ATF-33143-BLK [AGILENT]

Low Noise Pseudomorphic HEMT in a Surface Mount Plastic Package; 低噪声赝HEMT的表面贴装塑料封装
ATF-33143-BLK
型号: ATF-33143-BLK
厂家: AGILENT TECHNOLOGIES, LTD.    AGILENT TECHNOLOGIES, LTD.
描述:

Low Noise Pseudomorphic HEMT in a Surface Mount Plastic Package
低噪声赝HEMT的表面贴装塑料封装

晶体 小信号场效应晶体管 射频小信号场效应晶体管 光电二极管 放大器
文件: 总14页 (文件大小:149K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Noise Pseudomorphic HEMT  
in a Surface Mount Plastic Package  
Technical Data  
ATF-33143  
Features  
Surface Mount Package  
SOT-343  
Description  
• Low Noise Figure  
Agilent’s ATF-33143 is a high  
dynamic range, low noise,  
PHEMT housed in a 4-lead SC-70  
(SOT-343) surface mount plastic  
package.  
• Excellent Uniformity in  
Product Specifications  
• Low Cost Surface Mount  
Small Plastic Package  
SOT-343 (4 lead SC-70)  
Based on its featured perfor-  
mance, ATF-33143 is suitable for  
applications in cellular and PCS  
base stations, LEO systems,  
MMDS, and other systems requir-  
ing super low noise figure with  
good intercept in the 450 MHz to  
10 GHz frequency range.  
• Tape-and-Reel Packaging  
Option Available  
Pin Connections and  
Package Marking  
Specifications  
1.9 GHz; 4V, 80 mA (Typ.)  
DRAIN  
SOURCE  
• 0.5 dB Noise Figure  
SOURCE  
GATE  
• 15 dB Associated Gain  
• 22 dBm Output Power at  
1 dB Gain Compression  
• 33.5 dBm Output 3rd Order  
Intercept  
Note: Top View. Package marking  
provides orientation and identification.  
“3P” = Device code  
“x” = Date code character. A new  
character is assigned for each month, year.  
Applications  
• Low Noise Amplifier and  
Driver Amplifier for  
Cellular/PCS Base Stations  
• LNA for WLAN, WLL/RLL,  
LEO, and MMDS  
Applications  
• General Purpose Discrete  
PHEMT for Other Ultra Low  
Noise Applications  
1
ATF-33143 Absolute Maximum Ratings[1]  
Notes:  
Absolute  
Maximum  
1. Operation of this device above any one  
of these parameters may cause  
permanent damage.  
2. Assumes DC quiesent conditions.  
3. VGS = 0V  
4. Source lead temperature is 25°C.  
Derate 6 mW/ °C for TL > 60°C.  
5. Please refer to failure rates in reliability  
section to assess the reliability impact  
of running devices above a channel  
temperature of 140°C.  
6. Thermal resistance measured using  
150°C Liquid Crystal Measurement  
method.  
Symbol  
VDS  
Parameter  
Units  
V
Drain - Source Voltage[2]  
Gate - Source Voltage[2]  
Gate Drain Voltage[2]  
Drain Current[2]  
5.5  
-5  
VGS  
V
VGD  
V
-5  
[3]  
IDS  
mA  
mW  
dBm  
°C  
Idss  
Pdiss  
Pin max  
TCH  
Total Power Dissipation[4]  
600  
20  
RF Input Power  
Channel Temperature[5]  
Storage Temperature  
Thermal Resistance[6]  
160  
TSTG  
θjc  
°C  
-65 to 160  
145  
°C/W  
Product Consistency Distribution Charts[8, 9]  
500  
400  
300  
200  
100  
120  
Cpk = 1.7  
+0.6 V  
Std = 0.05  
100  
80  
0 V  
+3 Std  
-3 Std  
60  
40  
20  
0
–0.6 V  
0
0
2
4
6
8
0.2  
0.3  
0.4  
0.5  
0.6  
0.7 0.8  
V
(V)  
DS  
NF (dB)  
[7]  
Figure 1. Typical Pulsed I-V Curves  
(VGS = -0.2 V per step)  
.
Figure 2. NF @ 2 GHz, 4 V, 80 mA.  
LSL=0.2, Nominal=0.53, USL=0.8  
100  
80  
120  
Cpk = 1.21  
Std = 0.94  
Cpk = 2.3  
Std = 0.2  
100  
80  
60  
40  
20  
0
60  
-3 Std  
+3 Std  
-3 Std  
+3 Std  
40  
20  
0
31  
33  
35  
29  
37  
13  
14  
15  
GAIN (dB)  
16  
17  
OIP3 (dBm)  
Figure 3. OIP3 @ 2 GHz, 4 V, 80 mA.  
LSL=30.0, Nominal=33.3, USL=37.0  
Figure 4. Gain @ 2 GHz, 4 V, 80 mA.  
LSL=13.5, Nominal=14.8, USL=16.5  
Notes:  
7. Under large signal conditions, VGS may  
Future wafers allocated to this product  
may have nominal values anywhere  
within the upper and lower spec limits.  
9. Measurements made on production test  
board. This circuit represents a trade-off  
between an optimal noise match and a  
realizeable match based on production  
test requirements. Circuit losses have  
been de-embedded from actual  
measurements.  
swing positive and the drain current may  
exceed Idss. These conditions are  
acceptable as long as the maximum Pdiss  
and Pin max ratings are not exceeded.  
8. Distribution data sample size is 450  
samples taken from 9 different wafers.  
10. The probability of a parameter being  
between ±1σ is 68.3%, between ±2σ is  
95.4% and between ±3σ is 99.7%.  
2
ATF-33143 DC Electrical Specifications  
TA = 25°C, RF parameters measured in a test circuit for a typical device  
Symbol  
Parameters and Test Conditions  
Saturated Drain Current VDS = 1.5 V, VGS = 0 V mA 175 237  
Units Min. Typ.[2] Max.  
[1]  
Idss  
305  
[1]  
VP  
Pinchoff Voltage  
VDS = 1.5 V, IDS = 10% of Idss  
VGS = -0.5 V, VDS = 4 V mA  
VDS = 1.5 V, gm = Idss /VP mmho 360 440  
V
-0.65 -0.5 -0.35  
Id  
Quiescent Bias Current  
Transconductance  
80  
[1]  
gm  
IGDO  
Igss  
Gate to Drain Leakage Current  
Gate Leakage Current  
VGD = 5 V  
µA  
µA  
dB  
1000  
600  
0.8  
VGD = VGS = -4 V  
42  
f = 2 GHz VDS = 4 V, IDS = 80 mA  
VDS = 4 V, IDS = 60 mA  
0.5  
0.5  
NF  
Ga  
Noise Figure  
f = 900 MHz VDS = 4 V, IDS = 80 mA  
VDS = 4 V, IDS = 60 mA  
dB  
0.4  
0.4  
f = 2 GHz VDS = 4 V, IDS = 80 mA  
VDS = 4 V, IDS = 60 mA  
dB 13.5  
dB  
15  
15  
16.5  
Associated Gain[3]  
f = 900 MHz VDS = 4 V, IDS = 80 mA  
VDS = 4 V, IDS = 60 mA  
21  
21  
f = 2 GHz VDS = 4 V, IDS = 80 mA dBm 30  
5 dBm Pout/Tone VDS = 4 V, IDS = 60 mA  
33.5  
32  
Output 3rd Order  
Intercept Point[3]  
OIP3  
P1dB  
f = 900 MHz VDS = 4 V, IDS = 80 mA dBm  
5 dBm Pout/Tone VDS = 4 V, IDS = 60 mA  
32.5  
31  
f = 2 GHz VDS = 4 V, IDS = 80 mA dBm  
VDS = 4 V, IDS = 60 mA  
22  
21  
1 dB Compressed  
Compressed Power[3]  
f = 900 MHz VDS = 4 V, IDS = 80 mA dBm  
VDS = 4 V, IDS = 60 mA  
21  
20  
Notes:  
1. Guaranteed at wafer probe level.  
2. Typical value determined from a sample size of 450 parts from 9 wafers.  
3. Measurements obtained using production test board described in Figure 5.  
50 Ohm  
Input  
50 Ohm  
Input  
Output  
Transmission  
Line Including  
Gate Bias T  
(0.5 dB loss)  
Matching Circuit  
Γ_mag = 0.20  
Γ_ang = 124°  
(0.3 dB loss)  
Transmission  
Line Including  
Drain Bias T  
(0.5 dB loss)  
DUT  
Figure 5. Block diagram of 2 GHz production test board used for Noise Figure, Associated Gain, P1dB, and OIP3 measure-  
ments. This circuit represents a trade-off between an optimal noise match and a realizable match based on production test  
requirements. Circuit losses have been de-embedded from actual measurements.  
3
ATF-33143 Typical Performance Curves  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
2 V  
3 V  
4 V  
2 V  
3 V  
4 V  
0
20  
40  
60  
(mA)  
80  
100 120  
0
20  
40  
60  
(mA)  
80  
100 120  
I
I
DSQ  
DSQ  
Figure 6. OIP3, IIP3 vs. Bias[1] at  
2GHz.  
Figure 7. OIP3, IIP3 vs. Bias[1] at  
900 MHz.  
25  
20  
15  
10  
25  
20  
15  
10  
2 V  
3 V  
4 V  
2 V  
3 V  
4 V  
5
0
5
0
0
20  
40  
60  
(mA)  
80  
100 120  
0
20  
40  
60  
(mA)  
80  
100 120  
I
I
DSQ  
DSQ  
Figure 8. P1dB vs. Bias[1,2] at 2 GHz.  
Figure 9. P1dB vs. Bias[1,2] Tuned for NF  
@ 4V, 80mA at 900MHz.  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
16  
15  
22  
21  
20  
19  
18  
17  
16  
G
a
14  
13  
12  
11  
10  
G
a
NF  
NF  
2 V  
3 V  
4 V  
2 V  
3 V  
4 V  
0
20  
40  
60  
(mA)  
80  
100 120  
0
20  
40  
60  
(mA)  
80  
100 120  
I
I
DSQ  
DSQ  
Figure 10. NF and Ga vs. Bias[1] at  
2GHz.  
Figure 11. NF and Ga vs. Bias[1] at  
900 MHz.  
Notes:  
1. Measurements made on a fixed tuned production test board that was tuned for optimal gain match with reasonable noise figure at 4V  
80 mA bias. This circuit represents a trade-off between optimal noise match, maximum gain match and a realizable match based on  
production test board requirements. Circuit losses have been de-embedded from actual measurements.  
2. Quiescent drain current, IDSQ, is set with zero RF drive applied. As P1dB is approached, the drain current may increase or decrease  
depending on frequency and dc bias point. At lower values of IDSQ the device is running closer to class B as power output approaches  
P1dB. This results in higher P1dB and higher PAE (power added efficiency) when compared to a device that is driven by a constant  
current source as is typically done with active biasing.  
4
ATF-33143 Typical Performance Curves, continued  
1.5  
1.0  
0.5  
0
30  
25  
20  
15  
10  
5
80 mA  
60 mA  
80 mA  
60 mA  
0
0
2
4
6
8
10  
0
2
4
6
8
10  
FREQUENCY (GHz)  
FREQUENCY (GHz)  
Figure 12. Fmin vs. Frequency and  
Current at 4V.  
Figure 13. Associated Gain vs.  
Frequency and Current at 4V.  
40  
35  
30  
25  
20  
15  
25  
2.0  
1.5  
1.0  
0.5  
0
25°C  
-40°C  
85°C  
25°C  
-40°C  
85°C  
20  
15  
10  
5
0
2000  
4000  
6000  
8000  
0
2
4
6
8
10  
FREQUENCY (MHz)  
FREQUENCY (GHz)  
Figure 15. P1dB, OIP3 vs. Frequency  
and Temp at VDS = 4V, IDS = 80mA.  
Figure 14. Fmin and Ga vs. Frequency  
and Temp at VDS = 4V, IDS = 80mA.  
3.5  
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
P
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
1dB  
3
2
1
0
OIP3  
Gain  
NF  
P
Gain  
NF  
1dB  
OIP3  
0
0
0
20  
40  
60  
(mA)  
80  
100 120  
0
20  
40  
60  
(mA)  
80  
100 120  
I
I
DSQ  
DSQ  
Figure 16. OIP3, P1dB, NF and Gain vs.  
Bias[1,2] at 3.9 GHz.  
Figure 17. OIP3, P1dB, NF and Gain vs.  
Bias[1,2] at 5.8 GHz.  
Notes:  
1. Measurements made on a fixed tuned test fixture that was tuned for noise figure at 4V 80 mA bias. This circuit represents a trade-off  
between optimal noise match, maximum gain match and a realizable match based on production test requirements. Circuit losses have  
been de-embedded from actual measurements.  
2. Quiescent drain current, IDSQ, is set with zero RF drive applied. As P1dB is approached, the drain current may increase or decrease  
depending on frequency and dc bias point. At lower values of Idsq the device is running closer to class B as power output approaches  
P1dB. This results in higher P1dB and higher PAE (power added efficiency) when compared to a device that is driven by a constant  
current source as is typically done with active biasing.  
5
ATF-33143 Typical Performance Curves, continued  
25  
20  
15  
10  
5
25  
20  
15  
10  
5
0
0
0
20  
40  
60  
80  
100 120  
0
20  
40  
60  
80  
100 120  
I
(mA)  
I
(mA)  
DS  
DS  
Figure 19. P1dB vs. IDS Active Bias[1]  
Tuned for NF @ 4 V, 80 mA at 900 MHz.  
Figure 18. P1dB vs. IDS Active Bias[1]  
Tuned for NF @ 4 V, 80 mA at 2 GHz.  
Note:  
1. Measurements made on a fixed tuned test board that was tuned for optimal gain match with reasonable noise figure at 4V 80 mA bias.  
This circuit represents a trade-off between an optimal noise match, maximum gain match and a realizable match based on production  
test board requirements. Circuit losses have been de-embedded from actual measurements.  
6
ATF-33143 Power Parameters Tuned for Max P1dB, VDS = 4 V, IDSQ = 80 mA  
Freq  
(GHz) (dBm)  
P1dB  
Id  
(mA)  
G1dB  
(dB)  
PAE1dB  
(%)  
P3dB  
(dBm)  
Id  
(mA)  
PAE3dB Γ Out_mag Γ Out_ang  
(%)  
(Mag.)  
(°)  
0.9  
1.5  
1.8  
2.0  
4.0  
6.0  
20.7  
21.2  
21.1  
21.6  
23.0  
24.0  
89  
91  
80  
81  
97  
23.2  
20.7  
19.2  
18.1  
11.9  
5.9  
33  
36  
40  
44  
48  
36  
23.2  
23.8  
23.0  
23.2  
24.6  
25.2  
102  
116  
94  
89  
135  
136  
51  
51  
52  
57  
48  
36  
0.39  
0.43  
0.43  
0.42  
0.40  
0.37  
160  
165  
170  
174  
-150  
-124  
130  
70  
P
Gain  
PAE  
out  
60  
50  
40  
30  
20  
10  
0
-10  
-20  
-40  
-30  
-20  
-10  
0
10  
20  
P
(dBm)  
in  
Figure 20. Swept Power Tuned for  
Max P  
1dB  
=4V, I  
V
DS  
= 80 mA, 2 GHz.  
DSQ  
Notes:  
1. Measurements made on ATN LP1 power load pull system.  
2. Quicescent drain current, IDSQ, is set with zero RF drive applied. As P1dB is approached, the drain current may increase or decrease  
depending on frequency and dc bias point. At lower values of IDSQ the device is running closer to class B as power output approaches  
P1dB. This results in higher P1dB and higher PAE (power added efficiency) when compared to a device that is driven by a constant  
current source as is typically done with active biasing.  
3. PAE (%) = ((Pout – Pin) / Pdc) X 100  
4. Gamma out is the reflection coefficient of the matching circuit presented to the output of the device.  
7
ATF-33143 Typical Scattering Parameters, VDS = 4 V, IDS = 60 mA  
Freq.  
(GHz) Mag.  
S11  
S21  
S12  
S22  
Mag.  
MSG/MAG  
(dB)  
Ang.  
dB  
Mag. Ang.  
dB  
Mag. Ang.  
Ang.  
0.5  
0.8  
1.0  
1.5  
1.8  
2.0  
2.5  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
0.86  
0.77  
0.76  
0.73  
0.72  
0.72  
0.72  
0.73  
0.74  
0.75  
0.77  
0.79  
0.82  
0.83  
0.86  
0.88  
0.90  
0.91  
0.91  
0.92  
0.93  
0.94  
0.93  
-75.60  
23.20 14.45 132.90  
20.44 10.53 109.80  
-28.18  
-25.35  
-25.04  
-23.61  
-22.97  
-22.73  
-21.94  
-21.31  
-20.00  
-18.86  
-17.99  
-17.52  
-17.39  
-17.08  
-16.54  
-16.48  
-16.71  
-17.27  
-17.65  
-17.79  
-17.72  
-17.92  
-18.56  
0.039  
0.054  
0.056  
0.066  
0.071  
0.073  
0.080  
0.086  
0.100  
0.114  
0.126  
0.133 -22.30  
0.135 -33.60  
0.140 -43.40  
0.149 -55.20  
0.150 -68.40  
0.146 -81.10  
0.137 -92.90  
0.131 -101.60  
0.129 -111.60  
0.130 -122.20  
0.127 -134.70  
0.118 -143.30  
54.80  
42.20  
40.20  
33.20  
30.60  
28.90  
25.10  
21.60  
13.70  
3.40  
0.26  
0.34  
0.35  
0.39  
0.41  
0.42  
0.45  
0.47  
0.49  
0.50  
0.51  
0.54  
0.57  
0.60  
0.63  
0.66  
0.70  
0.73  
0.76  
0.79  
0.81  
0.82  
0.84  
-118.50  
-150.00  
-155.50  
-176.10  
175.00  
169.80  
160.60  
152.70  
139.90  
125.70  
109.10  
91.60  
75.90  
63.70  
52.00  
38.50  
22.50  
6.70  
-5.20  
25.69  
22.90  
22.42  
20.29  
19.26  
18.70  
17.36  
16.25  
10.91  
9.78  
9.03  
8.44  
7.78  
7.42  
7.68  
7.61  
7.44  
6.46  
-115.00  
-122.50  
-151.80  
-164.60  
-171.80  
171.00  
158.20  
136.50  
117.00  
98.00  
80.20  
64.70  
50.60  
36.60  
21.80  
7.50  
-4.80  
19.80  
16.97  
15.54  
14.67  
12.79  
11.18  
8.76  
6.99  
5.47  
3.94  
2.45  
9.77 105.30  
7.06  
5.99  
5.41  
4.36  
3.62  
2.74  
2.24  
1.88  
1.57  
1.33  
1.16  
1.04  
0.92  
0.80  
87.50  
79.20  
74.20  
62.70  
53.00  
35.20  
17.50  
-1.00  
-19.00  
-34.90  
-49.10  
-64.30  
-80.40  
-96.20  
-8.90  
9.0  
1.27  
0.37  
10.0  
11.0  
12.0  
13.0  
14.0  
15.0  
16.0  
17.0  
18.0  
-0.72  
-1.97  
-3.45  
-4.69  
-5.70  
-6.52  
-7.51  
-8.78  
0.67 -110.80  
0.58 -122.80  
0.52 -135.40  
0.47 -148.30  
0.42 -162.10  
0.36 -172.80  
-15.40  
-27.30  
-40.40  
-52.20  
-61.20  
5.86  
5.65  
5.65  
5.44  
-15.20  
-25.10  
-37.30  
-49.20  
4.17  
ATF-33143 Typical Noise Parameters  
VDS = 4 V, IDS = 60 mA  
30  
Freq.  
GHz  
Fmin  
dB  
Γopt  
Rn/50  
-
Ga  
dB  
25  
Mag.  
Ang.  
MSG  
0.5  
0.9  
1.0  
1.5  
1.8  
2.0  
2.5  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
10.0  
0.29  
0.33  
0.34  
0.38  
0.39  
0.42  
0.47  
0.51  
0.63  
0.72  
0.82  
0.93  
1.03  
1.13  
1.22  
0.42  
0.33  
0.32  
0.26  
0.22  
0.22  
0.25  
0.29  
0.39  
0.46  
0.51  
0.57  
0.61  
0.66  
0.69  
31.40  
44.70  
48.00  
71.90  
94.00  
109.70  
149.40  
166.80  
-160.60  
-135.30  
-112.40  
-90.90  
-71.80  
-55.50  
-41.80  
0.080  
0.070  
0.070  
0.060  
0.050  
0.046  
0.030  
0.030  
0.040  
0.060  
0.110  
0.210  
0.370  
0.550  
0.720  
25.91  
21.80  
21.00  
18.14  
16.96  
16.29  
14.95  
13.58  
11.74  
10.36  
9.17  
20  
15  
10  
2
|S  
21  
|
MAG  
5
0
-5  
5
10  
15  
0
20  
FREQUENCY (GHz)  
Figure 22. MSG/MAG and |S21  
Frequency at 4V, 60 mA.  
|
2 vs.  
8.18  
7.19  
6.56  
6.29  
Notes:  
1. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATF NP5 test system.  
From these measurements a true Fmin is calculated. Refer to the noise parameter application section for more information.  
2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the  
end of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated  
through via holes connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the  
carrier. Two 0.020 inch diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of  
that point.  
8
ATF-33143 Typical Scattering Parameters, VDS = 4 V, IDS = 80 mA  
Freq.  
(GHz) Mag.  
S11  
S21  
S12  
S22  
Mag.  
MSG/MAG  
(dB)  
Ang.  
dB  
Mag. Ang.  
dB  
Mag. Ang.  
Ang.  
0.5  
0.9  
1.0  
1.5  
2.0  
2.5  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
10.0  
11.0  
12.0  
13.0  
14.0  
15.0  
16.0  
17.0  
18.0  
0.86  
0.77  
0.76  
0.72  
0.72  
0.72  
0.73  
0.74  
0.75  
0.77  
0.79  
0.82  
0.84  
0.86  
0.88  
0.90  
0.91  
0.91  
0.92  
0.93  
0.94  
0.93  
-76.90  
23.48 14.93 132.10  
20.64 10.77 109.10  
20.00 10.00 104.80  
-28.64  
-25.85  
-25.51  
-24.01  
-22.97  
-22.27  
-21.51  
-20.09  
-18.86  
-17.99  
-17.52  
-17.33  
-17.02  
-16.48  
-16.42  
-16.59  
-17.20  
-17.59  
-17.65  
-17.65  
-17.86  
-18.49  
0.037  
0.051  
0.053  
0.063  
0.071  
0.077  
0.084  
0.099  
0.114  
0.126  
0.133 -20.60  
0.136 -32.00  
0.141 -42.10  
0.150 -54.00  
0.151 -67.30  
0.148 -80.20  
0.138 -92.00  
0.132 -100.80  
0.131 -110.80  
0.131 -121.50  
0.128 -134.00  
0.119 -142.90  
55.40  
43.90  
42.10  
36.00  
32.10  
28.10  
24.60  
16.40  
5.70  
0.26  
0.34  
0.35  
0.39  
0.43  
0.45  
0.47  
0.49  
0.50  
0.52  
0.54  
0.57  
0.61  
0.64  
0.67  
0.71  
0.74  
0.76  
0.79  
0.81  
0.82  
0.84  
-126.60  
-155.50  
-160.50  
-180.00  
166.60  
158.70  
151.20  
138.70  
124.70  
108.30  
91.00  
75.30  
63.10  
51.50  
38.00  
22.00  
6.40  
-5.60  
26.06  
23.25  
22.76  
20.57  
18.90  
17.62  
16.44  
10.67  
9.78  
9.05  
8.50  
7.88  
7.53  
7.78  
7.72  
7.59  
6.55  
5.97  
5.76  
5.78  
5.57  
-115.90  
-123.20  
-151.70  
-171.10  
170.10  
157.40  
135.90  
116.60  
97.60  
80.00  
64.50  
50.50  
36.40  
21.60  
7.40  
-4.90  
-15.50  
-27.40  
-40.50  
-52.30  
-61.30  
17.13  
14.82  
12.96  
11.36  
8.92  
7.15  
5.63  
4.09  
2.61  
7.18  
5.51  
4.45  
3.70  
2.79  
2.28  
1.91  
1.60  
1.35  
1.18  
1.06  
0.94  
0.81  
87.40  
74.30  
62.60  
52.90  
35.40  
17.70  
-0.70  
-18.60  
-34.40  
-48.60  
-63.70  
-79.80  
-95.50  
-6.90  
1.42  
0.52  
-0.57  
-1.81  
-3.30  
-4.54  
-5.51  
-6.34  
-7.33  
-8.61  
0.68 -110.00  
0.59 -122.00  
0.53 -134.50  
0.48 -147.40  
0.43 -161.20  
0.37 -171.90  
-15.50  
-25.40  
-37.60  
-49.50  
4.30  
ATF-33143 Typical Noise Parameters  
VDS = 4 V, IDS = 80 mA  
30  
Freq.  
GHz  
Fmin  
dB  
Γopt  
Rn/50  
-
Ga  
dB  
25  
Mag.  
Ang.  
MSG  
0.5  
0.9  
1.0  
1.5  
2.0  
2.5  
3.0  
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
10.0  
0.30  
0.35  
0.36  
0.40  
0.46  
0.52  
0.58  
0.69  
0.80  
0.90  
1.02  
1.12  
1.21  
1.32  
0.40  
0.31  
0.30  
0.23  
0.22  
0.26  
0.29  
0.39  
0.46  
0.52  
0.57  
0.63  
0.66  
0.76  
28.20  
44.10  
47.40  
0.080  
0.070  
0.070  
0.050  
0.050  
0.040  
0.040  
0.044  
0.070  
0.130  
0.250  
0.420  
0.630  
0.830  
25.77  
21.91  
21.14  
18.46  
16.56  
15.23  
13.79  
11.92  
10.53  
9.37  
20  
15  
10  
2
79.10  
|S  
21  
|
MAG  
5
0
117.00  
157.70  
171.10  
-157.20  
-132.40  
-109.40  
-88.80  
-70.50  
-54.10  
-40.40  
-5  
5
10  
15  
0
20  
FREQUENCY (GHz)  
Figure 23. MSG/MAG and |S21  
Frequency at 4V, 80 mA.  
|
2 vs.  
8.33  
7.41  
6.70  
6.69  
Notes:  
1. The Fmin values are based on a set of 16 noise figure measurements made at 16 different impedances using an ATF NP5 test system.  
From these measurements a true Fmin is calculated. Refer to the noise parameter application section for more information.  
2. S and noise parameters are measured on a microstrip line made on 0.025 inch thick alumina carrier. The input reference plane is at the  
end of the gate lead. The output reference plane is at the end of the drain lead. The parameters include the effect of four plated  
through via holes connecting source landing pads on top of the test carrier to the microstrip ground plane on the bottom side of the  
carrier. Two 0.020 inch diameter via holes are placed within 0.010 inch from each source lead contact point, one via on each side of  
that point.  
9
presented with Γo. If the reflec-  
tion coefficient of the matching  
network is other than Γo, then the  
noise figure of the device will be  
greater than Fmin based on the  
following equation.  
Typically for FETs, the higher Γo  
usually infers that an impedance  
much higher than 50is required  
for the device to produce Fmin. At  
VHF frequencies and even lower  
L Band frequencies, the required  
impedance can be in the vicinity  
of several thousand ohms.  
Noise Parameter  
Applications Information  
Fmin values at 2 GHz and higher  
are based on measurements while  
the Fmins below 2 GHz have been  
extrapolated. The Fmin values are  
based on a set of 16 noise figure  
measurements made at 16  
NF = Fmin + 4 Rn  
|Γs Γo | 2  
Zo (|1 + Γo|2)(1Γs|2)  
Matching to such a high imped-  
ance requires very hi-Q compo-  
nents in order to minimize circuit  
losses. As an example at 900 MHz,  
when airwwound coils (Q>100)  
are used for matching networks,  
the loss can still be up to 0.25 dB  
which will add directly to the  
noise figure of the device. Using  
muiltilayer molded inductors with  
Qs in the 30 to 50 range results in  
additional loss over the airwound  
coil. Losses as high as 0.5 dB or  
greater add to the typical 0.15 dB  
Fmin of the device creating an  
amplifier noise figure of nearly  
0.65 dB. A discussion concerning  
calculated and measured circuit  
losses and their effect on ampli-  
fier noise figure is covered in  
Agilent Application 1085.  
different impedances using an  
ATN NP5 test system. From these  
measurements, a true Fmin is  
calculated. Fmin represents the  
true minimum noise figure of the  
device when the device is pre-  
sented with an impedance  
matching network that trans-  
forms the source impedance,  
typically 50, to an impedance  
represented by the reflection  
coefficient Γo. The designer must  
design a matching network that  
will present Γo to the device with  
minimal associated circuit losses.  
The noise figure of the completed  
amplifier is equal to the noise  
figure of the device plus the  
Where Rn/Zo is the normalized  
noise resistance, Γo is the opti-  
mum reflection coefficient  
required to produce Fmin and Γs is  
the reflection coefficient of the  
source impedance actually  
presented to the device. The  
losses of the matching networks  
are non-zero and they will also  
add to the noise figure of the  
device creating a higher amplifier  
noise figure. The losses of the  
matching networks are related to  
the Q of the components and  
associated printed circuit board  
loss. Γo is typically fairly low at  
higher frequencies and increases  
as frequency is lowered. Larger  
gate width devices will typically  
have a lower Γo as compared to  
narrower gate width devices.  
losses of the matching network  
preceding the device. The noise  
figure of the device is equal to  
Fmin only when the device is  
Reliability Data  
Nominal Failures per million (FPM)  
for different durations  
90% confidence Failures per million (FPM)  
for different durations  
Channel  
Temperature  
(oC)  
(FITs) 1 year 5 year 10 year 30 year (FITs) 1 year 5 year 10 year 30 year  
1000  
1000  
hours  
hours  
100  
125  
140  
150  
160  
180  
<0.1  
<0.1  
<0.1  
<0.1  
<0.1  
<0.1  
<0.1  
<0.1  
<0.1  
<0.1  
<0.1  
4400  
<0.1  
<0.1  
<0.1  
2
<0.1  
<0.1  
<0.1  
140  
<0.1  
<0.1  
160  
<0.1  
<0.1  
<0.1  
<0.1  
<0.1  
21  
<0.1  
<0.1  
<0.1  
0.3  
<0.1  
<0.1  
6
<0.1  
<0.1  
160  
<0.1  
11  
9.3K  
131K  
520K  
1000K  
26K  
780  
24K  
590K  
8800  
120K  
850K  
920  
450K  
21K  
830K  
370K  
1000K  
67  
53K  
NOT  
recommended  
Predicted failures with temperature extrapolated from failure distribution and activation energy data of  
higher temperature operational life STRIFE of PHEMT process  
10  
ATF-33143 Die Model  
Statz Model  
MESFETM1  
NFET=yes  
PFET=no  
Vto=–0.95  
Beta=0.48  
Lambda=0.09  
Alpha=4  
B=0.8  
Tnom=27  
Idstc=  
Vbi=0.7  
Cgs=1.6 pF  
Gdcap=3  
Cgd=0.32 pF  
Rgd=  
Tqm=  
Vmax=  
Fc=  
Rd=.125  
Rg=1  
Rs=0.0625  
Ld=0.00375 nH  
Lg-0.00375 nH  
Ls=0.00125 nH  
Cds=0.08 pF  
Crf=0.1  
Rc=62.5  
Gsfwd=1  
Gsrev=0  
Gdfwd=1  
Gdrev=0  
Vjr=1  
Is=1 nA  
Ir=1 nA  
Imax=0.1  
Xti=  
N=  
Eg=  
Vbr=  
Vtotc=  
Rin=  
Taumd1=no  
Fnc=1E6  
R=0.17  
C=0.2  
P=0.65  
wVgfwd=  
wBvgs=  
wBvgd=  
wBvds=  
wldsmax=  
wPmax=  
Al lParams=  
Tau=  
Betatce=  
Delta1=0.2  
Delta2=  
Gscap=3  
This model can be used as a  
the measured data in this data  
sheet. For future improvements  
Agilent reserves the right to  
change these models without  
prior notice.  
design tool. It has been tested on  
MDS for various specifications.  
However, for more precise and  
accurate design, please refer to  
ATF-33143 Model  
INSIDE Package  
Var  
VIA2  
VAR  
Ean  
V3  
VAR1  
TLINP  
TL1  
Z=Z2/2 Ohm  
L=20 0 mil  
K=K  
A=D 0000  
F=1 GHz  
TanD=0.001  
TLINP  
TL2  
Z=Z2/2 Ohm  
L=20 0 mil  
K=K  
A=0.0000  
F=1 GHz  
TanD=0.001  
D=20.0 mil  
H=25.0 mil  
T=0.15 mil  
Rho=1.0  
W=40.0 mil  
K=5  
Z2=85  
Z1=30  
C
C1  
C=0.1 pF  
GATE  
SOURCE  
L
L
Port  
G
Num=1  
TLINP  
TL7  
TLINP  
TL8  
TLINP  
TL4  
TLINP  
TL3  
Port  
L6  
L1  
S2  
L=0.2 nH  
R=0.001  
L=0.6 nH  
R=0.001  
Z=Z2/2 Ohm Z=Z1 Ohm  
VIA2  
VIA2  
Z=Z1 Ohm Z=Z2 Ohm  
Num=4  
L=5.0 mil  
K=K  
A=0.0000  
F=1 GHz  
L=15 mil  
K=1  
A=0.0000  
F=1 GHz  
V1  
V4  
L=15 mil  
K=1  
A=0.000  
F=1 GHz  
L=25 mil  
K=K  
A=0.000  
F=1 GHz  
GaAsFET  
D=20 mil  
H=25.0 mil  
T=0.15 mil  
Rho=1.0  
W=40 mil  
D=20.0 mil  
H=25.0 mil  
T=0.15 mil  
Rho=1.0  
W=40.0 mil  
C
C2  
C=0.11 pF  
FET1  
Model=MESFETN1  
Mode=nonlinear  
TanD=0.001 TanD=0.001  
DRAIN  
TanD=0.001 TanD=0.001  
SOURCE  
L
TLINP  
TL5  
TLINP  
TL6  
Port  
D
Num=4  
L7  
C=0.6 nH  
R=D 001  
L
Port  
TLINPTL9  
Z=Z2 Ohm  
L=10.0 mil  
K=K  
Z=Z2 Ohm Z=Z1 Ohm  
L=26.0 mil L=15 mil  
TLINP  
L4  
MSub  
S1  
TL10  
VIA2  
L=0.2 nH  
R=0.001  
Num=2  
K=K  
A=0.0000  
F=1 GHz  
K=1  
A=0.0000  
F=1 GHz  
Z=Z1 Ohm  
L=15 mil  
K=1  
A=0.000  
F=1 GHz  
TanD=0.001  
MSUB  
V2  
MSub1  
H=25.0 mil  
Er=9.6  
D=20.0 mil  
H=25.0 mil  
T=0.15 mil  
Rho=1.0  
W=40.0 mil  
A=0.000  
F=1 GHz  
TanD=0.001  
TanD=0.001 TanD=0.001  
Mur=1  
Cond=1 DE+50  
Hu=3.9e+0.34 mil  
T=0.15 mil  
TanD=D  
Rough=D mil  
11  
Part Number Ordering Information  
No. of  
Part Number  
ATF-33143-TR1  
ATF-33143-TR2  
ATF-33143-BLK  
Devices  
Container  
7" Reel  
3000  
10000  
100  
13" Reel  
antistatic bag  
Package Dimensions  
Outline 43 (SOT-343/SC-70 4 lead)  
1.30 (0.051)  
BSC  
1.30 (.051) REF  
2.60 (.102)  
E
1.30 (.051)  
E1  
0.85 (.033)  
0.55 (.021) TYP  
1.15 (.045) BSC  
e
1.15 (.045) REF  
D
h
A
A1  
b TYP  
C TYP  
L
θ
DIMENSIONS  
SYMBOL  
MIN.  
MAX.  
A
A1  
b
0.80 (0.031)  
0 (0)  
1.00 (0.039)  
0.10 (0.004)  
0.35 (0.014)  
0.20 (0.008)  
2.10 (0.083)  
2.20 (0.087)  
0.65 (0.025)  
0.25 (0.010)  
0.10 (0.004)  
1.90 (0.075)  
2.00 (0.079)  
0.55 (0.022)  
C
D
E
e
h
0.450 TYP (0.018)  
E1  
L
1.15 (0.045)  
0.10 (0.004)  
0
1.35 (0.053)  
0.35 (0.014)  
10  
θ
DIMENSIONS ARE IN MILLIMETERS (INCHES)  
12  
Device Orientation  
REEL  
TOP VIEW  
4 mm  
END VIEW  
CARRIER  
TAPE  
8 mm  
3Px  
3Px  
3Px  
3Px  
USER  
FEED  
DIRECTION  
COVER TAPE  
Tape Dimensions  
For Outline 4T  
P
P
D
2
P
0
E
F
W
C
D
1
t
(CARRIER TAPE THICKNESS)  
T (COVER TAPE THICKNESS)  
t
1
K
8° MAX.  
5° MAX.  
0
A
B
0
0
DESCRIPTION  
SYMBOL  
SIZE (mm)  
SIZE (INCHES)  
CAVITY  
LENGTH  
WIDTH  
DEPTH  
PITCH  
A
B
K
P
D
2.24 ± 0.10  
2.34 ± 0.10  
1.22 ± 0.10  
4.00 ± 0.10  
1.00 + 0.25  
0.088 ± 0.004  
0.092 ± 0.004  
0.048 ± 0.004  
0.157 ± 0.004  
0.039 + 0.010  
0
0
0
BOTTOM HOLE DIAMETER  
1
0
PERFORATION  
DIAMETER  
PITCH  
POSITION  
D
P
E
1.55 ± 0.05  
4.00 ± 0.10  
1.75 ± 0.10  
0.061 ± 0.002  
0.157 ± 0.004  
0.069 ± 0.004  
CARRIER TAPE WIDTH  
THICKNESS  
W
8.00 ± 0.30  
0.315 ± 0.012  
t
0.255 ± 0.013 0.010 ± 0.0005  
5.4 ± 0.10 0.205 ± 0.004  
0.062 ± 0.001 0.0025 ± 0.00004  
1
COVER TAPE  
WIDTH  
C
TAPE THICKNESS  
T
t
DISTANCE  
CAVITY TO PERFORATION  
(WIDTH DIRECTION)  
F
3.50 ± 0.05  
0.138 ± 0.002  
CAVITY TO PERFORATION  
(LENGTH DIRECTION)  
P
2
2.00 ± 0.05  
0.079 ± 0.002  
13  
当社半導体部品のご使用にあたって  
仕様及び仕様書に関して  
・本仕様は製品改善および技術改良等により予告なく変更する場合があります使用の際には最  
新の仕様を問い合わせの上、用途のご確認をお願いいたします。  
・本仕様記載内容を無断で転載または複写することは禁じられております。  
・本仕様内でご紹介している応用アプリケーション当社製品がご使用できる代表的なもの  
です使用において第三者の知的財産権などの保証または実施権の許諾に対して問題が発生し  
た場合、当社はその責任を負いかねます。  
・仕様書はメーカとユーザ間で交わされる製品に関する使用条件や誤使用防止事項を言及するもの  
です様書の条件外で保存使用された場合に動作不良械不良が発生しても当社は責任を  
負いかねますだし社は納品後 1 年以内に当社の責任に帰すべき理由で良或いは故障  
が発生した場合、無償で製品を交換いたします。  
・仕様書の製品が製造上および政策上の理由で満足できない場合には変更の権利を当社が有しそ  
の交渉は当社の要求によりすみやかに行われることとさせて頂きます本的に変更は3ヶ  
月前、廃止は 1 年前にご連絡致しますが、例外もございますので予めご了承ください。  
ご使用用途に関して  
・当社の製品は般的な電子機コンピュータO A 信機器A V 電製品ア  
ミューズメント機器測機器般産業機器など一部に組み込まれて使用されるものです。  
極めて高い信頼性と安全性が要求される用輸送機器空・宇宙機器底中継器子力  
制御システム命維持のための医療機器などの財境もしくは生命に悪影響を及ぼす可能  
性を持つ用途意図し計も製造もされているものではありませんれゆえ製品の安  
全性質および性能に関しては又はタログ記載してあること以外は明示的  
にも黙示的にも一切の保証をするものではありません。  
回路設計上のお願い  
・当社は品質頼性の向上に努力しておりますが般的に半導体製品の誤動作や障の発生  
は避けられません。本製品の使用に附随し、或いはこれに関連する誤動作、故障、寿命により、  
他人の生命又は財産に被害や悪影響を及ぼしいは本製品を取り付けまたは使用した設備施  
設または機械器具に故障が生じ一般公衆に被害を起こしても、当社はその内容、程度を問わず、  
一切の責任を負いかねます。  
お客様の責任において、装置の安全設計をお願いいたします。  
14  

相关型号:

ATF-33143-BLKG

Low Noise Pseudomorphic HEMT in a Surface Mount Plastic Package
AVAGO

ATF-33143-BLKG

RF Small Signal Field-Effect Transistor, 1-Element, X Band, Silicon, N-Channel, High Electron Mobility FET, LEAD FREE, PLASTIC, SC-70, 4 PIN
AGILENT

ATF-33143-TR1

Low Noise Pseudomorphic HEMT in a Surface Mount Plastic Package
AGILENT

ATF-33143-TR1G

Low Noise Pseudomorphic HEMT in a Surface Mount Plastic Package
AVAGO

ATF-33143-TR2

Low Noise Pseudomorphic HEMT in a Surface Mount Plastic Package
AGILENT

ATF-33143-TR2G

X BAND, GaAs, N-CHANNEL, RF SMALL SIGNAL, HEMFET, LEAD FREE, PLASTIC, SC-70, 4 PIN
AVAGO

ATF-33143-TR2G

RF Small Signal Field-Effect Transistor, 1-Element, X Band, Silicon, N-Channel, High Electron Mobility FET, LEAD FREE, PLASTIC, SC-70, 4 PIN
AGILENT

ATF-331M4

PHEMT Low Noise +31 dBm OIP3 in MiniPak
ETC

ATF-331M4-BLK

Agilent ATF-331M4 Low Noise Pseudomorphic HEMT in a Miniature Leadless Package
AGILENT

ATF-331M4-BLKG

RF Small Signal Field-Effect Transistor, 1-Element, X Band, Silicon, N-Channel, High Electron Mobility FET, MINIPAK-4
AGILENT

ATF-331M4-TR1

Agilent ATF-331M4 Low Noise Pseudomorphic HEMT in a Miniature Leadless Package
AGILENT

ATF-331M4-TR1G

RF Small Signal Field-Effect Transistor, 1-Element, X Band, Silicon, N-Channel, High Electron Mobility FET, MINIPAK-4
AGILENT