AD8347ARUZ [ADI]

0.8 GHz to 2.7 GHz Direct Conversion; 0.8 GHz至2.7 GHz直接转换
AD8347ARUZ
型号: AD8347ARUZ
厂家: ADI    ADI
描述:

0.8 GHz to 2.7 GHz Direct Conversion
0.8 GHz至2.7 GHz直接转换

射频调制器 射频解调器 微波调制器 微波解调器 射频和微波 PC
文件: 总28页 (文件大小:630K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
0.8 GHz to 2.7 GHz Direct Conversion  
Quadrature Demodulator  
AD8347  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
Integrated RF and baseband AGC amplifiers  
Quadrature phase accuracy 1° typ  
I/Q amplitude balance 0.3 dB typ  
Third-order intercept (IIP3) +11.5 dBm @ min gain  
Noise figure 11 dB @ max gain  
AGC range 69.5 dB  
Baseband level control circuit  
Low LO drive −8 dBm  
ADC-compatible I/Q outputs  
Single supply 2.7 V to 5.5 V  
AD8347  
LOIN  
VPS1  
IOPN  
IOPP  
VCMO  
IAIN  
1
2
28 LOIP  
PHASE  
SPLITTER  
27 COM1  
26 QOPN  
25 QOPP  
3
4
PHASE  
SPLITTER  
5
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
QAIN  
COM3  
QMXO  
VPS3  
VDT1  
VAGC  
VDT2  
6
7
COM3  
IMXO  
COM2  
RFIN  
RFIP  
8
9
10  
11  
12  
13  
14  
DET  
Power-down mode  
28-lead TSSOP package  
VPS2  
IOFS  
VREF  
VGIN  
QOFS  
ENBL  
GAIN  
CONTROL  
BIAS  
APPLICATIONS  
Cellular base stations  
Radio links  
Figure 1.  
Wireless local loop  
IF broadband demodulators  
RF instrumentation  
Satellite modems  
GENERAL DESCRIPTION  
The AD83471 is a broadband direct quadrature demodulator  
with RF and baseband automatic gain control (AGC) amplifiers.  
It is suitable for use in many communications receivers, performing  
quadrature demodulation directly to baseband frequencies. The  
input frequency range is 800 MHz to 2.7 GHz. The outputs can  
be connected directly to popular A-to-D converters such as the  
AD9201 and AD9283.  
Baseband level detectors are included for use in an AGC loop to  
maintain the output level. The demodulator dc offsets are  
minimized by an internal loop, whose time constant is  
controlled by external capacitor values. The offset control can  
also be overridden by forcing an external voltage at the offset  
nulling pins.  
The baseband variable gain amplifier outputs are brought off-  
chip for filtering before final amplification. By inserting a  
channel selection filter before each output amplifier, high level  
out-of-channel interferers are eliminated. Additional internal  
circuitry also allows the user to set the dc common-mode level  
at the baseband outputs.  
The RF input signal goes through two stages of variable gain  
amplifiers prior to two Gilbert-cell mixers. The LO quadrature  
phase splitter employs polyphase filters to achieve high  
quadrature accuracy and amplitude balance over the entire  
operating frequency range. Separate I and Q channel variable  
gain amplifiers follow the baseband outputs of the mixers. The  
RF and baseband amplifiers together provide 69.5 dB of gain  
control. A precision control circuit sets the linear-in-dB RF gain  
response to the gain control voltage.  
1 U.S. patents issued and pending.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
© 2005 Analog Devices, Inc. All rights reserved.  
 
 
 
 
 
AD8347  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
LO and Phase Splitters............................................................... 16  
Output Level Detector ............................................................... 17  
Bias ............................................................................................... 17  
Applications..................................................................................... 18  
Basic Connections...................................................................... 18  
RF Input and Matching ............................................................. 18  
LO Drive Interface ..................................................................... 18  
Operating the VGA.................................................................... 19  
Mixer Output Level and Drive Capability .............................. 19  
Operating the VGA in AGC Mode.......................................... 19  
Changing the AGC Setpoint..................................................... 20  
Baseband Amplifiers.................................................................. 20  
Driving Capacitive Loads.......................................................... 21  
External Baseband Amplification ............................................ 21  
Filter Design Considerations .................................................... 21  
DC Offset Compensation.......................................................... 22  
Evaluation Board ............................................................................ 23  
Outline Dimensions....................................................................... 26  
Ordering Guide .......................................................................... 26  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 5  
ESD Caution.................................................................................. 5  
Pin Configuration and Function Descriptions............................. 6  
Typical Performance Characteristics ............................................. 8  
RF Amp and Demodulator ......................................................... 8  
Baseband Output Amplifiers .................................................... 11  
RF Amp/Demod and Baseband Output Amplifiers.............. 12  
Equivalent Circuits..................................................................... 14  
Theory of Operation ...................................................................... 16  
RF Variable Gain Amplifiers (VGA)........................................ 16  
Mixers .......................................................................................... 16  
Baseband Variable Gain Amplifiers......................................... 16  
Output Amplifiers ...................................................................... 16  
REVISION HISTORY  
10/05—Rev. 0 to Rev. A  
Updated Format..................................................................Universal  
Change VGIN to VVGIN..........................................................Universal  
Changes to Figure 46...................................................................... 19  
Changes to Figure 48 ..................................................................... 21  
Changes to Figure 49 and Figure 50............................................. 22  
Changes to Ordering Guide .......................................................... 27  
10/01—Revision 0: Initial Version  
Rev. A | Page 2 of 28  
 
AD8347  
SPECIFICATIONS  
VS = 5 V; TA = 25°C; FLO = 1.9 GHz; VVCMO = 1 V; FRF = 1.905 GHz; PLO = −8 dBm, RLOAD = 10 kΩ, dBm with respect to 50 Ω, unless  
otherwise noted.  
Table 1.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
OPERATING CONDITIONS  
LO/RF Frequency Range  
LO Input Level  
VGIN Input Level  
VSUPPLY (VS)  
Temperature Range  
RF AMPLIFIER/DEMODULATOR  
AGC Gain Range  
Conversion Gain (Max)  
Conversion Gain (Min)  
Gain Linearity  
0.8  
−10  
0.2  
2.7  
−40  
2.7  
0
1.2  
5.5  
+85  
GHz  
dBm  
V
V
°C  
From RFIP/RFIN to IMXO and QMXO (IMXO/QMXO load > 1 kΩ)  
69.5  
39.5  
−30  
2
dB  
dB  
dB  
dB  
VVGIN = 0.2 V (max gain)  
VVGIN = 1.2 V (min gain)  
VVGIN = 0.3 V to 1 V  
Gain Flatness  
Input P1 dB  
FLO = 0.8 GHz to 2.7 GHz, FBB = 1 MHz  
VVGIN = 0.2 V  
VVGIN = 1.2 V  
+0.7  
−30  
−2  
dB p-p  
dBm  
dBm  
dBm  
Third-Order Input Intercept (IIP3)  
FRF1 = 1.905 GHz,  
+11.5  
FRF2 = 1.906 GHz, –10 dBm each tone, (min gain)  
Second-Order Input Intercept (IIP2) FRF1 = 1.905 GHz,  
FRF2 = 1.906 GHz, −10 dBm each tone, (min gain)  
At RFIP  
+25.5  
dBm  
LO Leakage (RF)  
−60  
−42  
+90  
1
+0.3  
11  
dBm  
dBm  
MHz  
degree  
dB  
LO Leakage (MXO)  
At IMXO/QMXO  
Demodulation Bandwidth  
Quadrature Phase Error  
I/Q Amplitude Imbalance  
Noise Figure  
−3 dB  
FRF = 1.9 GHz  
FRF = 1.9 GHz  
Max Gain  
−3  
+3  
dB  
Mixer AGC Output Level  
Baseband DC Offset  
Mixer Output Swing  
See Figure 34  
24  
2
mV p-p  
mV  
At IMXO/QMXO, max gain (corrected, REF to VREF)  
Level at which IMD3 = 45 dBc  
RLOAD = 200 Ω  
65  
65  
3
mV p-p  
mV p-p  
Ω
RLOAD = 1 kΩ  
Mixer Output Impedance  
BASEBAND OUTPUT AMPLIFIER  
From IAIN to IOPP/IOPN and QAIN to QOPP/QOPN  
R
LOAD = 10 kΩ  
Gain  
30  
dB  
Bandwidth  
−3 dB (see Figure 22)  
(VIOPP – VIOPN  
(VIOPP + VIOPN)/2 − VVCMO  
0 MHz to 50 MHz  
65  
50  
5
+1.8  
−49  
−67  
+2  
MHz  
+200 mV  
Output DC Offset (Differential)  
Common-Mode Offset  
Group Delay Flatness  
Second-Order Intermod. Distortion FIN1 = 5 MHz, FIN2 = 6 MHz, VIN1 = VIN2 = 8 mV p-p  
Third-Order Intermod. Distortion  
Input Bias Current  
)
−200  
−40  
+40  
mV  
ns p-p  
dBc  
dBc  
μA  
FIN1 = 5 MHz, FIN2 = 6 MHz, VIN1 = VIN2 = 8 mV p-p  
Input Impedance  
Output Swing Limit (Upper)  
Output Swing Limit (Lower)  
1||3  
MΩ||pF  
V
V
VS − 1.3  
0.4  
Rev. A | Page 3 of 28  
 
AD8347  
Parameter  
Conditions  
Min  
0.5  
Typ  
Max  
2.5  
Unit  
CONTROL INPUT/OUTPUTS  
VCMO Input  
@ VS = 2.7 V  
@ VS = 5 V  
VGIN  
IOFS, QOFS  
RLOAD = 10 kΩ  
1
1
<1  
10  
1.00  
V
V
μA  
μA  
V
Gain Control Input Bias Current  
Offset Input Overriding Current  
VREF Output  
0.95  
1.05  
RESPONSE FROM RF INPUT TO FINAL  
BB AMP  
IMXO and QMXO connected directly to IAIN and QAIN,  
respectively  
Gain @ VVGIN = 0.2 V  
Gain @ VVGIN = 1.2 V  
Gain Slope  
65.5  
−3  
−96.5  
88  
69.5  
+0.5  
−89  
94  
72.5  
+4  
−82.5 dB/V  
dB  
dB  
Gain Intercept  
Linear extrapolation back to theoretical value at VGIN = 0  
(See Figure 30 through Figure 33 for more detail)  
Measuring LOIP LOIN, ac-coupled to ground with 100 pF.  
Measuring through evaluation board balun with termination  
RFIP input pin  
101  
dB  
LO/RF INPUT  
LOIP Input Return Loss  
−4  
−9.5  
−10  
dB  
dB  
dB  
RFIP Input Return Loss  
ENABLE  
Power-Up Control  
Power-Up Control  
Power-Up Time  
Low = standby  
High = enabled  
Time for final BB amps to be within 90% of final amplitude  
0
0.5  
+VS  
V
V
+VS − 1  
@ VS = 5 V  
@ VS = 2.7 V  
20  
10  
μs  
μs  
Power-Down Time  
Time for supply current to be <4 mA  
@ VS = 5 V  
30  
μs  
@ VS = 2.7 V  
1.5  
ms  
POWER SUPPLIES  
Voltage  
Current (Enabled)  
Current (Standby)  
Current (Standby)  
VPS1, VPS2, VPS3  
2.7  
48  
5.5  
80  
V
@ 5 V  
@ 5 V  
@ 3.3 V  
64  
400  
80  
mA  
μA  
μA  
Rev. A | Page 4 of 28  
AD8347  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Parameter  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rating  
Supply Voltage VPS1, VPS2, VPS3  
LO and RF Input Power  
Internal Power Dissipation  
θJA  
Maximum Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
Lead Temperature (Soldering 60 sec)  
5.5 V  
10 dBm  
500 mW  
68°C/W  
150°C  
−40°C to +85°C  
−65°C to +150°C  
300°C  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. A | Page 5 of 28  
 
AD8347  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
LOIN  
VPS1  
IOPN  
IOPP  
VCMO  
IAIN  
28 LOIP  
27 COM1  
26 QOPN  
2
3
4
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
QOPP  
QAIN  
COM3  
QMXO  
VPS3  
VDT1  
VAGC  
VDT2  
5
6
AD8347  
TOP VIEW  
(Not to Scale)  
7
COM3  
IMXO  
COM2  
RFIN  
RFIP  
8
9
10  
11  
12  
13  
14  
VPS2  
IOFS  
VREF  
VGIN  
QOFS  
ENBL  
Figure 2. 28-Lead TSSOP Pin Configuration  
Table 3. Pin Function Descriptions  
Equiv.  
Circuit Description  
Pin No. Mnemonic  
1, 28  
LOIN, LOIP  
A
LO Input. For optimum performance, these inputs are differentially driven. Typical input drive level is  
equal to −8 dBm. To improve the match to a 50 Ω source, connect a 200 Ω shunt resistor between LOIP  
and LOIN. A single-ended drive is possible, but slightly increases LO leakage.  
2
VPS1  
Positive Supply for LO Section. Decouple VPS1 with 0.1 μF and 100 pF capacitors.  
3, 4  
IOPN, IOPP  
B
C
I-Channel Differential Baseband Output. Typical output swing is equal to 760 mV p-p differential in  
AGC mode. The common-mode level on these pins is programmed by the voltage on VCMO.  
Baseband Amplifier Common-Mode Voltage. The voltage applied to this pin sets the output common-  
mode level of the baseband amplifiers. This pin can either be connected to VREF (Pin 14) or to a  
reference voltage from another device (typically an ADC).  
I-Channel Baseband Amplifier Input. This pin, which has a high input impedance, should be biased to  
VREF (approximately 1 V). If IAIN is connected directly to IMXO, biasing is provided by IMXO. If an ac-  
coupled filter is placed between IMXO and IAIN, this pin can be biased from VREF through a 1 kΩ  
resistor. The gain from IAIN to the differential outputs IOPN/IOPP is 30 dB.  
5
6
VCMO  
IAIN  
D
7, 23  
8, 22  
COM3  
IMXO, QMXO  
Ground for Biasing and Baseband Sections.  
B
I-Channel and Q-Channel Baseband Mixer/VGA Outputs. Low impedance outputs with bias levels equal to  
VREF. IMXO and QMXO are typically connected to IAIN and QAIN, respectively, either directly or through  
filters. These outputs have a maximum current limit of about 1.5 mA. This allows for a 600 mV p-p swing into  
a 200 Ω load. This corresponds to an input level of −40 dBm @ a maximum gain of 39.5 dB. At lower output  
levels, IMXO and QMXO can drive a lower load resistance, subject to the same current limit.  
9
COM2  
RF Section Ground.  
10, 11  
RFIN, RFIP  
E
RF Input. RFIN must be ac-coupled to ground. The RF input signal should be ac-coupled into RFIP. For  
a broadband 50 Ω input impedance, connect a 200 Ω resistor from the signal side of the RFIP coupling  
capacitor to ground. Note that RFIN and RFIP are not interchangeable differential inputs. RFIN is the  
ground reference for the input system.  
12  
VPS2  
Positive Supply for RF Section. Decouple VPS2 with 0.1 μF and 100 pF capacitors.  
13, 16  
IOFS, QOFS  
F
I-Channel and Q-Channel Offset Nulling Inputs. To null the dc offset on the I-channel and Q-channel  
mixer outputs (IMXO, QMXO), connect a 0.1 μF capacitor from these pins to ground. Alternately, a  
forced voltage of approximately 1 V on these pins disables the offset compensation circuit.  
14  
VREF  
G
Reference Voltage Output. This output voltage (1 V) is the main bias level for the device and can be  
used to externally bias the inputs and outputs of the baseband amplifiers. The VREF pin should be  
decoupled with a 0.1 ꢀF capacitor to ground.  
15  
17  
ENBL  
VGIN  
H
C
Chip Enable Input. Active high.  
Gain Control Input. The voltage on this pin controls the gain on the RF and baseband VGAs. The gain  
control is applied in parallel to all VGAs. The gain control voltage range is from 0.2 V to 1.2 V and  
corresponds to a gain range from +39.5 dB to −30 dB. This is the gain to the output of the baseband  
VGAs (that is, QMXO and IMXO). There is an additional 30 dB of gain in the baseband amplifiers. Note  
that the gain control function has a negative sense (that is, increasing control voltage decreases gain).  
In AGC mode, connect this pin directly to VAGC.  
Rev. A | Page 6 of 28  
 
AD8347  
Equiv.  
Circuit Description  
Pin No. Mnemonic  
18, 20  
VDT2, VDT1  
D
Detector Inputs. These pins are the inputs to the on-board detector. VDT2 and VDT1, which have high  
input impedances, are normally connected to IMXO and QMXO, respectively.  
19  
VAGC  
I
AGC Output. This pin provides the output voltage from the on-board detector. In AGC mode, connect  
this pin directly to VGIN.  
21  
24  
VPS3  
QAIN  
Positive Supply for Biasing and Baseband Sections. Decouple VPS3 with 0.1 μF and 100 pF capacitors.  
D
B
Q-Channel Baseband Amplifier Input. Bias this high input impedance pin to VREF (approximately 1 V).  
If QAIN is directly connected to QMXO, biasing is provided by QMXO. If an ac-coupled filter is placed  
between QMXO and QAIN, this pin can be biased from VREF through a 1 kΩ resistor. The gain from  
QAIN to the QOPN/QOPP differential outputs is 30 dB.  
Q-Channel Differential Baseband Output. Typical output swing is equal to 760 mV p-p differential. The  
common-mode level on these pins is programmed by the voltage on VCMO.  
25, 26  
27  
QOPP, QOPN  
COM1  
LO Section Ground.  
VPS1  
2
VPS2  
12  
VPS3  
21  
VREF  
14  
IMXO IOFS  
IAIN  
6
IOPP IOPN  
8
13  
4
3
AD8347  
VREF  
BIAS  
CELL  
ENBL 15  
VREF  
VCMO  
5
VCMO  
10  
RFIN  
LOIN  
LOIP  
1
PHASE  
SPLITTER  
1
PHASE  
SPLITTER  
2
11  
RFIP  
28  
7
9
COM3  
COM2  
COM3  
COM1  
VCMO  
GAIN  
CONTROL  
INTERFACE  
17  
23  
27  
VGIN  
DET 1  
20  
DET 2  
VREF  
26  
19  
18  
22  
16  
24  
25  
VDT1 VAGC VDT2  
QMXO QOFS  
QAIN  
QOPP QOPN  
Figure 3. Block Diagram  
Rev. A | Page 7 of 28  
AD8347  
TYPICAL PERFORMANCE CHARACTERISTICS  
RF AMP AND DEMODULATOR  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
45  
40  
35  
30  
25  
20  
14  
12  
10  
8
T
= –40°C  
A
T
= +85°C  
A
T
= +25°C  
V
V
= 2.7V, T = +25°C  
A
A
6
4
S
S
15  
10  
V
= 2.7V, T = –40°C  
A
S
= 5V, T = +25°C  
A
2
0
5
0
–2  
–5  
T
= –40°C  
T
= +25°C  
A
A
V
= 5V, T = –40°C  
A
–10  
–15  
–20  
S
–4  
V
S
= 5V, T = +85°C  
A
S
–6  
T
A
= +85°C  
–8  
–25  
–30  
–35  
–0.5  
–10  
–12  
V
= 2.7V, T = +85°C  
A
–1.0  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
800 1000 1200 1400 1600 1800 2000 2200 2400 2600  
RF FREQUENCY (MHz)  
V
(V)  
VGIN  
Figure 4. Gain and Linearity Error vs. VVGIN  
,
Figure 7. Gain vs. FLO, VVGIN = 0.7 V, FBB = 1 MHz  
VS = 5 V, FLO = 1900 MHz, FBB = 1 MHz  
45  
40  
35  
30  
25  
20  
–27  
–28  
14  
12  
10  
8
T
= –40°C  
A
V
= 5V, T = +25°C  
A
S
V
= 2.7V, T = –40°C  
A
S
V
= 2.7V, T = +25°C  
A
S
–29  
–30  
T
= +25°C  
A
T
= +85°C  
= –40°C  
A
6
4
15  
10  
–31  
–32  
–33  
T
A
5
0
2
0
V
= 5V, T = –40°C  
A
S
–5  
V
= 5V, T = +85°C  
A
–2  
–4  
–6  
–8  
–10  
S
–10  
–15  
–20  
–34  
–35  
–36  
V = 2.7V, T = +85°C  
S A  
T
= +25°C  
A
–25  
–30  
–35  
T
= +85°C  
0.4  
A
37  
0.2  
0.3  
0.5  
0.6  
0.7  
0.8  
(V)  
0.9  
1.0  
1.1  
1.2  
800 1000 1200 1400 1600 1800 2000 2200 2400 2600  
RF FREQUENCY (MHz)  
V
VGIN  
Figure 8. Gain vs. FLO, VVGIN = 1.2 V, FBB = 1 MHz  
Figure 5. Gain and Linearity Error vs. VVGIN  
,
VS = 2.7 V, FLO = 1900 MHz, FBB = 1 MHz  
42  
40  
V
= 2.7V, T = +25°C  
A
S
41  
40  
39  
38  
37  
36  
V
= 2.7V, T = –40°C  
A
S
V
= 5V, T = +25°C  
A
S
V
= 2.7V, T = +25°C  
A
S
39  
38  
37  
V
= 5V, T = –40°C  
A
S
V
= 2.7V, T = –40°C  
A
S
V
= 5V, T = +25°C  
A
S
V
= 2.7V, T = +85°C  
A
S
36  
35  
34  
35  
34  
33  
32  
31  
30  
V
= 2.7V, T = +85°C  
A
S
V
= 5V, T = –40°C  
A
S
V
= 5V, T = +85°C  
A
S
V
= 5V, T = +85°C  
A
S
33  
32  
31  
30  
1
10  
BASEBAND FREQUENCY (MHz)  
100  
800 1000 1200 1400 1600 1800 2000 2200 2400 2600  
RF FREQUENCY (MHz)  
Figure 6. Gain vs. FLO, VVGIN = 0.2 V, FBB = 1 MHz  
Figure 9. Gain vs. FBB, VVGIN = 0.2 V, FLO = 1900 MHz  
Rev. A | Page 8 of 28  
 
 
 
AD8347  
10  
9
15  
14  
13  
12  
11  
V
= 2.7V, T = +85°C  
A
S
V
= 5V, T = +85°C  
A
S
8
V
= 5V, T = +25°C  
A
S
7
V
= 2.7V, T = +85°C  
A
S
6
5
V
= 5V, T = +85°C  
A
S
4
V
= 2.7V, T = –40°C  
A
V
= 2.7V, T = +25°C  
A
S
S
3
V
= 5V, T = –40°C  
A
10  
9
S
2
V
= 2.7V, T = +25°C  
A
1
S
V
= 5V, T = +25°C  
A
0
S
8
–1  
–2  
–3  
–4  
–5  
V
= 2.7V, T = –40°C  
A
S
7
V
= 5V, T = –40°C  
A
S
6
5
1
10  
BASEBAND FREQUENCY (MHz)  
100  
800 1000 1200 1400 1600 1800 2000 2200 2400 2600  
RF FREQUENCY (MHz)  
Figure 10. Gain vs. FBB, VVGIN = 0.7 V, FLO = 1900 MHz  
Figure 13. IIP3 vs. FLO, VVGIN = 1.2 V, FBB = 1 MHz  
–25  
–26  
–27  
–28  
–29  
–30  
–31  
–32  
–33  
–34  
–35  
–10  
V
= 2.7V, T = +85°C  
A
S
–12  
–14  
–16  
–18  
–20  
V
= 5V, T = +25°C  
A
S
V
= 2.7V, T = –40°C  
V = 2.7V, T = +25°C  
S A  
S
A
V
= 2.7V, T = +25°C  
A
S
V
= 5V, T = +25°C  
A
S
V
= 5V, T = –40°C  
A
S
–22  
–24  
V
= 2.7V, T = –40°C  
A
S
V
= 5V, T = –40°C  
A
S
V
= 2.7V, T = +85°C  
A
S
V
= 5V, T = +85°C  
A
S
–26  
–28  
–30  
V
= 5V, T = +85°C  
A
S
1
10  
BASEBAND FREQUENCY (MHz)  
100  
800 1000 1200 1400 1600 1800 2000 2200 2400 2600  
RF FREQUENCY (MHz)  
Figure 11. Gain vs. FBB, VVGIN = 1.2 V, FLO = 1900 MHz  
Figure 14. IIP3 vs. FLO, VVGIN = 0.2 V, FBB = 1 MHz  
15  
14  
0
V
= 5V, T = –40°C  
A
S
V
= 2.7V, T = –40°C  
A
–5  
–10  
–15  
S
V
= 2.7V, T = +85°C  
A
S
V
= 5V, T = +85°C  
A
V
= 5V, T = +85°C  
A
S
S
V
= 2.7V, T = +85°C  
A
S
13  
12  
11  
–20  
–25  
–30  
V
= 5V, T = –40°C  
A
S
V
= 5V, T = +25°C  
A
S
V
= 2.7V, T = +25°C  
A
S
V
= 2.7V, T = –40°C  
A
S
V
= 2.7V, T = +25°C  
A
S
V
= 5V, T = +25°C  
A
S
10  
–35  
0.2  
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100  
BASEBAND FREQUENCY (MHz)  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
V
(V)  
VGIN  
Figure 12. Input 1 dB Compression Point (OP1 dB) vs. VVGIN  
,
Figure 15. IIP3 vs. FBB, VVGIN = 1.2 V, FLO = 1900 MHz  
FLO = 1900 MHz, FBB = 1 MHz  
Rev. A | Page 9 of 28  
AD8347  
–10  
–12  
–14  
15  
10  
70  
60  
50  
40  
30  
20  
10  
0
V
= 5V, T = +85°C  
A
S
5
–16  
–18  
–20  
–22  
V
= 2.7V, T = +85°C  
A
S
0
–5  
–10  
V
= 5V, T = +25°C  
A
S
V
= 5V  
–24  
–26  
–28  
–30  
V
= 5V, T = –40°C  
A
S
S
–15  
–20  
–25  
–30  
V
= 2.7V  
= 5V  
V
= 2.7V, T = +25°C  
S
S
A
V
T
= 2.7V,  
= –40°C  
S
A
–32  
–34  
V
= 2.7V  
0.5  
S
V
S
0
5
10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100  
BASEBAND FREQUENCY (MHz)  
0.2  
0.3  
0.4  
0.6  
0.7  
0.8  
0.9  
1.0  
V
(V)  
VGIN  
Figure 19. Noise Figure and IIP3 vs. VVGIN, Temperature = 25°C,  
FLO = 1900 MHz, FBB = 1 MHz  
Figure 16. IIP3 vs. FBB, VVGIN = 0.2 V, FLO = 1900 MHz  
2.5  
2.0  
1.5  
1.0  
50  
45  
40  
35  
30  
25  
20  
0.5  
LO FREQUENCY = 2700MHz  
0
–0.5  
–1.0  
LO FREQUENCY = 800MHz  
–1.5  
LO FREQUENCY = 1900MHz  
–2.0  
–2.5  
800 1000 1200 1400 1600 1800 2000 2200 2400 2600  
RF FREQUENCY (MHz)  
–20 –18 –16 –14 –12 –10  
–8  
–6  
–4  
–2  
0
LO INPUT LEVEL (dBm)  
Figure 20. Quadrature Error vs. LO Power Level, Temperature = 25°C,  
Figure 17. IIP2 vs. FLO, VVGIN = 1.2 V, Baseband Tone1 = 5 MHz, −10 dBm,  
Baseband Tone2 = 6 MHz, −10 dBm, Temperature = 25°C, VS = 5 V  
V
VGIN = 0.2 V, VS = 5 V  
14.0  
13.5  
13.0  
12.5  
12.0  
13.0  
12.5  
12.0  
11.5  
11.0  
2700MHz  
11.5  
11.0  
10.5  
10.0  
9.5  
1900MHz  
800MHz  
V
= 5V  
S
V
= 2.7V  
S
10.5  
10.0  
9.0  
–20 –18 –16 –14 –12 –10  
–8  
–6  
–4  
–2  
0
800 1000 1200 1400 1600 1800 2000 2200 2400 2600  
LO INPUT LEVEL (dBm)  
LO FREQUENCY (MHz)  
Figure 21. Noise Figure vs. LO Input Level, Temperature = 25°C,  
VGIN = 0.2 V, VS = 5 V  
Figure 18. Noise Figure vs. LO Frequency (FLO), Temperature = 25°C,  
VVGIN = 0.2 V, FBB = 1 MHz  
V
Rev. A | Page 10 of 28  
 
AD8347  
BASEBAND OUTPUT AMPLIFIERS  
34  
20  
T
= –40°C, V = 5V  
S
T
= –40°C, V = 5V  
S
A
A
T
= –40°C, V = 2.7V  
S
A
15  
10  
5
32  
30  
28  
T
= +25°C, V = 5V  
S
A
T
= +85°C, V = 5V  
A
S
T
= +25°C, V = 5V  
S
A
T = +25°C, V = 2.7V  
A S  
T
= +85°C, V = 2.7V  
A
S
T
= +85°C, V = 2.7V  
S
0
A
T
= –40°C, V = 2.7V  
S
A
26  
24  
22  
20  
–5  
–10  
–15  
–20  
–25  
–30  
T
= +25°C, V = 2.7V  
S
A
T
= +85°C, V = 5V  
A
S
18  
16  
1
10  
100  
1
10  
100  
BASEBAND FREQUENCY (MHz)  
BASEBAND FREQUENCY (MHz)  
Figure 24. OIP3 vs. FBB, VVCMO = 1 V  
Figure 22. Gain vs. FBB, VVCMO = 1 V  
8
6
5
0
T
= –40°C, V = 5V  
S
T
= +85°C, V = 5V  
S
A
A
V
= 2.7V, MEAN +  
σ
S
V
= 2.7V, MEAN  
S
T
= +25°C, V = 5V  
S
A
4
V
= 5V, MEAN  
–5  
S
T
= –40°C, V = 2.7V  
S
A
V
= 5V, MEAN + σ  
S
2
T
= +25°C, V = 2.7V  
S
A
–10  
0
T
= +85°C, V = 2.7V  
S
A
–15  
–20  
–2  
V
= 2.7V, MEAN – σ  
S
–4  
–6  
V
= 5V, MEAN – σ  
S
–25  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
1
10  
100  
V
(V)  
BASEBAND FREQUENCY (MHz)  
VCMO  
Figure 25. Common-Mode Output Offset Voltage vs. VVCMO  
,
Figure 23. OP1 vs. FBB, VVCMO = 1 V  
Temperature = 25°C (σ = 1 Standard Deviation)  
Rev. A | Page 11 of 28  
 
 
AD8347  
RF AMP/DEMOD AND BASEBAND OUTPUT AMPLIFIERS  
1.0  
75  
T
T
T
T
= –40°C, V = 2.7V  
S
A
A
A
A
0.8  
0.6  
0.4  
0.2  
65  
= –40°C, V = 5V  
S
= +25°C, V = 2.7V  
S
= +25°C, V = 5V  
S
55  
45  
35  
25  
15  
T
V
= +85°C,  
= 2.7V  
A
S
T
= +85°C  
A
T
A
= +25°C  
0
–0.2  
–0.4  
–0.6  
T
= +85°C, V = 5V  
S
A
T
= –40°C  
A
5
–0.8  
–1.0  
–5  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
0
5
10  
15  
20  
25  
30  
35  
40  
V
(V)  
VGIN  
BASEBAND FREQUENCY (MHz)  
Figure 29. I/Q Amplitude Imbalance vs. FBB, Temperature = 25°C, VS = 5 V  
Figure 26. Voltage Gain vs. VVGIN, FLO = 1900 MHz, FBB = 1 MHz  
0
2.5  
2.0  
1.5  
1.0  
0.5  
2
4
T
= +25°C, V = 5V  
S
A
6
8
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
RF WITH TERMINATION  
T
= +85°C, V = 5V  
S
A
–10  
–12  
T
= –40°C, V = 5V  
S
A
RF WITHOUT TERMINATION  
800 1000 1200 1400 1600 1800 2000 2200 2400 2600  
RF FREQUENCY (MHz)  
800 1000 1200 1400 1600 1800 2000 2200 2400 2600  
RF FREQUENCY (MHz)  
Figure 27. Quadrature Phase Error vs. FLO, VVGIN = 0.7 V, VS = 5 V  
Figure 30. Return Loss of RFIP vs. FRF, VVGIN = 0.7 V, VS = 5 V  
2.5  
2.0  
1.5  
1.0  
0.5  
WITH TERMINATION  
2.7GHz  
0
–0.5  
–1.0  
–1.5  
T
= +85°C  
A
800MHz  
T
= +25°C  
A
T
= –40°C  
A
2.7GHz  
800MHz  
WITHOUT TERMINATION  
–2.0  
–2.5  
0
5
10  
15  
20  
25  
30  
35  
40  
BASEBAND FREQUENCY (MHz)  
Figure 28. Quadrature Phase Error vs. FBB, VVGIN = 0.7 V, VS = 5 V  
Figure 31. S11 of RFIN vs. FRF, VVGIN = 0.7 V, VS = 5 V  
Rev. A | Page 12 of 28  
 
 
AD8347  
0
–2  
–4  
30  
25  
20  
1.20  
1.00  
0.80  
T
= –40°C  
A
T
= +85°C  
A
LO PORT WITHOUT TERMINATION  
T
= +25°C  
A
T
= +85°C  
A
–6  
–8  
T
= +25°C  
A
15  
10  
5
0.60  
0.40  
0.20  
T
= –40°C  
A
–10  
–12  
–14  
LO PORT WITH TERMINATION  
0
0
10  
800 1000 1200 1400 1600 1800 2000 2200 2400 2600  
RF FREQUENCY (MHz)  
–70  
–60  
–50  
–40  
–30  
–20  
–10  
0
RF INPUT POWER (dBm)  
Figure 32. Return Loss of LOIP vs. FLO, VVGIN = 0.7 V, VP = 5 V  
Figure 34. AGC Voltage and Mixer Output Level vs. RF Input Power,  
FLO = 1900 MHz, FBB = 1 MHz, VS = 5 V  
85  
80  
75  
WITH TERMINATION  
800MHz  
V
= 5V  
P
70  
65  
60  
55  
V
= 5.5V  
P
2.7GHz  
2.7GHz  
V
= 3V  
P
800MHz  
V
= 2.7V  
P
50  
45  
WITHOUT TERMINATION  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
Figure 33. S11 of LOIN vs. FLO, VVGIN = 0.7 V, VS = 5 V  
Figure 35. Supply Current vs. Temperature, VVGIN = 0.7 V, VVCMO = 1 V  
Rev. A | Page 13 of 28  
 
 
AD8347  
EQUIVALENT CIRCUITS  
VPS1  
VPS3  
LOIN  
IAIN  
QAIN  
PHASE  
SPLITTER  
CONTINUES  
LOIP  
COM3  
COM1  
Figure 36. Circuit A  
Figure 39. Circuit D  
VPS3  
VPS2  
IOPP, IOPN,  
QOPP, QOPN,  
IMXO, QMXO  
RFIP  
RFIN  
COM3  
COM2  
Figure 37. Circuit B  
Figure 40. Circuit E  
VPS3  
VPS3  
IOFS  
QOFS  
VCMO  
CURRENT MIRROR  
CURRENT MIRROR  
COM3  
COM3  
Figure 41. Circuit F  
Figure 38. Circuit C  
Rev. A | Page 14 of 28  
 
AD8347  
VPS3  
VREF  
VPS3  
VAGC  
COM3  
COM3  
Figure 42. Circuit G  
Figure 44. Circuit I  
VPS3  
ENBL  
COM3  
Figure 43. Circuit H  
Rev. A | Page 15 of 28  
AD8347  
THEORY OF OPERATION  
VPS1  
2
VPS2  
12  
VPS3  
21  
VREF  
14  
IMXO IOFS  
IAIN  
6
IOPP IOPN  
8
13  
4
3
AD8347  
VREF  
BIAS  
CELL  
15  
10  
ENBL  
RFIN  
VCMO  
5
VREF  
VCMO  
1
LOIN  
LOIP  
PHASE  
SPLITTER  
1
PHASE  
SPLITTER  
2
RFIP 11  
28  
7
9
COM3  
COM2  
COM3  
COM1  
VCMO  
GAIN  
CONTROL  
INTERFACE  
17  
VGIN  
23  
27  
DET 1  
20  
DET 2  
VREF  
26  
19  
18  
22  
16  
24  
25  
VDT1 VAGC VDT2  
QMXO QOFS  
QAIN  
QOPP QOPN  
Figure 45. Block Diagram  
The AD8347 is a direct I/Q demodulator usable in digital  
wireless communication systems including cellular, PCS, and  
digital video receivers. An RF signal in the frequency range of  
800 MHz to 2,700 MHz is directly downconverted to the I and  
Q components at baseband using a local oscillator (LO) signal  
at the same frequency as the RF signal.  
differential currents are split and fed to the two Gilbert-cell  
mixers through separate cascode stages.  
MIXERS  
Two double balanced Gilbert-cell mixers, one for each channel,  
perform the in-phase (I) and quadrature (Q) down conversion.  
Each mixer has four cross-connected transistor pairs that are  
terminated in resistive loads and feed the differential baseband  
variable gain amplifiers for each channel. The quadrature LO  
signals drive the bases of the mixer transistors.  
The RF input signal goes through two stages of variable gain  
amplifiers before splitting up to reach two Gilbert-cell mixers.  
The mixers are driven by a pair of LO signals which are in  
quadrature (90 degrees of phase difference). The outputs of the  
mixers are applied to baseband I-channel and Q-channel  
variable gain amplifiers. The outputs from these baseband  
variable gain amplifiers are brought out to pins for external  
filtering. The filter outputs are then applied to a pair of on-chip,  
fixed gain, baseband amplifiers. These amplifiers gain up the  
outputs from the external filters to a level compatible with most  
A-to-D converters. A sum of squares detector is available for  
use in an automatic gain control (AGC) loop to set the output  
level. The RF and baseband amplifiers provide approximately  
69.5 dB of gain control range. Additional on-chip circuits allow  
the setting of the dc level at the I-channel and Q-channel  
baseband outputs, as well as nulling the dc offset at each  
channel.  
BASEBAND VARIABLE GAIN AMPLIFIERS  
The baseband VGAs also use the X-AMP approach with NPN  
differential pairs separated by sections of resistive attenuators.  
The same interpolator controlling the RF amplifiers controls the  
tail currents of the differential pairs. The outputs of these amplifiers  
are provided off chip for external filtering. Automatic offset  
nulling minimizes the dc offsets at both I- and Q-channels. The  
common-mode output voltage is set to the same level as the  
reference voltage (1.0 V) generated in the Bias cell, also made  
available at the VREF pin (see Figure 45).  
OUTPUT AMPLIFIERS  
The output amplifiers gain up the signal coming back from each of  
the external filters to a level compatible with most high speed A-to-  
D converters. These amplifiers are based on an active feedback  
design to achieve high gain bandwidth with low distortion.  
RF VARIABLE GAIN AMPLIFIERS (VGA)  
These amplifiers use the patented X-AMP® approach with NPN  
differential pairs separated by sections of resistive attenuators.  
The gain control is achieved through a gaussian interpolator  
where the control voltage sets the tail currents supplied to the  
various differential pairs according to the gain desired. In the  
first amplifier, the combined output currents from the  
LO AND PHASE SPLITTERS  
The incoming LO signal is applied to a polyphase phase splitter  
to generate the LO signals for the I-channel and Q-channel  
mixers. The polyphase phase splitters are RC networks  
connected in a cyclical manner to achieve gain balance and  
phase quadrature. The wide operating frequency range of these  
phase splitters is achieved by cascading multiple sections of  
transconductance cells go through a cascode stage to resistive  
loads with inductive peaking. In the second amplifier, the  
Rev. A | Page 16 of 28  
 
 
 
 
 
 
 
AD8347  
these networks with staggered RC constants. Each branch goes  
through a buffer to make up for the loss and high frequency  
roll-off. The output from the buffers then goes into another  
polyphase phase splitter to enhance the accuracy of phase  
quadrature. Each LO signal is buffered again to drive the  
mixers.  
BIAS  
An accurate reference circuit generates the reference currents  
used by the different sections. The reference circuit is controlled  
by an external power-up (ENBL) logic signal that, when set low,  
puts the whole chip into a sleep mode typically requiring less  
than 400 μA of supply current. The reference voltage (VREF) of  
1.0 V, that serves as the common-mode reference for the  
baseband circuits, is made available for external use. The VREF  
pin should be decoupled with a 0.1 ꢀF capacitor to ground.  
OUTPUT LEVEL DETECTOR  
To create an AGC voltage (VAGC), two signals proportional to  
the square of each output channel are summed together and  
compared to a built-in threshold. The inputs to this rms  
detector are referenced to VREF.  
Rev. A | Page 17 of 28  
 
AD8347  
APPLICATIONS  
BASIC CONNECTIONS  
RF INPUT AND MATCHING  
The basic connections for operating the AD8347 are shown in  
Figure 46. The device is powered through three power supply  
pins: VPS1, VPS2, and VPS3. These pins supply current to  
different parts of the overall circuit. VPS1 and VPS2 power the  
local oscillator (LO) and RF sections, respectively, while VPS3  
powers the baseband amplifiers. Connect all of these pins to the  
same supply voltage; however, separately decouple each pin  
using two capacitors. 100 pF and 0.1 μF capacitors are  
The RF input signal should be ac-coupled into the RFIP pin and  
RFIN should be ac-coupled to ground. To improve broadband  
matching to a 50 Ω source, a 200 Ω resistor can be connected  
from the signal side of the RFIP coupling capacitor to ground.  
LO DRIVE INTERFACE  
For optimum performance, the LO inputs, LOIN and LOIP,  
should be driven differentially; the M/A-COM balun, ETC1-1-13  
is recommended. Unless an ac-coupled transformer is used to  
generate the differential LO, the inputs must be ac-coupled, as  
shown in Figure 46. To improve broadband matching to a 50 Ω  
source, connect a 200 Ω shunt resistor between LOIP and LOIN.  
recommended, though values close to these can be used.  
Use a supply voltage in the range 2.7 V to 5.5 V. The quiescent  
current is 64 mA when operating from a 5 V supply. By pulling  
the ENBL pin low, the device goes into its power-down mode.  
The power-down current is 400 μA when operating on a 5 V  
supply and 80 μA on a 2.7 V supply.  
A LO drive level of −8 dBm is recommended. Figure 20 shows  
the relationship between LO drive level, LO frequency, and  
quadrature error for a typical device.  
Like the supply pins, the individual sections of the circuit are  
separately grounded. COM1, COM2, and COM3 provide  
ground for the LO, RF, and baseband sections, respectively.  
Connect all of these pins to the same low impedance ground.  
A single-ended drive is also possible as shown in Figure 47, but  
this slightly increases LO leakage. Apply the LO signal through  
a coupling capacitor to LOIP, and ac-couple LOIN to ground.  
Because the inputs are fully differential, the drive orientation  
can be reversed. As in the case of the differential drive, a 200 Ω  
resistor connected across LOIP and LOIN improves the match  
to a 50 Ω source.  
+V  
S
(2.7V–5.5V)  
IOPP  
24mV p-p  
(AGC MODE)  
1V BIAS (VREF)  
C9  
C10  
C6  
C5  
C7  
C8  
0.1μF 100pF  
0.1μF 100pF 0.1μF 100pF  
C16  
0.1μF  
760mV p-p  
DIFFERENTIAL  
(AGC MODE)  
C13  
0.1μF  
V
= 1V  
CM  
VPS3  
IOFS IAIN  
13  
IOPP  
VREF  
14  
IMXO  
IOPN  
VPS1  
15  
VPS2  
2
12  
21  
8
6
4
3
AD8347  
IOPN  
VREF  
VREF  
BIAS  
CELL  
ENBL  
VCMO  
LO INPUT  
–8dBm  
0.8GHz–2.7GHz  
5
C1  
100pF  
C4  
100pF  
VCMO  
RFIN  
RFIP  
LOIN  
LOIP  
10  
11  
R1  
200Ω  
3
1
4
1
PHASE  
SPLITTER  
1
R17  
200Ω  
PHASE  
SPLITTER  
2
28  
5
C2  
100pF  
T1  
RF INPUT  
0.8GHz–2.7GHz  
0dBm MAX  
C3  
100pF  
ETC 1-1-13  
(M/A-COM)  
COM3  
7
9
VCMO  
COM2  
COM3  
COM1  
(AGC MODE)  
VGIN  
GAIN  
CONTROL  
INTERFACE  
17  
23  
27  
DET 1  
20  
DET 2  
VREF  
QOPN  
26  
QOPP QOPN  
24  
25  
19  
18  
22  
16  
VDT1 VAGC VDT2  
QMXO  
QOFS  
QAIN  
C14  
0.1μF  
760mV p-p  
DIFFERENTIAL  
(AGC MODE)  
C15  
0.1μF  
24mV p-p  
(AGC MODE)  
1V BIAS (VREF)  
V
= 1V  
CM  
QOPP  
Figure 46. Basic Connections  
Rev. A | Page 18 of 28  
 
 
AD8347  
These output stages are not, however, designed to directly drive  
50 Ω loads.  
100pF  
LOIN  
LO  
200  
Ω
AD8347  
LOIP  
OPERATING THE VGA IN AGC MODE  
Although the VGA can be driven by an external source such as  
a DAC, the AD8347 has an on-board sum of squares detector to  
allow the AD8347 to operate in an automatic leveling mode.  
Due to the nature of the detector, an input signal with a higher  
peak-to-average ratio causes the AGC loop to settle with a  
higher mixer output peak-to-peak voltage. In this data sheet,  
peak-to-peak calculations assume a sine wave input when  
referencing AGC operation.  
100pF  
Figure 47. Single-Ended LO Drive  
OPERATING THE VGA  
A three-stage VGA sets the gain in the RF section. Two of the  
three stages come before the mixer while the third amplifies the  
mixer output. All three stages are driven in parallel. The gain  
range of the first RF VGA and that of the second RF VGA  
combined with the mixer are both −13 dB to +10 dB. The gain  
range of the baseband VGA is −4 dB to +19.5 dB. Therefore, the  
overall gain range from the RF input to the IMXO and QMXO  
pins is −30 dB to approximately +39.5 dB.  
The connections for operating in this mode are shown in  
Figure 46. The two mixer outputs are connected to Detector  
Input VDT1 and Detector Input VDT2. The summed detector  
output drives an internal integrator which, in turn, delivers a  
gain correction voltage to the VAGC pin. A 0.1 μF capacitor  
from VAGC to ground sets the dominant pole of the integrator  
circuit. VAGC, which should be connected to VGIN, adjusts  
gain until an internal threshold is reached. This threshold  
corresponds to a level at the IMXO and QMXO pins of approxi-  
mately 8.5 mV rms. This level changes slightly as a function of  
RF input power (see Figure 34). For a CW (sine wave) input,  
this corresponds to approximately 24 mV p-p. If this signal is  
applied directly to the subsequent baseband amplifier stage,  
the final baseband output is 760 mV p-p differential. See the  
Baseband Amplifiers section.  
The gain of the VGA is set by the voltage on the VGIN pin,  
which is a high impedance input. The gain control function  
(which is linear-in-dB) and linearity are shown in Figure 4 and  
Figure 5 at 1.9 GHz. Note that the sense of the gain control  
voltage is negative because as the gain control voltage ranges  
from 0.2 V to 1.2 V, the gain decreases from +39.5 dB to −30 dB.  
MIXER OUTPUT LEVEL AND DRIVE CAPABILITY  
I- and Q-channel baseband outputs, IMXO and QMXO, are  
low impedance outputs (ROUT @ 3 Ω) with bias levels equal to  
V
VREF, the voltage on Pin 14. The achievable output levels on  
If the VGA gain is set from an external source, VDT1 and  
VDT2 (the on-board detector inputs) are not used and are tied  
to VREF.  
IMXO/QMXO are limited by their current drive capability of  
1.5 mA maximum. This allows for a 600 mV p-p swing into a  
200 Ω load. At lower output levels, IMXO and QMXO can drive  
smaller load resistances, subject to the same current limit.  
Rev. A | Page 19 of 28  
 
 
 
 
AD8347  
R19  
1k  
Ω
+V +5V  
S
R20  
4kΩ  
2.5V  
IOPP  
C9  
0.1  
C10  
F 100pF  
C6  
0.1  
C5  
C7  
C8  
120mV p-p  
1V BIAS  
μ
μ
F 100pF 0.1  
μF 100pF  
C16  
0.1μF  
3.8V p-p  
DIFFERENTIAL  
C13  
0.1  
μ
F
V
= 2.5V  
CM  
VPS3  
VREF  
14  
IMXO  
IOFS IAIN  
VREF  
IOPP  
IOPN  
VPS1  
2
VPS2  
12  
13  
6
21  
8
4
3
AD8347  
IOPN  
VREF  
BIAS  
CELL  
15  
ENBL  
VCMO  
LO INPUT  
–8dBm  
0.8GHz–2.7GHz  
5
C1  
100pF  
C4  
100pF  
VCMO  
RFIN  
10  
LOIN  
LOIP  
R1  
200  
3
1
4
1
Ω
PHASE  
SPLITTER  
1
R17  
200  
PHASE  
SPLITTER  
2
RFIP  
11  
Ω
28  
5
C2  
100pF  
T1  
RF  
INPUT  
C3  
100pF  
ETC 1-1-13  
(M/A-COM)  
COM3  
7
9
VCMO  
COM2  
COM3  
COM1  
VGIN  
17  
GAIN  
CONTROL  
INTERFACE  
23  
27  
DET 1  
20  
DET 2  
VREF  
QOPN  
26  
QOPP QOPN  
19  
18  
22  
16  
24  
25  
VDT1 VAGC VDT2  
QMXO  
QOFS  
C14  
QAIN  
0.1μF  
3.8V p-p  
DIFFERENTIAL  
120mV p-p  
1V BIAS  
V
= 2.5V  
R21  
4kΩ  
CM  
R22  
1kΩ  
QOPP  
Figure 48. Adjusting AGC Level to Increase Baseband Amplifier Output Swing  
IOPP, QOPN, and QOPP) deliver a differential voltage of  
approximately 760 mV p-p (380 mV p-p on each side).  
CHANGING THE AGC SETPOINT  
The AGC circuit can be easily set up to level at voltages higher  
than the nominal 24 mV p-p, as shown in Figure 48. The  
voltages on Pin IMXO and Pin QMXO are attenuated before  
being applied to the detector inputs. In the example shown, an  
attenuation factor of 0.2 (−14 dB) between IMXO and QMXO  
and the detector inputs causes the VGA to level at approximately  
120 mV p-p (note that the resistor divider network must be  
referenced to VVREF). This results in a peak-to-peak output  
swing at the baseband amplifier outputs of 3.8 V differential,  
that is, 1.6 V to 3.4 V on each side. Note that VVCMO has been  
increased to 2.5 V to avoid signal clipping at the baseband  
outputs. Due to the attenuation between the mixer output and  
the detector input, the variation in the settled mixer output level  
vs. RF input power will be greater than the variation shown in  
Figure 34. The variation will be greater by a factor equal to the  
inverse of the attenuation factor.  
The single-ended input signal to the baseband amplifiers is  
applied at IAIN and QAIN, the high impedance inputs. As  
shown in Figure 46, the baseband amplifier operates internally  
as a differential amplifier, with the second input driven by VVREF  
.
Therefore, bias the input signal to the baseband amplifier at VVREF  
.
The output common-mode level of the baseband amplifiers is  
set by the voltage on Pin 5, VCMO. Connect this pin to VREF  
(Pin 14) or to an external reference voltage from a device such  
as an analog-to-digital converter (ADC). VVCMO has a nominal  
range from 0.5 V to 2.5 V. However, since the baseband amplifiers  
can only swing down to 0.4 V, higher values of VVCMO are gener-  
ally required to avoid low end signal clipping. Alternatively, the  
positive swing at each output is limited to 1.3 V below the  
supply voltage; therefore, the maximum p-p swing is given by  
2 × (VPS − 1.3 − 0.4) V differentially.  
BASEBAND AMPLIFIERS  
For example, for the baseband output amplifier to deliver an  
output swing of 2 V p-p (1 V p-p on each side), VVCMO must be  
in a range from 0.9 V to 2.5 V.  
The final baseband amplifier stage takes the signals from IMXO  
and QMXO and amplifies them by 30 dB, or a factor of 31.6.  
This results in a maximum system gain of 69.5 dB. When the  
VGA is in AGC mode, the baseband I and Q outputs (IOPN,  
Rev. A | Page 20 of 28  
 
 
 
 
AD8347  
The differential output offset voltages of the baseband amplifiers  
are typically 50 mV. This offset voltage results from both input  
and output effects.  
FILTER DESIGN CONSIDERATIONS  
Baseband low-pass or band-pass filtering can be conveniently  
performed between the mixer outputs (IMXO and QMXO) and the  
input to the baseband amplifiers. Because the output impedance of  
the mixer is low (approximately 3 Ω) and the input impedance of  
the baseband amplifier is high, it is not practical to design a  
filter that is reactively matched to these impedances. An LC  
filter can be matched by placing a series resistor at the mixer  
output and a shunt resistor (terminated to VVREF) at the input to  
the baseband amplifier.  
The overall signal-to-noise ratio can be improved by increasing  
the VGA gain by driving it with an external voltage or by changing  
the setpoint of the AGC circuit. See the Changing the AGC  
Setpoint section.  
DRIVING CAPACITIVE LOADS  
In applications where the baseband amplifiers are driving  
unbalanced capacitive loads, place some series resistance between  
the amplifier and the capacitive load. For example, for a 10 pF load,  
use four 200 Ω series resistors, one in each baseband output.  
Because the mixer output drive level is limited to a maximum  
current of 1.5 mA, the characteristic impedance of the filter  
should be greater than 50 Ω, especially to achieve larger signal  
swings.  
EXTERNAL BASEBAND AMPLIFICATION  
Reduce baseband output offset voltage and noise by bypassing the  
internal baseband amplifiers and amplifying the mixer output  
signal using a high quality differential amplifier. In the example  
shown in Figure 49, two AD8132 differential amplifiers are used  
to gain up the mixer output signals by 20 dB. In this example, the  
setpoint of the AGC circuit was increased to give an approximate  
72 mV p-p input to the external amplifiers. This resulted in final  
baseband output signals of 720 mV p-p.  
Figure 50 shows the schematic for a 100 Ω, fourth-order elliptic  
low-pass filter with a 3 dB cutoff frequency of 20 MHz. Source  
and load impedances of approximately 100 Ω ensure that the  
filter sees a matched source and load. This also ensures that the  
mixer output is driving an overall load of 200 Ω. Note that the  
shunt termination resistor is tied to VREF and not to ground.  
The frequency response and group delay of this filter are shown  
in Figure 51 and Figure 52.  
C1  
4.7pF  
C3  
8.2pF  
The closed-loop bandwidth of the amplifiers in Figure 49 is equal  
to approximately 20 MHz. Higher bandwidths are achievable, but  
at the cost of lower closed-loop gain. In Figure 49, the output  
common-mode levels at Pin 2 (VOCM pin) of the AD8132s are set  
by the AD8347s VREF (approximately 1 V). The output common-  
mode levels can also be externally set, using, for example, the  
reference voltage from an ADC.  
L
L
3
1.2  
RS  
95.3  
R3  
R4  
2Ω  
1
Ω
2Ω  
0.68  
μH  
μH  
C2  
C4  
RL  
150pF  
82pF 100Ω  
C16  
0.1μF  
+5V  
IMXO  
VREF  
IAIN VDT1  
R19A  
10μF  
0.1μF  
(SEE  
TEXT)  
4.99kΩ  
AD8347  
AD8347  
R17A  
499  
72mV p-p  
Ω
3
8
IMXO  
Figure 50. Typical Baseband Low-Pass Filter  
R22  
20k  
5
720mV p-p  
Ω
AD8132  
DIFFERENTIAL  
VDT1  
VREF  
2
1
R18A  
499  
4
R23  
V
= 1V  
CM  
Ω
10k  
Ω
6
0
4.99k  
R20A  
Ω
0.1  
μ
F
10  
μ
F
F
–10  
–20  
–30  
–40  
C16  
0.1μF  
–5V  
+5V  
R24  
10k  
4.99k  
R19B  
Ω
0.1μF  
10  
μ
Ω
VDT2  
R17B  
499  
R25  
Ω
20kΩ  
3
QMXO  
8
2
72mV p-p  
720mV p-p  
DIFFERENTIAL  
5
–50  
–60  
–70  
R18B  
499  
AD8132  
Ω
4
V
= 1V  
CM  
1
6
4.99k  
R20B  
Ω
0.1  
μF  
10μF  
–80  
1
10  
100  
–5V  
FREQUENCY (MHz)  
Figure 49. External Baseband Amplification Example  
Figure 51. Frequency Response of 20 MHz Baseband Low-Pass Filter  
Rev. A | Page 21 of 28  
 
 
 
 
 
AD8347  
50  
DC OFFSET COMPENSATION  
45  
Feedthrough of the LO signal to the RF input port results in  
self-mixing of the LO signal. This produces a dc component at  
the mixer output that is frequency dependent.  
40  
35  
30  
25  
20  
The AD8347 includes an internal circuit that actively nulls any  
dc offsets that appear at the mixer output. The dc bias level of  
the mixer output (which should ideally equal VVREF, the bias  
level for the baseband sections of the chip) is continually com-  
pared to VVREF. Any differences between the mixer output level  
and VVREF forces a compensating voltage on to the mixer output.  
The time constant of this correction loop is set by the capacitors  
that are connected to Pin IOFS and Pin QOFS (each output can  
be separately compensated). For normal operation, 0.1 μF  
capacitors are recommended. The corner frequency of the  
compensation loop is given approximately by  
15  
10  
5
0
1
10  
100  
FREQUENCY (MHz)  
Figure 52. Group Delay of 20 MHz Baseband Low-Pass Filter  
If the VGA is operating in AGC mode, the detector inputs  
(VDT1 and VDT2) can be tied either to the inputs or outputs of  
the filter. Connecting the detector inputs to the inputs of the  
filter (IMXO and QMXO) causes the VGA leveling point to be  
determined by the composite of the wanted signal and any  
unfiltered components, such as blockers or signal harmonics.  
Alternatively, connecting VDT1 and VDT2 to the outputs of the  
filters ensures that the leveling point of the AGC circuit is based  
upon the amplitude of the filtered output only. The latter option  
is more desirable as it results in a more constant baseband  
output. However, when using this method, set the leveling point  
of the AGC so that the out-of-band blockers do not overdrive  
the mixer output.  
40  
f3dB  
=
(
COFS in μF  
)
COFS  
The corner frequency must be set to a frequency that is much  
lower than the symbol rate of the demodulated data. This  
prevents the compensation loop from falsely interpreting the  
data stream as a changing offset voltage.  
To disable the offset compensation circuits, tie IOFS and QOFS  
to VREF.  
Rev. A | Page 22 of 28  
 
 
AD8347  
EVALUATION BOARD  
Figure 53 shows the schematic of the AD8347 evaluation board. Note that uninstalled components are indicated with the open  
designation. The board is powered by a single supply in the range of 2.7 V to 5.5 V. Table 4 details the various configuration options of  
the evaluation board.  
TP1  
J3  
LO  
+V  
S
4
3
5
1
R35  
0Ω  
T1  
ETC 1-1-13  
R37  
0Ω  
J6  
IOPN  
J1  
C2  
100pF  
C3  
QOPN  
100pF  
R17  
R36  
200Ω  
0Ω  
J5  
IOPP  
R38  
0Ω  
C6  
C5  
C1  
0.1μF  
AD8347  
0.1μF 100pF  
J2  
QOPP  
1
2
LOIP  
LOIN 28  
J11  
VCMO  
VPS1  
IOPN  
IOPP  
VCMO  
IAIN  
COM1 27  
QOPN 26  
QOPP 25  
3
L6  
L5  
(OPEN)  
L4  
(OPEN)  
(OPEN)  
R33  
0Ω  
4
R34  
(OPEN)  
5
24  
23  
22  
21  
20  
19  
18  
R6  
QAIN  
COM3  
QMXO  
VPS3  
VDT1  
VAGC  
VDT2  
J8  
QMXO  
0Ω  
L3  
(OPEN)  
L2  
(OPEN)  
L1  
(OPEN)  
TP5  
6
LK4  
R40  
C30  
C26  
C31  
(OPEN) (OPEN) (OPEN)  
R8  
(OPEN)  
LK5  
R39  
7
COM3  
IMXO  
COM2  
RFIN  
RFIP  
+V  
S
J7  
IMXO  
C28  
C25  
C29  
C27  
(OPEN)  
8
C9  
0.1μF  
C10  
100pF  
LK6  
(OPEN)  
(OPEN) (OPEN)  
C18  
(OPEN)  
C4  
(OPEN)  
C19  
(OPEN)  
(OPEN)  
TP4  
9
J9  
VAGC  
10  
11  
12  
13  
14  
C11  
100pF  
C21  
(OPEN)  
C15  
0.1μF  
C22  
(OPEN)  
C20  
(OPEN)  
C17  
LK3  
(OPEN)  
(OPEN)  
R18  
200Ω  
J4  
C12  
100pF  
VGIN 17  
VPS2  
IOFS  
VREF  
LK1  
C7  
RFIP  
J10  
TP6  
16  
QOFS  
+V  
S
VGIN  
V
C8  
100pF  
POS  
15  
ENBL  
A
0.1μF  
TP2  
TP3  
C14  
0.1μF  
SW1  
LK2  
C13  
0.1μF  
B
C16  
0.1μF  
Figure 53. Evaluation Board Schematic  
Rev. A | Page 23 of 28  
 
 
AD8347  
Figure 54. Silkscreen of Component Side  
Figure 55. Layout of Component Side  
Figure 56. Layout of Circuit Side  
Rev. A | Page 24 of 28  
AD8347  
Table 4. Evaluation Board Configuration Options  
Component  
TP1, TP4, TP5  
TP2, TP6  
TP3  
Function  
Default Condition  
Not applicable  
Not applicable  
Not applicable  
LK1 installed  
Power Supply and Ground Vector Pins.  
IOFS and QOFS Probe Points.  
VREF Probe Point.  
LK1, J11  
Baseband Amplifier Output Bias. Installing this link connects VREF to VCMO setting  
the bias level on the baseband amplifiers to VREF, which is equal to approximately  
1 V. Alternatively, the bias level of the baseband amplifiers can be set by applying  
an external voltage to SMA Connector J11.  
LK2, LK6, LK3, J9,  
J10  
AGC Mode. Installing LK2 and LK6 connects IMXO and QMXO, the mixer outputs, to  
VDT2 and VDT1, the detector inputs. By installing LK3, which connects VGIN to  
VAGC, the AGC mode is activated. The AGC voltage can be observed on SMA  
Connector J9. With LK3 removed, apply the gain control signal for the internal  
variable gain amplifiers to SMA Connector J10.  
LK2, LK6, LK3 installed  
LK4, LK5, J7, J8  
R6, R33,  
Baseband Filtering. Installing LK4 and LK5 connects IMXO and QMXO, the mixer  
outputs, directly to IAIN and QAIN, the baseband amplifier inputs. With R6 and R33  
installed (0 Ω), IAIN and QAIN can be observed on SMA Connector J7 and SMA  
Connector J8. By removing LK4 and LK5 and installing R8 and R34, LC filters can be  
inserted between the mixer outputs and the baseband amplifier inputs. R8 and R34  
can be used to increase the effective output impedance of IMXO and QMXO (these  
outputs have low output impedances). R39 and R40 can be used to provide  
terminations for the filter at IAIN and QAIN (high impedance inputs.) Terminate R39  
and R40 to VREF.  
LK4, LK5 installed  
R6 = R33 = 0 Ω (Size 0603)  
L1 to L5  
L1 to L5 = open (Size 0805), C4,  
C17 to C22, C25 to C31 = open  
(Size 0805), R8 = R34 = open  
(Size 0603), R39 = R40 = open  
(Size 0603)  
C4, C17 to C22,  
C25 to C31  
R8, R34, R39, R40  
R35, R36, R37, R38 Baseband Amplifier Output Series Resistors.  
R35 = R36 = R37 = R38 = 0 Ω  
(Size 0603)  
SW1 Device Enable. When in Position A, the ENBL pin is connected to +VS and the  
SW1 = A  
AD8347 is in operating mode. In Position B, the ENBL pin is grounded, putting the  
device in power-down mode.  
Rev. A | Page 25 of 28  
 
AD8347  
OUTLINE DIMENSIONS  
9.80  
9.70  
9.60  
28  
15  
4.50  
4.40  
4.30  
6.40 BSC  
1
14  
PIN 1  
0.65  
BSC  
1.20 MAX  
0.15  
0.05  
8°  
0°  
0.75  
0.60  
0.45  
0.30  
0.19  
0.20  
0.09  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AE  
Figure 57. 28-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-28)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
AD8347ARU  
AD8347ARU-REEL7  
AD8347ARUZ1  
AD8347ARUZ-REEL71  
AD8347-EVAL  
Temperature Range  
Package Description  
28-Lead TSSOP  
28-Lead TSSOP, 7Tape and Reel  
28-Lead TSSOP  
28-Lead TSSOP, 7Tape and Reel  
Evaluation Board  
Package Option  
RU-28  
RU-28  
RU-28  
RU-28  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
1 Z = Pb-free part.  
Rev. A | Page 26 of 28  
 
 
 
AD8347  
NOTES  
Rev. A | Page 27 of 28  
AD8347  
NOTES  
©
2005 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C02675-0-10/05(A)  
Rev. A | Page 28 of 28  

相关型号:

AD8347ARUZ-REEL7

0.8 GHz to 2.7 GHz Direct Conversion
ADI

AD8347ARUZ-REEL7

800MHz - 2700MHz RF/MICROWAVE QUADRAPHASE DEMODULATOR, MO-153AE, RU-28, TSSOP-28
ROCHESTER

AD8348

50-1000 MHz Quadrature Demodulator
ADI

AD8348-EVAL

50-1000 MHz Quadrature Demodulator
ADI

AD8348ARUZ

50 MHz to 1000 MHz Quadrature Demodulator
ADI

AD8348ARUZ-REEL7

50 MHz to 1000 MHz Quadrature Demodulator
ADI

AD8348XXX

50-1000 MHz Quadrature Demodulator
ADI

AD8349

700 MHz to 2700 MHz Quadrature Modulator
ADI

AD8349ARE

700 MHz to 2700 MHz Quadrature Modulator
ADI

AD8349ARE-REEL7

700 MHz to 2700 MHz Quadrature Modulator
ADI

AD8349AREZ

700 MHz to 2700 MHz Quadrature Modulator
ADI

AD8349AREZ-REEL7

RF/Microwave Modulator/Demodulator, 700 MHz - 2700 MHz RF/MICROWAVE QPSK MODULATOR, LEAD FREE, MO-153ABT, TSSOP-16
ADI