W305BH [SPECTRALINEAR]

Frequency Controller with System Recovery for Intel Integrated Core Logic; 变频控制器系统恢复英特尔集成众核逻辑
W305BH
型号: W305BH
厂家: SPECTRALINEAR INC    SPECTRALINEAR INC
描述:

Frequency Controller with System Recovery for Intel Integrated Core Logic
变频控制器系统恢复英特尔集成众核逻辑

晶体 外围集成电路 光电二极管 控制器 时钟
文件: 总20页 (文件大小:183K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
W305B  
Frequency Controller with System Recovery for Intel£ Integrated  
Core Logic  
• Thirteen copies of SDRAM clock  
Features  
• Eight copies of PCI clock  
• Single chip FTG solution for Intel Solano/810E/810  
• One copy of synchronous APIC clock  
• Programmable clock output frequency with less than  
1 MHz increment  
• Three copies of 66-MHz outputs  
• Three copies of 48-MHz outputs  
• Integrated fail-safe Watchdog timer for system  
recovery  
• One copy of double strength 14.31818-MHz reference  
clock  
• Automatically switch to HW selected or SW  
programmed clock frequency when Watchdog timer  
time-out  
• One RESET output for system recovery  
• SMBus interface for turning off unused clocks  
• Capable of generating system RESET after a Watchdog  
timer time-out occurs or a change in output frequency  
via SMBus interface  
Key Specifications  
CPU, SDRAM Outputs Cycle-to-Cycle Jitter: ............. 250 ps  
• Support SMBus byte read/write and block read/write  
operations to simplify system BIOS development  
APIC, 48-MHz, 3V66, PCI Outputs  
Cycle-to-Cycle Jitter:................................................... 500 ps  
• Vendor ID and Revision ID support  
CPU, 3V66 Output Skew: ........................................... 175 ps  
SDRAM, APIC, 48-MHz Output Skew: ....................... 250 ps  
PCI Output Skew: ....................................................... 500 ps  
CPU to SDRAM Skew (@ 133 MHz) ....................... 0.5 ns  
CPU to SDRAM Skew (@ 100 MHz)................. 4.5 to 5.5 ns  
CPU to 3V66 Skew (@ 66 MHz)........................ 7.0 to 8.0 ns  
3V66 to PCI Skew (3V66 lead).......................... 1.5 to 3.5 ns  
PCI to APIC Skew..................................................... 0.5 ns  
• Programmable drive strength for SDRAM and PCI  
output clocks  
• Programmable output skew between CPU, AGP, PCI  
and SDRAM  
• Maximized EMI suppression using Cypress’s Spread  
Spectrum Technology  
• Low jitter and tightly controlled clock skew  
• Two copies of CPU clock  
Pin Configuration[1]  
Block Diagram  
GND  
VDDQ3  
REF2X/FS3^  
X1  
X2  
VDDQ3  
3V66_0  
3V66_1  
3V66_2  
GND  
PCI0/FS0^  
PCI1/FS1^  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
VDDQ2  
APIC  
GND  
VDDQ2  
CPU0  
CPU1  
GND  
SDRAM0  
SDRAM1  
SDRAM2  
VDDQ3  
GND  
SDRAM3  
SDRAM4  
SDRAM5  
SDRAM6  
VDDQ3  
GND  
SDRAM7  
SDRAM8  
SDRAM9  
SDRAM10  
VDDQ3  
GND  
SDRAM11  
SDRAM12  
RST#  
1
2
3
4
5
6
7
8
VDDQ3  
REF2X/FS3  
X1  
X2  
XTAL  
OSC  
PLL REF FREQ  
VDDQ2  
CPU0:1  
Divider,  
Delay,  
and  
9
2
SDATA  
SCLK  
SMBus  
Logic  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
Phase  
Control  
Logic  
PCI2/FS2^  
GND  
APIC  
(FS0:4)  
VDDQ3  
PCI3  
PCI4  
VDDQ3  
PCI5  
PCI6  
PCI7  
GND  
48MHz  
3V66_0:2  
PCI0/FS0  
3
PLL 1  
PCI1/FS1  
PCI2/FS2  
PCI3:7  
5
48MHz/FS4^  
24_48MHz/SEL24_48MHz#*  
SDRAM0:12  
RST#  
13  
25  
26  
27  
28  
VDDQ3  
SDATA  
GND  
VDDQ3  
SCLK  
VDDQ3  
48MHz  
48MHz/FS4  
PLL2  
24_48MHz/SEL24_48MHz#  
/2  
1. Internal 100K pull-up and 100K pull-down resistors present on inputs marked with * and ^ respectively. Design should not rely solely on internal pull-up resistor  
to set I/O pins HIGH or LOW.  
Rev 1.0, November 20, 2006  
Page 1 of 20  
2200 Laurelwood Road, Santa Clara, CA 95054  
Tel:(408) 855-0555 Fax:(408) 855-0550  
www.SpectraLinear.com  
W305B  
Pin Definitions  
Pin  
Type  
Pin Name  
Pin No.  
Pin Description  
REF2X/FS3  
3
I/O  
Reference Clock with 2x Drive/Frequency Select 3. 3.3V 14.318-MHz clock  
output. This pin also serves as the select strap to determines device operating  
frequency as described in Table 5.  
X1  
4
5
I
Crystal Input. This pin has dual functions. It can be used as an external  
14.318-MHz crystal connection or as an external reference frequency input.  
X2  
O
Crystal Output. An input connection for an external 14.318-MHz crystal  
connection. If using an external reference, this pin must be left unconnected.  
PCI0/FS0  
11  
I/O  
PCI Clock 0/Frequency Selection 0. 3.3V 33-MHz PCI clock outputs. This pin  
also serves as the select strap to determine device operating frequency as  
described in Table 5.  
PCI1/FS1  
PCI2/FS2  
12  
13  
I/O  
I/O  
PCI Clock 1/Frequency Selection 1. 3.3V 33-MHz PCI clock outputs. This pin  
also serves as the select strap to determine device operating frequency as  
described in Table 5.  
PCI Clock 2/Frequency Selection 2. 3.3V 33-MHz PCI clock outputs. This pin  
also serves as the select strap to determine device operating frequency as  
described in Table 5.  
PCI3:7  
15, 16, 18, 19, 20  
7, 8, 9  
O
O
PCI Clock 3 through 7. 3.3V 33-MHz PCI clock outputs. PCI0:7 can be individ-  
ually turned off via SMBus interface.  
3V66_0:2  
66-MHz Clock Output. 3.3V output clocks. The operating frequency is  
controlled by FS0:4 (see Table 5).  
48MHz  
22  
23  
O
48MHz. 3.3V 48-MHz non-spread spectrum output.  
48MHz/FS4  
I/O  
48-MHz Output/Frequency Selection 4. 3.3V 48-MHz non-spread spectrum  
output. This pin also serves as the select strap to determine device operating  
frequency as described in Table 5.  
24_48MHz/SEL24  
_48MHz#  
24  
30  
I/O  
24- or 48-MHz Output/Select 24 or 48MHz. 3.3V 24 or 48-MHz non-spread  
spectrum output. This pin also serves as the select strap to determine the output  
frequency for 24_48MHz output.  
RST#  
O
Reset#. Open-drain RESET# output.  
(open-d  
rain)  
CPU0:1  
SDRAM0:12,  
APIC  
52, 51  
O
CPU Clock Outputs. Clock outputs for the host bus interface. Output  
frequencies depending on the configuration of FS0:4. Voltage swing is set by  
VDDQ2.  
49, 48, 47, 44,  
43, 42, 41, 38,  
37, 36, 35, 32, 31  
SDRAM Clock Outputs. 3.3V outputs for SDRAM and chipset. The operating  
frequency is controlled by FS0:4 (see Table 5).  
O
O
55  
Synchronous APIC Clock Outputs. Clock outputs running synchronous with  
the PCI clock outputs. Voltage swing set by VDDQ2.  
SDATA  
SCLK  
26  
29  
I/O  
I
Data pin for SMBus circuitry.  
Clock pin for SMBus circuitry.  
VDDQ3  
2, 6, 17, 25, 28,  
34, 40, 46  
P
3.3V Power Connection. Power supply for SDRAM output buffers, PCI output  
buffers, reference output buffers and 48-MHz output buffers. Connect to 3.3V.  
VDDQ2  
GND  
53, 56  
P
2.5V Power Connection. Power supply for APIC and CPU output buffers.  
Connect to 2.5V.  
1, 10, 14, 21, 27,  
33, 39, 45, 50, 54  
G
Ground Connections. Connect all ground pins to the common system ground  
plane.  
Rev 1.0,November 20, 2006  
Page 2 of 20  
W305B  
Output Strapping Resistor  
Series Termination Resistor  
Clock Load  
W305B  
Output  
Buffer  
Power-on  
Reset  
Timer  
Hold  
Output  
Low  
Output Three-state  
10 k:  
Q
D
Data  
Latch  
Figure 1. Input Logic Selection Through Resistor Load Option  
After 2 ms, the pin becomes an output. Assuming the power  
supply has stabilized by then, the specified output frequency  
is delivered on the pins. If the power supply has not yet  
reached full value, output frequency initially may be below  
target but will increase to target once supply voltage has stabi-  
lized. In either case, a short output clock cycle may be  
produced from the CPU clock outputs when the outputs are  
enabled.  
Overview  
The W305B is a highly integrated frequency timing generator,  
supplying all the required clock sources for an Intel® archi-  
tecture platform using graphics integrated core logic.  
Functional Description  
I/O Pin Operation  
Offsets Among Clock Signal Groups  
Upon power-up the power on strap option pins act as a logic  
input. An external 10-k: strapping resistor should be used.  
Figure 1 shows a suggested method for strapping resistor  
connections.  
Figure 2, Figure 3, and Figure 4 represent the phase  
relationship among the different groups of clock outputs from  
W305B under different frequency modes.  
10 ns  
20 ns  
30 ns  
40 ns  
0 ns  
CPU 66 Period  
CPU 66-MHz  
SDRAM 100 Period  
SDRAM 100-MHz  
Hub-PCI  
3V66 66-MHz  
PCI 33-MHz  
REF 14.318-MHz  
USB 48-MHz  
APIC 16.6-MHz  
Figure 2. Group Offset Waveforms (66-MHz CPU Clock, 100-MHz SDRAM Clock)  
Rev 1.0,November 20, 2006  
Page 3 of 20  
W305B  
0 ns  
10 ns  
20 ns  
30 ns  
40 ns  
CPU 100 Period  
CPU 100-MHz  
SDRAM 100 Period  
SDRAM 100-MHz  
3V66 66-MHz  
Hub-PC  
PCI 33-MHz  
REF 14.318-MHz  
USB 48-MHz  
APIC16.6-MHz  
Figure 3. Group Offset Waveforms (100-MHz CPU Clock, 100-MHz SDRAM Clock)  
0 ns  
10 ns  
20 ns  
30 ns  
40 ns  
Cycle Repeats  
CPU 133-MHz  
SDRAM 100-MHz  
3V66 66-MHz  
PCI 33-MHz  
APIC 16.6-MHz  
REF 14.318-MHz  
USB 48-MHz  
DOT 48-MHz  
Figure 4. Group Offset Waveforms (133-MHz CPU/100-MHz SDRAM)  
Rev 1.0,November 20, 2006  
Page 4 of 20  
W305B  
0 ns  
10 ns  
20 ns  
30 ns  
40 ns  
Cycle Repeat  
CPU 133-MHz  
SDRAM 133MHz  
3V66 66-MHz  
PCI 33-MHz  
APIC 16.6-MHz  
REF 14.318-MHz  
USB 48-MHz  
DOT 48-MHz  
Figure 5. Group Offset Waveform (133-MHz CPU/133-MHz SDRAM)  
Serial Data Interface  
controller. For block write/read operation, the bytes must be  
accessed in sequential order from lowest to highest byte with  
the ability to stop after any complete byte has been trans-  
ferred. For byte/word write and byte read operations, system  
controller can access individual indexed byte. The offset of the  
indexed byte is encoded in the command code.  
The W305B features a two-pin, serial data interface that can  
be used to configure internal register settings that control  
particular device functions.  
Data Protocol  
The definition for the command code is given in Table 1.  
The clock driver serial protocol supports byte/word write,  
byte/word read, block write and block read operations from the  
Table 1. Command Code Definition  
Bit  
Descriptions  
7
0 = Block read or block write operation  
1 = Byte/Word read or byte/word write operation  
6:0  
Byte offset for byte/word read or write operation. For block read or write operations, these bits  
need to be set at ‘0000000’.  
Table 2. Block Read and Block Write Protocol  
Block Write Protocol  
Block Read Protocol  
Description  
Bit  
1
Description  
Bit  
1
Start  
Start  
2:8  
9
Slave address – 7 bit  
Write  
2:8  
9
Slave address – 7 bit  
Write  
10  
Acknowledge from slave  
10  
Acknowledge from slave  
11:18  
Command Code – 8 bit  
‘00000000’ stands for block operation  
11:18  
Command Code – 8 bit  
‘00000000’ stands for block operation  
19  
20:27  
28  
Acknowledge from slave  
Byte Count – 8 bits  
19  
20  
Acknowledge from slave  
Repeat start  
Acknowledge from slave  
Data byte 0 – 8 bits  
21:27  
28  
Slave address – 7 bits  
Read  
29:36  
37  
Acknowledge from slave  
Data byte 1 – 8 bits  
29  
Acknowledge from slave  
Byte count from slave – 8 bits  
Acknowledge  
38:45  
46  
30:37  
38  
Acknowledge from slave  
Data Byte N/Slave Acknowledge...  
...  
39:46  
Data byte from slave – 8 bits  
Rev 1.0,November 20, 2006  
Page 5 of 20  
W305B  
Table 2. Block Read and Block Write Protocol (continued)  
Block Write Protocol  
Block Read Protocol  
Description  
Bit  
...  
Description  
Data Byte N – 8 bits  
Bit  
47  
Acknowledge  
...  
Acknowledge from slave  
Stop  
48:55  
56  
Data byte from slave – 8 bits  
Acknowledge  
...  
...  
Data bytes from slave/Acknowledge  
Data byte N from slave – 8 bits  
Not Acknowledge  
...  
...  
...  
Stop  
Table 3. Word Read and Word Write Protocol  
Word Write Protocol  
Word Read Protocol  
Description  
Bit  
1
Description  
Bit  
1
Start  
Start  
2:8  
9
Slave address – 7 bit  
Write  
2:8  
9
Slave address – 7 bit  
Write  
10  
Acknowledge from slave  
10  
Acknowledge from slave  
11:18  
Command Code – 8 bit  
11:18  
Command Code – 8 bit  
‘1xxxxxxx’ stands for byte or word operation  
bit[6:0] of the command code represents the offset  
of the byte to be accessed  
‘1xxxxxxx’ stands for byte or word operation  
bit[6:0] of the command code represents the offset  
of the byte to be accessed  
19  
20:27  
28  
Acknowledge from slave  
Data byte low– 8 bits  
Acknowledge from slave  
Data byte high – 8 bits  
Acknowledge from slave  
Stop  
19  
20  
Acknowledge from slave  
Repeat start  
21:27  
28  
Slave address – 7 bits  
Read  
29:36  
37  
29  
Acknowledge from slave  
Data byte low from slave – 8 bits  
Acknowledge  
38  
30:37  
38  
39:46  
47  
Data byte high from slave – 8 bits  
NOT acknowledge  
Stop  
48  
Table 4. Byte Read and Byte Write Protocol  
Byte Write Protocol  
Byte Read Protocol  
Description  
Bit  
1
Description  
Bit  
1
Start  
Start  
2:8  
9
Slave address – 7 bit  
Write  
2:8  
9
Slave address – 7 bit  
Write  
10  
Acknowledge from slave  
10  
Acknowledge from slave  
11:18  
Command Code – 8 bit  
11:18  
Command Code – 8 bit  
‘1xxxxxxx’ stands for byte operation  
bit[6:0]ofthecommandcoderepresentstheoffset  
of the byte to be accessed  
‘1xxxxxxx’ stands for byte operation  
bit[6:0]ofthecommandcoderepresentstheoffset  
of the byte to be accessed  
19  
20:27  
28  
Acknowledge from slave  
Data byte – 8 bits  
Acknowledge from slave  
Stop  
19  
20  
Acknowledge from slave  
Repeat start  
21:27  
28  
Slave address – 7 bits  
Read  
29  
Rev 1.0,November 20, 2006  
Page 6 of 20  
W305B  
Table 4. Byte Read and Byte Write Protocol (continued)  
Byte Write Protocol  
Byte Read Protocol  
Description  
Bit  
Description  
Bit  
29  
Acknowledge from slave  
30:37  
38  
Data byte from slave – 8 bits  
Not Acknowledge  
Stop  
39  
W305B Serial Configuration Map  
Byte N – Bits 7, 6, 5, 4, 3, 2, 1, 0  
The serial bits will be read by the clock driver in the following  
order:  
All unused register bits (reserved and N/A) should be written  
to a “0” level.  
Byte 0 – Bits 7, 6, 5, 4, 3, 2, 1, 0  
Byte 1 – Bits 7, 6, 5, 4, 3, 2, 1, 0  
All register bits labeled “Initialize to 0” must be written to zero  
during initialization.  
Byte 0: Control Register 0  
Bit  
Pin#  
Name  
Default  
Description  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
-
-
-
-
-
-
-
-
SEL4  
SEL3  
SEL2  
SEL1  
SEL0  
0
0
0
0
0
0
0
0
See Table 5  
See Table 5  
See Table 5  
See Table 5  
See Table 5  
Spread Select2  
Spread Select1  
Spread Select0  
‘000’ = Normal (spread off)  
‘001’ = Test Mode  
‘010’ = Reserved  
‘011’ = Three-Stated  
‘100’ = –0.5%  
‘101’ = 0.5%  
‘110’ = 0.25%  
‘111’ = 0.38%  
Byte 1: Control Register 1  
Bit  
Bit 7  
Pin#  
23  
3
Name  
Default  
Description  
Latched FS4 input  
Latched FS3 input  
Latched FS2 input  
Latched FS1 input  
Latched FS0 input  
Reserved  
X
X
X
X
X
0
Latched FS[4:0] inputs. These bits are read only.  
Bit 6  
Bit 5  
13  
12  
11  
-
Bit 4  
Bit 3  
Bit 2  
Reserved  
Bit 1  
3
REF2X  
1
(Active/Inactive)  
Reserved  
Bit 0  
-
Reserved  
0
Byte 2: Control Register 2  
Bit  
Bit 7  
Pin#  
20  
Name  
PCI7  
Default  
Description  
(Active/Inactive)  
1
1
1
1
Bit 6  
19  
PCI6  
(Active/Inactive)  
Bit 5  
18  
PCI5  
(Active/Inactive)  
Bit 4  
16  
PCI4  
(Active/Inactive)  
Rev 1.0,November 20, 2006  
Page 7 of 20  
W305B  
Byte 2: Control Register 2 (continued)  
Bit  
Pin#  
15  
Name  
Default  
Description  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
PCI3  
PCI2  
PCI1  
PCI0  
1
1
1
1
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
13  
12  
11  
Byte 3: Control Register 3  
Bit  
Bit 7  
Pin#  
Name  
3V66_2  
Default  
Description  
9
8
1
1
1
1
0
0
1
1
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
Reserved  
Bit 6  
3V66_1  
3V66_0  
APIC  
Bit 5  
7
Bit 4  
55  
-
Bit 3  
Reserved  
Reserved  
CPU1  
Bit 2  
-
Reserved  
Bit 1  
51  
52  
(Active/Inactive)  
(Active/Inactive)  
Bit 0  
CPU0  
Byte 4: Control Register 4  
Bit  
Bit 7  
Pin#  
38  
41  
42  
43  
44  
47  
48  
49  
Name  
SDRAM7  
SDRAM6  
SDRAM5  
SDRAM4  
SDRAM3  
SDRAM2  
SDRAM1  
SDRAM0  
Default  
Description  
1
1
1
1
1
1
1
1
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Byte 5: Control Register 5  
Bit  
Bit 7  
Pin#  
-
Name  
Reserved  
Reserved  
Reserved  
SDRAM12  
SDRAM11  
SDRAM10  
SDRAM9  
SDRAM8  
Default  
Description  
0
0
0
1
1
1
1
1
Reserved  
Bit 6  
-
Reserved  
Bit 5  
-
Reserved  
Bit 4  
31  
32  
35  
36  
37  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
(Active/Inactive)  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Rev 1.0,November 20, 2006  
Page 8 of 20  
W305B  
Byte 6: Vendor ID & Revision ID Register (Read Only)  
Bit  
Name  
Default  
Pin Description  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Revision_ID3  
Revision_ID2  
Revision_ID1  
Revision_ID0  
Vendor_ID3  
Vendor_ID2  
Vendor _ID1  
Vendor _ID0  
0
0
0
0
1
0
0
0
Revision ID bit[3]  
Revision ID bit[2]  
Revision ID bit[1]  
Revision ID bit[0]  
Bit[3] of Cypress Semiconductor’s Vendor ID. This bit is read only.  
Bit[2] of Cypress Semiconductor’s Vendor ID. This bit is read only.  
Bit[1] of Cypress Semiconductor’s Vendor ID. This bit is read only.  
Bit[0] of Cypress Semiconductor’s Vendor ID. This bit is read only.  
Byte 7: Control Register 7  
Bit  
Bit 7  
Pin#  
-
Name  
Reserved  
Default  
Pin Description  
0
1
1
1
1
1
1
0
Reserved  
Bit 6  
24  
23  
22  
24  
23  
22  
--  
24_48MHz_DRV  
48MHz_DRV  
48MHz_DRV  
24_48MHz  
48 MHz  
0 = Norm, 1 = High Drive  
0 = Norm, 1 = High Drive  
0 = Norm, 1 = High Drive  
(Active/Inactive)  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
(Active/Inactive)  
Bit 1  
48 MHz  
(Active/Inactive)  
Bit 0  
Reserved  
Reserved  
Byte 8: Watchdog Timer Register  
Bit  
Name  
PCI_Skew1  
PCI_Skew0  
Default  
Pin Description  
Bit 7  
Bit 6  
0
0
PCI skew control  
00 = Normal  
01 = –500ps  
10 = Reserved  
11 = +500ps  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
WD_TIMER4  
WD_TIMER3  
WD_TIMER2  
WD_TIMER1  
WD_TIMER0  
WD_PRE_SCALER  
1
1
1
1
1
0
These bits store the time-out value of the Watchdog timer. The scale of the  
timer is determine by the pre-scaler.  
The timer can support a value of 150 ms to 4.8 sec when the pre-scaler is set  
to 150 ms. If the pre-scaler is set to 2.5 sec, it can support a value from 2.5  
sec. to 80 sec.  
When the Watchdog timer reaches “0”, it will set the WD_TO_STATUS bit.  
0 = 150 ms  
1 = 2.5 sec  
Byte 9: System RESET and Watchdog Timer Register  
Bit  
Name  
Default  
Pin Description  
SDRAM clock output drive strength  
0 = Normal  
Bit 7  
Bit 6  
Bit 5  
SDRAM_DRV  
0
1 = High Drive  
PCI_DRV  
0
0
PCI clock output drive strength  
0 = Normal  
1 = High Drive  
FS_Override  
0 = Select operating frequency by FS[4:0] input pins  
1 = Select operating frequency by SEL[4:0] settings  
Rev 1.0,November 20, 2006  
Page 9 of 20  
W305B  
Byte 9: System RESET and Watchdog Timer Register (continued)  
Bit  
Name  
Default  
Pin Description  
Bit 4  
Bit 3  
RST_EN_WD  
0
This bit will enable the generation of a Reset pulse when a watchdog timer  
time-out occurs.  
0 = Disabled  
1 = Enabled  
RST_EN_FC  
0
This bit will enable the generation of a Reset pulse after a frequency change  
occurs.  
0 = Disabled  
1 = Enabled  
Bit 2  
Bit 1  
WD_TO_STATUS  
WD_EN  
0
0
Watchdog Timer Time-out Status bit  
0 = No time-out occurs (READ); Ignore (WRITE)  
1 = time-out occurred (READ); Clear WD_TO_STATUS (WRITE)  
0 = Stop and re-load Watchdog timer. Unlock W305B from recovery frequency  
mode.  
1 = Enable Watchdog timer. It will start counting down after a frequency change  
occurs.  
Note: W305B will generate system reset, re-load a recovery frequency, and  
lock itself into a recovery frequency mode after a Watchdog timer time-out  
occurs. Underrecoveryfrequency mode, W305B will not respond to anyattempt  
to change output frequency via the SMBus control bytes. System software can  
unlock W305B from its recovery frequency mode by clearing the WD_EN bit.  
Bit 0  
Reserved  
0
Reserved  
Byte 10: Skew Control Register  
Bit  
Name  
CPU_Skew2  
CPU_Skew1  
CPU_Skew0  
Default  
Description  
Bit 7  
Bit 6  
Bit 5  
0
CPU skew control  
000 = Normal  
001 = –150 ps  
010 = –300 ps  
011 = –450 ps  
100 = +150 ps  
101 = +300 ps  
110 = +450 ps  
111 = +600 ps  
0
0
Bit 4  
Bit 3  
Bit 2  
SDRAM_Skew2  
SDRAM_Skew1  
SDRAM_Skew0  
0
0
0
SDRAM skew control  
000 = Normal  
001 = –150 ps  
010 = –300 ps  
011 = –450 ps  
100 = +150 ps  
101 = +300 ps  
110 = +450 ps  
111 = +600 ps  
Bit 1  
Bit 0  
AGP_Skew1  
AGP_Skew0  
0
0
AGP skew control  
00 = Normal  
01 = –150ps  
10 = +150ps  
11 = +300ps  
Rev 1.0,November 20, 2006  
Page 10 of 20  
W305B  
Byte 11: Recovery Frequency N-Value Register  
Bit  
Name  
Default  
Pin Description  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ROCV_FREQ_N7  
ROCV_FREQ_N6  
ROCV_FREQ_N5  
ROCV_FREQ_N4  
ROCV_FREQ_N3  
ROCV_FREQ_N2  
ROCV_FREQ_N1  
ROCV_FREQ_N0  
0
0
0
0
0
0
0
0
If ROCV_FREQ_SEL is set, W305B will use the values programmed in  
ROCV_FREQ_N[7:0] and ROCV_FREQ_M[6:0] to determine the recovery  
CPU output frequency.when a Watchdog timer time-out occurs  
The setting of FS_Override bit determines the frequency ratio for CPU,  
SDRAM, AGP and SDRAM. When it is cleared, W305b will use the same  
frequency ratio stated in the Latched FS[4:0] register. When it is set, W305B  
will use the frequency ratio stated in the SEL[4:0] register.  
W305B supports programmable CPU frequency ranging from 50 MHz to  
248 MHz.  
W305Bwill change the output frequency whenever there is an update to either  
ROCV_FREQ_N[7:0] and ROCV_FREQ_M[6:0]. Therefore, it is recom-  
mended to use Word or Block write to update both registers within the same  
SMBus bus operation.  
Byte 12: Recovery Frequency M-Value Register  
Bit  
Name  
Default  
Pin Description  
Bit 7  
ROCV_FREQ_SEL  
0
ROCV_FREQ_SEL determines the source of the recover frequency when a  
Watchdog timer time-out occurs. The clock generator will automatically switch  
to the recovery CPU frequency based on the selection on ROCV_FREQ_SEL.  
0 = From latched FS[4:0]  
1 = From the settings of ROCV_FREQ_N[7:0] & ROCV_FREQ_M[6:0]  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
ROCV_FREQ_M6  
ROCV_FREQ_M5  
ROCV_FREQ_M4  
ROCV_FREQ_M3  
ROCV_FREQ_M2  
ROCV_FREQ_M1  
ROCV_FREQ_M0  
0
0
0
0
0
0
0
If ROCV_FREQ_SEL is set, W305B will use the values programmed in  
ROCV_FREQ_N[7:0] and ROCV_FREQ_M[6:0] to determine the recovery  
CPU output frequency.when a Watchdog timer time-out occurs  
The setting of FS_Override bit determines the frequency ratio for CPU,  
SDRAM, AGP and SDRAM. When it is cleared, W305b will use the same  
frequency ratio stated in the Latched FS[4:0] register. When it is set, W305B  
will use the frequency ratio stated in the SEL[4:0] register.  
W305B supports programmable CPU frequency ranging from 50 MHz to  
248 MHz.  
W305B will change the output frequency whenever there is an update to either  
ROCV_FREQ_N[7:0] and ROCV_FREQ_M[6:0]. Therefore, it is recom-  
mended to use Word or Block write to update both registers within the same  
SMBus bus operation.  
Byte 13: Programmable Frequency Select N-Value Register  
Bit  
Name  
Default  
Pin Description  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CPU_FSEL_N7  
CPU_FSEL_N6  
CPU_FSEL_N5  
CPU_FSEL_N4  
CPU_FSEL_N3  
CPU_FSEL_N2  
CPU_FSEL_N1  
CPU_FSEL_N0  
0
0
0
0
0
0
0
0
If Prog_Freq_EN is set, W305B will use the values programmed in  
CPU_FSEL_N[7:0] and CPU_FSEL_M[6:0] to determine the CPU output  
frequency. The new frequency will start to load whenever CPU_FSELM[6:0]  
is updated.  
The setting of FS_Override bit determines the frequency ratio for CPU,  
SDRAM, AGP and SDRAM. When it is cleared, W305B will use the same  
frequency ratio stated in the Latched FS[4:0] register. When it is set, W305B  
will use the frequency ratio stated in the SEL[4:0] register.  
W305B supports programmable CPU frequency ranging from 50 MHz to  
248 MHz.  
Rev 1.0,November 20, 2006  
Page 11 of 20  
W305B  
Byte 14: Programmable Frequency Select M-Value Register  
Bit  
Name  
Default  
Description  
Bit 7  
Pro_Freq_EN  
0
Programmable output frequencies enabled  
0 = disabled  
1 = enabled  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
CPU_FSEL_M6  
CPU_FSEL_M5  
CPU_FSEL_M4  
CPU_FSEL_M3  
CPU_FSEL_M2  
CPU_FSEL_M1  
CPU_FSEL_M0  
0
0
0
0
0
0
0
If Prog_Freq_EN is set, W305B will use the values programmed in  
CPU_FSEL_N[7:0] and CPU_FSEL_M[6:0] to determine the CPU output  
frequency. The new frequency will start to load whenever CPU_FSELM[6:0] is  
updated.  
The setting of FS_Override bit determines the frequency ratio for CPU,  
SDRAM, AGP and SDRAM. When it is cleared, W305B will use the same  
frequency ratio stated in the Latched FS[4:0] register. When it is set, W305B  
will use the frequency ratio stated in the SEL[4:0] register.  
W305B supports programmable CPU frequency ranging from 50 MHz to  
248 MHz.  
Byte 15: Reserved Register  
Bit Pin#  
Name  
Reserved  
Default  
Description  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
-
-
-
-
-
-
-
-
0
0
0
0
0
0
1
1
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved. Write with ‘1’  
Reserved. Write with ‘1’  
Byte 16: Reserved Register  
Bit  
Pin#  
Name  
Default  
Description  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
-
-
-
-
-
-
-
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0
0
0
0
0
0
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Byte 17: Reserved Register  
Bit Pin#  
Name  
Default  
Description  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
-
-
-
-
-
-
-
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
0
0
0
0
0
0
0
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Rev 1.0,November 20, 2006  
Page 12 of 20  
W305B  
Table 5. Additional Frequency Selections through Serial Data Interface Data Bytes  
Input Conditions Output Frequency  
PLL Gear  
Constants  
(G)  
FS4  
SEL4  
0
FS3  
FS2  
SEL2  
0
FS1  
FS0  
SEL0  
0
SEL3  
0
SEL1  
0
CPU  
66.6  
SDRAM  
3V66  
66.6  
80.0  
66.8  
68.3  
70.0  
75.0  
80.0  
83.0  
66.6  
82.6  
66.8  
68.9  
70.0  
73.3  
76.6  
66.6  
66.6  
83.3  
66.8  
68.5  
70.0  
72.5  
75.0  
80.0  
66.6  
83.3  
66.8  
68.5  
66.6  
66.6  
66.6  
66.6  
PCI  
33.3  
40.0  
33.4  
34.2  
35.0  
37.5  
40.0  
41.5  
33.3  
41.3  
33.4  
34.3  
35.0  
36.7  
38.3  
33.3  
33.3  
41.6  
33.4  
34.3  
35.0  
36.2  
37.5  
40.0  
33.3  
41.7  
33.4  
34.3  
33.3  
33.3  
33.3  
33.3  
APIC  
16.6  
20.0  
16.7  
17.1  
17.5  
18.8  
20.0  
20.8  
16.6  
20.6  
16.7  
17.2  
17.5  
18.3  
19.1  
16.6  
16.6  
20.8  
16.7  
17.1  
17.5  
18.1  
18.7  
20.0  
16.6  
20.8  
16.7  
17.1  
16.6  
16.6  
16.6  
16.6  
100.0  
120.0  
100.2  
102.5  
105.0  
112.5  
120.0  
124.5  
100.0  
124.0  
100.2  
103.0  
105.0  
110.0  
115.0  
200.0  
133.3  
166.6  
133.6  
137.0  
140.0  
145.0  
150.0  
160.0  
100.0  
125.0  
100.2  
102.8  
100.0  
100.0  
133.3  
100.0  
32.00494  
48.00741  
32.00494  
32.00494  
32.00494  
32.00494  
32.00494  
32.00494  
48.00741  
48.00741  
48.00741  
48.00741  
48.00741  
48.00741  
48.00741  
96.01482  
64.00988  
64.00988  
64.00988  
64.00988  
64.00988  
64.00988  
64.00988  
64.00988  
64.00988  
64.00988  
64.00988  
64.00988  
32.00494  
48.00741  
64.00988  
64.00988  
0
0
0
0
1
120.0  
66.8  
0
0
0
1
0
0
0
0
1
1
68.3  
0
0
1
0
0
70.0  
0
0
1
0
1
75.0  
0
0
1
1
0
80.0  
0
0
1
1
1
83.0  
0
1
0
0
0
100.0  
124.0  
100.2  
103.0  
105.0  
110.0  
115.0  
200.0  
133.3  
166.6  
133.6  
137.0  
140.0  
145.0  
150.0  
160.0  
133.3  
166.6  
133.6  
137.0  
66.6  
0
1
0
0
1
0
1
0
1
0
0
1
0
1
1
0
1
1
0
0
0
1
1
0
1
0
1
1
1
0
0
1
1
1
1
1
0
0
0
0
1
0
0
0
1
1
0
0
1
0
1
0
0
1
1
1
0
1
0
0
1
0
1
0
1
1
0
1
1
0
1
0
1
1
1
1
1
0
0
0
1
1
0
0
1
1
1
0
1
0
1
1
0
1
1
1
1
1
0
0
1
1
1
0
1
100.0  
133.3  
133.3  
1
1
1
1
0
1
1
1
1
1
Rev 1.0,November 20, 2006  
Page 13 of 20  
W305B  
The Watchdog Timer and Recovery Output Frequency  
features allow users to implement a recovery mechanism  
when the system hangs or getting unstable. System BIOS or  
other control software can enable the Watchdog timer before  
they attempt to make a frequency change. If the system hangs  
and a Watchdog timer time-out occurs, a system reset will be  
generated and a recovery frequency will be activated.  
Programmable Output Frequency, Watchdog  
Timer and Recovery Output Frequency  
Functional Description  
The Programmable Output Frequency feature allows users to  
generate any CPU output frequency from the range of 50 MHz  
to 248 MHz. Cypress offers the most dynamic and the simplest  
programming interface for system developers to utilize this  
feature in their platforms.  
All the related registers are summarized in the following table.  
Table 6. Register Summary  
Name  
Description  
Pro_Freq_EN  
Programmable output frequencies enabled  
0 = disabled (default)  
1 = enabled  
When it is disabled, the operating output frequency will be determined by either the latched value of  
FS[4:0] inputs or the programmed value of SEL[4:0]. If FS_Override bit is clear, latched FS[4:0] inputs  
will be used. If FS_Override bit is set, programmed value of SEL[4:0] will be used.  
When it is enabled, the CPU output frequency will be determined by the programmed value of  
CPUFSEL_N, CPUFSEL_M and the PLL Gear Constant. The program value of FS_Override, SEL[4:0]  
or the latched value of FS[4:0] will determine the PLL Gear Constant and the frequency ratio between  
CPU and other frequency outputs  
FS_Override  
When Pro_Freq_EN is cleared or disabled,  
0 = Select operating frequency by FS input pins (default)  
1 = Select operating frequency by SEL bits in SMBus control bytes  
When Pro_Freq_EN is set or enabled,  
0 = Frequency output ratio between CPU and other frequency groups and the PLL Gear Constant are  
based on the latched value of FS input pins (default)  
1 = Frequency output ratio between CPU and other frequency groups and the PLL Gear Constant are  
based on the programmed value of SEL bits in SMBus control bytes  
CPU_FSEL_N,  
CPU_FSEL_M  
When Prog_Freq_EN is set or enabled, the values programmed in CPU_FSEL_N[7:0] and  
CPU_FSEL_M[6:0] determines the CPU output frequency. The new frequency will start to load  
whenever there is an update to either CPU_FSEL_N[7:0] or CPU_FSEL_M[6:0]. Therefore, it is recom-  
mended to use Word or Block write to update both registers within the same SMBus bus operation.  
The setting of FS_Override bit determines the frequency ratio for CPU, SDRAM, AGP and SDRAM.  
When FS_Override is cleared or disabled, the frequency ratio follows the latched value of the FS input  
pins. When FS_Override is set or enabled, the frequency ratio follows the programmed value of SEL  
bits in SMBus control bytes.  
ROCV_FREQ_SEL  
ROCV_FREQ_SEL determines the source of the recover frequency when a Watchdog timer time-out  
occurs. The clock generator will automatically switch to the recovery CPU frequency based on the  
selection on ROCV_FREQ_SEL.  
0 = From latched FS[4:0]  
1 = From the settings of ROCV_FREQ_N[7:0] & ROCV_FREQ_M[6:0]  
ROCV_FREQ_N[7:0], When ROCV_FREQ_SEL is set, the values programmed in ROCV_FREQ_N[7:0] and  
ROCV_FREQ_M[6:0] ROCV_FREQ_M[6:0] will be used to determine the recovery CPU output frequency when a Watchdog  
timer time-out occurs  
The setting of FS_Override bit determines the frequency ratio for CPU, SDRAM, AGP and SDRAM.  
When it is cleared, the same frequency ratio stated in the Latched FS[4:0] register will be used.  
When it is set, the frequency ratio stated in the SEL[4:0] register will be used.  
The new frequency will start to load whenever there is an update to either ROCV_FREQ_N[7:0] and  
ROCV_FREQ_M[6:0]. Therefore, it is recommended to use Word or Block write to update both registers  
within the same SMBus bus operation.  
Rev 1.0,November 20, 2006  
Page 14 of 20  
W305B  
Table 6. Register Summary (continued)  
Name  
Description  
WD_EN  
0 = Stop and re-load Watchdog timer. Unlock W305B from recovery frequency mode.  
1 = Enable Watchdog timer. It will start counting down after a frequency change occurs.  
Note. W305B will generate system reset, re-load a recovery frequency, and lock itself into a recovery  
frequency mode after a Watchdog timer time-out occurs. Under recovery frequency mode, W305B will  
not respond to any attempt to change output frequency via the SMBus control bytes. System software  
can unlock W305B from its recovery frequency mode by clearing the WD_EN bit.  
WD_TO_STATUS  
WD_TIMER[4:0]  
Watchdog Timer Time-out Status bit  
0 = No time-out occurs (READ); Ignore (WRITE)  
1 = time-out occurred (READ); Clear WD_TO_STATUS (WRITE)  
These bits store the time-out value of the Watchdog timer. The scale of the timer is determine by the  
pre-scaler.  
The timer can support a value of 150 ms to 4.8 sec. when the pre-scaler is set to 150 ms. If the pre-scaler  
is set to 2.5 sec, it can support a value from 2.5 sec to 80 sec.  
When the Watchdog timer reaches “0”, it will set the WD_TO_STATUS bit.  
WD_PRE_SCALER  
RST_EN_WD  
0 = 150 ms  
1 = 2.5 sec  
This bit will enable the generation of a Reset pulse when a watchdog timer time-out occurs.  
0 = Disabled  
1 = Enabled  
RST_EN_FC  
This bit will enable the generation of a Reset pulse after a frequency change occurs.  
0 = Disabled  
1 = Enabled  
How to Program CPU Output Frequency  
“G” stands for the PLL Gear Constant, which is determined by  
the programmed value of FS[4:0] or SEL[4:0]. The value is  
listed in Table 5.  
When the programmable output frequency feature is enabled  
(Pro_Freq_EN bit is set), the CPU output frequency is deter-  
mined by the following equation:  
The following table lists the recommended frequency output  
ranges for each PLL Gear Constant and its associated Bus  
Frequency Ratio so that the maximum AGP and PCI output  
frequencies are less than or equal to 83.1 MHz and 41.5 MHz,  
respectively.  
Fcpu = G * (N+3)/(M+3)  
“N” and “M” are the values programmed in Programmable  
Frequency Select N-Value Register and M-Value Register,  
respectively.  
Table 7. Recommended CPU Frequency Range for Different PLL Gear Ratio  
Recommended Output Frequency Range (CPU/SDRAM/AGP/PCI)  
Bus Frequency Ratio  
(CPU/SDRAM/AGP/PCI)  
Lower Limits  
(N=77, M=48)  
Upper Limits  
(N=106, M=39)  
Gear Constants  
G1 (32.00494)  
G2 (48.00741)  
G3 (64.00988)  
66 / 100 / 66 / 33  
100 / 100 / 66 / 33  
50.2 / 75.8 / 50.2 / 25.1  
75.3 / 75.3 / 50.2 / 25.1  
83.1 / 124.7 / 83.1 / 41.5  
124.6 / 124.6 / 83.1 / 41.5  
133 / 133 / 66 / 33  
or  
133 / 100 / 66 / 33  
100.4 / 100.4 / 50.2 / 25.1  
or  
100.4 / 75.3 / 50.2 / 25.1  
166.1 / 166.1 / 83.1 / 41.5  
or  
166.1 / 124.5 / 83.1 / 41.5  
G4 (96.01482)  
200 / 200 / 66 / 33  
150.6 / 150.6 / 50.2 / 25.1  
249.2 / 249.2 / 83.1 / 41.5  
Rev 1.0,November 20, 2006  
Page 15 of 20  
W305B  
Absolute Maximum DC Power Supply  
Parameter  
Description  
Min.  
–0.5  
–0.5  
–65  
Max.  
4.6  
Unit  
V
VDDQ3  
VDDQ2  
TS  
3.3V Core Supply Voltage  
2.5V I/O Supply Voltage  
Storage Temperature  
3.6  
V
150  
°C  
Absolute Maximum DC I/O  
Parameter  
Description  
3.3V Core Supply Voltage  
2.5V I/O Supply Voltage  
Input ESD Protection  
Min.  
–0.5  
–0.5  
2000  
Max.  
4.6  
Unit  
V
Vi/o3  
Vi/o3  
3.6  
V
ESD prot.  
V
DC Electrical Characteristics [2]  
DC parameters must be sustainable under steady state (DC)  
conditions.  
DC Operating Requirements  
Parameter  
VDD3  
VDDQ3  
VDDQ2  
DD3 = 3.3V 5ꢀ  
Description  
Condition  
3.3V 5%  
3.3V 5%  
2.5V 5%  
Min.  
Max.  
Unit  
V
3.3V Core Supply Voltage  
3.3V I/O Supply Voltage  
2.5V I/O Supply Voltage  
3.135  
3.135  
2.375  
3.465  
3.465  
2.625  
V
V
V
Vih3  
Vil3  
Iil  
3.3V Input High Voltage  
3.3V Input Low Voltage  
Input Leakage Current[3]  
VDD3  
2.0  
VDD + 0.3  
0.8  
V
V
VSS – 0.3  
–5  
0<Vin<VDD3  
+5  
µA  
VDDQ2 = 2.5V 5ꢀ  
Voh2  
Vol2  
2.5V Output High Voltage  
2.5V Output Low Voltage  
Ioh=(–1 mA)  
Iol=(1 mA)  
2.0  
2.4  
V
V
0.4  
0.4  
VDDQ3 = 3.3V 5ꢀ  
Voh3  
Vol3  
3.3V Output High Voltage  
3.3V Output Low Voltage  
Ioh=(–1 mA)  
Iol=(1 mA)  
V
V
VDDQ3 = 3.3V 5ꢀ  
Vpoh3  
Vpol3  
Cin  
PCI Bus Output High Voltage  
PCI Bus Output Low Voltage  
Input Pin Capacitance  
Xtal Pin Capacitance  
Ioh=(–1 mA)  
Iol=(1 mA)  
2.4  
V
0.55  
5
V
pF  
pF  
pF  
nH  
°C  
Cxtal  
Cout  
Lpin  
Ta  
13.5  
22.5  
6
Output Pin Capacitance  
Pin Inductance  
0
0
7
Ambient Temperature  
No Airflow  
70  
Notes:  
2. Multiple Supplies: The voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT req  
3. Input Leakage Current does not include inputs with pull-up or pull-down resistors.  
Rev 1.0,November 20, 2006  
Page 16 of 20  
W305B  
AC Electrical Characteristics TA = 0°C to +70°C, VDDQ3 = 3.3V 5%, VDDQ2= 2.5V 5%fXTL = 14.31818 MHz[2]  
66.6-MHz Host 100-MHz Host 133-MHz Host  
Parameter  
TPeriod  
THIGH  
Description  
Host/CPUCLK Period  
Min.  
15.0  
5.2  
Max.  
15.5  
N/A  
N/A  
1.6  
Min.  
10.0  
3.0  
Max.  
10.5  
N/A  
N/A  
1.6  
Min.  
7.5  
Max.  
8.0  
Unit  
ns  
ns 4,7  
Notes  
4
Host/CPUCLK High Time  
Host/CPUCLK Low Time  
Host/CPUCLK Rise Time  
Host/CPUCLK Fall Time  
1.87  
1.67  
0.4  
N/A  
N/A  
1.6  
TLOW  
5.0  
2.8  
ns  
ns  
ns  
5
TRISE  
0.4  
0.4  
TFALL  
0.4  
1.6  
0.4  
1.6  
0.4  
1.6  
TPeriod  
THIGH  
TLOW  
TRISE  
TFALL  
SDRAM CLK Period  
10.0  
3.0  
2.8  
0.4  
0.4  
10.5  
N/A  
N/A  
1.6  
10.0  
3.0  
2.8  
0.4  
0.4  
10.5  
N/A  
N/A  
1.6  
10.0  
3.0  
2.8  
0.4  
0.4  
10.5  
N/A  
N/A  
1.6  
ns  
ns  
ns  
ns  
ns  
4
4
5
SDRAM CLK High Time  
SDRAM CLK Low Time  
SDRAM CLK Rise Time  
SDRAM CLK Fall Time  
1.6  
1.6  
1.6  
TPeriod  
THIGH  
TLOW  
TRISE  
TFALL  
APIC CLK Period  
60.0  
25.5  
25.3  
0.4  
64.0  
N/A  
N/A  
1.6  
60.0  
25.5  
25.30  
0.4  
N/A  
N/A  
N/A  
1.6  
60.0  
25.5  
25.30  
0.4  
64.0  
N/A  
N/A  
1.6  
ns  
ns  
ns  
ns  
ns  
4
4
5
APIC CLK High Time  
APIC CLK Low Time  
APIC CLK Rise Time  
APIC CLK Fall Time  
0.4  
1.6  
0.4  
1.6  
0.4  
1.6  
TPeriod  
THIGH  
TLOW  
TRISE  
TFALL  
3V66 CLK Period  
15.0  
5.25  
5.05  
0.5  
16.0  
N/A  
N/A  
2.0  
15.0  
5.25  
5.05  
0.5  
16.0  
N/A  
N/A  
2.0  
15.0  
5.25  
5.05  
0.5  
16.0  
N/A  
N/A  
2.0  
ns 4, 5  
3V66 CLK High Time  
3V66 CLK Low Time  
3V66 CLK Rise Time  
3V66 CLK Fall Time  
ns  
ns  
ns  
ns  
4
5
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
TPeriod  
THIGH  
TLOW  
TRISE  
TFALL  
PCI CLK Period  
30.0  
12.0  
12.0  
0.5  
N/A  
N/A  
N/A  
2.0  
30.0  
12.0  
12.0  
0.5  
N/A  
N/A  
N/A  
2.0  
30.0  
12.0  
12.0  
0.5  
N/A  
N/A  
N/A  
2.0  
ns 4, 7  
PCI CLK High Time  
PCI CLK Low Time  
PCI CLK Rise Time  
PCI CLK Fall Time  
ns  
ns  
ns  
ns  
4
5
0.5  
2.0  
0.5  
2.0  
0.5  
2.0  
tpZL, tpZH  
tpLZ, tpZH  
Output Enable Delay (All outputs)  
1.0  
1.0  
10.0  
10.0  
1.0  
1.0  
10.0  
10.0  
1.0  
1.0  
10.0  
10.0  
ns  
ns  
Output Disable Delay  
(All outputs)  
tstable  
All Clock Stabilization from  
Power-Up  
3
3
3
ms  
Notes:  
4. Period, jitter, offset, and skew measured on rising edge at 1.25 for 2.5V clocks and at 1.5V for 3.3V clocks.  
5. The time specified is measured from when V achieves its nominal operating level (typical condition V  
operating within specification.  
= 3.3V) until the frequency output is stable and  
DDQ3  
DDQ3  
6. T  
7. T  
8. T  
and T  
are measured as a transition through the threshold region V = 0.4V and V = 2.0V (1 mA) JEDEC specification.  
RISE  
LOW  
HIGH  
FALL ol oh  
is measured at 0.4V for all outputs.  
is measured at 2.0V for 2.5V outputs, 2.4V for 3.3V outputs.  
Rev 1.0,November 20, 2006  
Page 17 of 20  
W305B  
Group Skew and Jitter Limits  
Skew, Jitter  
Output Group  
CPU  
Pin-Pin Skew Max.  
Cycle-Cycle Jitter  
250 ps  
Duty Cycle  
45/55  
Nom Vdd  
2.5V  
Measure Point  
1.25V  
1.5V  
175 ps  
250 ps  
250 ps  
250 ps  
175 ps  
500 ps  
N/A  
SDRAM  
APIC  
250 ps  
45/55  
3.3V  
500 ps  
45/55  
2.5V  
1.25V  
1.5V  
48MHz  
3V66  
500 ps  
45/55  
3.3V  
500 ps  
45/55  
3.3V  
1.5V  
PCI  
500 ps  
45/55  
3.3V  
1.5V  
REF  
1000 ps  
45/55  
3.3V  
1.5V  
Test Point  
Output  
Buffer  
Test Load  
Clock Output Wave  
T
PERIOD  
Duty Cycle  
T
HIGH  
2.0  
1.25  
0.4  
2.5V Clocking  
Interface  
T
LOW  
T
T
RISE  
FALL  
T
PERIOD  
Duty Cycle  
T
HIGH  
2.4  
1.5  
0.4  
3.3V Clocking  
Interface  
T
LOW  
T
T
RISE  
FALL  
Figure 6. Output Buffer  
Layout Example  
Rev 1.0,November 20, 2006  
Page 18 of 20  
W305B  
+2.5V Supply  
FB  
+3.3V Supply  
FB  
VDDQ2  
VDDQ3  
10 mF  
.005 mf  
10 mF  
.005 mF  
C1  
C2  
C3  
C4  
G
G
G
G
G
G
G
V
1
56  
55  
54  
53  
V
G
2
3
4
G
V
G
G
5
52  
G
V
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
G
G
G
G
V
V
V
G
G
G
G
G
V
G
G
G
G
G
G
G
+3.3V  
5
:
C6  
G
ꢁꢂꢃꢀP  
C5  
10 PF  
G
G
V
F
G
G
FB = Dale ILB1206 - 300 (300:ꢀ@ 100 MHz) or TDK ACB 2012L-120  
µF  
µF C2 & C4 = .005  
C6 = 0.1 PF  
Cermaic Cap C1, C3 & C5 = 10 - 22  
= VIA to GND plane layer  
V =VIA to respective supply plane layer  
G
Note: Each supply plane or strip should have a ferrite bead and capacitors  
Rev 1.0,November 20, 2006  
Page 19 of 20  
W305B  
Ordering Information  
Ordering Code  
W305BH  
Package Type  
56-pin SSOP (300 mils)  
Operating Range  
Commercial  
W305BHH  
56-pin SSOP (300 mils) – Tape and Reel  
Commercial  
Lead Free  
CYW305OXC  
CYW305OXCT  
56-pin SSOP (300 mils)  
Commercial  
Commercial  
56-pin SSOP (300 mils) – Tape and Reel  
Package Drawing Dimension  
56-Lead Shrunk Small Outline Package O56  
.020  
28  
1
0.395  
0.420  
0.292  
0.299  
DIMENSIONS IN INCHES MIN.  
MAX.  
29  
56  
0.720  
0.730  
SEATING PLANE  
0.005  
0.010  
0.088  
0.092  
0.095  
0.110  
.010  
GAUGE PLANE  
0.110  
0.024  
0.040  
0.025  
BSC  
0.008  
0.016  
0°-8°  
0.008  
0.0135  
While SLI has reviewed all information herein for accuracy and reliability, Spectra Linear Inc. assumes no responsibility for the use of any cir-  
cuitry or for the infringement of any patents or other rights of third parties which would result from each use. This product is intended for use in  
normal commercial applications and is not warranted nor is it intended for use in life support, critical medical instruments, or any other applica-  
tion requiring extended temperature range, high reliability, or any other extraordinary environmental requirements unless pursuant to additional  
processing by Spectra Linear Inc., and expressed written agreement by Spectra Linear Inc. Spectra Linear Inc. reserves the right to change any  
circuitry or specification without notice.  
Rev 1.0, November 20, 2006  
Page 20 of 20  

相关型号:

W305BHH

Frequency Controller with System Recovery for Intel Integrated Core Logic
SPECTRALINEAR

W305BHH

Frequency Controller with System Recovery for Intel Integrated Core Logic
CYPRESS

W30M40CT

30A Schottky Barrier Rectifier
SEMIWELL

W30_11

Cement Coated Wirewound Resistors
TTELEC

W31

Cement Coated Wirewound Resistors
TTELEC

W31-X2M1G-1

Toggle or Push/Pull Actuator Thermal P and B Circuit Breaker
MACOM

W31-X2M1G-10

Toggle or Push/Pull Actuator Thermal P and B Circuit Breaker
MACOM

W31-X2M1G-15

Toggle or Push/Pull Actuator Thermal P and B Circuit Breaker
MACOM

W31-X2M1G-2

Toggle or Push/Pull Actuator Thermal P and B Circuit Breaker
MACOM

W31-X2M1G-20

Toggle or Push/Pull Actuator Thermal P and B Circuit Breaker
MACOM

W31-X2M1G-25

Toggle or Push/Pull Actuator Thermal P and B Circuit Breaker
MACOM

W31-X2M1G-3

Toggle or Push/Pull Actuator Thermal P and B Circuit Breaker
MACOM