W3020 [AGERE]

GSM Multiband RF Transceiver; GSM多频段射频收发器
W3020
型号: W3020
厂家: AGERE SYSTEMS    AGERE SYSTEMS
描述:

GSM Multiband RF Transceiver
GSM多频段射频收发器

射频 GSM
文件: 总44页 (文件大小:406K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Advance Data Sheet  
December 1999  
W3020 GSM Multiband RF Transceiver  
Features  
Applications  
n 2.7 V operation, low power consumption  
n GSM dual-band hand portables:  
GSM900/1800  
n Integrated receive, transmit, and synthesizer  
GSM900/1900  
functions  
n GSM single-band hand portables:  
GSM900  
n IF frequency and transmit offset frequency  
generated from the same LO  
GSM1800  
n Integrated dual LNAs and mixers  
GSM1900  
n Minimizes PCB design work between systems  
n Surface-mount, 64-pin TQFPT package  
GSM1800/1900  
ADC  
RX I  
IF  
270 MHz  
¸
2
F
GSM900  
SAW  
RX Q  
ADC  
VCO  
900: 1150 MHz—1230 MHz  
1800: 1530 MHz—1610 MHz  
1900: 1660 MHz—1730 MHz  
RF MODE  
& AGC  
CONTROL  
900: 925 MHz—960 MHz  
1800: 1805 MHz—1880 MHz  
1900: 1930 MHz—1990 MHz  
540 MHz VCO  
W3000  
FREQUENCY  
SYNTHESIZER  
LO2 PLL  
900: 880 MHz—915 MHz  
1800: 1710 MHz—1785 MHz  
1900: 1850 MHz—1910 MHz  
TX IF  
1800/1900: 180 MHz  
GSM1800/1900  
DAC  
TX I  
¸
¸
2
3
S
F
PA  
GSM900  
SWITCHED DIVIDER  
900: 270 MHz  
DAC  
TX Q  
Note: shaded area is off-chip.  
Figure 1. W3020 Circuit Block Diagram  
Advance Data Sheet  
December 1999  
W3020 GSM Multiband RF Transceiver  
Table of Contents  
Contents  
Page  
Contents  
Page  
Features................................................................. 1  
Applications ........................................................... 1  
Description............................................................. 4  
Detailed Block Diagram...................................... 5  
Pin Information....................................................... 6  
Absolute Maximum Ratings.................................... 8  
ESD Precautions.................................................... 8  
Operating Range.................................................... 8  
Digital Serial Inputs................................................ 9  
Digital Outputs ....................................................... 9  
Enable Time........................................................... 9  
Supply Currents ..................................................... 9  
LNA...................................................................... 10  
RF Mixer.............................................................. 11  
IF/Baseband Amplifier.......................................... 12  
Modulator............................................................. 15  
LO2 Specification................................................. 17  
LO1 Input Buffer Specification..............................17  
Programming Information.....................................18  
Serial Bus Timing Information...........................19  
The Data Word .................................................20  
TR Register.......................................................21  
CONFIG Register..............................................26  
MAIN Register ..................................................30  
Filter Tune and dc Offset Correction Timing......31  
Programming Example.........................................33  
Application Information.........................................35  
S-Parameters....................................................35  
Outline Diagram ...................................................43  
64-Pin TQFPT ..................................................43  
Manufacturing Information....................................44  
Evaluation Board Note..........................................44  
Ordering Information ............................................44  
List of Figures  
Figure  
Page  
Figure  
Page  
Figure 1. W3020 Circuit Block Diagram ................. 1  
Figure 2. IC Block Diagram with Pinout.................. 5  
Figure 3. IF Amplifier Gain Steps ......................... 12  
Figure 4. Actual Gain vs. Requested Gain............ 12  
Figure 5. IF Strip Balanced Input Matching  
Figure 7. Diagram of W3020, W3000, and SC1  
Interconnection......................................18  
Figure 8. Serial Bus Timing Diagram....................19  
Figure 9. IF and I/Q Gain Distribution (dB)............25  
Figure 10. Programming the LO2 Phase Detector  
Slope....................................................29  
Network................................................ 12  
Figure 6. IF Filtering Requirements for Wideband  
Noise Performance................................ 16  
Figure 11. GSM900 Smith Chart Noise Circles.....35  
Figure 12. GSM1800 Smith Chart Noise Circles...36  
2
Lucent Technologies Inc.  
Advance Data Sheet  
December 1999  
W3020 GSM Multiband RF Transceiver  
List of Tables  
Table  
Page  
Table  
Page  
Table 1. Pin Assignment.........................................6  
Table 2. GSM900 LNA Performance.....................10  
Table 3. GSM1800/1900 LNA Performance..........10  
Table 4. RF Performance: GSM900......................11  
Table 5. RF Performance: GSM1800/1900...........11  
Table 6. IF/Baseband Amplifier Performance .......13  
Table 7. Low-Pass Rejection Characteristics.........14  
Table 8. Modulator Performance...........................15  
Table 9. LO2 Performance ...................................17  
Table 10. LO1 Performance..................................17  
Table 11. Serial Bus Timing Information...............19  
Table 12. Register Addressing..............................20  
Table 13. TR Register...........................................21  
Table 14. B: Band Select......................................22  
Table 15. MO[3:1]: Mode Control..........................23  
Table 16. T6: LO2 Disable....................................23  
Table 17. T5: LO1 Disable....................................23  
Table 18. T4: Receive IF Duty Cycle Corrector  
Table 34. C7: dc Coarse/Fine Correction ............. 28  
Table 35. C6: Filter Tune Disable......................... 28  
Table 36. C5: dc Correction Disable..................... 28  
Table 37. C4: Low-Pass Filter Bandwidth............. 28  
Table 38. C3: Receive LO1 Buffer Mode During dc  
Calibration............................................ 29  
Table 39. C2: LNA Mode During dc Calibration.... 29  
Table 40. C1: 540 MHz LO2 Phase Detector  
Polarity................................................. 29  
Table 41. DT[2:0]: dc Correction Time ................. 30  
Table 42. RS: Reset Bit Content .......................... 30  
Table 43. Initialize CONFIG Register  
(Reset W3020)..................................... 33  
Table 44. Initialize TR Register............................ 33  
Table 45. Settle PLL to GSM1800 Band for Receive  
Mode (W3020/W3000) ......................... 33  
Table 46. Perform Receive (W3020).................... 34  
Table 47. Settle PLL in GSM1800 Band for  
Transmit Mode (W3020/W3000) .......... 34  
Table 48. Basic GSM1800 Transmit Burst  
Disable..................................................23  
Table 19. T3: Divide-by-3 Duty Cycle Corrector  
Disable..................................................23  
(W3020)............................................... 34  
Table 49. GSM900 LNA S-Parameters................. 37  
Table 50. GSM1800/GSM1900 LNA  
S-Parameters....................................... 38  
Table 51. Receive IF Amplifier Input  
Table 20. FTR: LPF Tune Filter Request ..............24  
Table 21. DP: dc Precharge Only .........................24  
Table 22. DS: dc Correction Skip..........................24  
Table 23. T2: TX IF LO Division Select Switch .....24  
Table 24. T1: TX IF LO Divide-by-6 Select ...........24  
Table 25. T0: TX IF Duty Cycle Corrector Disable.24  
Table 26. G[0:6]: Digital Gain Control ...................25  
Table 27. CONFIG Register..................................26  
Table 28. C10: LO2 PLL Enable ...........................27  
Table 29. OLD: Overload Output Disable..............27  
Table 30. C9: RF Mixer On During Settling...........27  
Table 31. VO: LO1 Buffer Mode ...........................27  
Table 32. C8: LO2 Charge Pump Off....................27  
Table 33. LD2: Lock Detect Enable.......................28  
(0 dB Setting)....................................... 39  
Table 52. Receive IF Amplifier Input  
(32 dB Setting)..................................... 39  
Table 53. Transmit Modulator IF Output............... 40  
Table 54. Transmit IF Input to Up-Conversion  
Mixer.................................................... 41  
Table 55. Transmit RF Output from Up-Conversion  
Mixer.................................................... 42  
Lucent Technologies Inc.  
3
Advance Data Sheet  
December 1999  
W3020 GSM Multiband RF Transceiver  
Description  
passed through another external filter to attenuate the  
image frequency to an acceptable level. The signal  
passes through the RF down-conversion mixer to the  
IF frequency. It is then filtered by an external surface  
acoustic wave (SAW) filter to bring the in-band  
blocking signals to an acceptable level. The signal is  
amplified in the IF strip of the receiver. The IF strip  
contains digital gain control (DGC) amplifiers at both  
the IF and baseband frequencies and precision low-  
pass filters. This allows the signal to be amplified  
while in-band blocking signals are removed. The  
precision I/Q demodulator splits the signal into its in-  
phase and quadrature signals. The I/Q signals are low-  
pass filtered and further amplified. The I/Q amplifier  
contains integrated dc offset calibration circuitry. The  
outputs (I/Q) are fed to the ADC for further signal  
processing.  
The W3020 is a highly integrated GSM transceiver  
designed to operate in dual-band handsets or in  
single-band handsets operating at 900, 1800, and  
1900 MHz frequency bands (1900 MHz performance  
is not verified in production). The IC architecture  
allows the RF designer to provide solutions for three  
different frequency bands with very few PCB changes,  
thereby providing faster time to market and reduced  
development time.  
The W3020 RF transceiver and W3000 PLL have  
been designed in conjunction with the SC1 (radio  
interface and DSP) to provide a complete GSM  
cellular solution. The W3020 interfaces to the W3000  
UHF high-performance PLL IC. The W3020, in  
combination with the W3000, provides the transmitter,  
receiver, and frequency synthesizer. Adding a power  
amplifier(s), filters, and VCO modules completes the  
radio channel.  
The second local oscillator (LO2), comprising a buffer  
for the external voltage-controlled oscillator (VCO)  
and a phase-locked loop (PLL), feeds the IF portions  
of both the modulator and the receiver. An external  
reference source, voltage-controlled crystal oscillator  
(VCXO), is divided from 13 MHz to 1 MHz through a  
counter. The 1 MHz is called the comparison  
frequency. The VCO frequency of 540 MHz is also  
divided down to 1 MHz. Both signals are fed into a  
phase detector, and the resultant error signal is fed  
through an external low-pass filter to the control input  
of the VCO.  
The baseband modulated signal is applied to the I/Q  
double-balanced mixer in a differential manner. The  
±45° phase-shifted local oscillator requires no trim to  
achieve the required modulation spectral mask. Also,  
I/Q input signals require no dc offset calibration to  
achieve high phase accuracy signal. The IF signal  
outputs from the I/Q mixers are summed and brought  
out to an external filter that reduces the noise that  
could be intermodulated into the receive band. This  
signal is then applied to the low noise up-conversion  
mixer and brought to the RF output.  
The RF receive and transmit mixers are driven by two  
band-switchable external VCO modules and buffered  
internally on the IC. The VCOs are both controlled by  
a single W3000 PLL synthesizer and loop filter. Fast  
band-locking is achieved using a proprietary scaling  
technique integrated in the W3000 PLL.  
The received signal is amplified through the low-noise  
amplifier, which, combined with the preceding filter,  
dominates the receiver sensitivity. The signal is then  
4
Lucent Technologies Inc.  
Advance Data Sheet  
December 1999  
W3020 GSM Multiband RF Transceiver  
Description (continued)  
Detailed Block Diagram  
V
CCM  
RF  
EEGND  
V
CC  
LNA  
1800  
B
BIAS  
GND  
MIXERS  
s
EEL[1:3]  
s
48 GNDS3  
CCB  
V
EEL2  
DLNAI  
EEL3  
1
2
B
LNA  
900  
RIP  
RIN  
47  
46  
V
CCB  
V
GND  
CCB  
EEL[1:3]  
3
G1  
4 dB  
45 RQP  
RQN  
GLNAI  
TIFIP  
4
V
CC  
GND  
TX MIXER  
V
CC  
MODULATOR  
44  
43 VDD  
5
G5  
21 dB  
GND  
å
B
V
CC  
TIFIN  
6
G2  
G3  
16 dB  
s
8 dB  
42 GNDB  
41 TQN  
40 TQP  
39 TIN  
GND  
MUX  
GNDS4  
GNDP2  
7
GND  
8
G6  
4 dB  
V
CC  
VDD P2  
9
TIP TIN  
TQP TQN  
DIV BY  
2 OR 3  
VDD C2  
10  
11  
LO2  
PLL  
38 TIP  
CP2  
CC  
V
37 VDD  
I
GNDC2 12  
DD L2  
GND  
36 GNDI  
35 IFIP  
34 IFIN  
33 TEST  
DIV BY  
2
LO2  
BUFFER  
540 MHz  
V
CC  
V
G4  
32 dB  
13  
L2P 14  
L2N 15  
GSM  
1800  
GSM  
900  
G[0:6]  
B
TEST  
GND  
GNDL2 16  
DD  
V
CONTROL LOGIC/  
SERIAL BUS  
LO2  
LOCK  
s
s
V
CC  
GND  
GND  
Figure 2. IC Block Diagram with Pinout  
Lucent Technologies Inc.  
5
Advance Data Sheet  
December 1999  
W3020 GSM Multiband RF Transceiver  
Pin Information  
Table 1. Pin Assignment  
Pin Symbol  
Type  
Pin Description  
1
EEL2  
DLNAI  
EEL3  
Input* LNA Emitter Ground  
2
Input  
GSM1800/1900 Band LNA Signal Input  
3
Input* LNA Emitter Ground  
4
GLNAI  
TIFIP  
TIFIN  
Input  
Input  
Input  
GSM900 Band LNA Signal Input  
5
TX IF Input to Mixer  
TX IF Input to Mixer  
6
7
GNDS4 Ground Substrate Ground  
GNDP2 Ground LO2 PLL Ground  
8
9
VDDP2  
VDDC2  
CP2  
Supply LO2 PLL Voltage Supply  
Supply LO2 Charge Pump Supply  
Output Charge Pump LO2 Output  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
GNDC2 Ground LO2 Charge Pump Ground  
VDDL2  
L2P  
Supply LO2 Buffer Supply  
Input  
Input  
LO2 Positive Input (540 MHz)  
LO2 Negative Input (on-chip ac ground)  
L2N  
GNDL2 Ground LO2 Buffer Ground  
GNDS1 Ground Substrate Ground  
MCI  
MCG  
VDDL1  
DL1P  
DL1N  
Input  
Input  
Master Clock Input  
Master Clock Negative Input (ac ground)  
Supply VDD Supply for LO1  
Input  
Input  
GSM1800/1900 LO1 Positive Input  
GSM1800/1900 LO1 Negative Input (on-chip ac ground)  
GNDL1 Ground LO1 Ground  
GL1P  
GL1N  
VDD  
VSS  
Input  
Input  
GSM900 LO1 Positive Input  
GSM900 LO1 Negative Input (on-chip ac ground)  
Supply Voltage Supply for All Digital Circuits  
Ground Ground for All Digital Circuits  
CLK  
DAT  
LAT  
LD  
Input  
Input  
Input  
Clock Input for Serial Bus  
Data Input for Serial Bus  
Latch Enable Input for Serial Bus  
Output LO2 Synthesizer Lock Indicator Output  
GNDS2 Ground Substrate Ground  
*The emitters are considered critical inputs that need to be carefully grounded externally.  
6
Lucent Technologies Inc.  
Advance Data Sheet  
December 1999  
W3020 GSM Multiband RF Transceiver  
Pin Information (continued)  
Table 1. Pin Assignment (continued)  
Pin  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
Symbol  
Test  
Type  
Pin Description  
Output Production Test Output  
IFIN  
Input  
Input  
IF DGC Amplifier Input Negative  
IF DGC Amplifier Input Positive  
IFIP  
GNDI  
VDDI  
Ground Ground for IF Amplifier  
Supply Voltage Supply IF Amplifier  
TIP  
Input  
Input  
Input  
Input  
TX In-Phase Positive Input  
TX In-Phase Negative Input  
TX Quadrature Positive Input  
TX Quadrature Negative Input  
TIN  
TQP  
TQN  
GNDB  
VDDB  
RQN  
Ground Baseband RX Ground  
Supply Baseband RX VDD Supply  
Output RX Quadrature Phase Negative Output  
Output RX Quadrature Phase Positive Output  
Output RX In-Phase Negative Output  
Output RX In-Phase Positive Output  
Ground Substrate Ground RF dc Supply  
Supply RF RX/TX Voltage Supply  
RQP  
RIN  
RIP  
GNDS3  
VDDR2  
RMOP  
RMON  
TIFON  
TIFOP  
EER1  
GMIP  
MIN  
Output RX Mixer Output Positive  
Output RX Mixer Output Negative  
Output TX IF Output from Modulator Negative  
Output TX IF Output from Modulator Positive  
Input*  
Input  
Input  
Input  
RX Mixer Emitter Ground  
GSM900 Mixer Input Positive  
RF Mixer Input Negative (ac ground)  
GSM1800 Mixer Input Positive  
DMIP  
VDDR1  
TOUT  
TOV  
Supply RF RX Voltage Supply  
Output Transmit Mixer Output  
Output Transmit Mixer Output  
Output GSM Band LNA Output  
Ground LNA Substrate Ground  
Output GSM1800 Band LNA Output  
GLNAO  
GNDL  
DLNAO  
EEL1  
Input*  
LNA Emitter Ground  
*The emitters are considered critical inputs that need to be carefully grounded externally.  
Lucent Technologies Inc.  
7
Advance Data Sheet  
December 1999  
W3020 GSM Multiband RF Transceiver  
Absolute Maximum Ratings  
Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are  
absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in  
excess of those given in the operations sections of this data sheet. Exposure to maximum ratings for extended  
periods can adversely affect device reliability.  
Parameter  
Ambient Operating Temperature  
Storage Temperature  
Symbol Min Max Unit  
TA  
Tstg  
–30  
–65  
0
85  
°C  
°C  
°C  
V
150  
300  
4.5  
Lead Temperature (soldering, 10 s)  
Positive Supply Voltage  
Power Dissipation  
VDD  
PD  
0
550  
VDD  
VDD  
mW  
V
ac Peak-to-Peak Input Voltage  
Digital Voltages  
Vp-p  
0
V
ESD Precautions  
Although protection circuitry has been designed into this device, proper precautions should be taken to avoid  
exposure to electrostatic discharge (ESD) during handling and mounting. Lucent Technologies Microelectronics  
Group employs a human-body model (HBM) and a charged-device model (CDM) for ESD-susceptibility testing  
and design evaluation. ESD voltage thresholds are dependent on the circuit parameters used to define the  
model. No industry-wide standard has been adopted for CDM. However, a standard HBM (resistance = 1500 W,  
capacitance = 100 pF) is widely used and, therefore, can be used for comparison purposes. The HBM ESD  
threshold presented here was obtained by using these circuit parameters:  
Parameter  
Method Rating  
Unit  
V
ESD Threshold Voltage  
HBM  
CDM  
CDM  
1500  
1000  
500  
ESD Threshold Voltage (corner pins)  
ESD Threshold Voltage  
V
V
Operating Range  
The device is fully functional within the following operation ranges. No claims of parametric performance are  
stated within this range. For parametric performance, refer to the individual specifications and operating  
conditions.  
Parameter  
Symbol Min Max Unit  
Operating Temperature  
Nominal Operating Voltage  
TA  
–30  
2.7  
85  
°C  
VDD  
3.6  
V
8
Lucent Technologies Inc.  
Advance Data Sheet  
December 1999  
W3020 GSM Multiband RF Transceiver  
Digital Serial Inputs  
Parameter  
Symbol  
VIH  
Min  
Max  
Unit  
V
Logic High Voltage  
0.7 * VDD  
Logic Low Voltage  
VIL  
0.3 * VDD  
10  
V
Logic High Current (VIH = 3.0 V)  
Logic Low Current (VIL = 0.0 V)  
Clock Input Frequency (VDD = 2.7 V)  
|IIH|  
mA  
mA  
MHz  
|IIL|  
10  
fCLK  
10  
Digital Outputs  
Parameter  
Logic High Voltage  
Logic Low Voltage  
Symbol  
VOH  
Min  
Max  
Unit  
V
VDD – 0.4  
VOL  
2
0.4  
V
|IOH|  
mA  
Logic High Current (VOH ³ VDD –  
0.4)  
|IOL|  
2
mA  
Logic Low Current (VOL £ 0.4 V)  
Enable Time  
VDD = 2.7 Vdc; TA = 25 °C ± 3 °C.  
Parameter  
Min  
Typ  
Max  
Unit  
ms  
Logic Powerup/down Time  
4.0  
Supply Currents  
VDD = 2.7 Vdc; TA = 25 °C ± 3 °C.  
System Mode  
Min  
Typ  
Max Unit  
Powerdown (VDD = 3.0  
Vdc)*  
2
50  
mA  
PLL RX Settling  
RX Mode (LNA = ON)  
RX Mode (LNA = OFF)  
PLL TX Settling  
TX Mode  
33  
68  
64  
33  
92  
mA  
mA  
mA  
mA  
mA  
*This current does not include LO2 charge pump supply current. (See LO2 specification for details.)  
Lucent Technologies Inc.  
9
Advance Data Sheet  
December 1999  
W3020 GSM Multiband RF Transceiver  
LNA  
The W3020 contains two on-chip LNAs, one to operate in the GSM900 band and one to operate in the  
GSM1800/1900 bands. The GSM900 operation is combined with the GSM1800 band operation in a dual-band  
terminal. Only one LNA operates at a time. The two on-chip LNAs with external matching networks are 50 W  
single-ended input, single-ended output type. Switching between the LNAs is determined by the band bit B and  
the gain control bit G0 in the TR register, as described in the Programming Information section.  
Table 2. GSM900 LNA Performance  
VDD = 2.7 Vdc; TA = 25 °C ± 3 °C.  
Parameter  
Min  
925  
Typ  
Max  
960  
Unit  
MHz  
mA  
dB  
RF Input Band  
Current Consumption (collector current)  
Noise Figure*  
3.5  
2.0  
20  
Power Gain (942 MHz)*  
Input 1 dB Compression Level  
Input Return Loss  
dB  
–20  
–15  
14  
dBm  
dB  
Off-state Gain  
–51  
dB  
*
All gain and NF include matching losses. Not tested in production.  
Table 3. GSM1800/1900 LNA Performance  
VDD = 2.7 Vdc; TA = 25 °C ± 3 °C.  
Parameter  
Min  
Typ  
Max  
Unit  
RF Input Band:  
GSM1800  
GSM1900  
1805  
1930  
1880 MHz  
1990 MHz  
Current Consumption (collector current)  
Noise Figure*  
3.5  
3.0  
mA  
dB  
Power Gain (1842 MHz)*  
Input 1 dB Compression Level  
Input Return Loss  
19  
dB  
–20  
–16.5  
15  
dBm  
dB  
Off-state Gain  
–38  
dB  
*
All gain and NF include matching losses. Not tested production.  
10  
Lucent Technologies Inc.  
Advance Data Sheet  
December 1999  
W3020 GSM Multiband RF Transceiver  
RF Mixer  
The W3020 contains two mixers: one for GSM900 band operation and one for GSM1800/1900 band operation.  
The RF mixers are double-balanced mixers that can be used in various modes of operation. The ac-grounded  
input (pin 56) requires grounding at both the RF and the IF frequencies. If grounding is not placed close to the  
device, the RF performance will be compromised. At the output, the mixer is connected to a balanced IF SAW  
filter.  
Table 4. RF Performance: GSM900  
VDD = 2.7 V; TA = 25 °C ± 3 °C. FIN = 942 MHz  
Parameter  
Min  
925  
Typ  
270  
9
Max  
960  
Unit  
MHz  
MHz  
MHz  
dB  
RF Input Band  
Output IF Frequency  
LO Frequency Range  
Noise Figure (SSB)  
Mixer Power Gain*  
I/P 1 dB Compression  
1195  
1230  
12  
7
dB  
–10  
–5  
dBm  
*LO1 level = –6 dBm, FLO = 1212 MHz, FIF= 270 MHz.  
Table 5. RF Performance: GSM1800/1900  
VDD = 2.7 V; TA = 25 °C ± 3 °C. FIN = 1842 MHz  
Parameter  
Min  
Typ  
Max  
Unit  
RF Input Band:  
GSM1800  
GSM1900  
1805  
1930  
1880  
1990  
MHz  
MHz  
Output IF Frequency  
270  
MHz  
LO Frequency Range:  
GSM1800  
GSM1900  
1535  
1660  
1610  
1720  
MHz  
MHz  
Noise Figure (SSB)  
Mixer Power Gain*  
I/P 1 dB Compression  
4
9.5  
6
12  
dB  
dB  
–12  
–7  
dBm  
*LO1 level = –6 dBm, FLO = 1572 MHz, FIF = 270 MHz  
Lucent Technologies Inc.  
11  
Advance Data Sheet  
December 1999  
W3020 GSM Multiband RF Transceiver  
IF/Baseband Amplifier  
gain accuracy is determined after calibration of the  
32 dB amplifier.  
The IF amplifier is a balanced-input/balanced-output  
type and is connected to a balanced SAW filter. It  
consists of three gain stages: an IF amplifier and two  
sections of baseband amplifiers. The gain can be  
changed in steps of 32, 16, 8, and 4 dB. The base-  
band also contains a level-shifter stage to drive an  
A/D converter directly. The level-shifter stage has 21  
dB of gain that can be switched off. The specifications  
below are for the two modes of operation.  
ACTUAL = REQUESTED  
ACTUAL  
ACTUAL GAIN  
GAIN (dB)  
X
Y
20 dB  
REQUESTED GAIN (dB)  
The gain of the IF section is programmed via the  
three-wire serial bus.  
Note: X , Y = relative gain accuracy.  
The IF amplifier contains the 32 dB amplifier stage  
and has a gain of either 0 or 32 dB. The IF amplifier is  
followed by a quadrature mixer with a fixed gain of  
4 dB. The first baseband amplifier (G3, G2, G6) after  
the low-pass filter and demodulator has gains  
selectable between 0, 4, 8, 12, 16, 20, 24, and 28 dB.  
Using the other gain steps, the IF and baseband gain  
can be varied by 64 dB in 4 dB steps. The second  
baseband amplifier (G5, G1) has gains selectable  
between 0, 4, 21, and 25 dB. The 21 dB gain step in  
the second baseband amplifier section is not tested  
and should therefore not be used. Figure 3 is a  
diagram of the gain steps.  
Figure 4. Actual Gain vs. Requested Gain  
The input impedance of the IF strip will vary slightly  
when the 32 dB amplifier is switched between the ON  
and OFF states. We recommend that the IF strip be  
matched with the 32 dB amplifier in the ON state to  
provide the best match to the SAW filter when the  
input level is at a minimum. The input matching  
network can match the IF input directly to the SAW  
filter or to 50 W.  
A matching network to 50 W was chosen for the  
evaluation board to allow for convenient laboratory  
measurements. To keep the input impedance low and  
minimize impedance variation between gain settings  
of the IF stage, a resistor is shunt-connected between  
the input terminals. The input network can then be  
matched to the desired input impedance. (The  
specified gain includes a resistor value of 500 W.) For  
testing purposes, the input has been matched to 50 W,  
and the gains of the IF/baseband amplifier are all  
referred to a 50 W matched input impedance. The I/Q  
outputs are terminated in high-impedance loads. The  
gains are voltage gains and include the voltage gain in  
the impedance transformation of the input matching  
network. The network is illustrated in Figure 5.  
G4  
LPF1 G3 G2 G6* LPF2 G5* G1  
16/0  
4/0  
8/0  
21/0  
6
4/0  
32/0  
*Not tested.  
Figure 3. IF Amplifier Gain Steps  
The baseband amplifier section contains dc correction  
circuitry that minimizes dc offsets at the I/Q outputs.  
The low-pass filters in the baseband contain a self-  
calibrating circuit for tuning of filter cut-off frequency.  
The selectable gain settings are programmed via the  
TR register as described in the Programming  
Information section. Filter tuning and dc calibration  
are also explained in that section.  
W3020 G4 bit  
IFIP PIN 35  
To achieve the specified absolute gain accuracy, the  
total gain should be calibrated at room temperature.  
This would normally be part of the overall phone  
calibration. Absolute gain accuracy measures the gain  
change over a specified temperature range relative to  
the room temperature measurement. In the GSM  
system, this specification is dependent on all the RX  
functional blocks and not solely on the IF strip. The  
relative gain accuracy is a measure of the gain stage  
accuracy over a 20 dB range (see Figure 4). Relative  
INPUT  
IMPEDANCE  
R1  
500  
32/0  
W
50  
W
1:1  
IFIN PIN 34  
Note: Balun is shown for testing purposes only.  
Figure 5. IF Strip Balanced Input Matching  
Network  
12  
Lucent Technologies Inc.  
Advance Data Sheet  
December 1999  
W3020 GSM Multiband RF Transceiver  
IF/Baseband Amplifier (continued)  
Table 6. IF/Baseband Amplifier Performance  
VDD = 2.7 V; TA = 25 °C ± 3 °C.  
Parameter  
Total Voltage Gain (referred to 50 W input)*  
Demodulator Gain  
Min  
60  
Typ  
65  
4
Max  
68  
Unit  
dB  
dB  
Absolute Gain Accuracy†  
–2.0  
2.0  
dB  
Relative Gain Step Accuracy‡  
Noise Figure (matched to 50 W)§  
–1.0  
6.2  
1.0  
12  
dB  
dB  
O/P 1 dB Compression Point (0 dB gain  
setting)  
–1.5  
dBm(V)**  
O/P 1 dB Compression Point (>16 dB  
baseband gain setting)  
12  
dBm(V)**  
Output Load Capacitance (differential)  
10  
10  
pF  
pF  
Output Load Capacitance (single-end to  
ground)  
Output Load Resistance (differential)  
20  
40  
kW  
kW  
Output Load Resistance (single-end to  
ground)  
IF Enable Time  
0.5 * VDDB  
µs  
V
I/Q Common-mode Output Voltage  
I/Q Output Current  
I/Q Phase Accuracy§  
I/Q Amplitude Mismatch§  
0.5 * VDDB – 0.15  
0.5 * VDDB + 0.15  
µA  
degrees  
±50  
3.5  
–1  
±0.1  
5
1
dB  
±50  
mV  
I/Q Differential Offset Voltage  
(corrected)§,††  
Offset Correction Decay Rate§  
2
mV/s  
IF Input Impedance (diffferential)  
32 dB gain setting  
0 dB gain setting  
114 – j497  
92 – j497  
W
W
*
64 dB DGC setting. This voltage gain is measured from the input of the IF strip to either the I or Q channel output.  
† The absolute accuracy refers to the total gain variation from the nominal condition over temperature (–30 °C to +85 °C) after gain calibration at  
nominal temperature.  
‡ The relative gain step accuracy is determined after the 32 dB gain stage has been calibrated at nominal temperature. The total gain step accuracy  
at any of the possible gain conditions should not vary more than the specified amount within a 20 dB measurement window.  
§ At 64 dB gain setting.  
** This is a voltage and specified in dBm as if the voltage were across a 50 W load.  
††Offset tested in coarse dc-correction mode only.  
Lucent Technologies Inc.  
13  
Advance Data Sheet  
December 1999  
W3020 GSM Multiband RF Transceiver  
IF/Baseband Amplifier (continued)  
Table 7. Low-Pass Rejection Characteristics  
VDD = 2.7 V; TA = 25 °C ± 3 °C; high bandwidth.  
Parameter  
Corner Frequency*  
Group Delay Distortion (0 kHz—75 kHz)  
Min  
Typ Max Unit  
130  
168  
61  
226  
kHz  
ns  
Attenuation:  
75 kHz  
0.4  
0.8  
4.7  
18  
28  
35  
53  
69  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
100 kHz  
200 kHz  
400 kHz  
600 kHz  
800 kHz  
1.6 MHz  
3.0 MHz  
*
After filter tuning. (See FilterTune and dc Offset Correction Tuning section.)  
14  
Lucent Technologies Inc.  
Advance Data Sheet  
December 1999  
W3020 GSM Multiband RF Transceiver  
Modulator  
The modulator uses an indirect I/Q modulator architecture that is ideal for multiband operation. The IF  
modulation improves EVM effects due to improved carrier feedthrough. The series transmit IF filters allow  
improved wideband noise, which enables duplexer removal. The I/Q modulator requires no amplitude or phase  
calibration to achieve high phase accuracy. The modulator can be altered between GSM900 transmit mode (TX  
IF = 270 MHz) and GSM1800/1900 transmit mode (TX IF = 180 MHz) by the band bit setting in the TR register.  
Table 8. Modulator Performance  
VDD = 2.7 V; TA = 25 °C ± 3 °C. IQ common mode = 1.6 V; input differential signal = 1.0 Vp-p.  
Parameter  
I/Q Signal Path Bandwidth  
Min  
Typ  
450  
Max  
Unit  
kHz  
kW  
pF  
I/Q Input Resistance to Ground  
I/Q Input Capacitance to Ground  
I/Q Input Resistance (differential)  
I/Q Input Capacitance (differential)  
I/Q Common-mode Range  
25  
10  
10  
10  
kW  
pF  
1.5  
0.8  
VDD – 1.05  
1.2  
V
I/Q Input Differential Signal for Max Output  
1
Vp-p  
RF Output Band:  
GSM900  
GSM1800  
880  
1710  
1850  
915  
1785  
1910  
MHz  
MHz  
MHz  
GSM1900  
Output Power:  
GSM900 (LO1 at 1167 MHz)  
GSM1800 (LO1 at 1567 MHz)  
–4.5  
–4  
0
0
6
6
dBm  
dBm  
Powerup Time*  
4
ms  
RMS Phase Accuracy†:  
GSM900  
2.0  
2.5  
°rms  
°rms  
GSM1800  
GMSK Modulation Spectrum (max) (offset from carrier):  
100 kHz  
200 kHz  
250 kHz  
400 kHz  
1.8 MHz—3.0 MHz  
3.0 MHz—6.0 MHz  
>6.0 MHz  
@30 kHz RBW  
0.5  
–30  
–33  
–60  
–65  
–65  
–73  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
@100 kHz RBW  
Wideband Noise IF Modulator  
GSM900:  
–140  
–140  
dBc/Hz  
dBc/Hz  
|f – f0| ³ 10 MHz  
|f – f0| ³ 20 MHz (PM)  
GSM1800:  
–140  
dBc/Hz  
|f – f0| ³ 20 MHz (PM)  
Wideband Noise RF Mixer (See Figure 6.):  
GSM900:  
–154  
–154  
dBc/Hz  
dBc/Hz  
|f – f0| ³ 10 MHz  
|f – f0| ³ 20 MHz (PM)  
GSM1800:  
–153  
dBc/Hz  
|f – f0| ³ 20 MHz (PM)  
*
From the programming latch going high to power available at RF output, Including TX IF filter group delay.  
† Including contributions from LO1, LO2, and modulator.  
Lucent Technologies Inc.  
15  
Advance Data Sheet  
December 1999  
W3020 GSM Multiband RF Transceiver  
Modulator (continued)  
I
¸ 2  
¸ 3  
LO2  
OUTPUT  
F
Q
IL = 3 dB  
REJECTION = 34 dB @ 20 MHz OFFSET  
LO1  
Figure 6. IF Filtering Requirements for Wideband Noise Performance  
16  
Lucent Technologies Inc.  
Advance Data Sheet  
December 1999  
W3020 GSM Multiband RF Transceiver  
LO2 Specification  
The W3020 contains an input buffer for an external VCO and a PLL for generation of a second LO signal at  
540 MHz. The output of the buffer is fed to the receive and transmit circuits, where the signal is divided to the IF  
frequency. The phase noise includes contributions from VCO buffers to the transmit and receive circuits.  
Table 9. LO2 Performance  
VDD = 2.7 V; TA = 25 °C ± 3 °C.  
Parameter  
Charge Pump Supply (VDDC2)  
Frequency  
Min  
2.7  
Typ  
2.85  
540  
–3  
Max  
Unit  
V
3.0  
MHz  
dBm  
MHz  
Vp-p  
MHz  
°rms  
mA/cycle  
mA  
LO2 Input Level  
–6  
0
Clock Reference Frequency  
Clock Input Level  
13.0  
1
0.4  
Reference Frequency (at phase detector)  
Phase Accuracy (loop bandwidth 10 kHz)  
Phase Detector Gain (VDD = 2.85 V)  
Powerdown Charge Pump Supply Current (VDDC2)  
Phase Detector Voltage  
1.0  
1.3  
200  
1
0.5  
1.3  
VDDC2 – 0.5  
V
Note: Reference sidebands determined by external loop filter components.  
LO1 Input Buffer Specification  
Table 10. LO1 Performance  
VDD = 2.7 V; TA = 25 °C ± 3 °C.  
Parameter  
Min  
Typ  
Max  
Unit  
Frequency Range:  
GSM900  
GSM1800  
1150  
1530  
1660  
1230  
1610  
1730  
MHz  
MHz  
MHz  
GSM1900  
Input Power Level  
Input Noise Figure  
–6  
–3  
8
dBm  
dB  
10  
Lucent Technologies Inc.  
17  
Advance Data Sheet  
December 1999  
W3020 GSM Multiband RF Transceiver  
Programming Information  
The W3020 and W3000 transceiver mode (IC RX/TX) and the gain and band settings are programmed using a  
standard three-wire bus (CLOCK, DATA, LATCH). The W3020 and W3000 registers are addressable so the two  
ICs can share the same data, clock, and latch times. The LATCH line initiates download and execution of the  
current DATA word.  
TR REGISTER  
CONFIG REGISTER  
MAIN REGISTER  
SC1  
A[0:2]  
LAT  
PARALLEL LATCH  
SERLE1  
CLK  
DAT  
SERCK  
SERDA  
SERIAL SHIFT  
W3020  
W3000  
DAT  
SERIAL SHIFT  
CLK  
LAT  
PARALLEL LATCH  
A[0:2]  
MAIN REGISTER  
REF REGISTER  
Figure 7. Diagram of W3020, W3000, and SC1 Interconnection  
18  
Lucent Technologies Inc.  
Advance Data Sheet  
December 1999  
W3020 GSM Multiband RF Transceiver  
Programming Information (continued)  
Serial Bus Timing Information  
DAT  
LSB  
MSB  
MSB – 1  
CS  
t
CH  
t
CLK  
LAT  
L
L
CWL  
t
CWH  
LS  
t
t
t
OR  
LWH  
t
LAT  
V
t
Figure 8. Serial Bus Timing Diagram  
Table 11. Serial Bus Timing Information  
VDD = 2.7 V; TA = 25 °C ± 3 °C  
Symbol  
TCS  
Parameter  
Data to Clock Setup Time  
Data to Clock Hold Time  
Clock Pulse Width High  
Min  
33  
10  
33  
33  
0
Typ  
Max  
Unit  
ns  
TCH  
ns  
TCWH  
TCWL  
TLS  
ns  
Clock Pulse Width Low  
ns  
Clock Falling Edge to Latch High Setup Time  
Latch Pulse Width  
ns  
TLWH  
TLL  
50  
33  
ns  
Latch to Clock Setup Time  
Clock Input Frequency  
ns  
FCLK  
10  
MHz  
Lucent Technologies Inc.  
19  
Advance Data Sheet  
December 1999  
W3020 GSM Multiband RF Transceiver  
Programming Information (continued)  
The Data Word  
The W3020 and W3000 chips are addressed through the bit content of the 24-bit serial word. Some words for  
time-critical interactions address both W3020 and W3000 at the same time, while some words for initialization  
address W3020 and W3000 separately.  
The W3020 gets all of its control information via a three-wire serial bus from the baseband IC. Serial data  
transfers always consist of 24 bits: 3 bits of address to select one of five control registers, and up to 21 bits of  
data. The data is shifted first into a shift register and then parallel-loaded into the proper control register after the  
completion of the transfer when the latch enable signal goes high. The last bit is that which immediately precedes  
a low-to-high latch input transition occurring while the CLOCK input is low. Bit 24 is loaded first, and bit 1 is  
loaded last. The four control registers are defined as follows:  
n TR: Transmit/receive register for W3020. Contains bits for setting various transmit and receive modes, setting  
receive gain, etc. It is expected that this register would be written several times during a frame.  
n CONFIG: Contains bits to control various options for dc offset correction, filter-tuning, lock detect, and  
overload outputs, etc. It is expected that this register would be written once at initialization and then rarely  
updated. Since it is not affected by the power-on reset circuit, a write to this register should be the first  
operation performed when accessing the W3020 chip. Also, it is advisable never to update the configuration  
register while a critical operation is in progress.  
n MAIN: Main counter and prescaler values for W3000 chip. Used to set mode and band bit functions for the  
W3020 while programming the W3000.  
n REF: Reference counter values for W3000. Not relevant to W3020.  
Table 12. Register Addressing  
A2  
1
A1  
0
A0  
0
Register  
TR  
Device  
W3020  
W3020  
W3020  
W3020  
W3000  
W3000  
1
0
1
CONFIG  
RESERVED  
RESERVED  
M MAIN  
M REF  
1
1
0
1
1
1
0
X
X
0
0
1
Note: X indicates that the bit does not affect addressing for the given  
combination of A2 and A0 that addresses the W3000. In the W3000, the  
A1 bit is used for data content.  
20  
Lucent Technologies Inc.  
Advance Data Sheet  
December 1999  
W3020 GSM Multiband RF Transceiver  
Programming Information (continued)  
TR Register  
The TR register is the transmit/receive register for W3020. It contains bits for setting various transmit and  
receive modes, setting receive gain, etc. It is expected that this register would be written several times during a  
frame.  
Last bit in serial sequence  
First bit in serial sequence  
Bit No.  
Bit  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19  
20  
21  
22 23  
24  
A0=0 A1=0 G0 G1 G2 G3 G4 G5 G6 T0 T1 T2 DS DP FTR T3 T4 T5 T6 MO1 MO2 MO3  
B
A2=1  
Table 13. TR Register  
Bit Number  
Bit  
SC1 Standard  
Setting  
Function  
24  
23  
22  
21  
20  
19  
18  
17  
16  
A2  
B
1
0
Address Bit  
Band Select (See Table 14.)  
MO3  
MO2  
MO1  
T6  
RX, TX, Synthesizer Mode (See Table 15.)  
0
0
0
0
Disable LO2 Circuitry in All Modes (See Table 16.)  
Disable LO1 Circuitry (W3000 excluded) (See Table 17.)  
RX IF Duty Cycle Corrector Disable (See Table 18.)  
T5  
T4  
T3  
GSM1800 TX IF LO Divide-by-3 Duty Cycle Corrector Disable (See  
Table 19.)  
15  
14  
13  
12  
11  
10  
9
FTR  
DP  
DS  
T2  
1
0
LPF Tune Filter Request (See Table 20.)  
dc Precharge Only (See Table 21.)  
0
dc Correction Skip (See Table 22.)  
0
LO2 Divide by 2 or Divide-by-3 Select for TX IF (See Table 23.)  
TX IF LO Divide-by-6 Select (See Table 24.)  
TX IF Duty-Cycle Corrector Disable (See Table 25.)  
Digital Gain Control RX IF/IQ-Baseband (See Table 26.)  
T1  
0
T0  
0
G6  
G5  
G4  
G3  
G2  
G1  
G0  
A1  
A0  
8
7
6
5
4
3
1
0
0
Digital Gain Control LNA On/Off (See Table 26.)  
Address Bits  
2
1
Note: The TR register is reset to an all-zero state after the reset bit in the CONFIG register has been set high.  
Lucent Technologies Inc.  
21  
Advance Data Sheet  
December 1999  
W3020 GSM Multiband RF Transceiver  
range. The transmit PLL settling mode is used prior to  
a transmit burst in order to power up and lock the LO1  
and LO2 VCO/PLL synthesizers and the respective  
RF and IF LO buffers connecting to the modulator  
circuit. The LO2 divide-by circuits remain off during  
this mode. Similarly, the receive PLL settling mode is  
used prior to the receive dc calibration time slot and  
subsequent receive burst in order to power up and  
lock the LO1 and LO2 VCO/PLL synthesizers and the  
respective RF and IF LO buffers connecting to the RF  
mixer and IF strip. The RF mixer can be turned on in  
this mode by setting the C9 (RF mixer on during  
settling) bit high in the CONFIG register (see Table  
30). The transmitter ON mode turns on all the same  
circuits as the transmit PLL settling mode along with  
the I/Q modulator and up-conversion mixer.  
Programming Information (continued)  
TR Register (continued)  
B: Band Select  
When set low, the GSM900 transceiver circuits are  
enabled and the GSM1800 transceiver circuits are  
disabled. When set high, the GSM1800 transceiver  
circuits are enabled and the GSM900 transceiver  
circuits are disabled. The transceiver circuits that  
change with the setting of the band bit B are the LNA,  
the RF mixer, the receive UHF LO1 buffer, the  
transmit UHF LO1 buffer, and the LO2 divider for the  
modulator IF LO phase shifter circuit. The normal LO2  
division factor for GSM900 is divide-by-2; for  
GSM1800, the normal LO2 division factor is divide-by-  
3. Note that bits T2 and T1 also affect the transmitter  
LO2 division factor when set high (see Table 23 and  
Table 24).  
The receiver ON mode turns on all the same circuits  
as the receive PLL settling mode along, with the LNA  
(if enabled by the G0 bit—see Table 26), RF mixer,  
and IF amplifiers and demodulator. When first going  
into receive mode, a baseband LP filter tune is  
performed, if requested, by setting the FTR (filter tune  
request) bit high in the TR register and the C6 (filter  
tune disable) bit low in the CONFIG register (see  
Table 20 and Table 35, respectively, and the Low-  
Pass Filter Tuning section). Next, a dc offset  
calibration cycle is performed if the DS (dc correction  
skip) bit is low in the TR register and the C5 (dc  
correction disable) bit is low in the CONFIG register  
(see Table 22 and Table 36, respectively). The default  
condition is that the LNA turns off during the dc  
calibration if the C2 (LNA mode during dc calibration)  
bit is low in the CONFIG register (see Table 37). The  
other default condition is that the RF mixer LO1 buffer  
turns off during the dc calibration if the C3 (RX LO1  
buffer mode during dc calibration) bit is low in the  
CONFIG register (see Table 38).  
Table 14. B: Band Select  
B
Function  
Bit 23  
0
1
GSM900 Path On  
GSM1800/1900 Path On  
Note: When programmed via the same three-wire bus as  
the W3000, updating this bit in W3020 also  
updates it in W3000, and vice versa.  
MO[3:1]: Mode Control  
The various system modes of the W3020 are set by  
the mode control bits. These are active in both the TR  
and MAIN registers. The W3000 will also power up  
with the W3020 in any of the valid modes set by the  
mode bits in the TR or MAIN registers. The mode bit  
settings for each W3020 system mode are given in  
Table 15. The corresponding typical supply current for  
the IC in each mode is shown in the Supply Currents  
table on page 9.  
During this event, the transmit LO1 buffer will turn on  
to act as a load stage for the UHF LO1 buffer. (For  
additional information on the dc offset calibration, see  
the dc Offset Correction Timing section.) After the dc  
calibration cycle, all the receive circuits turn on as  
mentioned above for the receive burst.  
In sleep mode, both the W3020 and W3000 are  
powered down, and the supply current is in the µA  
22  
Lucent Technologies Inc.  
Advance Data Sheet  
December 1999  
W3020 GSM Multiband RF Transceiver  
Programming Information (continued)  
TR Register (continued)  
Table 15. MO[3:1]: Mode Control  
MO3  
MO2  
MO1  
Function  
Bit 22 Bit 21 Bit 20  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Sleep: All Modules Powerdown  
Reserved  
Reserved  
Reserved  
TX PLL Settling Mode (LO1, LO2, TX LO1, and TX LO2 buffers on)  
RX PLL Settling Mode (LO1, LO2, RX LO1, and RX LO2 buffers on)  
TX ON (TX modulator and mixer, LO1, LO2, TX LO1, and TX LO2 buffers on)  
RX ON (RX mixer; LNA, if enabled; IF amplifier; LO1; LO2; RX LO1; and RX LO2  
buffers on)*  
*If MO bits are set to 111 with the dc correction skip bit low, a dc offset calibration cycle is performed automatically.  
Table 16. T6: LO2 Disable  
Table 18. T4: Receive IF Duty Cycle Corrector  
Disable  
If this bit is set high, the 540 MHz LO2 input buffer  
and LO2 PLL will be turned off. This bit will also  
disable the 13 MHz clock buffer going to the  
baseband amplifier correction circuits. This bit is  
provided for testing purposes.  
When high, disables duty cycle correction circuit in  
the LO2 divide-by-2 circuit for the receive IF  
demodulator. This is provided for testing purposes.  
T4  
Function  
T6  
Function  
Bit 17  
Bit 19  
0
1
Divide-by-2 Duty Cycle Corrector Enabled  
Divide-by-2 Duty Cycle Corrector Disabled  
0
1
LO2 Circuit Enabled  
LO2 Circuit Disabled  
Table 19. T3: Divide-by-3 Duty Cycle Corrector  
Disable  
Table 17. T5: LO1 Disable  
When high, disables duty cycle correction circuit in  
the GSM1800/1900 transmit IF LO divide-by-3  
circuit. This is provided for testing purposes.  
The T5 bit disables the LO1 circuitry including the  
UHF LO1 buffer and bias circuit. This bit is provided  
for testing purposes.  
T3  
Bit 16  
Function  
T5  
Bit 18  
Function  
0
1
Divide-by-3 Duty Cycle Corrector Enabled  
Divide-by-3 Duty Cycle Corrector Disabled  
0
1
LO1 Circuitry Enabled  
LO1 Circuitry Disabled  
Lucent Technologies Inc.  
23  
Advance Data Sheet  
December 1999  
W3020 GSM Multiband RF Transceiver  
Table 23. T2: TX IF LO Division Select Switch  
Programming Information (continued)  
TR Register (continued)  
Reverses the LO2 frequency division factor in the  
transmitter for both bands. This is provided for testing  
purposes. This bit works with the band bit B as follows.  
Table 20. FTR: LPF Tune Filter Request  
T2  
B
Function  
This requests tuning operation of baseband low-pass  
filter (see the Low-Pass Filter Tuning section for  
details). If the filter tune is enabled in CONFIG  
register, the FTR bit must be programmed high before  
the first following receive mode is active. Filter tune  
can only be done in a mode where LO2 is active, e.g.,  
receive mode.  
Bit 12 Bit 23  
0
0
1
1
0
1
0
1
Divide by 2 (270 MHz):  
Normal GSM900 Division  
Divide by 3 (180 MHz): Normal  
GSM1800/1900 Division  
Divide by 3 (180 MHz): Reversed  
Band 0 Division  
FTR  
Function  
Divide by 2 (270 MHz): Reversed  
Band 1 Division  
Bit 15  
0
1
Use Default Tuning Value  
Perform New Tuning  
Table 24. T1: TX IF LO Divide-by-6 Select  
This bit will change the divide-by-3 circuit to a divide-  
by-6 circuit. This bit is provided for testing purposes.  
Table 21. DP: dc Precharge Only  
When dc offset calibration is performed, only the  
precharge portion is done. This reduces the amount of  
time required for dc offset calibration, but gives higher  
levels of dc offset. (See the dc Offset Calibration  
section for details.)  
T1  
Function  
Bit 11  
0
1
Divide by 3 when 1/3 Path Is Active  
Divide by 6 when 1/3 Path Is Active  
DP  
Function  
Bit 14  
Table 25. T0: TX IF Duty Cycle Corrector Disable  
0
1
Standard dc Offset Correction Cycle  
dc Precharge Cycle Only  
When high, disables duty cycle correction circuit into  
the transmit IF phase splitter. This bit is provided for  
testing purposes.  
Table 22. DS: dc Correction Skip  
T0  
Function  
Bit 10  
DS  
Function  
Bit 13  
0
1
TX IF LO Duty Cycle Corrector Enabled  
TX IF LO Duty Cycle Corrector Disabled  
0
Insert dc Correction Cycle (See Table  
41.)  
1
Skip dc Offset Calibration (with retained  
dc correction setting)  
24  
Lucent Technologies Inc.  
Advance Data Sheet  
December 1999  
W3020 GSM Multiband RF Transceiver  
Programming Information (continued)  
TR Register (continued)  
Table 26. G[0:6]: Digital Gain Control  
Digital RX gain control with bits defined as follows:  
G0: When high, enables GSM900 or GSM1800/1900 LNA according to which band is selected by band bit B.  
(See Table 14.)  
G4: IF gain: 0 = 0 dB, 1 = 32 dB.  
G1: 0 = add 0 dB to baseband gain, 1 = add 4 dB to baseband gain in second amplifier.  
G2: 0 = add 0 dB to baseband gain, 1 = add 8 dB to baseband gain in first amplifier.  
G3: 0 = add 0 dB to baseband gain, 1 = add 16 dB to baseband gain in first amplifier.  
G5: 0 = add 0 dB to baseband gain, 1 = add 21 dB to baseband gain in second amplifier.  
G6: 0 = add 0 dB to baseband gain, 1 = add 4 dB to baseband gain in first amplifier.  
The nominal demodulator mixer conversion gain is 4 dB; hence, total gain is always 4 dB higher than the DGC setting.  
Voltage gain is differential assuming input matching network to 50 W source impedance. (See Table 6.)  
G6  
Bit 9  
G5  
Bit 8  
G4  
Bit 7  
G3  
Bit 6  
G2  
Bit 5  
G1  
Bit 4  
DGC Gain  
(dB)  
Total Gain  
(dB)  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
1
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
0
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
4
4
8
8
12  
16  
20  
24  
28  
32  
36  
40  
44  
48  
52  
56  
60  
64  
68  
25*  
85*  
89*  
12  
16  
20  
24  
28  
32  
36  
40  
44  
48  
52  
56  
60  
64  
21  
81  
85  
*
Not tested or recommended for use.  
G4  
LPF1  
G3  
G2  
G6*  
4/0  
LPF2  
G5*  
G1  
6
32/0  
4/0  
16/0  
8/0  
21/0  
*Not tested.  
Figure 9. IF and I/Q Gain Distribution (dB)  
Lucent Technologies Inc.  
25  
Advance Data Sheet  
December 1999  
W3020 GSM Multiband RF Transceiver  
Programming Information (continued)  
CONFIG Register  
The CONFIG register contains bits to control various options for dc offset correction, filter-tuning, lock detect,  
and overload outputs, etc. It is expected that this register would be written once at initialization and then rarely  
updated. Since it is not affected by the power-on reset circuit, a write to this register should be the first operation  
performed when accessing the W3020 chip. Also, it is advisable never to update the configuration register while  
a critical operation is in progress.  
Last bit in serial sequence  
First bit in serial sequence  
Bit No.  
Bit  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
19 20 21 22 23  
24  
A0=1 A1=0 RS DT0 DT1 DT2 C1 C2 C3 C4 C5 C6 C7 LD2 C8 VO C9 OLD C10 F1 F2 F3 F4 A2=1  
Table 27. CONFIG Register  
Bit No.  
Bit  
SC1 Standard  
Setting  
Function  
24  
23  
22  
21  
20  
19  
18  
17  
A2  
F4  
F3  
F2  
F1  
1
0
0
0
0
1
0
0
Address Bit 2  
Reserved  
C10  
OLD  
C9  
Enable of LO2 PLL (See Table 28.)  
Disable of Overload Pin Output Signal, When High (See Table 29.)  
Force RF Mixer On When RX LO1 Buffer Is On, When High (See  
Table 30.)  
16  
15  
VO  
C8  
1
0
Reserved; Always High (See Table 31.)  
LO2 Charge Pump Output Off (high impedance), When High (See  
Table 32.)  
14  
13  
12  
LD2  
C7  
1
0
0
Enable LO2 Lock Detect Output, When High (See Table 33.)  
Select dc Offset Correction/Fine Tune, When High (See Table 34.)  
C6  
Disable LP Filter Bandwidth Tune and Use Default Value, When High  
(See Table 35.)  
11  
C5  
0
Disable dc Offset Correction and Use Default Setting, When High (See  
Table 36.)  
10  
9
C4  
C3  
C2  
C1  
1
0
0
1
High Bandwidth Setting of Baseband Path, When High (See Table 37.)  
RX LO1 Buffer On During dc Calibration When High (See Table 38.)  
LNA On During dc Calibration, When High (See Table 39.)  
8
7
LO2 Phase Detector Polarity, Positive Slope, When High (See  
Table 40.)  
6
5
4
3
2
1
DT[2]  
DT[1]  
DT[0]  
RS  
0
1
1
dc Offset Correction Time (See Table 41.)  
1*  
0
Resets Bit Content in Other Registers, When High (See Table 42.)  
A1  
Address Bit 1  
Address Bit 0  
A0  
1
*
It is recommended that a reset be programmed after power-on. Reset does not affect the content of the CONFIG register.  
26  
Lucent Technologies Inc.  
Advance Data Sheet  
December 1999  
W3020 GSM Multiband RF Transceiver  
Programming Information (continued)  
CONFIG Register (continued)  
Table 28. C10: LO2 PLL Enable  
When low, disables counters, phase detector, and charge pump of the LO2 PLL. This mode is provided for  
applications utilizing an external programmable IF PLL.  
C10  
Function  
Bit 19  
0
1
LO2 PLL Disabled  
LO2 PLL Operational (normal)  
Table 29. OLD: Overload Output Disable  
When high, forces overload output pin to be a logic low level. Otherwise, overload pin indicates overload.  
OLD  
Function  
Bit 18  
0
1
Overload Detect Output for IF/Baseband Enabled  
Overload Detect Output for IF/Baseband Disabled  
Table 30. C9: RF Mixer On During Settling  
When high, enables receive RF mixer during receive PLL settling mode. In default operation, this bit should be  
set to 0. If there were a problem with the VCO kicking when going from settling mode to full receive mode, it  
could be set high.  
C9  
Function  
Bit 17  
0
1
Default: RX Mixer Off During RX Settling Mode (MO[3:1] = 101)  
RX Mixer On During RX Settling Mode (MO[3:1] = 101)  
Table 31. VO: LO1 Buffer Mode  
VO  
Function  
Bit 16  
0
1
Not Allowed  
LO1 Buffer Mode  
Table 32. C8: LO2 Charge Pump Off  
C8  
Function  
Bit 15  
0
1
Normal LO2 Charge Pump Operation  
Charge Pump Off (high impedance) or CP2 Test Mode  
Lucent Technologies Inc.  
27  
Advance Data Sheet  
December 1999  
W3020 GSM Multiband RF Transceiver  
Programming Information (continued)  
CONFIG Register (continued)  
Table 33. LD2: Lock Detect Enable  
LD2  
Function  
Bit 14  
0
1
Lock Detect Output for LO2 Disabled  
Lock Detect Output for LO2 Enabled  
Note: When disabled, the lock detect output is a logic level high. When lock detect is  
enabled but 540 MHz PLL is not locked, LD output is pulsing low. When lock  
detect is enabled and 540 MHz PLL is locked, LD output is high.  
Table 34. C7: dc Coarse/Fine Correction  
When this bit is low, coarse offset calibration is done such that the SC1's offset calibration can be done  
simultaneously. When this bit is high, a fine calibration is done, but this is not compatible with the SC1.  
C7  
Function  
Bit 13  
0
Coarse dc Correction Tuning (for interface with baseband with calibration function) with Output  
Buffer dc Connection Retained  
1
Fine Tune (no baseband calibration required), No Output Available During Calibration  
Table 35. C6: Filter Tune Disable  
Disable LP filter bandwidth tune and use default value.  
C6  
Bandwidth Setting  
Function  
Bit 12  
0
1
Use Calibration  
Use Default  
Requires LPF Tune Request Cycle to Be Executed  
Always Use Default Noncorrected Value (less accurate)  
Table 36. C5: dc Correction Disable  
C5  
Function  
Bit 11  
0
1
Correction Cycle Before Each RX  
Always Use Default Noncorrected Value  
Table 37. C4: Low-Pass Filter Bandwidth  
C4  
Function  
Bit 10  
0
1
Low Bandwidth (115 kHz)*  
High Bandwidth (168 kHz) for Use with SC1, etc.  
* Not tested or recommended for use.  
28  
Lucent Technologies Inc.  
Advance Data Sheet  
December 1999  
W3020 GSM Multiband RF Transceiver  
Programming Information (continued)  
CONFIG Register (continued)  
Table 38. C3: Receive LO1 Buffer Mode During dc Calibration  
C3  
Function  
Bit 9  
0
RX LO1 Buffer Off During dc Offset Calibration  
RX LO1 Buffer On During dc Offset Calibration  
1
Table 39. C2: LNA Mode During dc Calibration  
C2  
Function  
Bit 8  
0
1
LNA Off During dc Offset Calibration*  
LNA On During dc Offset Calibration  
*Recommended to meet GSM sensitivity requirement.  
Table 40. C1: 540 MHz LO2 Phase Detector Polarity  
C1  
Function  
Bit 7  
(See Figure 10.)  
0
1
Negative Charge Pump Polarity (VCO2 Frequency Decrease with CP2 Voltage)  
Positive Charge Pump Polarity (VCO2 Frequency Increase with CP2 Voltage)  
C1 STATE = 1  
LOOP FILTER  
VCO OUTPUT  
W3020  
FREQUENCY  
PLL  
C1 STATE = 0  
REFERENCE  
VCO INPUT CONTROL  
540 MHz VCO  
VOLTAGE  
Figure 10. Programming the LO2 Phase Detector Slope  
Lucent Technologies Inc.  
29  
Advance Data Sheet  
December 1999  
W3020 GSM Multiband RF Transceiver  
Programming Information (continued)  
CONFIG Register (continued)  
Table 41. DT[2:0]: dc Correction Time  
Total dc offset calibration time is determined according to the table below. For further information, see the  
discussion in the dc Offset Calibration section.  
DT[2]  
Bit 6  
DT[1]  
Bit 5  
DT[0]  
Bit 4  
T (RX_Valid)  
(µs)  
0
0
0
0
1
1
1
1
X
0
0
1
1
0
0
1
1
X
0
1
0
1
0
1
0
1
X
72  
131  
190  
249  
309  
368  
427  
486  
42 (DP = 1)*  
*
See Table 21.  
Table 42. RS: Reset Bit Content  
When set high, all registers except for the CONFIG register are reset to 0. When set low, no action occurs.  
RS  
Function  
Bit 3  
0
1
No Function  
Reset Other Registers One Time  
MAIN Register  
Last bit in serial sequence  
First bit in serial sequence  
Bit  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19  
20  
21  
22  
23  
24  
A0=0  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
MO1 MO2 MO3  
B
A2=0  
Bit No.  
Note: Bits designated x do not apply to W3020.  
Programming the MAIN register affects the states of both the W3000 and the W3020. The MO bits (see Table  
15) and band bit B (see Table 14) have the same functions as described in the TR Register section. The W3020  
state is determined by the most recent programming event to either the MAIN register or the TR register.  
30  
Lucent Technologies Inc.  
Advance Data Sheet  
December 1999  
W3020 GSM Multiband RF Transceiver  
Programming Information (continued)  
Filter Tune and dc Offset Correction Timing  
Low-Pass Filter Tuning  
The W3020 has an internal calibration to improve the accuracy of the low-pass filter bandwidth. The filter tune  
operation should be performed each time supply voltage is applied to the device and after restart.  
The low-pass filter tuning operation is controlled by 3 bits in the control logic:  
n FTR: filter tune request, in the TR register  
n C4: low-pass filter bandwidth, in the CONFIG register  
n C6: filter tune disable, in the CONFIG register  
If the filter tune disable bit (C6) is programmed high, the filter bandwidth is set to the programmed (nominal)  
value (see Table 35), and any request for filter tuning from the FTR bit is ignored.  
The accuracy of the filter bandwidth can be improved by performing a filter tune calibration. A filter tune can be  
performed by setting the filter tune request (FTR) bit in the TR register high and the filter tune disable bit (C6) in  
the CONFIG register low. This enables a 13/4 MHz (3.25 MHz) clock to the filter tuning state machine, which  
then runs until the tuning is complete and the new filter tune values are stored. The filter tune operation itself  
takes  
16.5 cycles of the 3.25 MHz clock, or 5.1 ms.  
The filter tune operation should be done in receive mode. The receive mode needs to be held active for at least  
20 ms to allow for bias start-up.  
The dc offset calibration, if requested, is performed after the filter tune is complete. The filter tune operation adds  
5.1 ms to the total calibration time when requested at the same time as a dc offset calibration. If a filter tune is  
requested while the MOD bits are not set to 111, only the receive bias circuitry is turned on; the rest of the  
receive channel remains powered down.  
Lucent Technologies Inc.  
31  
Advance Data Sheet  
December 1999  
W3020 GSM Multiband RF Transceiver  
Programming Information (continued)  
Filter Tune and dc Offset Correction Timing (continued)  
dc Offset Calibration  
The dc offset calibration operation is controlled by several bits in the CONFIG and TR registers:  
n DS: dc correction skip, in the TR register  
n DP: dc precharge only, in the TR register  
n C5: dc correction disable, in the CONFIG register  
n C7: dc coarse/fine correction, in the CONFIG register  
n DT: dc correction time, in the CONFIG register  
When the dc correction disable bit (C5) in the CONFIG register is written high, the dc offset correction circuitry  
charges to a default value, corresponding to 0 dc offset, and any request for dc offset calibration is ignored. If dc  
correction disable = 0, the dc offset calibration is initiated by writing the MO bits in the TR (or MAIN) register to a  
value of 111 while dc correction skip (DS) and dc precharge only (DP) are both low. As in the case of the filter  
tune, start of dc offset calibration is held off for about 15 ms while the bias circuits and input clock buffer start-up.  
If the FTR bit was also written high coincident with entering RX mode, a filter tune is performed first, after which  
dc offset calibration begins automatically.  
The dc offset calibration runs for a time determined by the dc offset correction time bits DT[0:2] in the CONFIG  
register. There are three of these bits, giving the user a choice of eight different correction times.  
Upon completion of the dc offset calibration, the 3.25 MHz baseband clock stops and full receive mode is  
entered automatically, with the LO1 buffer and LNA (if G0 = 1) being enabled automatically.  
If RX mode is entered with dc precharge only (DP = 1) set high, dc offset circuitry runs through a much shorter  
calibration routine, after which normal receive mode is entered automatically. The precharge-only operation  
functions much the same as the normal calibration operation in that the LO1 buffer and LNA is disabled until  
completion of the precharge operation. The 15 ms bias start-up time is still incurred.  
The receive circuitry conditions during dc calibration are also controlled by two other bits in the CONFIG register:  
n C2: LNA on during dc calibration, when high  
n C3: receive LO1 buffer on during dc, calibration when high  
For both the standard dc offset calibration cycle and the dc precharge-only operation, it is possible to perform dc  
offset calibration with the LNA and/or LO1 buffer on by setting the C2 and C3 bits in the CONFIG register.  
32  
Lucent Technologies Inc.  
Advance Data Sheet  
December 1999  
W3020 GSM Multiband RF Transceiver  
Programming Example  
This programming example shows how the W3020 can be programmed after power-on and how it can be  
programmed prior to receive and transmit bursts. The reference register for the W3000 is initialized separately  
with the reference divider ratio, as described in the W3000 data sheet.  
Table 43. Initialize CONFIG Register (Reset W3020)  
To reset all registers to their default state and put the device into a low-power sleep mode, one write to the  
CONFIG register is necessary. This will also reset W3000 if it is connected on the same three-wire bus.  
Normally, the device will be both reset and configured in the same programming as follows:  
CONFIG register: reset device, set dc calibration time to max value (486 µs), set phase detector polarity for the  
positive slope VCO, use high BW and coarse dc offset tune.  
Bit  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24  
Bit No. A0 A1 RS DT0 DT1 DT2 C1 C2 C3 C4 C5 C6 C7 LD2 C8 VO C9 OLD C10 F1 F2 F3 F4 A2  
Setting  
1
0
1
1
1
1
1
0
0
1
0
0
0
0
0
1
0
0
1
0
0
0
0
1
Note: Hex value = 84827d.  
Table 44. Initialize TR Register  
The reset operation will set the TR register to the following content:  
Bit  
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
15  
16 17 18 19  
20  
21  
22  
23 24  
Bit No. A0 A1=0 G0 G1 G2 G3 G4 G5 G6 T0 T1 T2 DS DP FTR T3 T4 T5 T6 MO1 MO2 MO3  
Setting  
Note: Hex value = 800000.  
B
0
A2  
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
A filter tune request with this TR content, setting FTR = 1 and MO[1:3] = 111, could be done as a second  
initialize followed by a third programming that powers the IC in idle mode.  
Table 45. Settle PLL to GSM1800 Band for Receive Mode (W3020/W3000)  
Main register: switch to W3020 receive settling mode to allow LO2 to settle; band bit B = 1 for GSM1800.  
(W3000 is programmed at the same time to settle LO1 to 1572 MHz frequency with N = 7860 to receive at  
1842 MHz.)  
Bit  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21  
22  
23 24  
Bit No. A0=0  
MO1 MO2 MO3/EN  
B
A1=0  
A1 A2 A3 A4 A5 A6 A7 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11  
0
0
1
0
1
1
0
0
1
0
1
1
1
1
0
0
0
0
Setting  
0
1
0
1
1
0
Notes:  
Hex value = 687A68.  
Italics indicate W3000 bits.  
Lucent Technologies Inc.  
33  
Advance Data Sheet  
December 1999  
W3020 GSM Multiband RF Transceiver  
Programming Example (continued)  
Table 46. Perform Receive (W3020)  
TR register: full receive mode; set DGC gain to 60 dB gain setting with LNA on (G0 = 1) and with normal dc  
offset calibration; band bit B = 1.  
Bit  
Bit No. A0 A1 G0 G1 G2 G3 G4 G5 G6 T0 T1 T2 DS DP FTR T3 T4 T5 T6 MO1 MO2 MO3  
Setting  
Note: Hex value = f8407C.  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19  
20  
21  
22  
23 24  
B
1
A2  
1
0
0
1
1
1
1
1
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
To change gain settings and remain in receive mode without redoing dc offset calibration, repeat the bus  
transaction above with dc skip bit high (DS = 1). It should be noted that as dc offset is gain-dependent, dc skip  
mode can be used only for receive signal levels where dc offset is insignificant.  
Table 47. Settle PLL in GSM1800 Band for Transmit Mode (W3020/W3000)  
MAIN register: switch W3020 to transmit settling mode to allow LO2 to settle; band bit B = 1.  
(W3000 is programmed at the same time to settle LO1 to 1567 MHz frequency with N = 7835 to transmit at  
1747 MHz.)  
Bit  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18  
19  
20  
21  
22  
23 24  
A1 A2 A3 A4 A5 A6 A7 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11  
Bit No. A0  
MO1 MO2 MO3/EN  
B
1
A1  
0
1
1
0
1
1
0
0
0
1
0
1
1
1
1
0
0
0
0
Setting  
0
0
0
1
Notes:  
Hex value = 607A36.  
Italics indicate W3000 bits.  
Table 48. Basic GSM1800 Transmit Burst (W3020)  
TR register: full transmit mode; band bit B = 1.  
Bit  
Bit No. A0 A1=0 G0 G1 G2 G3 G4 G5 G6 T0 T1 T2 DS DP FTR T3 T4 T5 T6 MO1 MO2 MO3  
Setting  
Note: Hex value = f00000.  
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
15  
16 17 18 19  
20  
21  
22  
23 24  
B
1
A2  
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
To change to the GSM900 MHz band for the example above, band bit B must be changed to B = 0 and the  
appropriate channel programming must be set up for the W3000 synthesizer.  
34  
Lucent Technologies Inc.  
Advance Data Sheet  
December 1999  
W3020 GSM Multiband RF Transceiver  
Application Information  
S-Parameters  
VCC = 3.0 Vdc; TA = 25 °C ± 3 °C.  
1.0  
0.5  
2.0  
2.7 dB  
2.2 dB  
0.2  
1.95 dB  
5.0  
NF = 1.7 dB  
0.2  
0.0  
0.0  
0.5  
2.0  
1.0  
5.0  
inf  
–5.0  
–0.2  
–0.5  
–2.0  
–1.0  
Figure 11. GSM900 Smith Chart Noise Circles  
Lucent Technologies Inc.  
35  
Advance Data Sheet  
December 1999  
W3020 GSM Multiband RF Transceiver  
Application Information (continued)  
S-Parameters (continued)  
VCC = 3.0 Vdc; TA = 25 °C ± 3 °C.  
1.0  
0.5  
2.0  
3.2  
2.7  
2.45  
0.2  
5.0  
NF = 2.2 dB  
0.2  
0.0  
0.5  
1.0  
2.0  
5.0  
inf  
0.0  
–5.0  
–0.2  
–0.5  
–2.0  
–1.0  
Figure 12. GSM1800 Smith Chart Noise Circles  
36  
Lucent Technologies Inc.  
Advance Data Sheet  
December 1999  
W3020 GSM Multiband RF Transceiver  
Application Information (continued)  
S-Parameters (continued)  
Table 49. GSM900 LNA S-Parameters  
VCC = 3.0 Vdc; TA = 25 °C ± 3 °C.  
Frequency (MHz) S11 M  
S21 M  
S12 M  
S22 M  
S11 A (°)  
S21 A (°)  
S12 A (°)  
S22 A (°)  
100  
200  
0.73697 –18.1202 10.1130 167.024 0.00063 108.261 0.88093 –3.17707  
0.71547 –35.3615 9.63213 155.803 0.00148 98.4551 0.87849 –6.79066  
0.68868 –52.1150 9.01626 145.198 0.00181 86.3048 0.87674 –10.1757  
0.65380 –66.8624 8.26280 135.689 0.00251 83.6600 0.87160 –13.5508  
0.62345 –80.3837 7.61255 127.596 0.00276 84.1787 0.86700 –17.0460  
0.59518 –92.3966 6.98581 119.590 0.00299 83.1737 0.86409 –20.5497  
0.57246 –103.370 6.42038 112.981 0.00260 80.3089 0.85979 –24.1577  
0.55250 –113.144 5.84999 106.650 0.00290 92.0429 0.85520 –27.6815  
0.53472 –121.776 5.41191 100.661 0.00302 105.246 0.84782 –31.3605  
0.52449 –129.730 4.96497 94.9959 0.00318 108.434 0.84282 –35.1238  
0.51695 –136.927 4.54764 90.8171 0.00267 105.419 0.84045 –38.9134  
0.51169 –143.454 4.20028 85.6440 0.00324 107.600 0.83653 –42.4718  
0.51068 –149.415 3.87755 81.5583 0.00288 125.081 0.83142 –46.2154  
0.51096 –154.979 3.68374 76.8340 0.00341 135.968 0.82654 –50.0614  
0.51414 –159.764 3.34692 72.0844 0.00397 161.841 0.82332 –53.6481  
0.52308 –164.732 3.08327 68.7585 0.00471 168.714 0.81938 –57.3655  
0.53386 –169.326 2.88980 64.9867 0.00534 167.996 0.81513 –60.9721  
0.54681 –173.677 2.67055 61.2486 0.00616 179.682 0.81137 –64.5700  
0.56327 –177.995 2.52768 59.2405 0.00689 –176.113 0.80540 –68.4487  
0.58655 177.870 2.36696 50.8883 0.00956 –172.396 0.79940 –72.1942  
0.61055 173.358 2.01609 47.7366 0.01148 –162.142 0.78856 –75.9597  
0.63890 169.100 1.90730 45.7805 0.01420 –163.127 0.77498 –79.9530  
0.67279 164.540 1.67030 40.2674 0.01902 –164.360 0.75985 –83.7696  
0.70166 157.738 1.43980 42.2038 0.02325 –172.911 0.72803 –87.5333  
0.69801 152.694 1.43414 42.1508 0.02096 176.062 0.71022 –89.7521  
300  
400  
500  
600  
700  
800  
900  
1000  
1100  
1200  
1300  
1400  
1500  
1600  
1700  
1800  
1900  
2000  
2100  
2200  
2300  
2400  
2500  
Lucent Technologies Inc.  
37  
Advance Data Sheet  
December 1999  
W3020 GSM Multiband RF Transceiver  
Application Information (continued)  
S-Parameters (continued)  
Table 50. GSM1800/GSM1900 LNA S-Parameters  
VCC = 3.0 Vdc; TA = 25 °C ± 3 °C.  
Frequency (MHz) S11 M  
S21 M  
S12 M  
S22 M  
S11 A (°)  
0.72049 –10.3679  
0.71626 –19.1839  
0.71044 –28.3682  
0.70201 –37.4979  
0.69282 –46.3680  
0.68120 –54.9675  
0.67035 –63.3538  
0.65592 –71.2914  
0.64597 –79.0065  
0.63456 –86.4313  
0.62423 –93.6246  
0.61403 –100.327  
0.60385 –106.845  
0.59482 –112.987  
0.58684 –118.926  
0.57814 –124.639  
0.57105 –129.931  
0.56477 –134.970  
0.55982 –139.548  
0.55777 –143.939  
0.55688 –148.071  
0.56016 –151.973  
0.56820 –155.843  
0.57964 –160.100  
0.58945 –165.135  
S21 A (°)  
S12 A (°)  
S22 A (°)  
100  
200  
9.36459 174.651 0.00071 89.4532 0.88784 –3.00579  
9.21437 169.174 0.00049 99.1328 0.88789 –5.98988  
9.03450 164.561 0.00098 87.1197 0.88873 –9.06578  
8.83372 159.108 0.00114 87.1865 0.88615 –12.3322  
8.55083 154.851 0.00135 94.1083 0.88441 –15.3451  
8.30631 150.462 0.00150 96.8748 0.88354 –18.3246  
8.05458 146.384 0.00165 100.411 0.88348 –21.4507  
7.58639 142.145 0.00175 104.474 0.88423 –24.6622  
7.46492 138.393 0.00183 111.176 0.88429 –27.7779  
7.13151 133.917 0.00195 117.300 0.88418 –30.8038  
6.81838 130.585 0.00201 122.491 0.88425 –34.0814  
6.67615 127.321 0.00208 126.815 0.88393 –37.2883  
6.29544 123.748 0.00204 133.665 0.88415 –40.5591  
6.01260 119.859 0.00205 142.947 0.88476 –43.8425  
5.65650 118.200 0.00208 152.563 0.88424 –47.3427  
5.21175 112.564 0.00204 162.947 0.88146 –50.8879  
5.07085 111.847 0.00207 174.520 0.87975 –54.4046  
4.89004 110.382 0.00220 –169.811 0.87879 –58.0057  
4.80069 104.700 0.00240 –146.913 0.87737 –61.7517  
4.51916 102.377 0.00341 –132.600 0.87559 –65.6357  
4.25839 99.0766 0.00465 –124.298 0.87125 –69.5440  
3.94905 92.5373 0.00625 –118.045 0.86413 –73.7550  
3.59528 93.4844 0.00829 –118.835 0.85277 –78.2931  
3.28148 87.5410 0.01021 –119.685 0.83323 –82.8408  
2.93579 86.2816 0.01275 –125.117 0.80091 –87.1585  
300  
400  
500  
600  
700  
800  
900  
1000  
1100  
1200  
1300  
1400  
1500  
1600  
1700  
1800  
1900  
2000  
2100  
2200  
2300  
2400  
2500  
38  
Lucent Technologies Inc.  
Advance Data Sheet  
December 1999  
W3020 GSM Multiband RF Transceiver  
Application Information (continued)  
S-Parameters (continued)  
Table 51. Receive IF Amplifier Input (0 dB Setting)  
Port 1 = IFIN (pin 34).  
Port 2 = IFIP (pin 35).  
Frequency (MHz) S11 M S11 A (º) S21 M S21 A (º) S12 M S12 A (º) S22 M S22 A (º)  
265.00  
268.00  
269.00  
269.80  
269.85  
269.90  
269.95  
270.00  
270.05  
270.10  
270.15  
270.20  
271.00  
272.00  
275.00  
0.9531 –149.48 0.0582 –74.34 0.0574 –73.08 0.9490 –156.92  
0.9560 –151.10 0.0590 –75.38 0.0583 –74.27 0.9510 –158.53  
0.9526 –151.61 0.0591 –76.10 0.0584 –75.11 0.9527 –159.09  
0.9555 –152.17 0.0595 –77.08 0.0585 –75.44 0.9502 –159.68  
0.9545 –152.42 0.0594 –76.46 0.0592 –75.33 0.9511 –159.70  
0.9572 –152.36 0.0595 –76.78 0.0584 –75.82 0.9501 –159.87  
0.9546 –152.15 0.0594 –76.57 0.0585 –76.25 0.9498 –159.73  
0.9541 –152.20 0.0599 –76.78 0.0588 –75.51 0.9513 –159.83  
0.9540 –152.47 0.0595 –76.99 0.0587 –76.01 0.9530 –159.74  
0.9540 –152.47 0.0597 –76.92 0.0592 –75.82 0.9484 –159.96  
0.9563 –152.47 0.0599 –76.98 0.0585 –75.25 0.9465 –159.92  
0.9532 –152.44 0.0595 –76.88 0.0585 –75.54 0.9501 –159.87  
0.9522 –152.82 0.0599 –77.26 0.0590 –76.27 0.9510 –160.59  
0.9539 –153.41 0.0602 –77.81 0.0596 –76.62 0.9510 –160.97  
0.9553 –155.31 0.0606 –80.02 0.0600 –79.05 0.9483 –162.83  
Table 52. Receive IF Amplifier Input (32 dB Setting)  
Port 1 = IFIN (pin 34).  
Port 2 = IFIP (pin 35).  
Frequency (MHz) S11 M S11 A (º) S21 M S21 A (º) S12 M S12 A (º) S22 M S22 A (º)  
265.00  
268.00  
269.00  
269.80  
269.85  
269.90  
269.95  
270.00  
270.05  
270.10  
270.15  
270.20  
271.00  
272.00  
275.00  
0.9295 –152.17 0.1161 –88.39 0.1095 –84.71 0.9150 –159.66  
0.9285 –154.07 0.1180 –90.37 0.1112 –86.54 0.9177 –161.45  
0.9278 –154.73 0.1180 –90.72 0.1122 –86.90 0.9180 –161.98  
0.9284 –155.09 0.1190 –91.33 0.1131 –87.61 0.9159 –162.59  
0.9279 –155.15 0.1190 –91.27 0.1131 –87.67 0.9191 –162.59  
0.9302 –155.14 0.1191 –91.60 0.1131 –87.85 0.9170 –162.81  
0.9279 –155.15 0.1191 –91.65 0.1131 –87.73 0.9163 –162.73  
0.9279 –155.01 0.1190 –91.39 0.1141 –87.72 0.9172 –162.55  
0.9293 –155.26 0.1190 –91.53 0.1131 –87.72 0.9154 –162.71  
0.9267 –155.32 0.1190 –91.56 0.1131 –87.90 0.9161 –162.99  
0.9294 –155.39 0.1201 –91.82 0.1131 –87.93 0.9170 –162.81  
0.9298 –155.34 0.1191 –91.66 0.1131 –87.74 0.9167 –162.87  
0.9251 –155.68 0.1191 –92.14 0.1141 –88.32 0.9150 –163.43  
0.9278 –156.36 0.1202 –92.92 0.1150 –88.83 0.9152 –163.82  
0.9289 –158.13 0.1224 –94.78 0.1160 –90.99 0.9149 –165.83  
Lucent Technologies Inc.  
39  
Advance Data Sheet  
December 1999  
W3020 GSM Multiband RF Transceiver  
Application Information (continued)  
S-Parameters (continued)  
Table 53. Transmit Modulator IF Output  
Port 1 = TIFON (pin 52).  
Port 2 = TIFOP (pin 53).  
Frequency (MHz) S11 M S11 A (º) S21 M S21 A (º) S12 M S12 A (º) S22 M S22 A (º)  
0.3614 –27.344 0.0243 60.57 0.0268 60.283 0.3613 –27.514  
0.3733 –40.987 0.0323 60.738 0.0311 59.72 0.374 –41.233  
0.3769 –43.517 0.0342 66.64 0.0337 66.158 0.3783 –43.974  
100  
150  
160  
170  
175  
180  
185  
190  
200  
250  
260  
265  
270  
275  
280  
290  
300  
400  
500  
540  
600  
700  
800  
900  
1000  
1100  
0.3744 –46.346 0.0361 57.289 0.0356 59.268 0.3754 –47.12  
0.377 –47.403 0.0358 62.482 0.0357 62.455 0.3792 –48.032  
0.3749 –45.193 0.0135 91.599 0.0273  
0.3788 –49.751 0.0335 65.218 0.0354 64.219 0.3795 –50.619  
0.3769 –51.342 0.035 61.298 0.0362 62.918 0.3821 –52.245  
0.382 –54.288 0.0371 64.049 0.037 65.059 0.3834 –55.193  
0.3975 –68.232 0.041 75.557 0.0415 76.118 0.3863 –70.582  
0.4021 –70.805 0.0441 81.698 0.0452 80.66 0.3834 –73.645  
8.782  
0.3517 –47.861  
0.4019 –72.266 0.0442 81.769 0.0452 80.355 0.3796 –75.134  
0.4383 –72.519 0.0741 93.489 0.073 104.612 0.4018 –73.513  
0.4032 –74.838 0.0475 84.667 0.048  
83.377  
0.373 –76.937  
0.4055 –76.144 0.0509 85.227 0.0509 83.407 0.3714 –77.711  
0.4081 –78.499 0.0534  
89.07  
0.053  
86.162 0.3704 –78.464  
84.222 0.3759 –80.773  
0.4112 –81.034 0.0579 85.089 0.058  
0.4493 –105.378 0.0868 88.627 0.0852 88.783  
0.414 –104.91  
0.4882 –126.562 0.1277 85.741 0.1249 85.452 0.4541 –125.138  
0.5075 –134.57 0.1452  
0.5292 –145.148 0.1667  
79.56 0.1366 83.826 0.4585 –131.438  
78.41 0.1663 77.442 0.5014 –142.17  
0.5667 –161.717 0.2189 72.108 0.2237 72.385  
0.5908 –176.224 0.2803 64.602 0.2802 62.116 0.5721 –171.84  
0.5954 170.318 0.3422 50.1 0.3124 47.809 0.5935 175.837  
0.545 –157.555  
0.5885 160.18 0.3312 29.167 0.3307 33.106 0.6026 166.077  
0.5781 152.142 0.3281 21.204 0.3481 21.367 0.6105 157.826  
40  
Lucent Technologies Inc.  
Advance Data Sheet  
December 1999  
W3020 GSM Multiband RF Transceiver  
Application Information (continued)  
S-Parameters (continued)  
Table 54. Transmit IF Input to Up-Conversion Mixer  
Port 1 = TIFIP (pin 5).  
Port 2 = TIFIN (pin 6).  
Frequency (MHz) S11 M S11 A (º) S21 M S21 A (º) S12 M S12 A (º) S22 M S22 A (º)  
100  
150  
160  
170  
175  
180  
185  
190  
200  
250  
260  
265  
270  
275  
280  
290  
300  
400  
500  
540  
600  
700  
800  
900  
1000  
1100  
0.5058 –177.126 0.1947 –12.79 0.1905 –14.311 0.5111 –177.728  
0.5585 179.286 0.1493 –11.292 0.1419 –12.859 0.5639 178.853  
0.5628 178.676 0.1435  
0.5695 178.13 0.1396  
–9.56 0.1367 –11.135 0.5696 178.017  
–8.09 0.1339 –9.466 0.5751 177.39  
0.5721 177.643 0.1388 –6.754 0.1323 –8.312 0.5785 177.012  
0.5749 177.301 0.1388 –6.249 0.1315 –7.386 0.5828 176.539  
0.5773 176.912 0.137  
0.5806 176.598 0.1361  
–5.325 0.1307 –6.864 0.5844 176.248  
–4.71 0.1302 –6.347 0.5887 175.806  
0.5864 175.696 0.1355 –3.398 0.1282 –5.664 0.5932 175.063  
0.6139 172.103 0.1242  
0.6172 171.533 0.1248  
0.6193 171.176 0.1254  
0.6218 170.811 0.1264  
4.719 0.1116  
7.467 0.1121  
8.698 0.1129  
4.718  
8.158  
9.86  
0.6189 171.255  
0.6255 170.441  
0.6264 170.083  
9.558 0.1149 11.102 0.6288 169.611  
0.6207 170.529 0.1285 10.647 0.1164 12.686 0.6291 169.403  
0.6241 170.217 0.1306 11.307 0.1187 13.716 0.6322 168.935  
0.6278 169.479 0.1339 12.027 0.1229 14.746 0.6362 168.072  
0.6299 168.857 0.1359  
0.6625 161.336 0.1695  
12.22 0.1265 15.109 0.6407 167.231  
26.49 0.166 30.695 0.673 159.047  
28.653 0.6769 151.351  
0.6744 153.87 0.2253 24.951 0.218  
0.6733 152.146 0.2198 17.441 0.2269 20.962 0.6518 149.735  
0.6762 147.871 0.2566 17.566 0.2493 18.903 0.6683 145.629  
0.6837 143.115 0.2774  
0.6847 137.965 0.3153  
11.42 0.2733 11.823 0.6688 141.363  
6.357  
0.297  
6.915  
2.598  
0.6708 136.953  
0.6741 133.532  
0.6863 133.307 0.3279 –3.477 0.2932  
0.6872 128.201 0.2798 –8.735 0.2868 –4.204 0.6827 130.017  
0.6822 123.088 0.304 –10.551 0.3094 –11.399 0.6846 126.018  
Lucent Technologies Inc.  
41  
Advance Data Sheet  
December 1999  
W3020 GSM Multiband RF Transceiver  
Application Information (continued)  
S-Parameters (continued)  
Table 55. Transmit RF Output from Up-Conversion Mixer  
Port 1 = TOV (pin 60).  
Port 2 = TOUT (pin 59).  
Frequency (MHz) S11 M S11 A (º) S21 M S21 A (º) S12 M S12 A (º) S22 M S22 A (º)  
500  
800  
0.963 –21.042 0.0583 45.382 0.0628 49.126  
0.971 –22.198  
0.9463 –37.236 0.075 23.36 0.0831 27.071 0.9318 –38.288  
850  
0.9478 –39.572 0.0553 36.857 0.0597 39.225 0.9477 –40.772  
0.9471 –41.282 0.0552 34.713 0.0684 37.846 0.9468 –42.597  
875  
887.5  
900  
0.9445 –42.042 0.0546  
0.9384 –42.822 0.0422 11.154 0.0955 30.339 0.9413 –46.025  
0.9465 –43.326 0.0452 20.131 0.0503 7.264 0.9534 –45.052  
31.41  
0.0643 28.659  
0.947 –43.555  
912.5  
925  
0.9575 –44.836 0.0318  
0.9434 –45.632 0.0398  
37.41  
35.47  
0.0672 34.909 0.9616 –46.123  
0.0405 34.066 0.9476 –46.268  
937.5  
950  
0.9377 –46.171 0.0348 36.164 0.0354 32.187 0.9485 –46.354  
0.928 –47.687 0.0459 30.299 0.0395 65.541 0.9557 –47.636  
962.5  
975  
0.9352 –48.135 0.0464 48.624 0.0336  
0.9349 –50.069 0.0408 25.125 0.037  
37.71  
0.9373 –49.303  
1000  
1700  
1712.5  
1725  
1737.5  
1750  
1762.5  
1775  
1787.5  
1800  
1812.5  
1825  
1837.5  
1850  
1862.5  
1875  
1887.5  
1900  
1912.5  
1925  
1937.5  
1950  
1962.5  
1975  
1987.5  
2000  
23.964 0.9416 –51.094  
0.7367 –118.813 0.4566 116.282 0.4121 109.367 0.7109 –120.942  
0.7233 –122.78 0.4859 115.896 0.4365 108.44 0.7242 –122.438  
0.7136 –124.997 0.5398 112.112 0.4616 110.187 0.7327 –124.948  
0.6994 –126.458 0.5611 107.372 0.5147 105.261 0.7049 –126.805  
0.6936 –128.343 0.5605 101.527 0.5603 98.485 0.7156 –128.63  
0.6797 –128.292 0.5618 95.946  
0.566  
94.77  
0.6903 –130.228  
0.6685 –129.811 0.5338 94.272 0.5441 89.296 0.6812 –131.56  
0.6494 –131.842 0.5326 97.176 0.5036 84.854 0.6886 –134.751  
0.6503 –131.754 0.5302 96.268  
0.6449 –133.665 0.5662 96.331 0.4714 91.439 0.6571 –133.945  
0.6533 –137.305 0.5723 95.889 0.5172 90.876 0.677 –134.916  
0.474  
88.133 0.6673 –132.553  
0.6292 –136.07 0.6464 90.019 0.5245 93.345 0.6257 –135.788  
0.6203 –136.917 0.6377 83.438 0.5592 92.612 0.6252 –137.496  
0.6168 –138.04 0.6126 78.826 0.5844 89.189 0.6202 –139.816  
0.6189 –142.061 0.5349 76.428 0.6301 85.411 0.6217 –138.545  
0.6011 –140.385 0.5379 77.397 0.5842 81.177 0.6097 –142.359  
0.6145 –139.843 0.5299  
0.6003 –142.012 0.5398 81.318 0.5563 79.922 0.6114 –143.639  
0.5666 –142.51 0.5718 82.52 0.526 77.979 0.6145 –147  
76.41  
0.5801 77.016 0.6516 –143.578  
0.5857 –145.342 0.5901 80.549 0.5728 81.259 0.5934 –145.589  
0.5789 –146.191 0.6116 78.454 0.5932 80.357 0.5818 –146.725  
0.5597 –146.175 0.611  
75.563 0.6214 78.699 0.5749 –148.368  
0.5359 –151.61 0.6008 74.456 0.6711 75.726 0.5676 –149.154  
0.555 –147.335 0.6359 70.535 0.6292 72.372 0.5566 –154.653  
0.555 –150.321 0.6123 71.054 0.6364 71.938 0.5537 –153.236  
42  
Lucent Technologies Inc.  
Advance Data Sheet  
December 1999  
W3020 GSM Multiband RF Transceiver  
Outline Diagram  
64-Pin TQFPT  
Dimensions are in millimeters.  
12.00 ± 0.20  
10.00 ± 0.20  
1.00 REF  
PIN #1  
IDENTIFIER ZONE  
64  
49  
0.25  
GAGE PLANE  
SEATING PLANE  
0.45/0.75  
1
48  
DETAIL A  
10.00  
± 0.20  
12.00  
± 0.20  
33  
16  
0.09/0.20  
17  
32  
0.17/0.27  
DETAIL A  
DETAIL B  
M
0.08  
1.00 ± 0.05  
DETAIL B  
1.20 MAX  
SEATING PLANE  
0.08  
0.05/0.15  
0.50 TYP  
5-3080.a  
Lucent Technologies Inc.  
43  
Advance Data Sheet  
December 1999  
W3020 GSM Multiband RF Transceiver  
Manufacturing Information  
This device will be assembled in one of the following locations: assembly codes K or M.  
Evaluation Board Note  
The EVB3020A Evaluation Board is available for customer demonstration (see Ordering Information) of device  
performance characteristics. The board allows full characterization with RF laboratory bench equipment. Various  
applications of the device can be demonstrated on the evaluation board.  
Ordering Information  
Device Code  
LUCW3020CCS  
LUCW3020CCS-DB  
EVB3020A  
Description  
Package  
64TQFPT Bulk  
64TQFPT Dry Pack  
Evaluation Board  
Interface Kit  
Comcode  
108417734  
108417742  
108100611  
108100629  
GSM Transceiver  
Evaluation Board  
Interface Board  
EVB3020A-IFBD  
Note: Contact your Lucent Technologies Microelectronics Group Account Manager for minimum order requirements.  
For additional information, contact your Microelectronics Group Account Manager or the following:  
INTERNET:  
E-MAIL:  
http://www.lucent.com/micro  
docmaster@micro.lucent.com  
N. AMERICA Microelectronics Group, Lucent Technologies Inc., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18103  
1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106)  
ASIA PACIFIC: Microelectronics Group, Lucent Technologies Singapore Pte. Ltd., 77 Science Park Drive, #03-18 Cintech III, Singapore 118256  
Tel. (65) 778 8833, FAX (65) 777 7495  
CHINA:  
Microelectronics Group, Lucent Technologies (China) Co., Ltd., A-F2, 23/F, Zao Fong Universe Building, 1800 Zhong Shan Xi Road,  
Shanghai 200233 P.R. China Tel. (86) 21 6440 0468, ext. 316, FAX (86) 21 6440 0652  
JAPAN:  
EUROPE:  
Microelectronics Group, Lucent Technologies Japan Ltd., 7-18, Higashi-Gotanda 2-chome, Shinagawa-ku, Tokyo 141, Japan  
Tel. (81) 3 5421 1600, FAX (81) 3 5421 1700  
Data Requests: MICROELECTRONICS GROUP DATALINE: Tel. (44) 7000 582 368, FAX (44) 1189 328 148  
Technical Inquiries: GERMANY: (49) 89 95086 0 (Munich), UNITED KINGDOM: (44) 1344 865 900 (Ascot),  
FRANCE: (33) 1 40 83 68 00 (Paris), SWEDEN: (46) 8 594 607 00 (Stockholm), FINLAND: (358) 9 4354 2800 (Helsinki),  
ITALY: (39) 02 6608131 (Milan), SPAIN: (34) 1 807 1441 (Madrid)  
Lucent Technologies Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. No  
rights under any patent accompany the sale of any such product(s) or information.  
Copyright © 1999 Lucent Technologies Inc.  
All Rights Reserved  
Printed in U.S.A.  
December 1999  
DS98-070WTEC  

相关型号:

W3024

Solutions for Mobile Phone Antennas
PULSE

W3030

W3030 3 V Dual-Mode IF Cellular Receiver
AGERE

W3040

ANTENNA WCDMA CERAM 1.92-2.1GHZ
ETC

W305B

Frequency Controller with System Recovery for Intel Integrated Core Logic
SPECTRALINEAR

W305B

Frequency Controller with System Recovery for Intel Integrated Core Logic
CYPRESS

W305BH

Frequency Controller with System Recovery for Intel Integrated Core Logic
SPECTRALINEAR

W305BH

Frequency Controller with System Recovery for Intel Integrated Core Logic
CYPRESS

W305BHH

Frequency Controller with System Recovery for Intel Integrated Core Logic
SPECTRALINEAR

W305BHH

Frequency Controller with System Recovery for Intel Integrated Core Logic
CYPRESS

W30M40CT

30A Schottky Barrier Rectifier
SEMIWELL

W30_11

Cement Coated Wirewound Resistors
TTELEC

W31

Cement Coated Wirewound Resistors
TTELEC