 GHz.  
at 3.9 GHz.  
20  
50  
45  
40  
35  
30  
29  
27  
25  
23  
21  
15  
10  
85°C  
25°C  
-40°C  
85°C  
25°C  
-40°C  
85°C  
25°C  
-40°C  
25  
20  
15  
19  
17  
15  
5
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
0.5  
1
1.5  
2
2.5  
3
3.5  
4
0.5  
1
1.5  
2
2.5  
3
3.5  
4
FREQUENCY (GHz)  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 22. Gain vs. Temp and Freq  
tuned for optimal OIP3 at 4.5V, 200 mA.  
Figure 20. OIP3 vs. Temp and Freq  
tuned for optimal OIP3 at 4.5V, 200 mA.  
Figure 21. P1dB vs. Temp and Freq  
tuned for optimal OIP3 at 4.5V, 200 mA.  
70  
60  
50  
40  
30  
85°C  
20  
25°C  
-40°C  
10  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
FREQUENCY (GHz)  
Figure 23. PAE vs Temp and Freq  
tuned for optimal OIP3 at 4.5V, 200 mA.  
Note:  
Bias current for the above charts are quiescent  
conditions. Actual level may increase depending  
on amount of RF drive.  
6
ATF-521P8 Typical Performance Curves (at 25°C unless specified otherwise)  
Tuned for Optimal P1dB  
45  
40  
35  
30  
25  
20  
15  
10  
45  
40  
35  
30  
25  
20  
15  
10  
50  
45  
40  
35  
30  
25  
20  
15  
10  
4.5V  
4.5V  
4V  
3V  
4.5V  
4V  
3V  
4V  
3V  
3V  
100  
400  
100  
150  
200  
250  
300  
350  
400  
150  
200  
250  
300  
350  
100  
150  
200  
250  
300  
350  
400  
I
(mA)  
I
(mA)  
I
d
(mA)  
d
d
Figure 25. OIP3 vs. I and V at 900 MHz.  
Figure 24. OIP3 vs. I and V at 2 GHz.  
Figure 26. OIP3 vs. I and V at 3.9 GHz.  
ds  
ds  
ds  
ds  
ds  
ds  
35  
30  
25  
20  
15  
10  
35  
30  
25  
20  
15  
10  
35  
30  
25  
20  
15  
10  
4.5V  
4V  
3V  
4.5V  
4V  
3V  
4.5V  
4V  
3V  
200  
300  
100  
150  
200  
250  
(mA)  
300  
350  
400  
100  
150  
200  
250  
(mA)  
300  
350  
400  
100  
150  
250  
(mA)  
350  
400  
I
I
I
dq  
dq  
dq  
Figure 29. P1dB vs. I and V at 3.9 GHz.  
Figure 27. P1dB vs. I and V at 2 GHz.  
Figure 28. P1dB vs. I and V at 900 MHz.  
dq  
ds  
dq  
ds  
dq  
ds  
17  
15  
13  
11  
9
17  
15  
13  
11  
9
17  
15  
13  
11  
9
4.5V  
4V  
3V  
4.5V  
4V  
3V  
4.5V  
4V  
3V  
7
7
7
5
100  
5
100  
5
150  
200  
250  
(mA)  
300  
350  
400  
150  
200  
250  
(mA)  
300  
350  
400  
100  
150  
200  
250  
(mA)  
300  
350  
400  
I
I
I
d
d
d
Figure 30. Gain vs I and V at 2 GHz.  
Figure 31. Gain vs I and V at 900 MHz.  
Figure 32. Gain vs I and V at 3.9 GHz.  
ds ds  
ds  
ds  
ds  
ds  
Note:  
Bias current for the above charts are quiescent  
conditions. Actual level may increase depending  
on amount of RF drive.  
7
ATF-521P8 Typical Performance Curves, continued (at 25°C unless specified otherwise)  
Tuned for Optimal P1dB  
55  
50  
45  
40  
35  
30  
25  
20  
40  
35  
30  
25  
20  
60  
55  
50  
45  
40  
35  
30  
25  
20  
4.5V  
4V  
3V  
4.5V  
4V  
3V  
4.5V  
4V  
3V  
300  
100  
150  
200  
250  
300  
350  
400  
100  
150  
200  
250  
350  
400  
100  
150  
200  
250  
300  
350  
400  
I
(mA)  
I
(mA)  
dq  
I
(mA)  
dq  
dq  
Figure 34. PAE @ P1dB vs. I and V  
dq  
Figure 35. PAE @ P1dB vs. I and V  
dq  
Figure 33. PAE @ P1dB vs. I and V  
dq  
ds  
ds  
ds  
at 900 MHz.  
at 3.9 GHz.  
at 2 GHz.  
32  
30  
28  
26  
24  
50  
45  
40  
35  
30  
20  
15  
10  
85°C  
25°C  
-40°C  
85°C  
25°C  
-40°C  
85°C  
25  
20  
15  
5
0
25°C  
-40°C  
22  
20  
2.5  
FREQUENCY (GHz)  
0.5  
2
2.5  
3
3.5  
4
0.5  
1.5  
2
3
3.5  
4
1
1
1.5  
0.5  
1
1.5  
2
2.5  
3
3.5  
4
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 36. OIP3 vs. Temp and Freq  
tuned for optimal P1dB at 4.5V, 200 mA.  
Figure 37. P1dB vs. Temp and Freq  
(tuned for optimal P1dB at 4.5V, 200 mA).  
Figure 38. Gain vs. Temp and Freq  
tuned for optimal P1dB at 4.5V, 200 mA.  
60  
50  
40  
30  
20  
10  
0
85°C  
25°C  
-40°C  
0.5  
1
1.5  
2
2.5  
3
3.5  
4
FREQUENCY (GHz)  
Figure 39. PAE vs Temp and Freq  
tuned for optimal P1dB at 4.5V.  
Note:  
Bias current for the above charts are quiescent  
conditions. Actual level may increase depending  
on amount of RF drive.  
8
ATF-521P8 Typical Scattering Parameters at 25°C, VDS = 4.5V, IDS = 280 mA  
Freq.  
GHz  
S11  
S21  
Mag.  
S12  
Mag.  
S22  
MSG/MAG  
dB  
Mag.  
Ang.  
dB  
Ang.  
dB  
Ang.  
Mag. Ang.  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.5  
2.0  
2.5  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
10.0  
11.0  
12.0  
13.0  
14.0  
15.0  
16.0  
17.0  
18.0  
0.613  
0.780  
0.831  
0.855  
0.860  
0.878  
0.888  
0.887  
0.894  
0.886  
0.892  
0.883  
0.890  
0.884  
0.890  
0.893  
0.896  
0.906  
0.882  
0.887  
0.887  
0.882  
0.878  
0.894  
0.888  
0.884  
0.830  
0.708  
0.790  
-96.9  
-131.8  
-147.2  
-156.4  
-162.0  
-166.7  
-170.2  
-172.6  
-174.5  
-177.2  
175.0  
168.7  
162.8  
157.2  
146.6  
137.0  
127.9  
119.5  
105.6  
96.4  
33.2  
30.0  
27.3  
25.1  
23.5  
22.0  
20.8  
19.7  
18.7  
17.9  
14.3  
12.1  
10.2  
8.6  
45.79  
31.50  
23.26  
18.04  
14.98  
12.62  
10.95  
9.63  
8.65  
7.82  
5.20  
4.01  
3.24  
2.71  
2.02  
1.60  
1.31  
1.11  
0.92  
0.82  
0.72  
0.64  
0.56  
0.48  
0.42  
0.38  
0.34  
0.35  
141.7  
121.6  
111.0  
104.1  
99.7  
95.6  
92.8  
90.0  
87.9  
85.4  
76.3  
68.4  
61.5  
54.5  
40.6  
27.6  
15.4  
3.7  
-39.5  
-36.7  
-36.2  
-35.4  
-35.2  
-35.0  
-34.6  
-34.3  
-33.7  
-33.8  
-32.8  
-31.2  
-30.0  
-28.9  
-27.0  
-25.5  
-24.2  
-22.9  
-21.3  
-20.1  
-19.3  
-18.5  
-18.0  
-17.8  
-17.3  
-16.6  
-16.1  
-15.4  
-16.4  
0.011  
0.015  
0.015  
0.017  
0.017  
0.018  
0.019  
0.019  
0.021  
0.020  
0.023  
0.027  
0.032  
0.036  
0.045  
0.053  
0.061  
0.071  
0.086  
0.098  
0.109  
0.119  
0.126  
0.130  
0.137  
0.147  
0.156  
0.169  
0.152  
51.3  
37.1  
30.6  
28.2  
27.4  
26.1  
27.4  
28.9  
28.5  
30.3  
34.6  
36.7  
36.8  
39.2  
36.1  
32.4  
28.2  
22.9  
14.5  
7.2  
0.317  
0.423  
0.466  
0.483  
0.488  
0.496  
0.497  
0.500  
0.501  
0.502  
0.502  
0.492  
0.490  
0.494  
0.505  
0.529  
0.551  
0.570  
0.567  
0.585  
0.593  
0.617  
0.636  
0.662  
0.697  
0.732  
0.752  
0.816  
0.660  
-108.3  
-138.5  
-152.4  
-159.9  
-163.8  
-167.0  
-169.9  
-171.7  
-173.6  
-175.7  
178.8  
173.6  
169.8  
165.7  
157.8  
150.3  
142.9  
135.5  
127.3  
117.8  
107.3  
97.1  
36.2  
33.2  
31.9  
30.3  
29.5  
28.5  
27.6  
27.0  
26.1  
25.9  
23.5  
20.2  
18.5  
16.2  
13.8  
11.9  
10.4  
9.6  
6.8  
6.2  
5.0  
3.9  
2.8  
2.1  
0.9  
0.3  
6.1  
4.1  
2.3  
0.9  
-0.8  
-1.7  
-2.9  
-3.9  
-5.0  
-6.4  
-7.6  
-8.3  
-9.5  
-9.0  
-9.8  
-22.2  
-33.6  
-45.8  
-57.0  
-67.8  
-76.2  
-84.3  
-92.8  
-99.5  
-93.1  
84.6  
72.3  
62.2  
52.0  
42.0  
34.6  
24.7  
11.0  
-1.0  
-10.5  
-19.8  
-28.6  
-36.1  
-42.9  
-52.4  
-63.8  
-82.8  
86.0  
74.7  
67.5  
58.7  
51.9  
46.1  
41.2  
-1.8  
-2.2  
-4.3  
-12.7  
-10.3 0.31  
Typical Noise Parameters at 25°C, VDS = 4.5V, IDS = 280 mA  
40.0  
30.0  
20.0  
10.0  
0.0  
Freq  
GHz  
Fmin  
dB  
Γopt  
Mag.  
Γopt  
Ang.  
Rn  
Ga  
dB  
MSG  
0.5  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
1.20  
1.30  
1.61  
1.68  
2.12  
2.77  
2.58  
2.85  
3.35  
0.47  
0.53  
0.61  
0.69  
0.67  
0.71  
0.79  
0.82  
0.73  
170.00  
2.8  
2.6  
2.7  
4.0  
22.8  
20.1  
17.3  
14.4  
11.6  
9.9  
8.8  
7.5  
5.7  
-177.00  
-166.34  
-155.85  
-146.98  
-134.35  
-125.22  
-115.35  
-105.76  
MAG  
8.4  
S
21  
19.0  
26.7  
47.2  
65.2  
-10.0  
-20.0  
0
5
10  
FREQUENCY (GHz)  
15  
20  
Figure 40. MSG/MAG and |S21|2 vs.  
Frequency at 4.5V, 280 mA.  
Notes:  
1. Fmin values at 2 GHz and higher are based on measurements while the Fmins below 2 GHz have been extrapolated. The Fmin values are based on a set of  
16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements a true Fmin is calculated.  
Refer to the noise parameter application section for more information.  
2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end of the gate  
lead. The output reference plane is at the end of the drain lead.  
9
ATF-521P8 Typical Scattering Parameters, VDS = 4.5V, IDS = 200 mA  
Freq.  
GHz  
S11  
Ang.  
S21  
Ang.  
S12  
Mag.  
S22  
MSG/MAG  
dB  
Mag.  
dB  
Mag.  
dB  
Ang.  
Mag. Ang.  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
1.5  
2
2.5  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
0.823  
0.873  
0.879  
0.885  
0.883  
0.897  
0.895  
0.894  
0.900  
0.893  
0.894  
0.889  
0.888  
0.892  
0.884  
0.891  
0.889  
0.902  
0.881  
0.891  
0.876  
0.885  
0.885  
0.893  
0.889  
0.894  
0.840  
0.719  
0.794  
-89.9  
-128.7  
-145.5  
-155.1  
-161.1  
-165.9  
-169.5  
-171.9  
-174.7  
-176.6  
175.3  
168.5  
162.6  
157.0  
146.5  
137.0  
127.9  
119.6  
105.6  
96.0  
34.4  
30.5  
27.6  
25.2  
23.6  
22.1  
20.8  
19.6  
18.7  
17.8  
14.3  
12.0  
10.2  
8.6  
6.0  
4.0  
2.3  
0.9  
-0.9  
-1.7  
-2.9  
-3.6  
-4.8  
-6.3  
-7.2  
-7.8  
-8.4  
52.21  
33.39  
23.90  
18.25  
15.12  
12.66  
10.95  
9.59  
8.64  
7.78  
5.17  
4.00  
3.22  
2.69  
2.00  
1.59  
1.30  
1.11  
0.90  
0.83  
0.72  
0.66  
0.57  
0.48  
0.44  
0.41  
0.38  
135.6  
115.7  
106.3  
100.5  
96.6  
92.9  
90.5  
88.0  
86.2  
83.7  
75.7  
67.8  
61.3  
54.5  
40.7  
28.3  
16.4  
4.8  
-37.9  
-35.6  
-34.9  
-34.7  
-34.4  
-34.1  
-33.7  
-33.6  
-33.1  
-33.1  
-32.1  
-30.8  
-29.8  
-28.6  
-26.8  
-25.2  
-24.0  
-22.8  
-21.3  
-20.2  
-19.3  
-18.5  
-18.0  
-17.7  
-17.2  
-16.9  
-16.2  
-15.4  
-16.7  
0.013  
0.017  
0.018  
0.018  
0.019  
0.020  
0.021  
0.021  
0.022  
0.022  
0.025  
0.029  
0.032  
0.037  
0.046  
0.055  
0.063  
0.072  
0.086  
0.098  
0.108  
0.119  
0.126  
0.131  
0.138  
0.143  
0.154  
0.171  
0.147  
46.2  
32.0  
27.0  
25.8  
24.8  
24.2  
24.2  
25.3  
26.2  
27.6  
32.6  
33.6  
35.2  
35.6  
34.4  
30.5  
26.4  
21.0  
13.3  
5.6  
0.388  
0.478  
0.507  
0.518  
0.519  
0.525  
0.526  
0.528  
0.528  
0.529  
0.527  
0.516  
0.514  
0.517  
0.526  
0.548  
0.568  
0.584  
0.580  
0.594  
0.600  
0.622  
0.641  
0.663  
0.698  
0.732  
0.750  
0.815  
0.655  
-113.0  
-143.2  
-156.0  
-163.1  
-166.7  
-169.6  
-172.2  
-174.0  
-175.6  
-177.7  
177.2  
172.1  
168.1  
164.0  
156.0  
148.3  
141.0  
133.5  
124.9  
115.8  
105.3  
95.0  
36.0  
32.9  
31.2  
30.1  
29.0  
28.0  
27.2  
26.6  
25.9  
25.5  
23.2  
21.4  
18.4  
16.7  
13.5  
11.9  
10.1  
9.4  
6.7  
6.4  
4.6  
4.2  
3.0  
2.1  
1.2  
1.0  
-8.8  
-20.1  
-32.1  
-43.7  
-54.1  
-66.2  
-74.0  
-80.6  
-83.4  
-90.1  
-102.3  
83.9  
73.1  
60.9  
53.0  
42.2  
34.3  
25.0  
9.1  
-3.2  
-12.1  
-21.6  
-29.9  
-36.7  
-44.1  
-54.3  
-64.8  
-84.1  
84.1  
73.1  
65.7  
57.4  
51.0  
44.5  
40.4  
-0.8  
-3.2  
-5.9  
-10.0 0.32  
-12.2 0.25  
-8.1  
Typical Noise Parameters, VDS = 4.5V, IDS = 200 mA  
40.0  
30.0  
20.0  
10.0  
0.0  
Freq  
GHz  
Fmin  
dB  
Γopt  
Mag.  
Γopt  
Ang.  
Rn  
Ga  
dB  
MSG  
0.5  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
0.60  
0.72  
0.96  
1.11  
1.44  
1.75  
1.99  
2.12  
2.36  
0.30  
0.35  
0.47  
0.57  
0.62  
0.69  
0.74  
0.80  
0.69  
130.00  
150.00  
-175.47  
-162.03  
-150.00  
-136.20  
-127.35  
-116.83  
-108.38  
2.8  
2.6  
1.9  
2.1  
20.2  
18.4  
16.5  
13.8  
11.2  
9.8  
8.7  
7.5  
5.7  
MAG  
4.5  
S
21  
10.0  
17.0  
28.5  
35.6  
-10.0  
-20.0  
0
5
10  
FREQUENCY (GHz)  
15  
20  
Figure 41. MSG/MAG and |S21|2 vs.  
Frequency at 4.5V, 200 mA.  
Notes:  
1. Fmin values at 2 GHz and higher are based on measurements while the Fmins below 2 GHz have been extrapolated. The Fmin values are based on a set of  
16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements a true Fmin is calculated.  
Refer to the noise parameter application section for more information.  
2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end of the gate  
lead. The output reference plane is at the end of the drain lead.  
10  
ATF-521P8 Typical Scattering Parameters, VDS = 4.5V, IDS = 120 mA  
Freq.  
GHz  
S11  
Ang.  
S21  
Ang.  
S12  
Mag.  
S22  
MSG/MAG  
dB  
Mag.  
dB  
Mag.  
dB  
Ang.  
Mag. Ang.  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
1.5  
2
2.5  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
0.913  
0.900  
0.896  
0.893  
0.882  
0.895  
0.893  
0.895  
0.897  
0.895  
0.893  
0.889  
0.882  
0.888  
0.883  
0.885  
0.892  
0.894  
0.880  
0.876  
0.879  
0.889  
0.881  
0.893  
0.891  
0.888  
0.845  
0.828  
0.827  
-84.6  
-125.0  
-142.0  
-152.3  
-158.4  
-164.2  
-167.8  
-170.8  
-173.0  
-175.5  
176.0  
169.2  
163.6  
157.9  
146.8  
137.7  
128.0  
120.4  
105.7  
96.5  
34.2  
30.3  
27.4  
25.1  
23.4  
21.8  
20.6  
19.5  
18.5  
17.6  
14.1  
11.8  
10.0  
8.4  
5.9  
3.8  
2.1  
0.6  
-1.0  
-1.9  
-3.0  
-3.8  
-5.2  
-6.3  
-7.2  
-8.3  
-9.1  
51.26  
32.80  
23.39  
17.89  
14.75  
12.36  
10.71  
9.39  
8.44  
7.59  
5.07  
3.89  
3.15  
2.62  
1.97  
1.55  
1.28  
1.08  
0.89  
0.81  
0.71  
0.65  
0.55  
0.48  
0.44  
0.39  
0.35  
135.4  
115.4  
106.1  
100.3  
96.3  
92.9  
90.5  
88.0  
86.1  
83.6  
75.3  
67.8  
61.2  
54.6  
40.7  
28.2  
16.7  
5.1  
-36.4  
-33.9  
-33.4  
-32.9  
-32.6  
-32.7  
-32.4  
-32.3  
-32.2  
-31.8  
-31.1  
-30.0  
-29.0  
-28.2  
-26.5  
-25.2  
-24.0  
-22.8  
-21.2  
-20.1  
-19.3  
-18.6  
-18.1  
-17.7  
-17.3  
-16.8  
-16.1  
-15.6  
-16.6  
0.015  
0.020  
0.021  
0.023  
0.023  
0.023  
0.024  
0.024  
0.025  
0.026  
0.028  
0.032  
0.036  
0.039  
0.047  
0.055  
0.063  
0.072  
0.087  
0.099  
0.108  
0.118  
0.125  
0.130  
0.136  
0.144  
0.157  
0.167  
0.147  
49.0  
31.2  
25.3  
23.5  
22.5  
20.6  
20.4  
21.1  
22.1  
23.0  
25.5  
27.9  
30.2  
30.2  
29.7  
26.3  
21.9  
18.2  
10.6  
3.2  
0.423  
0.499  
0.522  
0.530  
0.531  
0.537  
0.537  
0.539  
0.539  
0.540  
0.538  
0.528  
0.526  
0.528  
0.536  
0.556  
0.576  
0.591  
0.585  
0.602  
0.605  
0.624  
0.642  
0.664  
0.697  
0.732  
0.751  
0.821  
0.654  
-106.6  
-139.4  
-153.4  
-161.1  
-165.0  
-168.4  
-171.2  
-173.1  
-174.8  
-176.9  
177.4  
172.2  
168.1  
163.9  
155.7  
148.1  
140.5  
133.1  
124.3  
114.9  
104.5  
94.2  
35.3  
32.1  
30.5  
28.9  
28.1  
27.3  
26.5  
25.9  
25.3  
24.7  
22.6  
20.8  
19.4  
16.9  
13.6  
11.6  
10.2  
8.9  
6.6  
5.7  
4.7  
4.3  
2.7  
2.2  
1.2  
0.4  
-8.7  
-20.8  
-32.7  
-44.3  
-56.0  
-66.6  
-72.6  
-79.2  
-89.6  
-95.9  
-92.5  
84.4  
72.8  
62.4  
54.0  
42.1  
34.1  
25.3  
13.2  
-5.2  
-13.5  
-23.1  
-31.4  
-38.4  
-45.9  
-55.0  
-64.2  
-86.1  
83.4  
72.4  
65.1  
56.7  
50.4  
44.0  
39.9  
-1.5  
-3.9  
-4.3  
-11.2 0.28  
-11.0 0.28  
-10.2  
Typical Noise Parameters, VDS = 4.5V, IDS = 120 mA  
40.0  
30.0  
20.0  
10.0  
0.0  
Freq  
GHz  
Fmin  
dB  
Γopt  
Mag.  
Γopt  
Ang.  
Rn  
Ga  
dB  
MSG  
0.5  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
0.60  
0.72  
0.81  
0.92  
1.24  
1.50  
1.60  
1.88  
2.02  
0.19  
0.30  
0.44  
0.56  
0.59  
0.70  
0.75  
0.81  
0.68  
162.00  
164.00  
176.97  
-164.98  
-155.51  
-136.55  
-128.59  
-117.31  
-109.54  
3.0  
2.6  
2.0  
2.0  
20.0  
18.3  
15.9  
13.6  
11.1  
9.7  
8.7  
7.6  
5.6  
MAG  
3.4  
S
21  
11.1  
16.0  
24.0  
28.8  
-10.0  
-20.0  
0
5
10  
FREQUENCY (GHz)  
15  
20  
Figure 42. MSG/MAG and |S21|2 vs.  
Frequency at 4.5V, 120 mA.  
Notes:  
1. Fmin values at 2 GHz and higher are based on measurements while the Fmins below 2 GHz have been extrapolated. The Fmin values are based on a set of  
16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements a true Fmin is calculated.  
Refer to the noise parameter application section for more information.  
2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end of the gate  
lead. The output reference plane is at the end of the drain lead.  
11  
ATF-521P8 Typical Scattering Parameters, VDS = 4V, IDS = 200 mA  
Freq.  
GHz  
S11  
Ang.  
S21  
Ang.  
S12  
Mag.  
S22  
MSG/MAG  
dB  
Mag.  
dB  
Mag.  
dB  
Ang.  
Mag. Ang.  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
1.5  
2
2.5  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
0.843  
0.879  
0.888  
0.892  
0.886  
0.896  
0.897  
0.898  
0.896  
0.896  
0.898  
0.887  
0.893  
0.886  
0.887  
0.894  
0.898  
0.896  
0.879  
0.888  
0.872  
0.880  
0.875  
0.908  
0.898  
0.888  
0.815  
0.725  
0.792  
-90.5  
-129.3  
-146.1  
-155.6  
-161.5  
-165.7  
-169.5  
-172.2  
-174.9  
-176.7  
175.2  
168.0  
162.8  
156.9  
146.6  
136.8  
127.4  
119.7  
105.4  
95.0  
34.3  
30.3  
27.4  
25.1  
23.4  
21.8  
20.6  
19.5  
18.6  
17.6  
14.1  
11.8  
10.0  
8.4  
51.89  
32.88  
23.48  
17.91  
14.80  
12.37  
10.74  
9.39  
8.47  
7.61  
5.06  
3.91  
3.15  
2.63  
1.97  
1.57  
1.28  
1.09  
0.90  
0.82  
0.72  
0.65  
0.58  
0.49  
0.44  
0.39  
0.36  
0.32  
134.8  
115.0  
105.8  
100.1  
96.3  
92.7  
90.5  
88.1  
85.9  
84.0  
75.7  
68.1  
61.7  
55.1  
41.5  
29.4  
17.7  
6.3  
-37.7  
-35.4  
-35.1  
-34.4  
-34.2  
-34.2  
-33.6  
-33.5  
-33.3  
-32.9  
-32.1  
-30.7  
-29.5  
-28.4  
-26.7  
-25.1  
-23.9  
-22.6  
-21.1  
-20.1  
-19.2  
-18.6  
-18.0  
-17.7  
-17.2  
-16.8  
-16.2  
-15.5  
-16.6  
0.013  
0.017  
0.018  
0.019  
0.020  
0.020  
0.021  
0.021  
0.022  
0.023  
0.025  
0.029  
0.034  
0.038  
0.046  
0.056  
0.064  
0.074  
0.088  
0.099  
0.110  
0.118  
0.126  
0.130  
0.138  
0.144  
0.156  
0.167  
0.147  
46.5  
32.1  
26.0  
25.1  
24.6  
24.1  
24.7  
24.4  
26.5  
26.3  
29.9  
35.2  
35.8  
35.8  
33.2  
29.6  
25.5  
20.4  
12.4  
4.7  
0.408  
0.507  
0.539  
0.549  
0.551  
0.556  
0.557  
0.559  
0.559  
0.560  
0.558  
0.547  
0.545  
0.547  
0.554  
0.572  
0.590  
0.603  
0.594  
0.609  
0.610  
0.629  
0.647  
0.666  
0.699  
0.734  
0.750  
0.809  
0.652  
-118.1  
-146.1  
-158.3  
-164.8  
-168.2  
-170.9  
-173.5  
-175.2  
-176.9  
-178.7  
176.0  
170.9  
166.9  
162.6  
154.3  
146.6  
139.0  
131.6  
122.7  
113.2  
102.9  
92.6  
36.0  
32.9  
31.2  
29.7  
28.7  
27.9  
27.1  
26.5  
25.9  
25.2  
23.1  
21.3  
18.9  
16.3  
13.6  
11.9  
10.3  
8.9  
6.6  
6.1  
4.4  
3.8  
2.8  
2.6  
1.5  
0.5  
5.9  
3.9  
2.1  
0.7  
-0.9  
-1.7  
-2.9  
-3.8  
-4.8  
-6.2  
-7.1  
-8.2  
-8.9  
-9.9  
-7.1  
-19.3  
-30.9  
-42.8  
-53.3  
-63.4  
-73.5  
-80.2  
-85.3  
-90.9  
-95.1  
84.1  
72.4  
60.4  
52.4  
41.3  
34.1  
24.1  
11.3  
-4.3  
-12.9  
-22.8  
-31.4  
-38.0  
-45.6  
-54.7  
-66.0  
-84.8  
81.9  
71.0  
64.0  
55.9  
49.3  
43.5  
39.7  
-1.7  
-3.1  
-4.2  
-9.8  
-10.2 0.31  
Typical Noise Parameters, VDS = 4V, IDS = 200 mA  
40.0  
30.0  
20.0  
10.0  
0.0  
Freq  
GHz  
Fmin  
dB  
Γopt  
Mag.  
Γopt  
Ang.  
Rn  
Ga  
dB  
MSG  
0.5  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
0.67  
0.74  
0.96  
1.24  
1.44  
1.62  
1.83  
1.99  
2.21  
0.21  
0.30  
0.46  
0.57  
0.62  
0.69  
0.74  
0.82  
0.71  
155.00  
164.00  
-176.61  
-162.19  
-152.18  
-135.43  
-127.94  
-117.20  
-108.96  
2.8  
2.6  
2.1  
2.8  
20.1  
18.4  
16.4  
13.9  
11.4  
10.0  
8.7  
MAG  
4.5  
S
21  
10.0  
17.0  
27.7  
35.3  
-10.0  
-20.0  
7.7  
5.9  
0
5
10  
FREQUENCY (GHz)  
15  
20  
Figure 43. MSG/MAG and |S21|2 vs.  
Frequency at 4V, 200 mA.  
Notes:  
1. Fmin values at 2 GHz and higher are based on measurements while the Fmins below 2 GHz have been extrapolated. The Fmin values are based on a set of  
16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements a true Fmin is calculated.  
Refer to the noise parameter application section for more information.  
2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end of the gate  
lead. The output reference plane is at the end of the drain lead.  
12  
ATF-521P8 Typical Scattering Parameters, VDS = 3V, IDS = 200 mA  
Freq.  
GHz  
S11  
Ang.  
S21  
Ang.  
S12  
Mag.  
S22  
MSG/MAG  
dB  
Mag.  
dB  
Mag.  
dB  
Ang.  
Mag. Ang.  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1
1.5  
2
2.5  
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
0.867  
0.894  
0.899  
0.896  
0.892  
0.910  
0.906  
0.902  
0.907  
0.902  
0.900  
0.896  
0.896  
0.887  
0.890  
0.898  
0.896  
0.904  
0.877  
0.883  
0.877  
0.875  
0.863  
0.910  
0.868  
0.863  
0.835  
0.720  
0.780  
-94.6  
-132.9  
-148.2  
-157.2  
-162.8  
-167.4  
-170.8  
-173.6  
-175.2  
-177.7  
174.2  
168.1  
162.3  
156.7  
145.7  
136.3  
127.4  
119.4  
104.9  
94.8  
33.7  
29.4  
26.5  
24.1  
22.4  
20.8  
19.6  
18.4  
17.5  
16.6  
13.1  
10.8  
9.0  
48.20  
29.66  
21.06  
16.00  
13.20  
11.00  
9.51  
8.35  
7.51  
6.76  
4.50  
3.49  
2.82  
2.35  
1.76  
1.41  
1.16  
0.98  
0.83  
0.76  
0.67  
0.60  
0.54  
0.47  
0.42  
0.39  
0.33  
0.33  
132.4  
113.2  
104.4  
99.1  
95.6  
92.3  
90.2  
87.8  
86.3  
84.2  
76.4  
69.1  
63.0  
56.9  
43.8  
32.1  
21.6  
10.3  
-2.3  
-13.0  
-26.0  
-36.3  
-47.4  
-57.9  
-62.8  
-74.7  
-78.2  
-90.8  
-92.8  
-36.8  
-34.9  
-34.1  
-34.0  
-33.6  
-33.2  
-33.2  
-33.0  
-32.9  
-32.5  
-31.5  
-29.9  
-29.0  
-27.7  
-26.1  
-24.5  
-23.4  
-22.1  
-20.7  
-19.8  
-18.9  
-18.3  
-17.8  
-17.6  
-17.2  
-16.8  
-16.3  
-15.8  
-17.0  
0.014  
0.018  
0.020  
0.020  
0.021  
0.022  
0.022  
0.022  
0.023  
0.024  
0.027  
0.032  
0.036  
0.041  
0.050  
0.059  
0.068  
0.078  
0.092  
0.102  
0.113  
0.121  
0.128  
0.132  
0.138  
0.144  
0.154  
0.161  
0.142  
45.1  
28.5  
23.2  
23.7  
24.5  
22.9  
23.9  
24.6  
27.0  
26.9  
32.7  
32.9  
34.3  
35.0  
32.2  
28.3  
23.5  
17.7  
9.0  
0.482  
0.601  
0.636  
0.647  
0.650  
0.655  
0.657  
0.658  
0.660  
0.659  
0.656  
0.647  
0.642  
0.643  
0.645  
0.659  
0.671  
0.677  
0.651  
0.661  
0.657  
0.670  
0.680  
0.694  
0.721  
0.748  
0.758  
0.818  
0.655  
-132.4  
-154.2  
-163.8  
-169.2  
-171.9  
-174.4  
-176.7  
-178.2  
-179.5  
178.6  
173.4  
167.9  
163.7  
159.2  
150.4  
142.1  
134.3  
126.6  
117.0  
107.2  
96.8  
35.4  
32.2  
30.2  
29.0  
28.0  
27.0  
26.4  
25.8  
25.1  
24.5  
22.2  
20.4  
18.6  
15.6  
12.9  
11.3  
9.5  
8.5  
5.9  
5.3  
4.0  
3.1  
1.9  
2.3  
0.2  
7.4  
4.9  
3.0  
1.3  
-0.2  
-1.6  
-2.4  
-3.5  
-4.4  
-5.4  
-6.5  
-7.5  
-8.1  
-9.6  
-9.5  
1.3  
-7.3  
83.1  
71.7  
60.6  
51.6  
40.9  
33.4  
25.2  
11.2  
-16.6  
-25.1  
-33.6  
-40.4  
-47.6  
-56.8  
-67.6  
-85.1  
86.7  
76.2  
65.9  
59.3  
51.3  
44.9  
39.4  
37.1  
-0.2  
-2.1  
-2.6  
-5.7  
-7.7  
-11.6 0.26  
Typical Noise Parameters, VDS = 3V, IDS = 200 mA  
40.0  
30.0  
20.0  
10.0  
0.0  
Freq  
GHz  
Fmin  
dB  
Γopt  
Mag.  
Γopt  
Ang.  
Rn  
Ga  
dB  
MSG  
0.5  
1.0  
2.0  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
0.66  
0.72  
0.87  
1.00  
1.32  
1.49  
1.59  
1.79  
1.96  
0.22  
0.30  
0.42  
0.59  
0.63  
0.72  
0.74  
0.78  
0.70  
147.00  
160.00  
-179.94  
-163.63  
-153.81  
-135.10  
-128.97  
-117.68  
-110.04  
2.9  
2.6  
1.9  
1.6  
20.0  
18.3  
16.0  
13.7  
11.3  
9.9  
8.5  
7.6  
5.6  
MAG  
3.7  
S
21  
10.0  
15.0  
25.1  
29.2  
-10.0  
-20.0  
0
5
10  
FREQUENCY (GHz)  
15  
20  
Figure 44. MSG/MAG and |S21|2 vs.  
Frequency at 3V, 200 mA.  
Notes:  
1. Fmin values at 2 GHz and higher are based on measurements while the Fmins below 2 GHz have been extrapolated. The Fmin values are based on a set of  
16 noise figure measurements made at 16 different impedances using an ATN NP5 test system. From these measurements a true Fmin is calculated.  
Refer to the noise parameter application section for more information.  
2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the end of the gate  
lead. The output reference plane is at the end of the drain lead.  
13  
The input load pull parameter at  
2 GHz is shown in Figure 1 along  
with the optimum S11 conjugate  
match.  
rules but will have different  
locations. Also, the location of  
these points is largely due to the  
manufacturing process and  
partly due to IC layout, but in  
either case beyond the scope of  
this application note.  
ATF-521P8  
Applications Information  
Description  
Agilents ATF-521P8 is an  
enhancement mode PHEMT  
designed for high linearity and  
medium power applications.  
With an OIP3 of 42 dBm and a  
1dB compression point of  
ΓS  
S11  
*
26 dBm, ATF-521P8 is well suited  
as a base station transmit driver  
or a first or second stage LNA in  
a receive chain. Whether the  
design is for a W-CDMA, CDMA,  
or GSM basestation, this device  
delivers good linearity in the  
form of OIP3 or ACLR, which is  
required for standards with high  
peak to average ratios.  
ΓL  
S22*  
Figure 1. Input Match for ATF-521P8 at 2 GHz.  
Thus, it should be obvious from  
the illustration above that if this  
device is matched for maximum  
return loss i.e. S11*, then OIP3  
will be sacrificed. Conversely, if  
ATF-521P8 is matched for  
maximum linearity, then return  
loss will not be greater than  
10 dB. For most applications, a  
designer requires VSWR greater  
Figure 2. Output Match at 2 GHz.  
Once a designer has chosen the  
proper input and output imped-  
ance points, the next step is to  
choose the correct topology to  
accomplish this match. For  
Application Guidelines  
The ATF-521P8 device operates  
as a normal FET requiring input  
and output matching as well as  
DC biasing. Unlike a depletion  
mode transistor, this enhance-  
ment mode device only requires a  
single positive power supply,  
which means a positive voltage is  
placed on the drain and gate in  
order for the transistor to turn  
on. This application note walks  
through the RF and DC design  
employed in a single FET ampli-  
fier. Included in this description  
is an active feedback scheme to  
accomplish this DC biasing.  
example to perform the above  
output impedance transforma-  
than 2:1, hence limiting the input tion from 50to the given load  
match close to S11*. Normally,  
the input return loss of a single  
ended amplifier is not critical as  
parameter of 0.53-176°, two  
possible solutions exist. The first  
potential match is a high pass  
most basestation LNA and driver configuration accomplished by a  
amplifiers are in a balanced  
configuration with 90° (quadra-  
ture) couplers.  
shunt inductor and a series  
capacitor shown in Figure 3  
along with its frequency response  
in Figure 4.  
Proceeding from the same  
premise, the output match of this  
device becomes much simpler.  
As background information, it is  
important to note that OIP3 is  
largely dependant on the output  
match and that output return  
loss is also required to be greater  
than 10 dB. So, Figure 2 shows  
how both good output return loss  
and good linearity could be  
RF  
in  
C1  
RF  
out  
L1  
RF Input & Output Matching  
In order to achieve maximum  
linearity, the appropriate input  
(Γs) and output (ΓL) impedances  
must be presented to the device.  
Correctly matching from these  
impedances to 50s will result in  
maximum linearity. Although  
ATF-521P8 may be used in other  
impedance systems, data col-  
lected for this data sheet is all  
referenced to a 50system.  
Figure 3. High Pass Circuit Topology.  
Amp  
achieved simultaneously with the  
same impedance point.  
Frequency  
Of course, these points are valid  
only at 2 GHz, and other frequen-  
cies will follow the same design  
Figure 4. High Pass Frequency Response.  
14  
The second solution is a low pass precipitously giving a narrow  
A voltage divider network with  
configuration with a shunt  
capacitor and a series inductor  
shown in Figure 5 and 6.  
band frequency response, yet still R1 and R2 establishes the typical  
wide enough to accommodate a  
CDMA or WCDMA transmit band.  
For more information on RF  
matching techniques refer to  
MGA-53543 application note.  
gate bias voltage (Vg).  
Vg  
R1 =  
(2)  
(3)  
p
RF  
in  
L1  
RF  
out  
Ibb  
C1  
Passive Bias[1]  
(Vdd Vg) x R1  
R2 =  
p
Vg  
Once the RF matching has been  
established, the next step is to  
DC bias the device. A passive  
biasing example is shown in  
Figure 8. In this example the  
voltage drop across resistor R3  
sets the drain current (Id) and is  
calculated by the following  
equation:  
Figure 5. Low Pass Circuit Topology.  
Amp  
Often the series resistor, R4, is  
added to enhance the low fre-  
quency stability. The complete  
passive bias example may be  
found in reference [1].  
Frequency  
C4  
OUTPUT  
C1  
L1  
INPUT  
Q1  
Figure 6. Low Pass Frequency Response.  
Zo  
Zo  
V
dd Vds  
C2  
C3  
L4  
C5  
R3 =  
(1)  
The actual values of these  
p
Ids + Ibb  
components may be calculated by  
hand on a Smith Chart or more  
accurately done on simulation  
software such as ADS. There are  
some advantages and disadvan-  
tages of choosing a high pass  
R4  
R3  
C6  
where,  
I
b
Vdd is the power supply voltage;  
R5  
Vds is the device drain to source  
voltage;  
R2  
R1  
Vdd  
versus a low pass. For instance, a Ids is the device drain to source  
Figure 8. Passive Biasing.  
high pass circuit cuts off low  
frequency gain, which narrows  
the usable bandwidth of the  
amplifier, but consequently helps  
avoid potential low frequency  
instability problems. A low pass  
match offers a much broader  
frequency response, but it has  
two major disadvantages. First it  
has the potential for low fre-  
quency instability, and second it  
creates the need for an extra DC  
blocking capacitor on the input  
in order to isolate the device gate  
from the preceding stages.  
current;  
Ibb for DC stability is 10X the  
typical gate current;  
RF  
C3  
C1  
RF  
out  
in  
Zo  
Zo  
52  
L1  
C2  
Total Response  
Output Match  
Frequency  
Input Match  
ATF-521P8  
Amp  
Amp  
Amp  
Figure 7 displays the input and  
output matching selected for  
ATF-521P8. In this example the  
input and output match both  
essentially function as high pass  
filters, but the high frequency  
gain of the device rolls off  
Amp  
+
+
=
Frequency  
Frequency  
Frequency  
Figure 7. Input and Output Match for ATF-521P8 at 2 GHz.  
15  
Active Bias[2]  
To calculate the values of R1, R2,  
R3, and R4 the following param-  
eters must be know or chosen  
first:  
and also equal to the reference  
current IR.  
Due to very high DC power  
dissipation and small package  
constraints, it is recommended  
that ATF-521P8 use active  
biasing. The main advantage of  
an active biasing scheme is the  
ability to hold the drain to source  
current constant over a wide  
range of temperature variations.  
A very inexpensive method of  
accomplishing this is to use two  
The next three equations are  
used to calculate the rest of the  
biasing resistors for Figure 9.  
Note that the voltage drop across  
R1 must be set equal to the  
voltage drop across R3, but with  
a current of IR.  
Ids is the device drain-to-source  
current;  
IR is the Reference current for  
active bias;  
Vdd is the power supply voltage  
available;  
Vds is the device drain-to-source  
Vdd Vds  
R1 =  
(5)  
PNP bipolar transistors arranged voltage;  
in a current mirror configuration  
p
IR  
Vg is the typical gate bias;  
as shown in Figure 9. Due to  
resistors R1 and R3, this circuit  
is not acting as a true current  
mirror, but if the voltage drop  
across R1 and R3 is kept identi-  
cal then it still displays some of  
the more useful characteristics of  
a current mirror. For example,  
transistor Q1 is configured with  
its base and collector tied  
R2 sets the bias current through  
Q1.  
Vbe1 is the typical Base-Emitter  
turn on voltage for Q1 & Q2;  
Vds Vbe1  
Therefore, resistor R3, which sets  
the desired device drain current,  
is calculated as follows:  
R2 =  
(6)  
p
IR  
R4 sets the gate voltage for  
ATF-521P8.  
Vg  
V
dd Vds  
R3 =  
(4)  
p
R4 =  
(7)  
Ids + IC2  
p
IC2  
together. This acts as a simple PN  
junction, which helps tempera-  
ture compensate the Emitter-  
Base junction of Q2.  
where,  
Thus, by forcing the emitter  
voltage (VE) of transistor Q1  
equal to Vds, this circuit regulates  
the drain current similar to a  
current mirror. As long as Q2  
operates in the forward active  
mode, this holds true. In other  
words, the Collector-Base junc-  
tion of Q2 must be kept reversed  
biased.  
IC2 is chosen for stability to be  
10 times the typical gate current  
R1  
VE  
R2  
R4  
Q1  
Q2  
Vdd  
C6  
R3  
Vg  
Vds  
C5  
C8  
C4  
C3  
R6  
R5  
L3  
L2  
C7  
C1  
RF  
in  
RF  
out  
L1  
7
2
2PL  
ATF-521P8  
C2  
L4  
Figure 9. Active Bias Circuit.  
16  
PCB Layout  
rigidity and consists of FR4 with  
dielectric constant of 4.2.  
A recommended PCB pad layout  
for the Leadless Plastic Chip  
Carrier (LPCC) package used by  
the ATF-521P8 is shown in  
Figure 10. This layout provides  
plenty of plated through hole vias  
for good thermal and RF ground-  
ing. It also provides a good  
transition from microstrip to the  
device package. For more de-  
tailed dimensions refer to  
Section 9 of the data sheet.  
Pin 8  
Drain  
Pin 6  
Pin 5  
Source  
Gate  
P
High Linearity Tx Driver  
Pin 3  
The need for higher data rates  
and increased voice capacity gave  
rise to a new third generation  
standard know as Wideband  
CDMA or UMTS. This new  
standard requires higher perfor-  
mance from radio components  
such as higher dynamic range  
andbetter linearity. For example,  
a WCDMA waveform has a very  
high peak to average ratio which  
forces amplifiers in a transmit  
chain to have very good Adjacent  
Channel Leakagepower Ratio or  
ACLR, or else operate in a  
backed off mode. If the amplifier  
is not backed off then the wave-  
form is compressed and the  
signal becomes very nonlinear.  
This application example pre-  
sents a highly linear transmit  
drive for use inthe 2.14GHz  
frequency range. Using the RF  
matching techniques described  
earlier, ATF-521P8 is matched to  
the following input and output  
impedances:  
Source  
Bottom View  
Figure 11. LPCC Package for ATF-521P8.  
This simplifies RF grounding by  
reducing the amount of induc-  
tance from the source to ground.  
It is also recommended to ground  
pins 1 and 4 since they are also  
connected to the device source.  
Pins 3, 5, 6, and 8 are not con-  
nected, but may be used to  
help dissipate heat from the  
package or for better alignment  
when soldering the device.  
Figure 10. Microstripline Layout.  
This three-layer board (Figure  
12) contains a 10-mil layer and a  
52-mil layer separated by a  
ground plane. The first layer is  
Getek RG200D material with  
dielectric constant of 3.8. The  
second layer is for mechanical  
RF Grounding  
Unlike SOT packages, ATF-521P8  
is housed in a leadless package  
with the die mounted directly to  
the lead frame or the belly of the  
package shown in Figure 11.  
Input  
Match  
Output  
Match  
2PL  
50 Ohm  
50 Ohm  
C5  
S11* = 0.89-169  
Γ
= 0.53-176  
L
R1  
R3  
R2  
R4  
Figure 13. ATF-521P8 Matching.  
C6  
C7  
C4  
C3  
J2  
J1  
C1  
C8  
L1  
0
short  
Figure 12. ATF-521P8 demoboard.  
17  
20  
15  
10  
5
As described previously the input  
impedance must be matched to  
S11* in order to guarantee return  
loss greater than 10 dB. A high  
pass network is chosen for this  
match. The output is matched to  
ΓL with another high pass  
network. The next step is to  
choose the proper DC biasing  
conditions. From the data sheet,  
ATF-521P8 produces good  
linearity at a drain current of  
200mA and a drain to source  
voltage of 4.5V. Thus to construct  
the active bias circuit described,  
the following parameters are  
given:  
Resistor  
Calculated  
Actual  
Gain  
R1  
R2  
R3  
R4  
50Ω  
49.9Ω  
383Ω  
2.37Ω  
61.9Ω  
385Ω  
2.38Ω  
62Ω  
Table 1. Resistors for Active Bias.  
NF  
The entire circuit schematic for a  
2.14 GHz Tx driver amplifier is  
shown below in Figure 14.  
0
1.6  
1.8  
2.0  
2.2  
2.4  
2.6  
FREQUENCY (GHz)  
Capacitors C4, C5, and C6 are  
added as a low frequency bypass.  
These terminate second order  
harmonics and help improve  
linearity. Resistors R5 and  
R6 also help terminate low  
frequencies, and can prevent  
resonant frequencies between  
the two bypass capacitors.  
Figure 15. Gain and Noise Figure vs. Frequency.  
Input and output return loss are  
both greater that 10 dB. Although  
somewhat narrowband, the  
response is adequate in the  
frequency range of 2110 MHz to  
2170 MHz for the WCDMA  
downlink. If wider band response  
is need, using a balanced configu-  
ration improves return loss and  
doubles OIP3.  
Ids = 200 mA  
IR = 10 mA  
Vdd = 5V  
Vds = 4.5V  
Vg = 0.62V  
Vbe1 = 0.65V  
Performance of ATF-521P8 at  
2140 MHz  
ATF-521P8 delivers excellent  
performance in the WCDMA  
frequency band. With a drain-to-  
source voltage of 4.5V and a  
drain current of 200 mA, this  
device has 16.5 dB of gain and  
1.55 dB of noise figure as show in  
Figure 15.  
Using equations 4, 5, 6, and 7, the  
biasing resistor values are  
calculated in column 2 of table 1,  
and the actual values used are  
listed in column 3.  
0
S11  
-5  
-10  
S22  
I
R
R1=49.9Ω  
R2=383Ω  
-15  
1.6  
Q1  
Q2  
1.8  
2.0  
2.2  
2.4  
2.6  
+
V
be1  
+5V  
FREQUENCY (GHz)  
C5=1µF  
Figure 16. Input and Output Return Loss vs.  
Frequency.  
V
g
V
ds  
R3=2.37Ω  
C6=.1µF  
R4=61.9Ω  
IC2  
C4=1µF  
Perhaps the most critical system  
levelspecification for the  
ATF-521P8 lies in its distortion-  
less output power. Typically,  
amplifiers arecharacterized for  
linearity by measuring OIP3. This  
is a two-tone harmonic measure-  
ment using CW signals. But  
because WCDMA is a modulated  
waveform spread across  
3.84 MHz, it is difficult to corre-  
lated good OIP3 to good ACLR.  
Thus, both are measured and  
presented to avoid ambiguity.  
R6=1.2Ω  
R5=10Ω  
C7=150pF  
C3=4.7pF  
L3=39nH  
C8=1.5pF  
L2=12nH  
L1=1.0nH  
C1=1.2pF  
RF  
RF  
out  
in  
7
2
2PL  
ATF-521P8  
C2=1.5nH  
L4=3.9nH  
Figure 14. 2140 MHz Schematic.  
18  
45  
40  
35  
30  
25  
Using the 3GPP standards  
From Figure 19, a very useful  
equation is derived to calculate  
the temperature of the channel  
for a given ambient temperature.  
These calculations are all incor-  
porated into Agilent Technolo-  
gies AppCAD.  
document Release 1999 version  
2002-6, the following channel  
configuration was used to test  
ACLR. This table contains the  
power levels of the main chan-  
nels used for Test Model 1. Note  
that the DPCH can be made up of  
16, 32, or 64 separate channels  
each at different power levels  
and timing offsets. For a listing  
of power levels, channelization  
codes and timing offset see the  
entire 3GPP TS 25.141 V3.10.0  
(2002-06) standards document  
at: http://www.3gpp.org/specs/  
specs.htm  
Tch  
(channel)  
θch-b  
Tb (board  
or belly  
2060 2080 2100 2120  
2200  
2140 2160 2180  
FREQUENCY (MHz)  
of the part)  
θb-s  
Figure 17. OIP3 vs. Frequency in WCDMA Band  
(Pout = 12 dBm).  
Ts (sink)  
θs-a  
-30  
-35  
-40  
-45  
-50  
-55  
-60  
-65  
Ta (ambient)  
Figure 19. Equivalent Circuit for Thermal  
Resistance.  
3GPP TS 25.141 V3.10.0 (2002-06)  
Type  
Pwr (dB)  
P-CCPCH+SCH  
Primary CPICH  
PICH  
-10  
-10  
-18  
-18  
Hence very similar to Ohms Law,  
the temperature of the channel is  
calculated with equation 8 below.  
TCH = Pdiss (θchb + θbs +θsa  
)
S-CCPCH containing PCH  
(SF=256)  
+ Tamb  
(8)  
-3  
2
7
12  
17  
22  
Pout (dBm)  
DPCH-64ch  
(SF=128)  
-1.1  
If no heat sink is used or heat  
Figure 18. ACLR vs. Pout at 5 MHz Offset.  
sinking is incorporated into the  
PCB board then equation 8 may  
be reduced to:  
Table 3. ACLR Channel Power Configuration.  
C1=1.2 pF  
C2,C8=1.5 pF  
C3=4.7 pF  
C4,C6=.1 µF  
C5=1 µF  
Phycomp 0402CG129C9B200  
Phycomp 0402CG159C9B200  
Phycomp 0402CG479C9B200  
Phycomp 06032F104M8B200  
AVX 0805ZC105KATZA  
Phycomp 0402CG151J9B200  
TOKO LL1005-FH1n0S  
TOKO LL1005-FS12N  
TOKO LL1005-FS39  
Thermal Design  
TCH =Pdiss (θchb +θba)+Tamb (9)  
When working with medium to  
high power FET devices, thermal  
dissipation should be a large part  
of the design. This is done to  
ensure that for a given ambient  
temperature the transistors  
channel does not exceed the  
maximum rating, TCH, on the  
data sheet. For example,  
ATF-521P8 has a maximum  
channel temperature of 150°C  
and a channel to board thermal  
resistance of 45°C/W, thus the  
entire thermal design hinges  
from these key data points. The  
question that must be answered  
is whether this device can  
where,  
θ
ba is the board to ambient  
thermal resistance;  
chb is the channel to board  
C7=150 pF  
L1=1.0 nH  
L2=12 nH  
L3=39 nH  
L4=3.9 nH  
R1=49.9Ω  
R2=383Ω  
R3=2.37Ω  
R4=61.9Ω  
R5=10Ω  
θ
thermal resistance.  
The board to ambient thermal  
resistance thus becomes very  
important for this is the  
designers major source of heat  
control. To demonstrate the  
influence of θb-a, thermal resis-  
tance is measured for two very  
different scenarios using the  
ATF-521P8 demoboard. The first  
case is done with just the  
TOKO LL1005-FH3N9S  
RohmRK73H1J49R9F  
Rohm RK73H1J3830F  
Rohm RK73H1J2R37F  
Rohm RK73H1J61R9F  
Rohm RK73H1J10R0F  
Rohm RK73H1J1R21F  
Philips BCV62C  
operate in a typical environment  
with ambient temperature  
fluctuations from -25°C to 85°C.  
R6=1.2Ω  
Q1, Q2  
demoboard by itself. The second  
case is the ATF demoboard  
J1, J2  
142-0701-851  
Table 2. 2140 MHz Bill of Material.  
19  
mounted on a chassis or metal  
casing, and the results are given  
below:  
lower the temperature below  
150°C. This can be better under-  
stood with Figure 20 below. Note  
power is derated at 13 mW/°C  
for the board with no heat sink  
and no derating is required for  
the chassis mounted board until  
an ambient temperature of  
100°C.  
Summary  
A high linearity Tx driver  
amplifierfor WCDMA has been  
presented and designed using  
Agilents ATF-521P8. This  
includes RF, DC and good ther-  
mal dissipation practices for  
reliable lifetime operation. A  
summary of the typical perfor-  
mance for ATF-521P8 demoboard  
at 2140 MHz is as follows:  
ATF Demoboard  
θb-a  
PCB 1/8" Chassis  
PCB no HeatSink  
10.4°C/W  
32.9°C/W  
Table 4. Thermal resistance measurements.  
Pdiss  
(W)  
Therefore calculating the tem-  
perature of the channel for these  
two scenarios gives a good  
indication of what type of heat  
sinking is needed.  
Mounted on Chassis  
(18 mW/°C)  
0.9W  
Demo Board Results at 2140 MHz  
No Heatsink  
(13 mW/°C)  
Gain  
OIP3  
ACLR  
P1dB  
NF  
16.5 dB  
41.2 dBm  
-58 dBc  
24.8 dBm  
1.55 dB  
0
81 100  
150  
Tamb (°C)  
Case 1: Chassis Mounted @ 85°C  
Tch = P x (θch-b +θb-a) + Ta  
=.9W x (45+10.4)°C/W +85°C  
Tch = 135°C  
Figure 20. Derating for ATF- 521P8.  
Thus, for reliable operation of  
ATF-521P8 and extended MTBF,  
it is recommended to use some  
form of thermal heatsinking. This  
may include any or all of the  
following suggestions:  
References  
Case 2: No Heatsink @ 85°C  
Tch = P x (θch-b +θb-a) + Ta  
=.9W x (45+32.9)°C/W + 85°C  
Tch = 155°C  
[1] Ward, A. (2001) Agilent  
ATF-54143 Low Noise Enhance-  
ment Mode Pseudomorphic  
HEMT in a Surface Mount  
Plastic Package, 2001 [Internet],  
Available from:  
Maximize vias underneath and  
around package;  
Maximize exposed surface  
In other words, if the board is  
mounted to a chassis, the chan-  
nel temperature is guaranteed to  
be 135°C safely below the 150°C  
maximum. But on the other  
hand, if no heat sinking is used  
and the θb-a is above 27°C/W  
(32.9°C/W in this case), then the  
power must be derated enough to  
<http://www.agilent.com/view/rf>  
[Accessed 22 August, 2002].  
metal;  
Use 1 oz or greater copper clad;  
Minimize board thickness;  
Metal heat sinks or extrusions;  
Fans or forced air;  
[2] Biasing Circuits and  
Considerations for GaAs  
MESFET Power Amplifiers, 2001  
[Internet], Available from:  
<http://www.rf-solutions.com/  
pdf/AN-0002_ajp.pdf> [Accessed  
22 August, 2002]  
Mount PCB to Chassis.  
20  
Device Models  
Refer to Agilents Web Site  
www.agilent.com/view/rf  
Ordering Information  
Part Number  
No. of Devices  
Container  
ATF-521P8-TR1  
ATF-521P8-TR2  
ATF-521P8-BLK  
3000  
10000  
100  
7Reel  
13Reel  
antistatic bag  
2x 2 LPCC (JEDEC DFP-N) Package Dimensions  
D1  
D
pin1  
P
pin1  
8
7
1
2
E
e
E1  
2PX  
6
5
R
3
4
b
L
Top View  
Bottom View  
A1  
A
A
A2  
End View  
End View  
DIMENSIONS  
SYMBOL  
MIN.  
0.70  
0
NOM.  
0.75  
MAX.  
0.80  
A
A1  
A2  
b
0.02  
0.05  
0.203 REF  
0.25  
0.225  
1.9  
0.275  
2.1  
D
2.0  
D1  
E
0.65  
1.9  
0.80  
0.95  
2.1  
2.0  
E1  
e
1.45  
1.6  
1.75  
0.50 BSC  
DIMENSIONS ARE IN MILLIMETERS  
21  
PCB Land Pattern and Stencil Design  
2.72 (107.09)  
0.63 (24.80)  
0.22 (8.86)  
0.32 (12.79)  
2.80 (110.24)  
0.70 (27.56)  
0.25 (9.84)  
0.25 (9.84)  
PIN 1  
PIN 1  
0.50 (19.68)  
0.50 (19.68)  
φ0.20 (7.87)  
1.54 (60.61)  
1.60 (62.99)  
0.28 (10.83)  
+
Solder  
mask  
0.25 (9.74)  
0.63 (24.80)  
0.60 (23.62)  
RF  
transmission  
line  
0.72 (28.35)  
0.80 (31.50)  
0.15 (5.91)  
0.55 (21.65)  
Stencil Layout (top view)  
PCB Land Pattern (top view)  
Device Orientation  
4 mm  
REEL  
8 mm  
2PX  
2PX  
2PX  
2PX  
CARRIER  
TAPE  
USER  
FEED  
DIRECTION  
COVER TAPE  
22  
Tape Dimensions  
P0  
P2  
P
D
E
F
W
+
+
D1  
Tt  
t1  
K0  
10° Max  
10° Max  
A0  
B0  
DESCRIPTION  
SYMBOL  
SIZE (mm)  
SIZE (inches)  
CAVITY  
LENGTH  
WIDTH  
A
0
2.30 0.05  
2.30 0.05  
1.00 0.05  
4.00 0.10  
1.00 + 0.25  
0.091 0.004  
0.091 0.004  
0.039 0.002  
0.157 0.004  
0.039 + 0.002  
B
0
DEPTH  
K
0
P
PITCH  
BOTTOM HOLE DIAMETER  
D
1
PERFORATION  
CARRIER TAPE  
DIAMETER  
PITCH  
D
1.50 0.10  
4.00 0.10  
1.75 0.10  
0.060 0.004  
0.157 0.004  
0.069 0.004  
P
0
POSITION  
E
WIDTH  
W
8.00 + 0.30  
8.00 0.10  
0.254 0.02  
0.315 0.012  
0.315 0.004  
0.010 0.0008  
THICKNESS  
t
1
COVER TAPE  
DISTANCE  
WIDTH  
C
5.4 0.10  
0.205 0.004  
TAPE THICKNESS  
T
t
0.062 0.001  
0.0025 0.0004  
CAVITY TO PERFORATION  
(WIDTH DIRECTION)  
F
3.50 0.05  
2.00 0.05  
0.138 0.002  
0.079 0.002  
CAVITY TO PERFORATION  
(LENGTH DIRECTION)  
P
2
23  
www.agilent.com/semiconductors  
For product information and a complete list of  
distributors, please go to our web site.  
For technical assistance call:  
Americas/Canada: +1 (800) 235-0312 or  
(916) 788 6763  
Europe: +49 (0) 6441 92460  
China: 10800 650 0017  
Hong Kong: (+65) 6271 2451  
India, Australia, New Zealand: (+65) 6271 2394  
Japan: (+81 3) 3335-8152(Domestic/International), or  
0120-61-1280(Domestic Only)  
Korea: (+65) 6271 2194  
Malaysia, Singapore: (+65) 6271 2054  
Taiwan: (+65) 6271 2654  
Data subject to change.  
Copyright © 2003 Agilent Technologies, Inc.  
Obsoletes 5988-8403  
July 29, 2003  
5988-9974EN  

相关型号:

ATF-53189

Enhancement Mode Pseudomorphic HEMT in SOT 89 Package
AGILENT

ATF-53189

Enhancement Mode Pseudomorphic HEMT in SOT 89 Package Single voltage operation
AVAGO

ATF-53189-BLK

Enhancement Mode Pseudomorphic HEMT in SOT 89 Package Single voltage operation
AVAGO

ATF-53189-BLKG

RF SMALL SIGNAL, FET
AVAGO

ATF-53189-TR1

Enhancement Mode Pseudomorphic HEMT in SOT 89 Package Single voltage operation
AVAGO

ATF-53189-TR1G

RF Small Signal Field-Effect Transistor,
AVAGO

ATF-531P8

High Linearity Enhancement Mode Pseudomorphic HEMT in 2x2 mm LPCC Package
AGILENT

ATF-531P8-BLK

High Linearity Enhancement Mode Pseudomorphic HEMT in 2x2 mm LPCC Package
AGILENT

ATF-531P8-BLKG

RF Small Signal Field-Effect Transistor, 1-Element, C Band, Silicon, N-Channel, High Electron Mobility FET, MO-229, 2 X 2 MM, 0.75 MM HEIGHT, PLASTIC, LPCC-8
AGILENT

ATF-531P8-BLKG

C BAND, Si, N-CHANNEL, RF SMALL SIGNAL, HEMFET, MO-229, 2 X 2 MM, 0.75 MM HEIGHT, PLASTIC, LPCC-8
AVAGO

ATF-531P8-TR1

High Linearity Enhancement Mode Pseudomorphic HEMT in 2x2 mm LPCC Package
AGILENT

ATF-531P8-TR1G

C BAND, Si, N-CHANNEL, RF SMALL SIGNAL, HEMFET, MO-229, 2 X 2 MM, 0.75 MM HEIGHT, PLASTIC, LPCC-8
AVAGO