W3030 [AGERE]

W3030 3 V Dual-Mode IF Cellular Receiver; W3030 3 V双模式蜂窝中频接收机
W3030
型号: W3030
厂家: AGERE SYSTEMS    AGERE SYSTEMS
描述:

W3030 3 V Dual-Mode IF Cellular Receiver
W3030 3 V双模式蜂窝中频接收机

接收机 蜂窝
文件: 总22页 (文件大小:426K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet  
April 1999  
W3030 3 V Dual-Mode IF Cellular Receiver  
n Low supply current  
Features  
n Analog received signal strength indicator (RSSI)  
n Proven double conversion architecture:  
¾ First IF capability: 10 MHz to over 1000  
MHz  
available  
n Analog AGC for digital-mode IF amplifiers  
n Over 100 dB combined voltage gain  
¾ Second IF capability: 0.2 MHz to 2.0 MHz  
n Dual second IF amplifiers and demodulators:  
¾
Analog-mode limiting amplifier and FM  
quadrature detector  
Applications  
¾
Digital-mode linear AGC amplifiers with  
dual-mixer I & Q quadrature demodulator  
n IS-136 (North American dual-mode) cellular  
radio portable and mobile terminals  
n Accurate, onboard local oscillator phase splitter  
n Cellular radio base stations  
n Digital satellite communications  
n Multisymbol signaling receivers  
for digital quadrature demodulator  
n Four enable/powerdown modes, selectable from  
two digital control pins, allow operation with  
minimal supply current  
I
DIGITAL SECTION  
VCC  
GND  
ENBA  
ENBD  
VCM  
AGC  
CLK  
Q
¸ 4  
LOGIC AND  
BIAS  
CONTROL  
VARIABLE GAIN  
ANALOG SECTION  
IF INPUT  
AUDIO  
RSSI  
LO  
Figure 1. General Block Diagram  
Data Sheet  
April 1999  
W3030 3 V Dual-Mode IF Cellular Receiver  
Table of Contents  
Features...............................................................................................................................................................1  
Applications .........................................................................................................................................................1  
Description...........................................................................................................................................................3  
Pin Information.....................................................................................................................................................5  
Absolute Maximum Ratings..................................................................................................................................7  
Handling Precautions ...........................................................................................................................................7  
Operating Ranges................................................................................................................................................8  
Electrical Specifications .......................................................................................................................................8  
RSSI..................................................................................................................................................................11  
Quadrature Detector...........................................................................................................................................11  
Quad Tank S-Curves......................................................................................................................................12  
Test Circuit Diagram ..........................................................................................................................................14  
Characteristic Curves.........................................................................................................................................15  
Outline Diagram.................................................................................................................................................20  
32-Pin TQFP......................................................................................................................................................20  
Manufacturing Information .................................................................................................................................21  
Ordering Information..........................................................................................................................................21  
2
Lucent Technologies Inc.  
Data Sheet  
April 1999  
W3030 3 V Dual-Mode IF Cellular Receiver  
parallel amplifier/demodulator sections. In the analog  
second IF, there is a 40 dB amplifier followed by a  
60 dB hard-limiting amplifier and an FM quadrature  
detector (noncoherent discriminator). The signal path  
between the 40 dB and 60 dB amplifier stages is  
brought off-chip for external filtering purposes. In  
digital mode, an AGC amplifier provides gain between  
10 dB and 80 dB. The digital signal is demodulated in  
double-balanced mixers that are fed with an external  
local oscillator (LO) signal. The external LO passes  
through a divide-by-four counter to provide the final IF  
LO frequency. This architecture greatly reduces the  
possibility of feedback of the external LO signal to the  
IF input, which would cause dc offsets at the I & Q  
outputs. This circuit also provides a 90° phase shift of  
the LO that is independent of duty cycle. The resulting  
I & Q differential pairs can be level-shifted using the  
VCM input pin, providing flexibility in interfacing to  
digital processing ICs.  
Description  
The W3030 is a monolithic integrated circuit that  
provides most of the receive path functions required  
to meet the IS-136 (and IS-54) standard. The W3030  
converts FM or digitally modulated IF carriers up to  
200 MHz and provides required IF gain and separate  
baseband detectors for the two modulation modes.  
The W3030 is organized into three subfunctions (see  
Figure 2):  
1. First IF mixer/amplifier  
2. Analog second IF  
3. Digital second IF sections  
(Note that the electrical specification tables  
correspond to each subfunction.)  
Each section has a buffered output to allow for  
external filtering, which also provides flexibility in  
system architecture selection. The first IF mixer  
section provides 30 dB of fixed voltage conversion  
gain (power gain = 17 dB). The first IF mixer also  
performs down-conversion to the 0.2 MHz—2.0 MHz  
range, which allows the use of inexpensive ceramic  
filters at two points in the signal path. In the second IF  
section, the signal path may be split between two  
A pair of logic inputs allows the device to be put into a  
powerdown mode and one of two partially enabled  
modes (analog or digital only), or a fully enabled  
mode, allowing the use of analog RSSI while in digital  
receive mode.  
Lucent Technologies Inc.  
3
Data Sheet  
April 1999  
W3030 3 V Dual-Mode IF Cellular Receiver  
Description (continued)  
32  
31  
30  
29  
28  
27  
26  
25  
1
2
3
24  
23  
22  
21  
20  
19  
18  
17  
50 kW  
RSSI  
CLK  
Q
FM  
DEMOD &  
RSSI  
¸
4
AUDIO  
48 kW  
2 kW  
QUAD  
IFAOUT  
IFAACG  
IFAIN  
Q
AGC AMP I/Q DEMODULATOR  
49 kW  
4
ENBA  
ENBD  
IF1IN  
IF1IN  
VCC1  
50 kW  
ANALOG SECOND  
IF LIMITER  
5
1 kW  
FIRST IF MIXER/AMPLIFIER  
10 MHz—1000 MHz  
6
7
8
SECOND IF AMP  
0.2 MHz—2.0 MHz  
50 kW  
IFAIN  
VCC2  
1 kW  
1 kW  
48 kW  
2 kW  
9
10  
11  
12  
13  
14  
15  
16  
Figure 2. Detailed Block Diagram with Pinout  
4
Lucent Technologies Inc.  
Data Sheet  
April 1999  
W3030 3 V Dual-Mode IF Cellular Receiver  
Pin Information  
Table 1. Pin Descriptions  
Pin  
Pin Name  
Pin Description  
Number  
1
RSSI  
Received Signal Strength Indicator. Provides logarithmic (dB-linear) dc output  
voltage.  
2
3
4
AUDIO  
QUAD  
IFAOUT  
Audio Output. Audio output of FM detector.  
Quad Input. Input to FM detector from parallel LC quad coil.  
Analog Output. Output of analog section limiting amplifiers; couple to quad coil  
and pin 3 (QUAD) with 10 pF capacitor.  
5
6
IFAACG  
IFAIN  
Analog Signal Ground. Signal ground for analog section limiting amplifier;  
connect to ground with 0.1 µF capacitor.  
Analog Mode Limiter Input. Differential input to analog IF limiting amplifier; to  
be directly coupled to dielectric sources such as ceramic filters. Pin 6 is  
approximately 1 kW with pin 5 ac-grounded.  
7
8
9
Analog Mode Limiter Input (Inverting). Differential input to analog IF limiting  
amplifier. To be ac-grounded.  
IFAIN  
VCC2  
Second IF Power Supply. Positive power supply connection for both analog  
and digital second IF amplifiers and demodulators.  
IF2OUT  
Second IF Output. Output of 40 dB second IF amplifier; directly couple to  
dielectric loads such as ceramic filters. Includes internal 1 kW termination  
resistor.  
10  
11  
IF2ACG  
IF2IN  
Second IF Signal Ground. Signal ground for 40 dB second IF amplifier;  
connect to ground with 0.1 µF capacitor.  
Second IF Input. Differential input to 40 dB second IF amplifier; to be directly  
coupled to dielectric sources such as ceramic filters. Pin 11 is approximately  
2 kW with pin 10 ac-grounded.  
12  
Second IF Input (Inverting). Differential input to 40 dB second IF amplifier. To  
be ac-grounded.  
IF2IN  
13  
14  
GND1  
First IF Mixer Ground. Power supply (dc) ground for first IF mixer section.  
IF1OUT  
First IF Mixer Output. Output of first IF mixer/amplifier section; to be directly  
coupled to dielectric loads such as ceramic filters. Includes internal 1 kW  
termination resistor.  
15  
16  
17  
18  
19  
First IF Mixer Logical Input (Inverting). Differential input to first IF mixer local  
oscillator; to be capacitively coupled to sources with a dc level offset.  
IF1LO  
IF1LO  
First IF Mixer Logical Input. Differential input to first IF mixer local oscillator.  
To be ac-grounded.  
VCC1  
First IF Mixer Power Supply. Positive power supply connection for first IF  
mixer/amplifier section.  
First IF Mixer Input (Inverting). Differential input to first IF mixer/amplifier  
section; to be ac-coupled to ground or source.  
IF1IN  
IF1IN  
First IF Mixer Input. Differential input to first IF mixer/amplifier section.  
Lucent Technologies Inc.  
5
Data Sheet  
April 1999  
W3030 3 V Dual-Mode IF Cellular Receiver  
Pin Information (continued)  
Table 1. Pin Descriptions (continued)  
Pin  
Pin Name  
Pin Description  
Number  
20  
21  
ENBD  
ENBA  
Enable Digital Mode. Positive logic enable connection for digital mode operation.  
Enable Analog Mode. Positive logic enable connection for analog mode  
operation.  
22  
23  
Q
Q Output. Differential output from Q mixer of quadrature demodulator.  
Q Output (Inverting). Differential output from Q mixer of quadrature demodulator.  
Q
24  
CLK  
Clock Input. Local oscillator (clock) input to quadrature demodulator phase shifter;  
to be capacitively coupled. Input frequency must be four times second IF center  
frequency.  
25  
I Output (Inverting). Differential output from I mixer of quadrature demodulator.  
I Output. Differential output from I mixer of quadrature demodulator.  
I
26  
27  
I
AGC  
Automatic Gain Control. AGC control input; to be connected to dc source of  
0.25 V—1.55 V.  
28  
29  
30  
VCM  
IFDACG  
IFDIN  
Common-Mode Voltage. Common-mode voltage dc offset set point for I & Q  
interface, typically VCC/2.  
Digital Signal Ground. Signal ground for digital section limiting amplifier; connect  
to ground with 0.1 µF capacitor.  
Digital Second IF Input. Differential input to digital section AGC amplifier; to be  
directly coupled to dielectric sources such as ceramic filters. Pin 30 is  
approximately 2 kW with pin 29 ac-grounded.  
31  
32  
Digital Second IF Input (Inverting). Differential input to digital section AGC  
amplifier. To be ac-grounded.  
IFDIN  
GND2  
Second IF Ground. Power supply ground for both analog and digital second IF  
amplifier and demodulator sections.  
Table 2. Digital Control Pin Truth Table  
Control Pin  
Mode/Function  
ENBA  
LOW  
LOW  
ENBD  
LOW  
HIGH  
All Sleep. All receive circuits powered down, supply current <10 µA.  
Digital Receive. First IF mixing stage, AGC amp and I/Q quadrature  
demodulators active.  
HIGH  
HIGH  
LOW  
HIGH  
Analog/FM Receive. First IF mixing stage, 40 dB IF amp, 60 dB limiting amp,  
RSSI, and FM detector active.  
All Active. All receive circuits functional, e.g., digital mode I & Q demodulator  
used with analog RSSI.  
6
Lucent Technologies Inc.  
Data Sheet  
April 1999  
W3030 3 V Dual-Mode IF Cellular Receiver  
Absolute Maximum Ratings  
Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are  
absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in  
excess of those given in the operations sections of the data sheet. Exposure to absolute maximum ratings for  
extended periods can adversely affect device reliability.  
Parameter  
Ambient Operating Temperature  
Storage Temperature  
Min  
–35  
–65  
Max  
100  
Unit  
°C  
150  
°C  
Lead Temperature (soldering, 10 s)  
Positive Supply Voltage  
300  
°C  
0
4.5  
Vdc  
mW  
mA  
Vdc  
Vdc  
Vdc  
Power Dissipation  
650  
Output Current (continuous)  
ac Peak-to-peak Input Voltage  
Enable Input Voltage  
160  
0
VCC  
–0.3  
–0.3  
VCC + 0.4  
VCC + 0.4  
VCM, AGC Input Voltage  
Handling Precautions  
Although protection circuitry has been designed into this device, proper precautions should be taken to avoid  
exposure to electrostatic discharge (ESD) during handling and mounting. Lucent Technologies Microelectronics  
Group employs a human-body model (HBM) and a charged-device model (CDM) for ESD-susceptibility testing  
and protection design evaluation. ESD voltage thresholds are dependent on the circuit parameters used to define  
the model. No industry-wide standard has been adopted for CDM. However, a standard HBM (resistance =  
1500 W, capacitance = 100 pF) is widely used and, therefore, can be used for comparison purposes. The HBM  
ESD threshold presented here was obtained by using these circuit parameters:  
W3030 ESD Threshold Voltage  
ESD Model  
HBM  
Rating  
³ 1500 V  
³ 1500 V  
CDM  
Lucent Technologies Inc.  
7
Data Sheet  
April 1999  
W3030 3 V Dual-Mode IF Cellular Receiver  
Operating Ranges  
Performance is not guaranteed over the full range of all conditions possible within this table. However, this table  
lists the ranges of external conditions in which the W3030 provides general functionality, which may be useful in  
specific applications, without risk of permanent damage. The conditions for guaranteed performance are  
described below.  
Table 3. W3030 Operating Ranges  
Parameter  
Min  
Max  
Unit  
Supply Voltage  
2.7  
4.1  
Vdc  
First IF Mixer/Amplifier Section:  
Input Frequency Range  
LO Frequency  
10  
10  
–10  
1000  
1000  
6
MHz  
MHz  
dBm/50 W  
LO Input Level Range  
Digital Second IF Amplifier, AGC Quadrature Demodulator Section:  
Second IF Frequency  
0.1  
0.4  
–10  
4
16  
6
MHz  
MHz  
dBm/50 W  
Quadrature Demodulator LO (CLK) Frequency  
CLK Input Level (square wave)  
Analog Second IF Amplifier Frequency  
VCM Input Range  
0.1  
4
MHz  
V
1.25  
VCC – 0.8  
Electrical Specifications  
The following apply to all specifications, unless otherwise listed: TA = 25 °C ± 3 °C; VCC = 2.7 Vdc;  
PIF1LO = –3 dBm to +3 dBm/50 W; IF1 = 10 MHz to 200 MHz; IF2 = 0.2 MHz to 2 MHz; ENBA = ENBD > 1.9 Vdc.  
Table 4. dc and Logic Parameters  
Parameter  
Min  
Typ  
Max  
Unit  
Supply Current:  
Fully Enable (VCC = 3.3)  
8
5
5
11  
8
8
mA  
mA  
mA  
µA  
Analog Only Mode (VCC = 3.3)  
Digital Only Mode (VCC = 3.3)  
Sleep Mode (VCC = 3.3)  
<1  
10  
VIHMIN  
1.9  
0
0.7  
10  
V
V
VILMAX  
IILMAX (VI = 0.7 V)  
µA  
µA  
µs  
IIHMAX (VI = VCC)  
30  
30  
250  
Enable Time (external capacitor dependent)  
8
Lucent Technologies Inc.  
Data Sheet  
April 1999  
W3030 3 V Dual-Mode IF Cellular Receiver  
Electrical Specifications (continued)  
Table 5. First IF Mixer/Amplifier Section  
IF deviation = £0.5 MHz.  
Parameter  
Voltage Gain (with input matching network from 50 W source)  
Power Gain  
Min  
Typ  
30  
Max  
Unit  
dB  
17  
dB  
Gain Flatness within IF Deviation  
±0.2  
14  
dB  
Noise Figure at IF Input (SSB)  
dB  
1 dB Compression Point at Input to Matching Network  
IP3 at First IF Matching Network Input  
IF Input Impedance @ 82 MHz  
–27  
dBm  
dBm  
kW II pF  
kW II pF  
kW  
–17  
1.7 II 1.8  
4 II 1.5  
1.0  
LO Input Impedance @ 82 MHz  
IF Output Impedance  
LO Suppression at IF Input (relative to LO input level)  
40  
dB  
Table 6. Analog Second IF Amplifier, Limiter, RSSI, FM Detector Section  
Filter ZIN = ZOUT = 1.0 kW; 6 dB attenuation between 40 dB amplifier output and 60 dB limiting amplifier input;  
1 kHz FM at 8 kHz deviation; IF filter bandwidth = 28 kHz. Quad tank Q = 10.  
Parameter  
Min  
Typ  
86  
90  
2.1  
0.7  
±0.8  
17  
100  
2
Max  
Unit  
dB  
IF Gain (net) IF2IN to Audio  
RSSI Range of Input Signal  
65  
1.75  
0.4  
dB  
2.6  
0.92  
±2.5  
25  
V
RSSI Output Voltage with –20 dBm/50 W into IF1IN  
RSSI Output Voltage with –110 dBm/50 W into IF1IN  
RSSI Linearity over –100 dBm to –35 dBm into IF1IN  
RSSI Transfer Function  
V
dB  
13  
mV/dB  
µA  
RSSI Current Capability  
IF Input Impedance (40 dB amplifier)  
IF Output Impedance (40 dB amplifier)  
IF Input Impedance (60 dB limiter)  
kW  
kW  
kW  
kW  
dBm  
kW  
W
1
1
IF Output Impedance (60 dB limiter)  
1
IP3 of 40 dB Amplifier Section (at its output)  
FM Detector Input Impedance (quad, pin 3)  
Audio Output Impedance  
3
40  
500  
220  
Audio Output Amplitude (IF1IN = –35 dBm)  
Audio SINAD for IF1IN = –35 dBm (C-message weighting filter)  
150  
32  
270  
mVrms  
dB  
Lucent Technologies Inc.  
9
Data Sheet  
April 1999  
W3030 3 V Dual-Mode IF Cellular Receiver  
Electrical Specifications (continued)  
Table 7. Digital Second IF Amplifier, AGC, Quadrature Demodulator Section  
PCLK = 320 mVp-p to 640 mVp-p (square wave); IF deviation = £0.5 MHz; VCM = 1.3 Vdc to VCC – 0.8 Vdc.  
Parameter  
Min  
Typ  
2
Max  
Unit  
kW  
IF Input Impedance  
CLK Input Impedance  
28 II 8.2  
150  
kW II pF  
kHz  
Baseband: –3 dB Bandwidth  
AGC Control Input Resistance  
AGC Control Voltage Range  
500  
kW  
0.9 ± 0.65  
18  
Vdc  
AGC Transfer Function  
11  
23  
±2.5  
2
mV/dB  
dB  
AGC Gain Linearity, VAGC = 0.3 to 1.1  
I and Q Phase Accuracy  
±1.5  
0.4  
–2  
–0.3  
degrees  
dB  
I and Q ac Amplitude Mismatch  
I and Q Maximum Output Swing (differential, compressed)  
±0.05  
2
0.3  
Vp-p  
Vdc  
I and Q Common-mode Voltage as Function of VCM, i.e., VCM – 0.08 VCM input VCM + 0.08  
VI + VI  
VQ + VQ  
or  
2
2
I and Q Differential Offset Voltage  
0
35  
mV  
µA  
I and Q Maximum Sink Current per Pin (sum of dc and  
peak ac)  
100  
I and Q Maximum Source Current per Pin (sum of dc and  
peak ac)  
1
mA  
IP3 at Output (I or Q, differential)  
1 dB Compression Point (at output, differential)  
Noise Figure @ IF Input, Differential I + jQ  
VCM Input Impedance  
15  
7
dBm/50 W  
dBm/50 W  
dB  
11  
400  
kW  
Table 8. Digital Gain and First IF Mixer Input to Baseband  
PCLK = 320 mVp-p to 640 mVp-p (square wave); IF deviation = £0.5 MHz; VCM = 1.3 Vdc to VCC – 0.8 Vdc.  
Gain numbers include –1.5 dB filter loss.  
Parameter  
Min  
91  
Typ  
99  
Max  
128  
60  
Unit  
dB  
Gain VAGC = 1.1 V  
Gain VAGC = 0.3 V  
36  
54  
dB  
10  
Lucent Technologies Inc.  
Data Sheet  
April 1999  
W3030 3 V Dual-Mode IF Cellular Receiver  
Quadrature Detector  
RSSI  
The RSSI output provides a voltage level that is  
proportional to the amount of signal present in the  
analog second IF section. This voltage level is  
generated internally by summing of the signal current  
at different points in the 40 dB and 60 dB IF chains.  
The amount of loss between the 40 dB and 60 dB  
sections will affect the RSSI linearity. Figure 3  
contains two traces of RSSI voltage versus IF input  
power. One trace is with only the filter loss between  
the 40 dB and 60 dB amplifiers. The second trace is  
with a filter and a resistor, to give a total loss of  
5.6 dB. The figure indicates a nonlinearity around the  
–75 dBm input level. This nonlinearity occurs because  
the 60 dB amplifier chain enters compression, causing  
less RSSI output. Eventually, as the input signal  
increases, the 40 dB amplifier will begin to contribute  
to the total RSSI.  
Figure 4 is a simplified schematic of the quadrature  
detector of the W3030. The quadrature detector circuit  
is similar to a mixer; but, instead of mixing two  
different frequencies, it multiplies two signals of the  
same frequency that are phase-shifted versions of  
each other. Multiplying the phase-shifted with the  
unshifted signals produces the audio portion of the FM  
signal.  
CS  
IFAOUT  
AUDIO  
L
CP  
R
QUAD  
CBYPASS  
It was determined that 6 dB of interstage loss  
produces the optimal RSSI response. Most ceramic  
filters have less than 6 dB insertion loss. Therefore,  
some additional loss must be inserted in addition to  
the filter. The simplest way is to use a resistor in  
series with the filter. This method will cause a  
mismatch to the filter and may distort its passband  
response. An L or T configuration may be necessary  
to provide the required loss without mismatching the  
filter.  
Figure 4. Quadrature Detector  
Before the IF signal is differentially applied to the  
multiplier, the signal is passed through a limiter stage  
to produce a constant amplitude signal. The same  
signal is brought out single-ended to pin 4, IFAOUT.  
The signal at IFAOUT is passed through a phase-  
shifting network (CS + CP + L + R). The phase-shifted  
signal is applied back to the lower portion of the  
multiplier at pin 3, QUAD. The parallel L/C resonant  
circuit provides frequency selective filtering at the IF  
frequency. The L/C tank must be ac-grounded at the  
IF frequency through a dc blocking capacitor  
(CBYPASS).  
ATTN 1.4 dB  
ATTN 5.6 dB  
2.2  
1.9  
1.6  
1.3  
1
Because information in an FM signal is contained in  
the deviation from the center frequency, the design of  
the resonant bandpass circuit is very important,  
particularly the load Q. A higher-loaded Q for a given  
deviation will produce a larger output signal than a  
lower Q circuit. However, a high Q circuit will permit  
only a limited amount of deviation from center  
frequency before distortion occurs.  
0.7  
0.4  
–125 –115 –105 –95 –85 –75 –65 –55 –45 –35 –25  
Figure 5 illustrates an equivalent quad tank circuit  
including the W3030 40 kW input resistance.  
Equations 1 and 2 are used to calculate resonant  
frequency and tank circuit Q.  
IF1IN POWER (dBm)  
Figure 3. RSSI Out vs. IF1IN Power: 1.4 dB and 5.6  
dB Loss Between 40 dB and 60 dB  
Amplifiers  
Lucent Technologies Inc.  
11  
Data Sheet  
April 1999  
W3030 3 V Dual-Mode IF Cellular Receiver  
Quadrature Detector (continued)  
W
40 k  
dc  
PIN 3  
QUAD  
m
4 pF—25 pF  
18 pF  
680  
0.1  
F
R
150 pF  
m
F
Figure 5. L/C Tank Equivalent Circuit  
1
1
f1=  
=
= 450 kHz  
Equation (1)  
Equation (2)  
2p 680 * 6- 10 * 184 *10- 12  
p
2
LC  
(
) (  
)
3
3
(
)
40 *10 * 33 *10  
Q = 2p * f * RC = 2p *  
(
450 *103  
)
*
*
(
184 *10- 12  
)
= 9.4  
40 *10 + 33 *103  
3
(
)
The W3030 evaluation board is designed with a 450 kHz IF frequency, as shown in our example. The Q of the  
tank circuit is set to 10 by the external resistor.  
Quad Tank S-Curves  
One method of determining if the Q of the tank is too large or too small is to produce an S-curve of the quad  
tank. An S-curve is a plot of the dc audio output voltage versus IF input frequency. With small deviations from  
center frequency, there is a proportional change in the dc audio output voltage. The overall linearity of the curve  
is determined by the Q of the tank circuit; therefore, the Q determines how much deviation is allowed before  
distortion of the audio signal occurs. The L/C tank circuit has a shunt resistor to set the Q of the tank. The  
procedure to produce these plots is as follows:  
1. Remove the 450 kHz IF filter and drive the input of the limiting amplifier with a signal generator capable of  
FM modulation.  
2. Apply FM modulation and adjust the tank capacitor for maximum audio out and minimal distortion.  
3. Remove the FM modulation and sweep the IF frequency above and below center frequency while monitoring  
the dc voltage at the audio output.  
The following S-curves were produced with the value of the quad tank resistor varied from 18 kW, to 30 kW, to  
removing the resistor. The resistor value of 33 kW, which corresponds to a Q of 10, was chosen as the optimal  
resistor value.  
12  
Lucent Technologies Inc.  
Data Sheet  
April 1999  
W3030 3 V Dual-Mode IF Cellular Receiver  
AUDIO (Vdc)  
LINEAR FIT  
±8 kHz  
Quadrature Detector (continued)  
Quad Tank S-Curves (continued)  
ERROR (dB)  
3
2.5  
2
0.5  
AUDIO (Vdc)  
0.4  
LINEAR FIT  
±8 kHz  
0.3  
ERROR (dB)  
0.2  
3
2.5  
2
1.5  
1
0.1  
0
1.5  
1
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0.5  
0
–0.5  
–1  
1.5  
1
0.5  
–1.5  
–2  
IF FREQUENCY (kHz)  
0.5  
Figure 8. Audio Output vs. IF Frequency, Quad  
Tank Resistor Removed  
IF FREQUENCY (kHz)  
Figure 6. Audio Output vs. IF Frequency,  
18 kW Quad Tank Resistor  
AUDIO (Vdc)  
LINEAR FIT  
±8 kHz  
ERROR (dB)  
3
2.5  
2
0.5  
0.4  
0.3  
0.2  
0.1  
0
1.5  
1
–0.1  
–0.2  
–0.3  
–0.4  
–0.5  
0.5  
IF FREQUENCY (kHz)  
Figure 7. Audio Output vs. IF Frequency,  
33 kW Quad Tank Resistor  
Lucent Technologies Inc.  
13  
Data Sheet  
April 1999  
W3030 3 V Dual-Mode IF Cellular Receiver  
Test Circuit Diagram  
5 V  
SW1  
4
5
6
1
2
3
JP1  
JP2  
ENBA  
ENBD  
R7  
1.5 k  
W
R5  
1.5 k  
W
C32  
0.1 µF  
5 V  
R1  
1.5 k  
C31  
0.1 µF  
32 31  
X1  
27  
W
RSSI  
28  
26  
25  
29  
30  
C28  
CLK  
C1  
1000 pF  
1000 pF  
24  
1
2
R2  
2.2 k  
R8  
50  
W
AUDIO  
23  
22  
21  
20  
W
C2  
3300 pF  
R3  
18 k  
W
3
4
L1  
680 µH  
5%, Q > 30  
C8  
10 pF  
C20  
2 pF—  
6 pF  
C7  
150 pF  
C19  
5.6 pF  
C6  
18 pF  
5
6
L2  
19  
18  
C4  
330 nH  
C10  
0.1 µF  
4 pF—  
25 pF  
C5  
0.1 µF  
C21  
18 pF  
IF1IN  
7
8
C9  
0.01 µF  
17  
C13  
C18  
C22  
1000 pF  
1000 pF 1000 pF  
R40  
9
10  
11  
12  
C33  
0.1 µF  
13  
14  
50  
15  
C23  
16  
FLT2  
SFGCG450  
C11  
0.1 µF  
R5  
W
1000 pF  
C16  
1000 pF  
C14  
C15  
0.1 µF  
0.1 µF  
IF1LO  
FLT1  
SFGCG450  
X1  
Figure 9. Test Circuit Diagram  
14  
Lucent Technologies Inc.  
Data Sheet  
April 1999  
W3030 3 V Dual-Mode IF Cellular Receiver  
RF = 83.16 MHz  
LO1 = 82.71 MHz  
Characteristic Curves  
IDEAL INPUT MATCHING NETWORK  
Unless otherwise specified, VCC = 2.7 Vdc.  
0.2  
0
RF = 70 dBm  
0.9 VAGC  
TEMP = –35 °C, +25 °C, AND +85 °C  
FULL-ON MODE  
–0.2  
–0.4  
–0.6  
–0.8  
–1  
V_ENAB = VCC  
12.00  
11.00  
10.00  
9.00  
8.00  
7.00  
6.00  
5.00  
4.00  
85 °C  
25 °C  
–1.2  
–1.4  
–1.6  
–80  
–70  
–60  
–50  
–40  
–30  
–20  
–35 °C  
IF1IN POWER (dBm)  
Figure 12. First IF Mixer Output Compression  
2.5  
2.7  
2.9  
3.1  
3.3  
VCC  
3.5  
3.7  
3.9  
4.1  
POWER IF1LO = +3 dBm  
–20  
Figure 10. ICC vs. VCC  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
RF = 70 dBm  
0.9 VAGC  
TEMP = –35 °C, +25 °C, AND +85 °C  
ANALOG AND DIGITAL PATHS DONE SEPARATELY  
8.00  
7.00  
6.00  
5.00  
4.00  
3.00  
2.00  
1.00  
0.00  
+85 °C  
–35 °C  
+25 °C  
ANALOG, –35 °C  
DIGITAL, –35 °C  
ANALOG, 25 °C  
DIGITAL, 25 °C  
ANALOG, 85 °C  
DIGITAL, 85 °C  
0
200 400  
600  
800 1000 1200 1400 1600  
FREQUENCY LO1 (MHz)  
Figure 13.First IF Mixer: LO Rejection  
at IF Input vs. IF1LO  
0
0.5  
1
1.5  
2
2.5  
ENABLE VOLTAGE (Vdc)  
Figure 11. ICC vs. Enable Voltage  
Lucent Technologies Inc.  
15  
Data Sheet  
April 1999  
W3030 3 V Dual-Mode IF Cellular Receiver  
RF = 83.14 MHz to 83.18 MHz  
LO1 = 82.71 MHz  
Characteristic Curves (continued)  
IF = –20 kHz TO 20 kHz AROUND 450 kHz  
–30 dBm/50 W;  
IF1OUT = 450 kHz  
POWER IF1IN = –30 dBm  
POWER IF1LO = –3 dBm  
1 kW OUTPUT LOAD  
–13  
–14  
–15  
–16  
–17  
–18  
–19  
–20  
–21  
–22  
–23  
NO INPUT MATCHING NETWORK  
18  
17  
16  
15  
14  
13  
12  
11  
10  
–15  
–10  
–5  
IF1OUT FREQUENCY (MHz)  
0
5
10  
15  
0
200  
400  
600  
800 1000 1200 1400 1600  
IF1IN (MHz)  
Figure 16. First IF Mixer Bandwidth  
Figure 14. First IF Mixer: Conversion  
Voltage Gain vs. Frequency  
IF1IN  
RF = 83.156 MHz  
LO1 = 82.71 MHz  
IF = 450 kHz  
2 * IF = 900 kHz  
3 * IF = 1350 kHz  
IF1LO = –3 dBm  
IF1OUT = 450 kHz  
POWER IF1IN = –30 dBm  
NO INPUT MATCHING NETWORK  
5
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–45  
–50  
–6 dBm  
–5  
IF1OUT  
–3 dBm  
0 dBm  
–15  
–25  
–35  
–45  
–55  
–65  
–75  
3 * IF1OUT  
+3 dBm  
2 * IF1OUT  
IF1IN  
–45  
POWER IF1IN (dBm)  
–65  
–55  
–35  
–25  
–15  
–5  
0
200  
400  
600 800 1000 1200 1400 1600  
IF1IN (MHz)  
Figure 17. First IF Mixer: Significant  
Signals vs. Power IF1IN  
Figure 15. First IF Mixer: IF1OUT vs. IF1IN  
(LO1 @ –6, –3, 0, +3 dBm)  
16  
Lucent Technologies Inc.  
Data Sheet  
April 1999  
W3030 3 V Dual-Mode IF Cellular Receiver  
F1 = 83.158 MHz  
LO = 82.71 MHz  
Characteristic Curves (continued)  
CLCK = 1.840 MHz  
TEMP = –35 °C, +25 °C, AND +85 °C  
RF = 83.16 MHz  
LO1 = 82.71 MHz  
FCLCK = 1.804 MHz  
0.9 VAGC  
(I SINGLE-ENDED)  
80 kHz FILTER USED  
TEMP = –35 °C, +25 °C, AND +85 °C  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
NO MODULATION  
1
0
–1  
+85 °C  
NF (dB –35 2.7 V)  
NF (dB 25 2.7 V)  
NF (dB 85 2.7 V)  
–2  
+25 °C  
–3  
–4  
–5  
–35 °C  
–6  
–7  
–8  
–9  
0
–130  
–110  
–90  
–70  
–50  
–30  
–10  
–25  
–20  
–15  
–10  
–5  
0
5
10  
15  
IF1IN POWER (dBm)  
I OUTPUT POWER (dBm/50 W)  
Figure 18. First Mixer and Digital Second IF  
Section Noise Figure vs. IF1IN  
Power  
Figure 20. First Mixer and Digital Second IF  
Section Gain Compression vs. I  
Output Power  
RF = 83.158 MHz  
LO1 = 82.71 MHz  
120.00  
CLCK = 1.840 MHz  
110.00  
100.00  
90.00  
80.00  
70.00  
60.00  
50.00  
40.00  
TEMP = +25 °C  
0.255 V, 0.575 V, 0.9 V, 1.225 V, AND 1.55 V  
(I SINGLE-ENDED)  
80 kHz FILTER USED; NO MODULATION  
1
0
–1  
–2  
–3  
–4  
–5  
0.1  
0.3  
0.5  
0.7  
0.9  
1.1  
1.3  
1.5  
0.225  
–6  
AGC INPUT VOLTAGE (Vdc)  
0.575  
–7  
0.9  
–8  
1.225  
Figure 21. First Mixer and Digital Second IF  
Section Gain vs. AGC Input  
(–110 dBm)  
–9  
1.55  
–10  
–40  
–30  
–20  
–10  
0
10  
POWER I OUTPUT (dBm)  
Figure 19. First Mixer and Digital Second IF  
Section Gain Compression vs. I  
Output (Single-Ended)  
Lucent Technologies Inc.  
17  
Data Sheet  
April 1999  
W3030 3 V Dual-Mode IF Cellular Receiver  
RF = 83.16 MHz  
LO1 = 82.71 MHz  
Characteristic Curves (continued)  
TEMP = –35 °C, +25 °C, AND +85 °C  
4.1 VCC  
RF = 83.16 MHz  
LO1 = 82.71 MHz  
TEMP = –35 °C, +25 °C, AND +85 °C  
1 kHz FM MODULATION  
C-MESSAGE WEIGHTING  
2.7 VCC  
1 kHz FM MODULATION  
C-MESSAGE WEIGHTING  
0.275  
0.275  
0.25  
+25 °C  
+85 °C  
0.225  
0.2  
0.25  
+25 °C  
+85 °C  
–35 °C  
0.225  
0.175  
0.15  
0.2  
0.175  
–35 °C  
0.15  
0.125  
0.125  
IF1IN POWER (dBm)  
IF1 POWER (dBm)  
IN  
Figure 24. First Mixer and Analog Second IF  
Section Audio vs. IF1IN Power  
(4.1 VCC)  
Figure 22. First Mixer and Analog Second IF  
Section Audio vs. IF1IN Power  
(2.7 VCC)  
RF = 83.16 MHz  
LO1 = 82.71 MHz  
TEMP = –35 °C, +25 °C, AND +85 °C  
2.7 VCC, 3.3 VCC, AND 4.1 VCC  
1 kHz FM MODULATION  
RF = 83.16 MHz  
LO1 = 82.71 MHz  
TEMP = –35 °C, +25 °C, AND +85 °C  
C-MESSAGE WEIGHTING  
40  
3.3 VCC  
1 kHz FM MODULATION  
+25 °C  
35  
C-MESSAGE WEIGHTING  
0.275  
+85 °C  
–35 °C  
30  
25  
20  
15  
10  
5
0.25  
+25 °C  
0.225  
+85 °C  
0.2  
–35 °C  
0.175  
0.15  
0
–130  
–110  
–90  
–70  
–50  
–30  
–10  
IF1IN POWER (dBm)  
Note: Minimum variation with voltage  
0.125  
IF1IN POWER (dBm)  
Figure 25. First Mixer and Analog Second IF  
Section SINAD vs. IF1IN Power  
Figure 23. First Mixer and Analog Second IF  
Section Audio vs. IF1IN Power  
(3.3 VCC)  
18  
Lucent Technologies Inc.  
Data Sheet  
April 1999  
W3030 3 V Dual-Mode IF Cellular Receiver  
RF = 8S3.16 MHz  
LO1 = 82.71 MHz  
FCLCK = 1.804 MHz  
NO MODULATION  
24 kW RLOAD  
Characteristic Curves (continued)  
RF = 83.16 MHz  
LO1 = 82.71 MHz  
TEMP = –35 °C, +25 °C, AND +85 °C  
80% AM/1 kHz FM MODULATION  
C-MESSAGE WEIGHTING  
I SINGLE-ENDED  
0.1 VAGC  
40  
35  
30  
25  
20  
15  
10  
5
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
SINAD  
0
–5  
AM LEAKAGE –35 °C  
AM LEAKAGE 25 °C  
AM LEAKAGE 85 °C  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
VOUT  
–35 °C  
25 °C  
0
85 °C  
COMPRESSION  
–5  
0
–8  
–6  
–4  
–2  
0
2
4
6
8
–130  
–110  
–90  
–70  
–50  
–30  
POWER OUT (dBm)  
IF1IN POWER (dBm)  
Figure 28. Digital Second IF Section SINAD,  
Output Voltage, and Compression  
vs. Output Power  
Figure 26. First Mixer and Analog Second IF  
Section AM Sensitivity (Relative  
Audio Out) vs. IF1IN Power  
VCC = 3.0  
IS136 RANDOM-DATA DQPSK at 83.16 MHz IF1  
IFLO 82.71 MHz @ 200 mVp-p  
RF = 83.16 MHz  
LO1 = 82.71 MHz  
CLOCK 1.8 MHz @ 600 mVp-p  
8 kHz FM MODULATION  
–10.00  
I & Q OUTPUT LEVELS HELD CONSTANT AT 0.5 Vp-p  
SINGLE-ENDED USING AGC UNTIL LARGE INPUT EXCEEDS  
RANGE  
–11.00  
–12.00  
–13.00  
–14.00  
80.0  
70.0  
60.0  
50.0  
40.0  
30.0  
20.0  
10.0  
0.0  
–24  
–26  
–28  
–30  
–32  
–34  
–36  
–38  
–40  
EVM  
PHASE ERROR  
I/Q OFFSET  
–15.00  
2.7 Vcc  
3.3 Vcc  
–16.00  
4.1 Vcc  
–17.00  
–18.00  
–40 –20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
Figure 27. Audio Output vs. Temperature  
IF1 INPUT POWER (dBm)  
Figure 29. EVM/Phase/Offset vs. IF1 Input Level  
Lucent Technologies Inc.  
19  
Data Sheet  
April 1999  
W3030 3 V Dual-Mode IF Cellular Receiver  
Outline Diagram  
32-Pin TQFP  
Dimensions are in millimeters.  
9.00 ± 0.20  
7.00 ± 0.20  
1.00 REF  
0.25  
PIN #1  
IDENTIFIER ZONE  
32  
25  
GAGE PLANE  
1
24  
SEATING PLANE  
0.45/0.75  
7.00  
± 0.20  
DETAIL A  
9.00  
± 0.20  
8
17  
9
16  
0.09/0.200  
DETAIL A  
DETAIL B  
0.30/0.45  
1.40 ± 0.05  
0.20  
M
1.60 MAX  
SEATING PLANE  
0.10  
DETAIL B  
0.05/0.15  
0.80 TYP  
12-3076  
20  
Lucent Technologies Inc.  
Data Sheet  
April 1999  
W3030 3 V Dual-Mode IF Cellular Receiver  
Manufacturing Information  
This device will be assembled in one of the following locations: assembly codes P, M, or T.  
Ordering Information  
Device Code  
LUCW3030ACA  
LUCW3030ACA-DB  
EVB3030A  
Description  
Bulk Tray  
Package  
32TQFP  
32TQFP  
Comcode  
107841082  
107841090  
107739377  
Dry Pack  
Evaluation Board  
Lucent Technologies Inc.  
21  
For additional information, contact your Microelectronics Group Account Manager or the following:  
INTERNET:  
E-MAIL:  
http://www.lucent.com/micro  
docmaster@micro.lucent.com  
N. AMERICA Microelectronics Group, Lucent Technologies Inc., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18103  
1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106)  
ASIA PACIFIC: Microelectronics Group, Lucent Technologies Singapore Pte. Ltd., 77 Science Park Drive, #03-18 Cintech III, Singapore 118256  
Tel. (65) 778 8833, FAX (65) 777 7495  
CHINA:  
Microelectronics Group, Lucent Technologies (China) Co., Ltd., A-F2, 23/F, Zao Fong Universe Building, 1800 Zhong Shan Xi Road,  
Shanghai 200233 P.R. China Tel. (86) 21 6440 0468, ext. 316, FAX (86) 21 6440 0652  
JAPAN:  
EUROPE:  
Microelectronics Group, Lucent Technologies Japan Ltd., 7-18, Higashi-Gotanda 2-chome, Shinagawa-ku, Tokyo 141, Japan  
Tel. (81) 3 5421 1600, FAX (81) 3 5421 1700  
Data Requests: MICROELECTRONICS GROUP DATALINE: Tel. (44) 1189 324 299, FAX (44) 1189 328 148  
Technical Inquiries: GERMANY: (49) 89 95086 0 (Munich), UNITED KINGDOM: (44) 1344 865 900 (Ascot),  
FRANCE: (33) 1 40 83 68 00 (Paris), SWEDEN: (46) 8 594 607 00 (Stockholm), FINLAND: (358) 9 4354 2800  
(Helsinki), ITALY: (39) 02 6608131 (Milan), SPAIN: (34) 1 807 1441 (Madrid)  
Lucent Technologies Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application.  
No rights under any patent accompany the sale of any such product(s) or information.  
Copyright © 1999 Lucent Technologies Inc.  
All Rights Reserved  
April 1999  
DS98-399WRF (Replaces DS97-174WRF)  

相关型号:

W3040

ANTENNA WCDMA CERAM 1.92-2.1GHZ
ETC

W305B

Frequency Controller with System Recovery for Intel Integrated Core Logic
SPECTRALINEAR

W305B

Frequency Controller with System Recovery for Intel Integrated Core Logic
CYPRESS

W305BH

Frequency Controller with System Recovery for Intel Integrated Core Logic
SPECTRALINEAR

W305BH

Frequency Controller with System Recovery for Intel Integrated Core Logic
CYPRESS

W305BHH

Frequency Controller with System Recovery for Intel Integrated Core Logic
SPECTRALINEAR

W305BHH

Frequency Controller with System Recovery for Intel Integrated Core Logic
CYPRESS

W30M40CT

30A Schottky Barrier Rectifier
SEMIWELL

W30_11

Cement Coated Wirewound Resistors
TTELEC

W31

Cement Coated Wirewound Resistors
TTELEC

W31-X2M1G-1

Toggle or Push/Pull Actuator Thermal P and B Circuit Breaker
MACOM

W31-X2M1G-10

Toggle or Push/Pull Actuator Thermal P and B Circuit Breaker
MACOM