AD8376-EVALZ [ADI]

Ultra Low Distortion IF Dual VGA; 超低失真IF双通道VGA
AD8376-EVALZ
型号: AD8376-EVALZ
厂家: ADI    ADI
描述:

Ultra Low Distortion IF Dual VGA
超低失真IF双通道VGA

文件: 总12页 (文件大小:626K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Ultra Low Distortion IF Dual VGA  
Preliminary Technical Data  
AD8376  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
Dual Independent Digitally Controlled VGAs  
-4 to 20dB Gain Range  
1 dB Step Size ± 0.2 dB  
Differential input and output  
150 Ω Differential Input  
Open Collector Differential Output  
8.7 dB noise figure @ maximum gain  
OIP3 of ~50dBm at 140MHz  
−3 dB bandwidth of 700 MHz  
Excellent Channel to Channel Isolation  
Two Parallel 5-bit Control Interfaces  
Wide input dynamic range  
Power-down Control  
Single 5V Supply Operation  
32 Lead LFCSP 5 x 5 mm Package  
APPLICATIONS  
Differential ADC drivers  
Main and Diverstiy IF Sampling Receivers  
High Output Power IF Amplification  
Multi-channel Receivers  
Instrumentation  
Figure 1.  
GENERAL DESCRIPTION  
Using a high speed SiGe process and incorporating proprietary  
distortion cancellation techniques, the AD8376 achieves  
50 dBm output IP3 at 140 MHz.  
The AD8376 is a dual channel digitally controlled, variable gain  
wide bandwidth amplifier that provides precise gain control,  
high IP3 and low noise figure. The excellent distortion  
performance and high signal bandwidth makes the AD8376 an  
excellent gain control device for a variety of receiver  
applications.  
Each channel of the AD8376 can be individually powered on by  
applying the appropriate logic level to the ENBA and ENBB  
power enable pins. The quiescent current of the AD8376 is  
typically 130 mA per channel. When powered down, the  
AD8376 consumes less than 5mA and offers excellent input to  
output isolation, lower than -50 dB at 200 MHz.  
For wide input dynamic range applications, the AD8376 pro-  
vides a broad 24 dB gain range with 1 dB resolution. The gain of  
each channel is adjusted through dedicated 5-pin control  
interfaces and can be driven using standard TTL levels. The  
open-collector outputs provide a flexible interface, allowing the  
overall signal gain to be set by the loading resistance. The  
AD8376 offers a maximum trans-conductance gain of  
67 mΩ-1s. This results in a signal voltage gain proportional to  
the load resistance. When driving a 150 Ω differential load, the  
maximum signal gain will be 20 dB.  
Fabricated on an ADI’s high speed SiGe process, the AD8376  
provides precise gain adjustment capabilities with good distortion  
performance. The AD8376 amplifier comes in a compact,  
thermally enhanced 5 x 5mm 32-lead LFCSP package and  
operates over the temperature range of −40°C to +85°C.  
Rev. PrD  
March 13, 2007  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.326.8703  
www.analog.com  
© 2007 Analog Devices, Inc. All rights reserved.  
AD8376  
Preliminary Technical Data  
SPECIFICATIONS  
VS = 5 V, T = 25°C, RS = RL = 150Ω at 100MHz, 2 V p-p differential output, both channels enabled, unless otherwise noted.  
Table 1.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
−3 dB Bandwidth  
Slew Rate  
VOUT < 2 V p-p (5.2dBm)  
700  
MHz  
TBD  
V/nsec  
INPUT STAGE  
Pins IPA+ and IPA-, IPB+ and IPB-  
For linear operation (AV = -4 dB)  
Differential  
Maximum Input Swing  
Differential Input Resistance  
Common-Mode Input Voltage  
CMRR  
TBD  
150  
1.9  
V p-p  
Ω
TBD  
V
Gain Code = 00000  
TBD  
dB  
GAIN  
Ω-1  
dB  
dB  
dB  
dB  
Amplifier Transconductance  
Gain Code = 00000  
Gain Code = 00000  
0.058  
0.067 0.076  
20  
Maximum Voltage Gain  
Minimum Voltage Gain  
Gain Step Size  
−4  
Gain Code 11000  
From Gain Code 00000 to 11000  
1.0  
1.2  
0.8  
Gain Flatness  
Gain Code = 00000 over 20% fractional  
bandwidth for fC < 200MHz  
TBD  
Gain Temperature Sensitivity  
Gain Step Response  
Gain Code = 00000  
TBD  
TBD  
mdB/°C  
ns  
For VIN = 100mVp-p, Gain Code 10100 to 00000  
Pins OPA+ and OPA-, OPB+ and OPB-  
At P1dB, Gain Code = 00000  
Differential  
Measured at differential output for differential  
input applied to alternate channel  
OUTPUT STAGE  
Output Voltage Swing  
Output impedance  
Channel Isolation (Worst Case)  
10  
5k/1  
-53  
V p-p  
Ω/pF  
dB  
NOISE/HARMONIC PERFORMANCE  
46 MHz  
Gain Code = 00000  
Noise Figure  
Second Harmonic  
Third Harmonic  
Output IP3  
Output 1 dB Compression Point  
8.7  
-94  
-92  
50  
dB  
VOUT = 2 V p-p  
VOUT = 2 V p-p  
2 MHz spacing, +3 dBm per tone  
dBc  
dBc  
dBm  
dBm  
19  
70 MHz  
Gain Code = 00000  
Noise Figure  
8.7  
-94  
-92  
50  
dB  
Second Harmonic  
Third Harmonic  
Output IP3  
Output 1 dB Compression Point  
140 MHz  
VOUT = 2 V p-p  
VOUT = 2 V p-p  
2 MHz spacing, +3 dBm per tone  
dBc  
dBc  
dBm  
dBm  
19  
Gain Code = 00000  
Noise Figure  
8.7  
-86  
-91  
50  
dB  
Second Harmonic  
Third Harmonic  
Output IP3  
VOUT = 2 V p-p  
VOUT = 2 V p-p  
2 MHz spacing, +3 dBm per tone  
dBc  
dBc  
dBm  
dBm  
Output 1 dB Compression Point  
19  
Rev PrD | Page 2 of 12  
Preliminary Technical Data  
AD8376  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
200 MHz  
Gain Code = 00000  
Noise Figure  
8.7  
-85  
-87  
50  
dB  
Second Harmonic  
Third Harmonic  
Output IP3  
VOUT = 2 V p-p  
VOUT = 2 V p-p  
2 MHz spacing, +3 dBm per tone  
dBc  
dBc  
dBm  
dBm  
Output 1 dB Compression Point  
POWER-INTERFACE  
Supply Voltage  
18  
4.5  
5.0  
5.5  
V
Thermal connection made to exposed paddle  
under device, both channels enabled  
Quiescent Current Per Channel  
130  
140  
155  
mA  
TBD  
vs. Temperature  
Power Down Current Per Channel  
vs. Temperature  
−40°C ≤ TA ≤ +85°C  
PWUP Low  
−40°C ≤TA ≤ +85°C  
Pins A0 – A4, B0 – B4, PUPA, and PUPB  
Minimum voltage for a logic high  
Maximum voltage for a logic low  
mA  
mA  
mA  
3
TBD  
0.8  
POWER-UP/GAIN CONTROL  
VIH  
VIL  
V
1.6  
Logic Input Bias Current  
900  
nA  
Table 2. Gain-Code versus Voltage Gain Look-Up Table  
5-Bit Binary Gain Code  
Voltage Gain (dB)  
5-Bit Binary Gain Code  
Voltage Gain (dB)  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111  
11000  
7
6
5
4
3
2
1
0
-1  
-2  
-3  
-4  
-4  
01100  
8
>11000  
Rev PrD | Page 3 of 12  
AD8376  
Preliminary Technical Data  
ABSOLUTE MAXIMUM RATINGS  
Parameter  
Rating  
Supply Voltage, VPOS  
5.5 V  
ENBA, ENBB, A0-A4, B0-B4  
Input Voltage, VIN+ ,VIN-  
Internal Power Dissipation  
θJA (Exposed paddle soldered down)  
θJA (Exposed paddle not soldered down) TBD°C/W  
θJC (At exposed paddle)  
Maximum Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
Lead Temperature Range  
(Soldering 60 sec)  
-0.6 to (VPOS + 0.6V)  
-0.6 to +3.1V  
TBD mW  
TBD°C/W  
Stresses above those listed under Absolute Maximum  
Ratings may cause permanent damage to the device.  
This is a stress rating only; functional operation of the  
device at these or any other conditions above those  
listed in the operational sections of this specification is  
not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device  
reliability.  
TBD°C/W  
TBD°C  
–40°C to +85°C  
–65°C to +150°C  
TBD°C  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the  
human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev PrD | Page 4 of 12  
Preliminary Technical Data  
AD8376  
PIN CONFIGURATION AND FUNCTIONAL DESCRIPTIONS  
Figure 2. 32 Lead LFCSP  
Table 3. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
3
4
5
6
7
8
9
10  
11  
12  
A2  
A3  
A4  
VCMA  
VCMB  
B4  
B3  
B2  
B1  
B0  
IPB+  
IPB-  
MSB-2 for the Gain Control Interface for Channel A.  
MSB-1 for the Gain Control Interface for Channel A.  
The MSB for the 5-bit Gain Control Interface for Channel A.  
Channel A Input Common Mode Voltage. Typically bypassed to ground through capacitor  
Channel B Input Common Mode Voltage. Typically bypassed to ground through capacitor  
The MSB for the 5-bit Gain Control Interface for Channel B.  
MSB-1 for the Gain Control Interface for Channel B.  
MSB-2 for the Gain Control Interface for Channel B.  
LSB+1 for the Gain Control Interface for Channel B.  
LSB for the Gain Control Interface for Channel B.  
Channel B Positive Input.  
Channel B Negative Input.  
13, 20  
14  
15, 17  
16, 18  
19  
21, 28  
22  
23, 25  
24. 26  
27  
GNDB  
VCCB  
OPB+  
OPB-  
ENBB  
GNDA  
ENBA  
OPA-  
OPA+  
VCCA  
IPA-  
Device Common (DC Ground) for Channel B.  
Positive Supply Pin for Channel B. Should be bypassed to Ground using suitable bypass capacitor.  
Positive Ouptut Pins (Open Collector) for Channel B. Require DC bias of +5V nominal.  
Negative Ouptut Pins (Open Collector) for Channel B. Require DC bias of +5V nominal.  
Power Enable Pin for Channel B.  
Device Common (DC Ground) for Channel A.  
Power Enable Pin for Channel A.  
Negative Ouptut Pins (Open Collector) for Channel A. Require DC bias of +5V nominal.  
Positive Ouptut Pins (Open Collector) for Channel A. Require DC bias of +5V nominal.  
Positive Supply Pins for Channel A. Should be bypassed to Ground using suitable bypass capacitor.  
Channel A Negative Input.  
29  
30  
31  
IPA+  
A0  
Channel A Positive Input.  
LSB for the Gain Control Interface for Channel A.  
32  
A1  
LSB+1 for the Gain Control Interface for Channel A.  
Rev PrD | Page 5 of 12  
AD8376  
Preliminary Technical Data  
TYPICAL PERFORMANCE CHARACTERISTICS  
VS = 5 V, TA = 25°C, RSource = RLoad = 150 Ω, both channels enabled, unless otherwise noted.  
55  
50  
45  
40  
25  
20  
15  
10  
5
Av = 20 dB  
Av = 20 dB  
Av = 10 dB  
0
-5  
Av = -4 dB  
Av = 0 dB  
-10  
-15  
-20  
-25  
-30  
Av = -4 dB  
10E+06  
100E+06  
1E+09  
10E+09  
40  
90  
140  
190  
240  
FREQUENCY (Hz)  
FREQUENCY (MHz)  
Figure 2. Gain vs. Frequency by Gain Code, (all codes),  
Differential-in, Differential-out  
Figure 5. Output IP3 vs. Frequency (20, 10, 0, -4 dB gain codes),  
3 dBm tones with 2 MHz spacing  
22  
21.5  
21  
-70  
-75  
-80  
-85  
-90  
-95  
HD2  
Av = 0 dB  
Av = -4 dB  
20.5  
20  
Av = 20 dB  
Av = 0 dB  
Av = -4 dB  
Av = 10 dB  
19.5  
19  
Av = 20 dB  
HD3  
-100  
-105  
-110  
-115  
100 MHz  
150 MHz  
200 MHz  
250 MHz  
Av = 10  
1
18.5  
18  
-5  
-4  
-3  
-2  
-1  
0
2
3
4
5
-5  
0
5
10  
15  
20  
GAIN (dB)  
OUTPUT POWER (dBm)  
Figure 3. P1dB vs. Gain at Various Frequencies  
Figure 6. HD2 and HD3 vs. Power Out  
(20, 10, 0, -4 dB gain codes) at 140 MHz  
55  
50  
45  
40  
35  
45  
40  
35  
30  
25  
20  
15  
10  
5
Av = 20 dB  
Av = 10 dB  
Av = -4 dB  
Av = 0 dB  
Av = 10 dB  
Av = 20 dB  
Av = -4 dB Av = 0 dB  
0
0
200  
400  
600  
800  
1000  
-5  
-4  
-3  
-2  
-1  
0
1
2
3
4
5
POWER AT EACH TONE (dBm)  
FREQUENCY (MHz)  
Figure 4. Output IP3 vs. Output Power (20, 10, 0, -4 dB gain codes),  
Tones at 140 MHz and 142 MHz  
Figure 7. Noise Figure vs. Frequency (20, 10, 0, -4 dB gain codes)  
Rev PrD | Page 6 of 12  
Preliminary Technical Data  
AD8376  
54  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
-40C  
+25C  
+85C  
-40C  
+25C  
+85C  
-5  
-4  
-3  
-2  
-1  
0
1
2
3
4
4
4
5
5
5
-5  
-4  
-3  
-2  
-1  
0
1
2
3
4
4
4
5
5
5
POWER AT EACH TONE (dBm)  
POWER AT EACH TONE (dBm)  
Figure 8. IP3 vs. Power Out over Temperature  
20 dB gain code at 110 MHz, 2 MHz spacing  
Figure 11. IP3 vs. Power Out over Temperature  
0 dB gain code at 110 MHz, 2 MHz spacing  
-85  
-85  
-40C  
+25C  
+85C  
-40C  
+25C  
+85C  
-90  
-95  
-90  
-95  
-100  
-105  
-110  
-100  
-105  
-110  
-5  
-4  
-3  
-2  
-1  
0
1
2
3
-5  
-4  
-3  
-2  
-1  
0
1
2
3
OUTPUT POWER (dBm)  
OUTPUT POWER (dBm)  
Figure 9. HD3 vs. Power Out over Temperature  
20 dB gain code at 110 MHz  
Figure 12. HD3 vs. Power Out over Temperature  
0 dB gain code at 110 MHz  
-80  
-82  
-84  
-86  
-88  
-90  
-92  
-94  
-96  
-98  
-100  
-80  
-82  
-84  
-86  
-88  
-90  
-92  
-94  
-96  
-98  
-100  
-40C  
+25C  
+85C  
-40C  
+25C  
+85C  
-5  
-4  
-3  
-2  
-1  
0
1
2
3
-5  
-4  
-3  
-2  
-1  
0
1
2
3
OUTPUT POWER (dBm)  
OUTPUT POWER (dBm)  
Figure 10.HD2 vs. Power Out over Temperature  
20 dB gain code at 110 MHz  
Figure 13. HD2 vs. Power Out over Temperature  
0 dB gain code at 110 MHz  
Rev PrD | Page 7 of 12  
AD8376  
Preliminary Technical Data  
APPLICATION  
This circuit provides variable gain, isolation and source  
matching for the AD9445. Using this circuit with the AD8376  
in a gain of 20 dB (Max Gain) an SFDR performance of 86 dBc  
is achieved at 100 MHz (see Figure 8).  
HIGH PERFORMANCE ADC DRIVING  
The AD8376 provides the gain, isolation, and balanced low  
distortion output levels for efficiently driving wideband ADCs  
such as the AD9445. Figure 9 represents a simplified front end  
of the AD8376 dual VGA driving two AD9445 14 Bit, 125MSPS  
A/D converters.  
For optimum performance the AD8376 is driven differentially  
from the input baluns. The input 37.5 Ω resistors in parallel  
with the 150 Ω input impedance of the AD8376 provide a 50 Ω  
differential input impedance. The open collector outputs of the  
AD8376s are biased through the 1 uH inductors and are  
ac coupled from the 75 Ω load resistors which are required for  
gain accuracy. The 75 Ω load resistors are also ac coupled from  
the AD9445 to negate a DC affect on the input common mode  
voltage of the AD9445. The series 33 Ω resistors improve the  
SNR by providing isolation. The AD9445 represents a 1 kΩ  
differential load and requires a 2 Vp-p differential signal  
(VREF=1V) between VIN+ and VIN- for a full scale output.  
Figure 14. SFDR Performance of the AD8376 Driving the AD9445  
Figure 15. AD8376 Driving the AD9445  
Rev PrD | Page 8 of 12  
 
 
Preliminary Technical Data  
AD8376  
The output pins of the AD8376 require supply biasing with  
EVALUATION BOARD  
1 μH RF chokes. Both the input and output pins must be ac-  
coupled. These pins are converted to single-ended with a pair of  
baluns (Mini-Circuits TC3-1T+ and M/A-COM ETC1-1-13).  
The baluns at the input, T1 and T2, are used to transform 50 Ω  
source impedances to the desired 150 Ω reference levels. The  
output baluns, T3 and T4, and the matching components are  
configured to provide a 150 ꢀ to 50 ꢀ impedance  
Figure 10 shows the schematic of the AD8376 evaluation board.  
The silkscreen and layout of the component and circuit sides  
are shown in Figure 11 through Figure 14. The board is  
powered by a single-supply in the 4. 5 V to 5.5 V range. The  
power supply is decoupled by 10 μF and 0.1 μF capacitors at  
each power supply pin. Additional decoupling, in the form of a  
series resistor or inductor at the supply pins, can also be added.  
Table 2 details the various configuration options of the  
evaluation board.  
transformations with insertion losses of about 10 dB.  
Figure 16. AD8376 Evaluation Board Schematic  
Rev PrD | Page 9 of 12  
 
AD8376  
Preliminary Technical Data  
Table 2. Evaluation Board Configuration Options  
Components  
Function  
Default Conditions  
C20 = 10 μF (size 3528)  
C13, C14 = 0.1 μF  
(size 0402)  
C13, C14, C20 to C22,  
C64 to C67, R90, R91  
Power Supply Decoupling. Nominal supply decoupling consists a 10 μF  
capacitor to ground followed by a 0.1 μF capacitor to ground positioned as  
close to the device as possible.  
C21, C22, C64 to C67 = 0.1 μF  
(size 0603)  
R90, R91 = 0 Ω (size 0603)  
T1, T2 = TC3-1+ (Mini-Circuits)  
C1 to C4, C60, C61 = 0.1 μF  
(size 0402)  
R1, R4, R9 to R12 = 0 Ω  
(size 0402)  
T1, T2, C1 to C4, C61, C62, Input Interface. T1 and T2 are 3-to-1 impedance ratio baluns to transform a  
R1 to R4, R9 to R12,  
R70 to R75  
50 Ω single-ended input into a 150 Ω balanced differential signal. R1 and R4  
ground one side of the differential drive interface for single-ended  
applications. R9 to R12 and R70 to 75 are provided for generic placement of  
matching components. C1 to C4 are dc blocks.  
R2, R3, R70 to R75 = open  
(size 0402)  
C7 to C10= 0.1 μF (size 0402)  
L1 to L4 = 1 μH (size 0805)  
T3, T4 = ETC1-1-13 (M/A-COM)  
R19 to R22 = 61.9 Ω (size 0402)  
R23, R25, R26, R28 = 30.9 Ω  
(size 0402)  
R15 to 18 = 0 Ω (size 0603)  
R29, R32 = 0 Ω (size 0402)  
R24, R27, R30, R31, R62, R63 =  
open (size 0402)  
T3, T4, C7 to C10,  
L1 to L4, R15 to R32,  
R62, R63, C62, C63  
Output Interface. C7 to C10 are dc blocks. L1 to L4 provide dc biases for the  
outputs. R19 to R28 are provided for generic placement of matching  
components. The evaluation board is configured to provide a 150 Ω to 50 Ω  
impedance transformation with an insertion loss of about 10 dB. T3 and T4  
are 1-to-1 impedance ratio baluns to transform the balanced differential  
signasl to single-ended signals. R29 and R32 ground one side of the  
differential output interface for single-ended applications.  
C62, C63 = 0.1 μF (size 0402)  
PUA, PUB, R13, R14,  
C5, C6  
Enable Interface. The AD8376 is enabled by applying a logic high voltage  
to the ENBA pin for channel A or the ENBB pin for channel B. Channel A is  
enabled when the PUA switch is set in the “up” position, connecting the ENBA  
pin to VPOS. Likewise, Channel B is enabled when the PUB switch is set in the  
“up” position, connecting the ENBB pin to VPOS. Both channels are disabled  
by setting the switches to the “down” position, connecting ENBA and ENBB  
pins to GND.  
PUA, PUB = installed  
R13, R14 = 0 Ω (size 0603)  
C5, C6 = open (size 0603)  
WA0 to WA4, WB0 to WB4 Parallel Interface Control. Used to hardwire A0 through A4 and B0 through  
B4 to the desired gain. The bank of switches, WA0 to WA4, set the binary  
gain code for channel A. The bank of switches, WB0 to WB4, set the binary  
gain code for channel B. WA0 and WB0 represent the LSB for each of the  
respective channels.  
WA0 to WA4, WB0 to WB4 =  
installed  
C11, C12 = 0.1 μF (size 0402)  
C11, C12  
Voltage Reference. Input Common Mode Voltage ac-coupled to ground by  
0.1 μF capacitors, C11 and C12.  
Rev PrD | Page 10 of 12  
 
Preliminary Technical Data  
Figure 17. Component Side Silkscreen  
Figure 18. Circuit Side Silkscreen  
AD8376  
Figure 19. Component Side Layout  
Figure 20. Circuit Side Layout  
Rev PrD | Page 11 of 12  
 
 
AD8376  
Preliminary Technical Data  
OUTLINE DIMENSIONS  
Figure2. 32-Lead LFCSP  
ORDERING GUIDE  
Model  
AD8376ACPZ-WP  
AD8376ACPZ-REEL7  
AD8376-EVALZ  
Temperature  
–40°C to +85°C  
–40°C to +85°C  
Package Description  
Package Option  
CP-32-3  
Waffle Pack, 32 Lead Frame Chip Scale Package  
7” Reel, 32 Lead Frame Chip Scale Package  
Evaluation Board  
CP-32-3  
©
2007 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
PR06725-0-3/07(PrD)  
Rev PrD | Page 12 of 12  

相关型号:

AD8376ACPZ-R7

Ultralow Distortion IF Dual VGA
ADI

AD8376ACPZ-REEL7

Ultra Low Distortion IF Dual VGA
ADI

AD8376ACPZ-WP

Ultra Low Distortion IF Dual VGA
ADI

AD8376_1

Ultralow Distortion IF Dual VGA
ADI

AD8380

Fast, High-Voltage Drive, 6-Channel Output DecDriver Decimating LCD Panel Driver
ADI

AD8380JS

Fast, High-Voltage Drive, 6-Channel Output DecDriver Decimating LCD Panel Driver
ADI

AD8381

Fast, High Voltage Drive, 6-Channel Output DecDriverTM Decimating LCD Panel Driver
ADI

AD8381-EB

Fast, High Voltage Drive, 6-Channel Output DecDriver Decimating LCD Panel Driver
ADI

AD8381AST

Fast, High Voltage Drive, 6-Channel Output DecDriverTM Decimating LCD Panel Driver
ADI

AD8381AST-REEL

Fast, High Voltage Drive, 6-Channel Output DecDriverTM Decimating LCD Panel Driver
ADI

AD8381JST

Fast, High Voltage Drive, 6-Channel Output DecDriver Decimating LCD Panel Driver
ADI

AD8381JSTZ

Fast, High Voltage Drive, 6-Channel Output DecDriver Decimating LCD Panel Driver
ADI