AD8348ARUZ-REEL7 [ADI]

50 MHz to 1000 MHz Quadrature Demodulator; 50 MHz至1000 MHz的正交解调器
AD8348ARUZ-REEL7
型号: AD8348ARUZ-REEL7
厂家: ADI    ADI
描述:

50 MHz to 1000 MHz Quadrature Demodulator
50 MHz至1000 MHz的正交解调器

文件: 总28页 (文件大小:929K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
50 MHz to 1000 MHz  
Quadrature Demodulator  
AD8348  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
VREF  
IMXO  
IOFS  
IAIN  
IOPP IOPN  
Integrated I/Q demodulator with IF VGA amplifier  
Operating IF frequency 50 MHz to 1000 MHz  
(3 dB IF BW of 500 MHz driven from RS = 200 Ω)  
Demodulation bandwidth 75 MHz  
Linear-in-decibel AGC range 44 dB  
Third-order intercept  
14  
8
13  
6
4
3
BIAS  
CELL  
VREF  
ENBL 15  
5
1
VCMO  
LOIP  
VCMO  
DIVIDE  
BY 2  
IFIP 11  
IFIN 10  
PHASE  
SPLITTER  
28  
LOIN  
IIP3 +28 dBm @ minimum gain (FIF = 380 MHz)  
IIP3 −8 dBm @ maximum gain (FIF = 380 MHz)  
Quadrature demodulation accuracy  
Phase accuracy 0.5°  
Amplitude balance 0.25 dB  
Noise figure 11 dB @ maximum gain (FIF = 380 MHz)  
LO input −10 dBm  
AD8348  
GAIN  
CONTROL  
VGIN 17  
VCMO  
25  
26  
23  
18  
19  
24  
21  
16  
MXIP MXIN ENVG  
QXMO  
QOFS  
QAIN  
QOPP QOPN  
Figure 1.  
Single supply 2.7 V to 5.5 V  
Power-down mode  
Compact, 28-lead TSSOP package  
APPLICATIONS  
QAM/QPSK demodulator  
W-CDMA/CDMA/GSM/NADC  
Wireless local loop  
LMDS  
GENERAL DESCRIPTION  
The AD8348 is a broadband quadrature demodulator with an  
integrated intermediate frequency (IF), variable gain amplifier  
(VGA), and integrated baseband amplifiers. It is suitable for use in  
communications receivers, performing quadrature demodulation  
from IF directly to baseband frequencies. The baseband amplifiers  
are designed to interface directly with dual-channel ADCs, such  
as the AD9201, AD9283, and AD9218, for digitizing and post-  
processing.  
Separate I- and Q-channel baseband amplifiers follow the baseband  
outputs of the mixers. The voltage applied to the VCMO pin sets  
the dc common-mode voltage level at the baseband outputs.  
Typically, VCMO is connected to the internal VREF voltage, but  
it can also be connected to an external voltage. This flexibility  
allows the user to maximize the input dynamic range to the ADC.  
Connecting a bypass capacitor at each offset compensation input  
(IOFS and QOFS) nulls dc offsets produced in the mixer. Offset  
compensation can be overridden by applying an external voltage  
at the offset compensation inputs.  
The IF input signal is fed into two Gilbert cell mixers through  
an X-AMP® VGA. The IF VGA provides 44 dB of gain control.  
A precision gain control circuit sets a linear-in-decibel gain char-  
acteristic for the VGA and provides temperature compensation.  
The LO quadrature phase splitter employs a divide-by-2 frequency  
divider to achieve high quadrature accuracy and amplitude balance  
over the entire operating frequency range.  
The mixers’ outputs are brought off-chip for optional filtering  
before final amplification. Inserting a channel selection filter  
before each baseband amplifier increases the baseband amplifiers’  
signal handling range by reducing the amplitude of high level,  
out-of-channel interferers before the baseband signal is fed into  
the I/Q baseband amplifiers. The single-ended mixer output is  
amplified and converted to a differential signal for driving ADCs.  
Optionally, the IF VGA can be disabled and bypassed. In this  
mode, the IF signal is applied directly to the quadrature mixer  
inputs via the MXIP and MXIN pins.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
AD8348  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Enable........................................................................................... 18  
Baseband Offset Cancellation................................................... 18  
Applications..................................................................................... 20  
Basic Connections...................................................................... 20  
Power Supply............................................................................... 20  
Device Enable ............................................................................. 20  
VGA Enable ................................................................................ 20  
Gain Control ............................................................................... 20  
LO Inputs..................................................................................... 20  
IF Inputs ...................................................................................... 20  
MX Inputs ................................................................................... 20  
Baseband Outputs ...................................................................... 21  
Output DC Bias Level................................................................ 21  
Interfacing to Detector for AGC Operation............................... 21  
Baseband Filters.......................................................................... 22  
LO Generation............................................................................ 23  
Evaluation Board........................................................................ 23  
Outline Dimensions....................................................................... 28  
Ordering Guide .......................................................................... 28  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Equivalent Circuits........................................................................... 9  
Typical Performance Characteristics ........................................... 11  
VGA and Demodulator ............................................................. 11  
Demodulator Using MXIP and MXIN.................................... 14  
Final Baseband Amplifiers ........................................................ 15  
VGA/Demodulator and Baseband Amplifier......................... 16  
Theory of Operation ...................................................................... 18  
VGA.............................................................................................. 18  
Downconversion Mixers ........................................................... 18  
Phase Splitter............................................................................... 18  
I/Q Baseband Amplifiers........................................................... 18  
REVISION HISTORY  
4/06—Rev. 0 to Rev. A  
Updated Format..................................................................Universal  
Changes to Specifications................................................................ 3  
Changes to IF Inputs Section ........................................................ 20  
Changes to Evaluation Board Section.......................................... 23  
Changes to Table 6.......................................................................... 27  
Changes to Ordering Guide .......................................................... 28  
8/03—Revision 0: Initial Version  
Rev. A | Page 2 of 28  
 
AD8348  
SPECIFICATIONS  
VS = 5 V, TA = 25oC, FLO = 380 MHz, FIF = 381 MHz, PLO = −10 dBm, RS (LO) = 50 Ω, RS (IFIP and MXIP/MXIN) = 200 Ω, unless  
otherwise noted.  
Table 1.  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
OPERATING CONDITIONS  
LO Frequency Range  
IF Frequency Range  
Baseband Bandwidth  
LO Input Level  
VSUPPLY (VS)  
Temperature Range  
IF FRONT END WITH VGA  
External input = 2 × LO frequency  
100  
50  
2000 MHz  
1000 MHz  
MHz  
75  
−10  
50 Ω source  
−12  
2.7  
−40  
0
5.5  
+85  
dBm  
V
°C  
IFIP to IMXO (QMXO),  
ENVG = 5 V, IMXO/QMXO load = 1.5 kΩ  
Measured differentially across MXIP/MXIN  
Input Impedance  
Gain Control Range  
200||1.1  
44  
Ω||pF  
dB  
Maximum Conversion Voltage Gain  
Minimum Conversion Voltage Gain  
3 dB Bandwidth  
Gain Control Linearity  
IF Gain Flatness  
VGIN = 0.2 V (maximum voltage gain)  
VGIN = 1.2 V (minimum voltage gain)  
25.5  
−18.5  
500  
0.5  
0.1  
dB  
dB  
MHz  
dB  
dB p-p  
dB p-p  
VGIN = 0.4 V (+21 dB) to 1.1 V (−14 dB)  
FIF = 380 MHz 5% (VGIN = 1.2 V)  
FIF = 900 MHz 5% (VGIN = 1.2 V)  
1.3  
Input 1 dB Compression Point (P1dB)  
Second-Order Input Intercept (IIP2)  
VGIN = 0.2 V (maximum gain)  
VGIN = 1.2 V (maximum gain)  
IF1 = 385 MHz, IF2 = 386 MHz  
+3 dBm each tone from 200 Ω source,  
VGIN = 1.2 V (minimum gain)  
−42 dBm each tone from 200 Ω source,  
VGIN = 0.2 V (maximum gain)  
IF1 = 381 MHz, IF2 = 381.02 MHz  
−22  
+13  
dBm  
dBm  
65  
18  
dBm  
dBm  
Third-Order Input Intercept (IIP3)  
Each tone 10 dB below P1dB from  
200 Ω source,  
VGIN = 1.2 V (minimum gain)  
Each tone 10 dB below P1dB from  
200 Ω source,  
28  
−8  
dBm  
dBm  
VGIN = 0.2 V (maximum gain)  
LO Leakage  
Measured at IFIP, IFIN  
−80  
−60  
75  
0.1  
−0.0032  
+0.01  
0.05  
0
0.0125  
10.75  
dBm  
dBm  
MHz  
Degrees  
°/°C  
°/MHz  
dB  
dB/°C  
dB  
Measured at IMXO/QMXO (LO = 50 MHz)  
Small signal 3 dB bandwidth  
LO = 380 MHz (LOIP/LOIN 760 MHz)  
vs. temperature  
Demodulation Bandwidth  
Quadrature Phase Error1  
−0.7  
−0.3  
+0.7  
+0.3  
vs. baseband frequency (dc to 30 MHz)  
I/Q Amplitude Imbalance1  
vs. temperature  
vs. baseband frequency (dc to 30 MHz)  
Maximum gain, from 200 Ω source,  
FIF = 380 MHz  
Noise Figure (Double Sideband)  
Mixer Output Impedance  
dB  
40  
Ω
Capacitive Load  
Resistive Load  
Mixer Peak Output Current  
Shunt from IMXO, QMXO to VCMO  
Shunt from IMXO, QMXO to VCMO  
0
200  
10  
pF  
kΩ  
mA  
1.5  
2.5  
Rev. A | Page 3 of 28  
 
AD8348  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
IF FRONT END WITHOUT VGA  
From MXIP, MXIN to IMXO (QMXO),  
ENVG = 0 V, IMXO/QMXO load = 1.5 kΩ  
Measured differentially across MXIP/MXIN  
Input Impedance  
200||1.5  
10.5  
75  
0.1  
0.15  
−4  
Ω||pF  
dB  
MHz  
dB p-p  
dB p-p  
dBm  
dBm  
Conversion voltage Gain  
3 dB Output Bandwidth  
IF Gain Flatness  
FIF = 380 MHZ 5%  
FIF = 900 MHZ 5%  
Input 1 dB Compression Point (P1dB)  
Third-Order Input Intercept (IIP3)  
IF1 = 381 MHz, IF2 = 381.02 MHz  
14  
Each tone 10 dB below P1dB from  
200 Ω source  
LO Leakage  
Measured at MXIP/MXIN  
Measured at IMXO, QMXO  
Small signal 3 dB bandwidth  
LO = 380 MHz (LOIP/LOIN 760 MHz,  
single-ended)  
−70  
−60  
75  
dBm  
dBm  
MHz  
Demodulation Bandwidth  
Quadrature Phase Error  
−2  
0.5  
+2  
Degrees  
I/Q Amplitude Imbalance  
Noise Figure (Double Sideband)  
I/Q BASEBAND AMPLIFIER  
0.25  
21  
dB  
dB  
From 200 Ω source, FIF = 380 MHz  
From IAIN to IOPP/IOPN and QAIN to QOPP/  
QOPN, RLOAD = 2 kΩ, single-ended to ground  
Gain  
20  
dB  
Bandwidth  
Output DC Offset (Differential)  
10 pF differential load  
LO leakage offset corrected using 500 pF  
capacitor on IOFS, QOFS (VIOPP − VIOPN  
(VIOPP + VIOPN)/2 − VCMO  
0 MHz to 50 MHz  
125  
12  
MHz  
mV  
−50  
−75  
+50  
+75  
)
Output Common-Mode Offset  
Group Delay Flatness  
Input-Referred Noise Voltage  
Output Swing Limit (Upper)  
Output Swing Limit (Lower)  
Peak Output Current  
35  
3
8
mV  
ns p-p  
nV/√Hz  
V
V
mA  
Frequency = 1 MHz  
VS −1  
0.5  
1
Input Impedance  
Input Bias Current  
50||1  
2
kΩ||pF  
μA  
RESPONSE FROM IF AND MX INPUTS TO  
BASEBAND AMPLIFIER OUTPUT  
IMXO and QMXO connected directly to  
IAIN and QAIN, respectively  
Gain  
From MXIP/MXIN  
From IFIP/IFIN, VGIN = 0.2 V  
From IFIP/IFIN, VGIN = 1.2 V  
30.5  
45.5  
1.5  
dB  
dB  
dB  
CONTROL INPUT/OUTPUTS  
VCMO Input Range  
VS = 5 V  
VS = 2.7 V  
0.5  
0.5  
0.95  
0.2  
−55  
55  
1
1
1
4
V
V
V
V
dB/V  
dB  
1.7  
1.05  
1.2  
−45  
67  
VREF Output Voltage  
Gain Control Voltage Range  
Gain Slope  
VGIN  
−50  
61  
Gain Intercept  
Linear extrapolation back to theoretical  
gain at VGIN = 0 V  
Gain Control Input Bias Current  
LO INPUTS  
1
μA  
dB  
LOIP Input Return Loss  
LOIN ac-coupled to ground  
(760 MHz applied to LOIP)  
−6  
Rev. A | Page 4 of 28  
AD8348  
Parameter  
Conditions  
Min  
Typ  
Max Unit  
POWER-UP CONTROL  
ENBL Threshold Low  
ENBL Threshold High  
Input Bias Current  
Power-Up Time  
Low = standby  
High = enable  
0
VS/2  
VS/2  
2
1
VS  
V
V
μA  
μs  
VS − 1  
Time for final baseband amplifiers to be  
within 90% of final amplitude  
45  
Power-Down Time  
Time for supply current to be <10% of  
enabled value  
700  
ns  
POWER SUPPLIES  
Voltage  
Current (Enabled)  
Current (Standby)  
VPOS1, VPOS2, VPOS3  
2.7  
38  
5.5  
58  
V
mA  
μA  
VS = 5 V, VENBL = 5 V  
VS = 5 V, VENBL = 0 V  
48  
75  
1 These parameters are guaranteed but not tested in production. Limits are ±6 Σ from the mean.  
Rev. A | Page 5 of 28  
AD8348  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Parameter  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rating  
Supply Voltage on VPOS1, VPOS2, VPOS3 Pins 5.5 V  
LO Input Power  
IF Input Power  
Internal Power Dissipation  
θJA  
Maximum Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
Lead Temperature (Soldering, 60 sec)  
10 dBm (re: 50 Ω)  
18 dBm (re: 200 Ω)  
450 mW  
68°C/W  
150°C  
−40°C to +85°C  
−65°C to +125°C  
300°C  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. A | Page 6 of 28  
 
AD8348  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
LOIP  
VPOS1  
IOPN  
IOPP  
LOIN  
2
COM1  
QOPN  
QOPP  
ENVG  
QAIN  
AD8348  
3
TOP VIEW  
(Not to Scale)  
4
5
VCMO  
IAIN  
6
7
COM3  
IMXO  
COM2  
IFIN  
COM3  
QMXO  
VPOS3  
MXIN  
8
9
10  
11  
12  
13  
14  
IFIP  
MXIP  
VPOS2  
IOFS  
VGIN  
QOFS  
ENBL  
VREF  
Figure 2. 28-Lead TSSOP Pin Configuration  
Table 3. Pin Function Descriptions—28-Lead TSSOP  
Equivalent  
Circuit  
Pin No.  
Mnemonic  
Description  
1, 28  
LOIP, LOIN  
LO Inputs. For optimum performance, these inputs should be ac-coupled and driven  
differentially. Differential drive from single-ended sources can be achieved via a balun.  
To obtain a broadband 50 Ω input impedance, connect a 60.4 Ω shunt resistor between  
LOIP and LOIN. Typical input drive level is equal to −10 dBm.  
A
2, 12, 20  
3, 4, 25, 26  
5
VPOS1, VPOS2,  
VPOS3  
IOPN, IOPP,  
QOPP, QOPN  
VCMO  
Positive Supply for LO, IF, and Biasing and Baseband Sections, Respectively. These pins  
should be decoupled with 0.1 μF and 100 pF capacitors.  
I- and Q-Channel Differential Baseband Outputs. Typical output swing is equal to 2 V p-p  
differential. The dc common-mode voltage level on these pins is set by the voltage on VCMO.  
Baseband DC Common-Mode Voltage. The voltage applied to this pin sets the dc  
common-mode levels for all the baseband outputs and inputs (IMXO, QMXO, IOPP, IOPN,  
QOPP, QOPN, IAIN, and QAIN). This pin can be connected either to VREF or to a reference  
voltage from another device (typically an ADC).  
B
C
6, 23  
IAIN, QAIN  
I- and Q-Channel Baseband Amplifier Inputs. The single-ended signals on these pins are  
referenced to VCMO and must have a dc bias equal to the dc voltage on the VCMO pin. If  
IMXO (QMXO) is dc-coupled to IAIN (QAIN), biasing will be provided by IMXO (QMXO). If  
an ac-coupled filter is placed between IMXO and IAIN, these pins can be biased from the  
source driving VCMO through a 1 kΩ resistor. The gain from IAIN/QAIN to the differential  
outputs (IOPP/IOPN and QOPP/QOPN) is 20 dB.  
D
7, 22  
8, 21  
COM3  
IMXO, QMXO  
Ground for Biasing and Baseband Sections.  
I- and Q-Channel Mixer Baseband Outputs. These are low impedance (40 Ω) outputs whose  
bias levels are set by the voltage applied to the VCMO pin. These pins are typically connected  
to IAIN and QAIN, respectively, either directly or through a filter. Each output can drive a  
maximum current of 2.5 mA.  
H
E
9
COM2  
IFIN, IFIP  
IF Section Ground.  
10, 11  
IF Inputs. IFIN should be ac-coupled to ground. The single-ended IF input signal should  
be ac-coupled into IFIP. The nominal differential input impedance of these pins is 200 Ω.  
For a broadband 50 Ω input impedance, a minimum-loss L pad should be used; RSERIES = 174 Ω,  
RSHUNT = 57.6 Ω. This provides a 200 Ω source impedance to the IF input. However, the AD8348  
does not necessarily require a 200 Ω source impedance, and a single shunt 66.7 Ω resistor  
can be placed between IFIP and IFIN.  
13, 16  
14  
IOFS, QOFS  
VREF  
I- and Q-Channel Offset Nulling Inputs. DC offsets on the I-channel mixer output (IMXO)  
can be nulled by connecting a 0.1 μF capacitor from IOFS to ground. Driving IOFS with a  
fixed voltage (typically a DAC calibrated such that the offset at IOPP/IOPN is nulled) can  
extend the operating frequency range to include dc. The QOFS pin can likewise be used  
to null offsets on the Q-channel mixer output (QMXO).  
Reference Voltage Output. This output voltage (1 V) is the main bias level for the device  
and can be used to externally bias the inputs and outputs of the baseband amplifiers.  
The typical maximum drive current for this output is 2 mA.  
F
G
Rev. A | Page 7 of 28  
 
AD8348  
Equivalent  
Circuit  
Pin No.  
15  
17  
Mnemonic  
ENBL  
VGIN  
Description  
Chip Enable Input. Active high. Threshold is equal to VS/2.  
D
D
Gain Control Input. The voltage on this pin controls the gain on the IF VGA. The gain  
control voltage range is from 0.2 V to 1.2 V and corresponds to a conversion gain range  
from +25.5 dB to −18.5 dB. This is the gain to the output of the mixers (that is, IMXO and  
QMXO). There is an additional 20 dB of fixed gain in the final baseband amplifiers (IAIN to  
IOPP/IOPN and QAIN to QOPP/QOPN). Note that the gain control function has a negative  
sense (that is, increasing voltage decreases gain).  
18, 19  
24  
MXIP, MXIN  
ENVG  
Auxiliary Mixer Inputs. If ENVG is low, the IFIP and IFIN inputs are disabled and MXIP and  
MXIN are enabled, allowing the VGA to be bypassed. The auxiliary mixer inputs are fully  
differential inputs that should be ac-coupled to the signal source.  
Active High VGA Enable. When ENVG is high, IFIP and IFIN inputs are enabled and MXIP  
and MXIN inputs are disabled. When ENVG is low, MXIP and MXIN inputs are enabled and  
IFIP and IFIN inputs are disabled.  
I
D
27  
COM1  
LO Section Ground.  
Rev. A | Page 8 of 28  
AD8348  
EQUIVALENT CIRCUITS  
VPOS1  
VPOS3  
LOIN  
LOIP  
IAIN, QAIN, VGIN,  
ENBL, ENVG  
COM1  
COM3  
Figure 3. Circuit A  
Figure 6. Circuit D  
VPOS3  
VPOS2  
IFIP  
IFIN  
IOPP, IOPN,  
QOPP, QOPN  
VCMO  
COM3  
COM3  
Figure 7. Circuit E  
Figure 4. Circuit B  
VPOS3  
50µA  
MAX  
VPOS3  
IOFS,  
QOFS  
VCMO  
COM3  
COM3  
Figure 5. Circuit C  
Figure 8. Circuit F  
Rev. A | Page 9 of 28  
 
AD8348  
VPOS3  
VPOS2  
VREF  
MXIP  
MXIN  
COM2  
COM3  
Figure 9. Circuit G  
Figure 11. Circuit I  
VPOS3  
IMXO,  
QMXO  
COM3  
Figure 10. Circuit H  
Rev. A | Page 10 of 28  
AD8348  
TYPICAL PERFORMANCE CHARACTERISTICS  
VGA AND DEMODULATOR  
30  
25  
20  
15  
10  
5
4
25  
20  
4
LINERR T = +85°C, VPOS = 2.7V, FREQ = 900MHz  
LINERR T = +25°C, VPOS = 2.7V, FREQ = 900MHz  
LINERR T = +85°C, VPOS = 5V, FREQ = 380MHz  
3
3
LINERR T = +25°C, VPOS = 5V, FREQ = 380MHz  
LINERR T = –40°C, VPOS = 2.7V,  
FREQ = 900MHz  
LINERR T = –40°C, VPOS = 5V, FREQ = 380MHz  
2
15  
2
1
10  
1
0
5
0
–1  
–2  
–3  
–4  
–5  
–6  
0
–1  
–2  
–3  
–4  
–5  
0
–5  
T = +85°C, VPOS = 2.7V,  
FREQ = 900MHz  
T = +85°C, VPOS = 5V, FREQ = 380MHz  
–5  
–10  
–15  
–20  
–10  
–15  
–20  
–25  
T = +25°C, VPOS = 5V, FREQ = 380MHz  
T = –40°C, VPOS = 5V, FREQ = 380MHz  
T = +25°C, VPOS = 2.7V, FREQ = 900MHz  
T = –40°C, VPOS = 2.7V, FREQ = 900MHz  
–6  
1.2  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
VGIN (V)  
VGIN (V)  
Figure 12. Mixer Gain and Linearity Error vs. VGIN, VPOS = 5 V, FIF = 380 MHz,  
FBB = 1 MHz, Temperature = −40°C, +25°C, +85°C  
Figure 15. Mixer Gain and Linearity Error vs. VGIN, VPOS = 2.7 V, FIF = 900 MHz,  
FBB = 1 MHz, Temperature = −40°C, +25°C, +85°C  
28  
26  
25  
20  
4
LINERR T = +85°C, VPOS = 5V, FREQ = 900MHz  
LINERR T = +25°C, VPOS = 5V, FREQ = 900MHz  
3
LINERR T = –40°C, VPOS = 5V,  
FREQ = 900MHz  
15  
2
10  
1
24  
5
0
5V, 0.2V, +25°C  
0
–1  
–2  
–3  
–4  
–5  
–6  
22  
–5  
T = +85°C, VPOS = 5V,  
FREQ = 900MHz  
2.7V, 0.2V, +25°C  
5V, 0.2V, +85°C  
–10  
–15  
–20  
–25  
2.7V, 0.2V, +85°C  
T = +25°C, VPOS = 5V, FREQ = 900MHz  
T = –40°C, VPOS = 5V, FREQ = 900MHz  
20  
5V, 0.2V, –40°C  
2.7V, 0.2V, –40°C  
18  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
100 200  
300  
400  
500  
600 700  
800 900 1000  
VGIN (V)  
IF FREQUENCY (MHz)  
Figure 13. Mixer Gain and Linearity Error vs. VGIN, VPOS = 5 V, FIF = 900 MHz,  
FBB = 1 MHz, Temperature = −40°C, +25°C, +85°C  
Figure 16. Gain vs. FIF, VGIN = 0.2 V, FBB = 1 MHz,  
Temperature = −40°C, +25°C, +85°C  
–15  
–20  
–25  
–30  
30  
25  
20  
15  
10  
5
4
LINERR T = +85°C, VPOS = 2.7V, FREQ = 380MHz  
LINERR T = +25°C, VPOS = 2.7V, FREQ = 380MHz  
5V, 1.2V, +85°C  
3
LINERR T = –40°C, VPOS = 2.7V,  
FREQ = 380MHz  
2
2.7V, 1.2V, +85°C  
1
0
5V, 1.2V, –40°C  
2.7V, 1.2V, +25°C  
–1  
–2  
–3  
–4  
–5  
–6  
0
T = +85°C, VPOS = 2.7V,  
FREQ = 380MHz  
2.7V, 1.2V, –40°C  
5V, 1.2V, +25°C  
–5  
–10  
–15  
–20  
T = +25°C, VPOS = 2.7V, FREQ = 380MHz  
T = –40°C, VPOS = 2.7V, FREQ = 380MHz  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
100 200  
300  
400  
500  
600 700  
800 900 1000  
VGIN (V)  
IF FREQUENCY (MHz)  
Figure 14. Mixer Gain and Linearity Error vs. VGIN, VPOS = 2.7 V, FIF = 380 MHz,  
FBB = 1 MHz, Temperature = −40°C, +25°C, +85°C  
Figure 17. Gain vs. FIF, VGIN = 1.2 V, FBB = 1 MHz,  
Temperature = −40°C, +25°C, +85°C  
Rev. A | Page 11 of 28  
 
AD8348  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
20  
15  
10  
5
–40°C, 5V, 900MHz  
5V, 0.2V, +25°C  
+25°C, 2.7V, 900MHz  
2.7V, 0.2V, +85°C  
+25°C, 5V, 900MHz  
+85°C, 2.7V, 900MHz  
5V, 0.2V, –40°C  
2.7V, 0.2V, +25°C  
2.7V, 0.2V, –40°C  
0
5V, 0.2V, +85°C  
–5 +85°C, 5V, 900MHz  
–10  
–15  
–20  
–40°C, 2.7V, 900MHz  
17  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
BASEBAND FREQUENCY (MHz)  
VGIN (V)  
Figure 18. Gain vs. FBB, VGIN = 0.2 V, FIF = 380 MHz, VPOS = 2.7 V, 5 V,  
Temperature = −40°C, +25°C, +85°C  
Figure 21. Input 1 dB Compression Point (IP1dB) vs. VGIN, FIF = 900 MHz,  
F
BB = 1 MHz, VPOS = 2.7 V, 5 V, Temperature = −40°C, +25°C, +85°C  
–17  
30  
29  
28  
27  
26  
25  
24  
5V, 1.2V, +85°C  
5V, 1.2V, +25°C  
2.7V, 1.2V, +85°C  
–20  
5V, 1.2V, +85°C  
2.7V, 1.2V, +85°C  
2.7V, 1.2V, +25°C  
5V, 1.2V, +25°C  
–23  
2.7V, 1.2V, +25°C  
5V, 1.2V, –40°C  
5V, 1.2V, –40°C  
2.7V, 1.2V, –40°C  
2.7V, 1.2V, –40°C  
400 500 600  
IF FREQUENCY (MHz)  
–26  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
100  
200  
300  
700  
800 900 1000  
BASEBAND FREQUENCY (MHz)  
Figure 19. Gain vs. FBB, VGIN = 1.2 V, FIF = 380 MHz, VPOS = 2.7 V, 5 V,  
Temperature = −40°C, +25°C, +85°C  
Figure 22. IIP3 vs. FIF, VGIN = 1.2 V, FBB = 1 MHz, VPOS = 2.7 V, 5 V,  
Temperature = −40°C, +25°C, +85°C, Tone Spacing = 20 kHz  
15  
0
+25°C, 5V, 380MHz  
5V, 0.2V, +85°C  
10  
–40°C, 5V, 380MHz  
2.7V, 0.2V, +85°C  
5
2.7V, 0.2V, +25°C  
–5  
+25°C, 2.7V, 380MHz  
+85°C, 2.7V, 380MHz  
0
–5  
5V, 0.2V, –40°C  
–10  
–15  
–20  
–25  
+85°C, 5V, 380MHz  
–10  
2.7V, 0.2V, –40°C  
5V, 0.2V, +25°C  
–40°C, 2.7V, 380MHz  
–15  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
100 200  
300 400  
500  
600 700 800  
900 1000  
VGIN (V)  
IF FREQUENCY (MHz)  
Figure 20. Input 1 dB Compression Point (IP1dB) vs. VGIN, FIF = 380 MHz,  
BB = 1 MHz, VPOS = 2.7 V, 5 V, Temperature = −40°C, +25°C, +85°C  
Figure 23. IIP3 vs. FIF, VGIN = 0.2 V, FBB = 1 MHz, VPOS = 2.7 V, 5 V,  
Temperature = −40°C, +25°C, +85°C  
F
Rev. A | Page 12 of 28  
AD8348  
32  
30  
28  
26  
24  
22  
45  
40  
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
2.7V, 1.2V, –40°C  
5V, 1.2V, –40°C  
NF  
2.7V, 1.2V, +25°C  
IIP3  
20  
15  
10  
5
2.7V, 1.2V, +85°C  
5V, 1.2V, +25°C  
5V, 1.2V, +85°C  
0
–5  
–10  
0
0.2  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
BASEBAND FREQUENCY (MHz)  
VGIN (V)  
Figure 24. IIP3 vs. FBB, VGIN = 1.2 V, FIF = 380 MHz, VPOS = 2.7 V, 5 V,  
Temperature = −40°C, +25°C, +85°C  
Figure 27. Noise Figure and IIP3 vs. VGIN, Temperature = 25°C,  
F
IF = 380 MHz, FBB = 1 MHz, VPOS = 2.7 V  
0
40  
35  
30  
25  
20  
15  
10  
5
35  
30  
25  
20  
15  
10  
5
NF  
2.7V, 0.2V, +85°C  
5V, 0.2V, +85°C  
–5  
IIP3  
5V, 0.2V, +25°C  
–10  
2.7V, 0.2V, –40°C  
5V, 0.2V, –40°C  
2.7V, 0.2V, +25°C  
–15  
0
–5  
–10  
–20  
0
0.2  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
1.1  
1.2  
BASEBAND FREQUENCY (MHz)  
VGIN (V)  
Figure 25. IIP3 vs. FBB, VGIN = 0.2 V, FIF = 380 MHz, VPOS = 2.7 V, 5 V,  
Temperature = −40°C, +25°C, +85°C  
Figure 28. Noise Figure and IIP3 vs. VGIN, Temperature = 25°C,  
FIF = 380 MHz, FBB = 1 MHz, VPOS = 5 V  
16  
15  
14  
16  
15  
14  
13  
12  
11  
10  
9
2.0  
1.5  
NF @ LO = 900MHz  
1.0  
NF VGIN = 0.2V  
PHASE ERROR 50MHz  
PHASE ERROR 380MHz  
13  
0.5  
12  
11  
10  
9
0
PHASE ERROR 900MHz  
NF @ LO = 380MHz  
–0.5  
–1.0  
–1.5  
–2.0  
NF @ LO = 50MHz  
8
50  
8
–12  
150  
250  
350  
450  
550  
650  
750  
850  
950  
–10  
–8  
–6  
–4  
–2  
0
IF FREQUENCY (MHz)  
LO INPUT LEVEL (V)  
Figure 26. Noise Figure vs. FIF, T = 25°C, VGIN = 0.2 V, FBB = 1 MHz  
Figure 29. Noise Figure and Quadrature Phase Error IMXO/QMXO vs. LO Input  
Level, Temperature = 25°C, VGIN = 0.2 V, VPOS = 5 V for FIF = 50 MHz,  
380 MHz, and 900 MHz  
Rev. A | Page 13 of 28  
AD8348  
DEMODULATOR USING MXIP AND MXIN  
11.0  
18  
17  
16  
15  
14  
13  
12  
11  
10  
23.0  
22.5  
22.0  
21.5  
21.0  
20.5  
20.0  
19.5  
19.0  
NF 5V  
10.5  
10.0  
9.5  
TEMP = –40°C, V  
= 2.7V  
POS  
TEMP = –40°C, V  
= 5V  
POS  
TEMP = +25°C,  
= 5V  
IIP3 5V  
V
POS  
TEMP = +85°C,  
= 2.7V  
NF 2.7V  
9.0  
V
POS  
TEMP = +25°C,  
= 2.7V  
V
POS  
8.5  
IIP3 2.7V  
TEMP = +85°C, V  
200 300 400  
= 5V  
POS  
8.0  
100  
500  
600  
700 800  
900 1000  
50  
150 250 350 450  
550  
650  
750  
850  
950  
IF FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 30. Mixer Gain vs. FIF, VPOS = 2.7 V, 5 V, FBB = 1 MHz,  
Temperature = −40°C, +25°C, +85°C  
Figure 32. IIP3 and Noise Figure vs. FIF, VPOS = 2.7 V, 5 V, Temperature = 25°C  
–1.5  
–2.0  
–2.5  
–3.0  
–3.5  
–4.0  
–4.5  
–5.0  
–5.5  
–6.0  
–6.5  
–7.0  
–7.5  
–8.0  
TEMP = +85°C, V  
= 5V  
POS  
TEMP = +25°C, V  
= 5V  
= 5V  
POS  
TEMP = –40°C, V  
POS  
TEMP = +85°C, V  
= 2.7V  
POS  
TEMP = –40°C, V  
TEMP = +25°C, V  
= 2.7V  
POS  
= 2.7V  
POS  
100  
200 300 400 500  
600  
700 800 900 1000  
IF FREQUENCY (MHz)  
Figure 31. Input 1 dB Compression Point vs. FIF, FBB = 1 MHz, VPOS = 2.7 V, 5 V,  
Temperature = −40°C, +25°C, +85°C  
Rev. A | Page 14 of 28  
 
AD8348  
FINAL BASEBAND AMPLIFIERS  
21  
35  
30  
25  
20  
15  
10  
5
–40°C, 5V  
–40°C, 5V  
+25°C, 5V  
–40°C, 2.7V  
+85°C, 5V  
20  
+85°C, 5V  
+25°C, 2.7V  
19  
18  
17  
16  
15  
14  
13  
+25°C, 5V  
+85°C, 2.7V  
+85°C, 2.7V  
+25°C, 2.7V  
0
–40°C, 2.7V  
–5  
–10  
–15  
0.1  
1
10  
100  
1000  
10  
30  
50  
70  
90  
110  
130 150  
170  
190  
BASEBAND FREQUENCY (MHz)  
BASEBAND FREQUENCY (MHz)  
Figure 33. Gain vs. FBB, VVCMO = VREF = 1 V, VPOS = 2.7 V, 5 V,  
Temperature = −40°C, +25°C, +85°C  
Figure 35. OIP3 vs. FBB, VVCMO = VREF = 1 V, VPOS = 2.7 V, 5 V,  
Temperature = −40°C, +25°C, +85°C  
5
10  
+25°C, 5V  
–40°C, 5V  
+85°C, 5V  
9
8
7
6
5
4
3
2
1
0
0
–5  
+25°C, 2.7V  
–40°C, 2.7V  
+85°C, 2.7V  
–10  
–15  
–20  
0.1  
1
10  
100  
1000  
1
10  
100  
1000  
10000  
100000  
BASEBAND FREQUENCY (MHz)  
FREQUENCY (kHz)  
Figure 34. OP1dB Compression vs. FBB, VVCMO = VREF = 1 V, VPOS = 2.7 V, 5 V,  
Temperature = −40°C, +25°C, +85°C  
Figure 36. Noise Spectral Density  
Rev. A | Page 15 of 28  
 
AD8348  
VGA/DEMODULATOR AND BASEBAND AMPLIFIER  
2.0  
2.0  
1.5  
1.0  
0.5  
1.5  
1.0  
5V, 0.2V, +85°C  
2.7V, 0.2V, –40°C  
0.5  
0
0
–0.5  
–1.0  
–1.5  
–2.0  
5V, 0.2V, –40°C  
2.7V, 0.2V, +85°C  
–0.5  
–1.0  
–1.5  
–2.0  
2.7V, 0.2V, +25°C  
5V, 0.2V, +25°C  
100 200 300 400 500 600 700  
IF FREQUENCY (MHz)  
800  
900 1000  
100 200 300 400 500  
600 700  
800  
900 1000  
IF FREQUENCY (MHz)  
Figure 37. Quadrature Phase Error vs. FIF, VGIN = 0.7 V, VPOS = 2.7 V, 5 V,  
Temperature = −40°C, +25°C, +85°C  
Figure 40. I/Q Amplitude Imbalance vs. FIF, Temperature = 25°C, VPOS = 5 V  
2.0  
300  
280  
260  
240  
220  
200  
180  
160  
140  
120  
100  
2.2  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
2.7V, 0.7V, +25°C  
1.5  
1.0  
0.5  
2.7V, 0.7V, –40°C  
5V, 0.7V, –40°C  
SHUNT CAPACITANCE  
SHUNT RESISTANCE  
0
–0.5  
–1.0  
–1.5  
–2.0  
5V, 0.7V, +85°C  
5V, 0.7V, +25°C  
2.7V, 0.7V, +85°C  
0
5
10  
15  
20  
25  
30  
35  
40  
50  
150  
250  
350 450  
550 650  
750  
850 950  
BASEBAND FREQUENCY (MHz)  
IF FREQUENCY (MHz)  
Figure 38. Quadrature Phase Error vs. FBB, VGIN = 0.7 V, VPOS = 2.7 V, 5 V,  
Temperature = −40°C, +25°C, +85°C, FIF = 380 MHz  
Figure 41. Input Impedance of IF Input vs. FIF, VGIN = 0.7 V, VPOS = 5 V  
90  
60  
120  
0.4  
0.2  
150  
30  
180  
0
5V, 0.7V, 25°C  
IFIP WITH L PAD  
0
210  
330  
IFIP WITHOUT L PAD  
–0.2  
–0.4  
IMPEDANCE CIRCLE  
240  
300  
0
5
10  
15  
20  
25  
30  
35  
40  
BASEBAND FREQUENCY (MHz)  
270  
Figure 39. I/Q Amplitude Imbalance vs. FBB, Temperature = 25°C, VPOS = 5 V  
Figure 42. S11 of IF Input vs. FIF, FIF = 50 MHz to 1 GHz, VGIN = 0.7 V,  
VPOS = 5 V (with L Pad, with No Pad, Normalized to 50 Ω)  
Rev. A | Page 16 of 28  
 
 
AD8348  
0
–5  
300  
280  
260  
240  
220  
200  
180  
160  
140  
120  
100  
2.5  
2.0  
1.5  
1.0  
0.5  
0
–10  
–15  
–20  
–25  
–30  
–35  
(SHUNT CAPACITANCE)  
RETURN LOSS LO INPUT, THROUGH BALUN  
WITH 60.4IN SHUNT BETWEEN LOIP/LOIN  
(SHUNT RESISTANCE)  
IF FREQUENCY (MHz)  
FREQUENCY APPLIED TO LOIP/LOIN (MHz)  
Figure 43. Input Impedance of Mixer Input vs. FIF, VGIN = 0.7 V, VPOS = 5 V  
Figure 46. Return Loss of LO Input vs. External LO Frequency  
Through Balun, with Termination Resistor  
90  
60  
120  
65  
60  
55  
50  
150  
30  
MX INPUTS WITH 4:1 BALUN  
180  
0
V
= 5V  
S
V
= 2.7V  
S
MXIP INPUT PIN  
45  
40  
35  
210  
330  
IMPEDANCE CIRCLE  
270  
240  
300  
–40 –30 –20 –10  
0
10 20 30 40 50 60 70 80  
TEMPERATURE (°C)  
Figure 44. S11 of Mixer Input vs. FIF, FIF = 50 MHz to 1 GHz,  
VGIN = 0.7 V, VPOS = 5 V (With and Without Balun)  
Figure 47. Supply Current vs. Temperature  
0
–5  
RETURN LOSS LOIP PIN SINGLE-ENDED,  
LOIN AC-COUPLED TO GROUND.  
–10  
–15  
–20  
–25  
–30  
–35  
EXTERNAL LO FREQUENCY (MHz)  
Figure 45. Return Loss of LOIP Input vs. External LO Frequency  
Rev. A | Page 17 of 28  
AD8348  
THEORY OF OPERATION  
VREF  
14  
IMXO  
8
IOFS  
13  
IAIN  
6
IOPP IOPN  
4
3
PHASE SPLITTER  
BIAS  
CELL  
Quadrature generation is achieved using a divide-by-2 frequency  
divider. Unlike a polyphase filter that achieves quadrature over  
a limited frequency range, the divide-by-2 approach maintains  
quadrature over a broad frequency range and does not attenuate  
the LO. The user, however, must provide an external signal XLO  
that is twice the frequency of the desired LO frequency. XLO drives  
the clock inputs of two flip-flops that divide down the frequency  
by a factor of 2. The outputs of the two flip-flops are one-half  
period of XLO out of phase. Equivalently, the outputs are one-  
quarter period (90°) of the desired LO frequency out of phase.  
Because the transitions on XLO define the phase difference at  
the outputs, deviation from 50% duty cycle translates directly to  
quadrature phase errors.  
15  
VREF  
ENBL  
5
1
VCMO  
LOIP  
VCMO  
DIVIDE  
BY 2  
11  
10  
IFIP  
IFIN  
PHASE  
SPLITTER  
28 LOIN  
AD8348  
GAIN  
CONTROL  
17  
VGIN  
VCMO  
18  
19  
24  
21  
16  
23  
25  
26  
MXIP MXIN ENVG  
QXMO  
QOFS  
QAIN  
QOPP QOPN  
Figure 48. Functional Block Diagram  
VGA  
The VGA is implemented using the patented X-AMP architecture.  
The single-ended IF signal is attenuated in eight discrete 6 dB  
steps by a passive R-2R ladder. Each discrete attenuated version  
of the IF signal is applied to the input of a transconductance  
stage. The current outputs of all transconductance stages are  
summed together and drive a resistive load at the output of the  
VGA. Gain control is achieved by smoothly turning on and  
off the relevant transconductance stages with a temperature-  
compensated interpolation circuit. This scheme allows the gain  
to continuously vary over a 44 dB range with linear-in-decibel  
gain control. This configuration also keeps the relative dynamic  
range constant (for example, IIP3 − NF in dB) over the gain  
setting; however, the absolute intermodulation intercepts and  
noise figure vary directly with gain. The analog voltage VGIN  
sets the gain. VGIN = 0.2 V is the maximum gain setting, and  
VGIN = 1.2 V is the minimum voltage gain setting.  
If the user generates XLO from a 1× frequency (fREF) and a  
frequency-doubling circuit (XLO = 2 × fREF), fundamentally  
there is a 180° phase uncertainty between fREF and the AD8348  
internal quadrature LO. The phase relationship between I and Q  
LO, however, is always 90°.  
I/Q BASEBAND AMPLIFIERS  
Two (I and Q) fixed gain (20 dB), single-ended-to-differential  
amplifiers are provided to amplify the demodulated signal  
after off-chip filtering. The amplifiers use voltage feedback to  
linearize the gain over the demodulation bandwidth. These  
amplifiers can be used to maximize the dynamic range at the  
input of an ADC following the AD8348.  
The input to the baseband amplifiers, IAIN (QAIN), feeds into  
the base of a bipolar transistor with an input impedance of  
roughly 50 kΩ. The baseband amplifiers sense the single-ended  
difference between IAIN (QAIN) and VCMO. IAIN (QAIN)  
can be dc biased by terminating it with a shunt resistor to  
VCMO, such as when an external filter is inserted between  
IMXO (QMXO) and IAIN (QAIN). Alternatively, any dc  
connection to IMXO (QXMO) can provide appropriate bias via  
the offset-nulling loop.  
DOWNCONVERSION MIXERS  
The output of the VGA drives two (I and Q) double-balanced  
Gilbert cell downconversion mixers. Alternatively, driving the  
ENVG pin low can disable the VGA, and the mixers can be  
externally driven directly via the MXIP and MXIN ports. At  
the input of the mixer, a degenerated differential pair performs  
linear voltage-to-current conversions. The differential output  
current feeds into the mixer core where it is downconverted by  
the mixing action of the Gilbert cell. The phase splitter provides  
quadrature LO signals that drive the LO ports of the in-phase  
and quadrature mixers.  
ENABLE  
A master biasing cell that can be disabled using the ENBL pin  
controls the biasing for the chip. If the ENBL pin is held low,  
the entire chip powers down to a low power sleep mode,  
typically consuming 75 μA at 5 V.  
Buffers at the output of each mixer drive the IMXO and QMXO  
pins. These linear, low output impedance buffers drive 40 Ω,  
temperature-stable, passive resistors in series with each output  
pin (IMXO and QMXO). This 40 Ω should be considered when  
calculating the reverse termination if an external filter is inserted  
between IMXO (QMXO) and IAIN (QAIN). The VCMO pin sets  
the dc output level of the buffer. This can be set externally or  
connected to the on-chip 1.0 V reference, VREF.  
BASEBAND OFFSET CANCELLATION  
A low output current integrator senses the output voltage offset  
at IOPP and IOPN (QOPP and QOPN) and injects a nulling  
current into the signal path. The integration time constant of the  
offset-nulling loop is set by Capacitor COFS from IOFS (QOFS) to  
Rev. A | Page 18 of 28  
 
AD8348  
VCMO. This forms a high-pass response for the baseband  
signal path with a lower 3 dB frequency of  
The IOFS (QOFS) pin must be connected to either a bypass  
capacitor (>0.1 μF) or an external voltage source to prevent the  
feedback loop from oscillating.  
1
fPASS  
=
2π × 2650 Ω × COFS  
The feedback loop will be broken at dc if an ac-coupled baseband  
filter is placed between the mixer outputs and the baseband  
amplifier inputs. If an ac-coupled filter is implemented, the user  
must handle the offset compensation via some external means.  
Alternatively, the user can externally adjust the dc offset by driving  
IOFS (QOFS) with a digital-to-analog converter or other voltage  
source. In this case, the baseband circuit operates all the way down  
to dc (fPASS = 0 Hz). The integrator output current is only 50 μA  
and can be easily overridden with an external voltage source.  
The nominal voltage level applied to IOFS (QOFS) to produce  
a 0 V differential offset at the baseband outputs is 900 mV.  
Rev. A | Page 19 of 28  
AD8348  
APPLICATIONS  
LO  
4
3
5
BASIC CONNECTIONS  
Figure 49 shows the basic connections schematic for the AD8348.  
ETC1-1-13  
J21  
LO  
1
4
5
1000pF  
1000pF  
T21  
ETC1-1-13  
60.4  
3
1
C21  
1000pF  
C22  
1000pF  
R21  
60.4  
1
28  
LOIN  
LOIP  
AD8348  
1
2
3
4
5
6
7
8
9
28  
LOIP  
LOIN  
Figure 50. Differential LO Drive with Balun  
+V  
S
VPOS1 COM1 27  
C52  
0.1µF  
C51  
100pF  
J3I  
J3Q  
26  
25  
IOPN QOPN  
IOPN  
QOPN  
Alternatively, the LO port can be driven from a single-ended source  
without a balun (Figure 51). The LO signal is ac-coupled directly  
into the LOIP pin via an ac-coupling capacitor, and the LOIN pin  
is ac-coupled to ground. Driving the LO port from a single-  
ended source results in an increase in both quadrature phase  
error and LO leakage.  
J2I  
IOPP  
J2Q  
QOPP  
IOPP  
QOPP  
IF  
SW12  
MX  
+V  
S
V
VCMO ENVG 24  
REF  
IAIN  
QAIN 23  
COM3 COM3 22  
IMXO QMXO 21  
COM2 VPOS3 20  
C55  
100pF  
C56  
0.1µF  
+V  
S
C43  
R42  
C32  
1000pF  
1000pF 0Ω  
10 IFIN  
MXIN 19  
MXIP 18  
LO  
T41  
ETK4-2T  
C41  
1µF  
R31  
57.6Ω  
R32  
174Ω  
11 IFIP  
IFIP  
MXIP  
C31  
1000pF  
C42  
1000pF  
1000pF  
1000pF  
+V  
S
12 VPOS2 VGIN 17  
VGIN  
C54  
0.1µF  
C53  
100pF  
60.4  
13  
IOFS  
16  
QOFS  
C0Q  
0.1µF  
ENBL  
C0l  
+V  
S
0.1µF  
14 VREF  
ENBL 15  
SW11  
28  
LOIN  
1
LOIP  
C11  
4.7µF  
DENBL  
Figure 49. Basic Connections Schematic  
Figure 51. Single-Ended LO Drive  
POWER SUPPLY  
The recommended LO drive level is between −12 dBm and  
0 dBm. The LO frequency at the input to the device should be  
twice that of the desired LO frequency at the mixer core. The  
applied LO frequency range is between 100 MHz and 2 GHz.  
The voltage supply for the AD8348, between 2.7 V and 5 V, should  
be provided to the +VPOSx pins, and ground should be connected  
to the COMx pins. Each supply pin should be decoupled separately  
using two capacitors whose recommended values are 100 pF and  
0.1 ꢀF (values close to these can also be used).  
IF INPUTS  
DEVICE ENABLE  
The IF inputs have an input impedance of 200 Ω. A broadband  
50 Ω match can be presented to the driving source through the use  
of a minimum-loss L pad. This minimum-loss pad introduces  
an 11.46 dB loss in the input path and must be taken into account  
when calculating metrics such as gain and noise figure. Figure 42  
shows the S11 of the IF input with and without the L pad.  
To enable the device, the ENBL pin should be driven to VS.  
Grounding the ENBL pin disables the device.  
VGA ENABLE  
Driving the voltage on the ENVG pin to VS enables the VGA. In  
this mode, the MX inputs are disabled and the IF inputs are  
used. Grounding the ENVG pin disables the VGA and the IF  
inputs. When the VGA is disabled, the MX inputs should be used.  
1000pF  
10  
IFIN  
IFIP  
57.6  
174Ω  
1000pF  
11  
IFIP  
GAIN CONTROL  
Figure 52. Minimum-Loss L Pad for 50 Ω IF Input  
When the VGA is enabled, the voltage applied to the VGIN pin sets  
the gain. The gain control voltage range is between 0.2 V and 1.2 V.  
This corresponds to a gain range between +25.5 dB and −18.5 dB.  
MX INPUTS  
The mixer inputs, MXIP and MXIN, have a nominal impedance  
of 200 Ω and should be driven differentially. When driven from  
a differential source, the input should be ac-coupled to the  
source via capacitors, as shown in Figure 53.  
LO INPUTS  
For optimum performance, the local oscillator port should be  
driven differentially through a balun. The recommended balun  
is M/A-COM ETC1-1-13. The LO inputs to the device should  
be ac-coupled, unless an ac-coupled transformer is being used.  
For a broadband match to a 50 Ω source, a 60.4 Ω resistor  
should be placed between the LOIP and LION pins.  
Rev. A | Page 20 of 28  
 
 
 
AD8348  
LO  
4
3
5
1
1000pF  
1000pF  
1:1  
MXIN 19  
MXIP 18  
MXIN  
MXIP  
1000pF  
1000pF  
28  
60.4  
AD8348  
1
2
3
4
5
LOIP  
LOIN  
Figure 53. Driving the MX Inputs from a Differential Source  
+V  
VPOS1 COM1 27  
S
0.1µF  
100pF  
If the MX inputs are to be driven from a single-ended 50 Ω source,  
a 4:1 balun can be used to transform the 200 Ω impedance of  
the inputs to 50 Ω while performing the required single-ended-  
to-differential conversion. The recommended transformer is the  
M/A-COM ETK4-2T.  
26  
25  
IOPN QOPN  
TO BASEBAND  
I ADC  
TO BASEBAND  
Q ADC  
IOPP  
QOPP  
V
+V  
S
VCMO ENVG 24  
REF  
6
7
8
9
IAIN  
QAIN 23  
COM3 COM3 22  
IMXO QMXO 21  
COM2 VPOS3 20  
1.02kΩ  
1.24kΩ  
1000pF  
V
CMO  
MXIN 19  
+V  
1µF  
S
ETK4-2T  
1000pF  
100pF  
0.1µF  
MXIP 18  
MXIP  
10 IFIN  
MXIN 19  
MXIP 18  
1000pF  
1000pF  
1000pF  
IF INPUT  
= 200Ω  
11 IFIP  
Z
O
1000pF  
Figure 54. Driving the MX Inputs from a Single-Ended 50 Ω Source  
12 VPOS2 VGIN 17  
+V  
S
0.1µF  
100pF  
100pF  
13  
IOFS  
QOFS  
ENBL  
16  
15  
BASEBAND OUTPUTS  
100pF  
100pF  
V
+V  
S
14 VREF  
REF  
The baseband amplifier outputs, IOPP, IOPN, QOPP, and QOPN,  
should be presented with loads of at least 2 kΩ (single-ended to  
ground). They are not designed to drive 50 Ω loads directly. The  
typical swing for these outputs is 2 V p-p differential (1 V p-p  
single-ended), but larger swings are possible as long as care is taken  
to ensure that the signals remain within the lower limit of 0.5 V  
and the upper limit of VS − 1 V of the output swing. To achieve  
a larger swing, it is necessary to adjust the common-mode bias of  
the baseband output signals. Increasing the swing can have the  
benefit of improving the signal-to-noise ratio of the baseband  
amplifier output.  
1000pF  
AD8362  
1
2
3
4
5
COMM ACOM 16  
1µF  
1µF  
1µF  
1µF  
CHPF  
VREF 15  
DECL VTGT 14  
INHI  
VPOS 13  
VOUT 12  
+V  
S
100pF  
V
0.1µF  
INLO  
6
7
DECL  
VSET 11  
SET  
PWDN ACOM 10  
1µF  
8
9
COMM CLPF  
When connecting the baseband outputs to other devices, care  
should be taken to ensure that the outputs are not capacitively  
loaded by approximately 20 pF or more. Such loads could  
potentially overload the output or induce oscillations. The effect  
of capacitive loading on the baseband amplifier outputs can be  
mitigated by inserting series resistors of approximately 200 Ω.  
Figure 55. AD8362 Configuration for AGC Operation  
Assuming the I and Q channels have the same rms power, the  
mixer output (or the output of the baseband filter) of one channel  
can be used as the input of the AD8362. The AD8362 should be  
operated in a region where its linearity error is small. Also, a  
voltage divider should be implemented with an external resistor  
in series with the 200 Ω input impedance of the AD8362 input.  
This attenuates the AD8348 mixer output so that the AD8362  
input is not overdriven. The size of the resistor between the  
mixer output and the AD8362 input should be chosen so that  
the peak signal level at the input of the AD8362 is about 10 dB  
less than the approximately 10 dBm maximum of the AD8362  
dynamic range.  
OUTPUT DC BIAS LEVEL  
The dc bias of the mixer outputs and the baseband amplifier  
inputs and outputs is determined by the voltage that is driven  
onto the VCMO pin. The range of this voltage is typically  
between 500 mV and 4 V when operating with a 5 V supply.  
To achieve maximum voltage swing from the baseband amplifiers,  
VCMO should be driven at 2.25 V; this allows a swing of up to  
7 V p-p differential (3.5 V p-p single-ended).  
The other side of the AD8348 baseband output should be  
loaded with a resistance equal to the series resistance of the  
attenuating resistor in series with the AD8362s 200 Ω input  
impedance. This resistor should be tied to the source driving  
VCMO so that there is no dc drawn from the mixer output.  
INTERFACING TO DETECTOR FOR AGC OPERATION  
The AD8348 can be interfaced with a detector such as the  
AD8362 rms-to-dc converter to provide an automatic signal-  
leveling function for the baseband outputs.  
Rev. A | Page 21 of 28  
 
 
AD8348  
The level of the mixer output (or the output of the baseband  
filter) can then be set by varying the setpoint voltage fed to  
Pin 11 (VSET) of the AD8362.  
Figure 57 shows the schematic for a 100 Ω, fourth-order elliptic  
low-pass filter with a 3 dB cutoff frequency of 20 MHz. Source  
and load impedances of approximately 100 Ω ensure that the  
filter sees a matched source and load. This also ensures that the  
mixer output is driving an overall load of 200 Ω. Note that the  
shunt termination resistor is tied to the source driving VCMO  
and not to ground. This ensures that the input to the baseband  
amplifier is biased to the proper reference level. VCMO is not  
an output pin and must be biased by a low impedance source.  
Care should be taken to ensure that blockers—unwanted signals  
in the band of interest that are demodulated along with the desired  
signal—do not dominate the rms power of the AD8362 input.  
This can cause an undesired reduction in the level of the mixer  
output. To overcome this, baseband filtering can be implemented  
to filter out undesired signals before the signal is presented to  
the AD8362.  
The frequency response and group delay of this filter are shown  
in Figure 58 and Figure 59.  
Figure 56 shows the effectiveness of the AGC loop in  
maintaining a baseband amplifier output amplitude with less  
than 0.5 dB of amplitude error over an IF input range of 40 dB  
while demodulating a QPSK-modulated signal at 380 MHz.  
The AD8362 is insensitive to crest factor variations and  
therefore provides similar performance regardless of the  
modulation of the incoming signal.  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
140  
130  
120  
110  
100  
90  
3
–5.1dBm re 10k  
QPSK  
2
1
0
ERROR  
1
10  
100  
FREQUENCY (MHz)  
–1  
–2  
–3  
–4  
Figure 58. Baseband Filter Response  
50  
45  
40  
35  
30  
25  
20  
15  
10  
5
80  
70  
–55  
–45  
–35  
–25  
–15  
–5  
5
IFIP POWER INPUT (dBm, Z = 200)  
O
Figure 56. AD8348 Baseband Amplifier Output vs.  
IF Input Power with AD8362 AGC Loop  
2
1
BASEBAND FILTERS  
Baseband low-pass or band-pass filtering can be conveniently  
performed between the mixer outputs (IMXO and QMXO) and  
the input to the baseband amplifiers. Consideration should be  
given to the output impedance of the mixers (40 Ω).  
0
1
10  
100  
FREQUENCY (MHz)  
C1  
C2  
4.7pF  
8.2pF  
Figure 59. Baseband Filter Group Delay  
R1  
60  
TO AD8362  
INPUT IF AGC  
LOOP IS USED  
L1  
0.68µH  
L2  
1.2µH  
C5  
C6  
R2  
150pF  
82pF  
100Ω  
IMXO  
VCMO  
IAIN  
AD8348  
Figure 57. Baseband Filter Schematic  
Rev. A | Page 22 of 28  
 
 
 
 
 
AD8348  
The device is enabled by moving Switch SW11 (at the bottom left  
of the evaluation board) to the ENBL position. The device is  
disabled by moving SW11 to the DENBL position. If desired, the  
device can be enabled and disabled from an external source that  
can be fed into the ENBL SMA connector or the VENB test point,  
in which case SW11 should be placed in the DENBL position.  
LO GENERATION  
Analog Devices has a line of PLLs that can be used for  
generating the LO signal. Table 4 lists the PLLs and their  
maximum frequency and phase noise performance.  
Table 4. ADI PLL Selection Table  
@ 1 kHz ΦN  
dBc/Hz,  
200 kHz PFD  
The IF and MX inputs are selected via SW12. The switch should  
be moved in the direction of the desired input.  
Frequency FIN  
(MHz)  
ADI Model  
ADF4001BRU  
ADF4001BCP  
ADF4110BRU  
ADF4110BCP  
ADF4111BRU  
ADF4111BCP  
ADF4112BRU  
ADF4112BCP  
ADF4116BRU  
ADF4117BRU  
ADF4118BRU  
165  
165  
550  
550  
1200  
1200  
3000  
3000  
550  
−99  
−99  
−91  
−91  
−78  
−78  
−86  
−86  
−89  
−87  
−90  
Gain Control  
For convenience, a potentiometer, R15, is provided to allow for  
changes in gain without the need for an additional dc voltage  
source. To use the potentiometer, the SW13 switch must be set  
to the POT position. Alternatively, an external voltage applied  
to either the test point or SMA connector labeled VGIN can set  
the gain. SW13 must be set to the EXT position when an  
external gain control voltage is used.  
1200  
3000  
LO Input  
The local oscillator signal should be fed to the SMA Connector  
J21. This port is terminated in 50 Ω. The acceptable LO power  
input range is from −12 dBm to 0 dBm and must be at a  
frequency double that of the IF/MX frequency. Remember that  
the AD8348 uses a 2:1 frequency divider in the LO path to  
generate the internally required quadrature-phase-related LO  
signals.  
ADI also offers the ADF4360 fully integrated synthesizer and  
VCO on a single chip that offers differential outputs for driving  
the local oscillator input of the AD8348. This means that the user  
can eliminate the use of a balun for single-ended-to-differential  
conversions. The ADF4360 comes as a family of chips with six  
operating frequency ranges. One can be chosen depending on  
the local oscillator frequency required. Table 5 shows the  
options available.  
IF Input  
The IF input should be fed into the SMA connector IFIP. The  
VGA must be enabled when this port is used (SW12 in the IF  
position). When this IF input is chosen, the signal path includes  
a minimum-loss attenuator to transform a 50 Ω input source to  
the 200 Ω source impedance level for which the VGA was  
designed. This pad provides a very broadband input match at  
the expense of an 11.46 dB power attenuation in the input path.  
It is very important to take this into account when measuring  
the noise and distortion performance of the unmodified board  
using the IFIP input; the apparent noise figure will be degraded  
by 11.46 dB, and the apparent IIP3 will be 11.46 dB higher than  
actual. If full weak-signal performance is desired from the  
evaluation board, the attenuator (comprising R31 and R32)  
should be removed and replaced with a low-loss RF transformer  
providing the desired 4:1 impedance ratio. When a transformer  
is used, IFIN should be ac-coupled to ground and not driven  
differentially with IFIP.  
Table 5. ADF4360 Family Operating Frequencies  
ADI Model  
ADF4360-1  
ADF4360-2  
ADF4360-3  
ADF4360-4  
ADF4360-5  
ADF4360-6  
ADF4360-7  
Output Frequency Range (MHz)  
2150 to 2450  
1800 to 2150  
1550 to 1950  
1400 to 1800  
1150 to 1400  
1000 to 1250  
Lower frequencies set by external L  
EVALUATION BOARD  
Figure 60 shows the schematic for the AD8348 evaluation  
board. Note that uninstalled components are indicated with the  
OPEN designation. The board is powered by a single supply in  
the range of 2.7 V to 5.5 V. Table 6 details the various configu-  
ration options of the evaluation board. Table 7 shows the various  
jumper configurations for operating the evaluation board with  
different signal paths.  
MX Input  
The evaluation board is by default set for a differential MX drive  
through a balun (T41) from a single-ended source fed into the  
MXIP SMA connector. When the MX inputs are used, the  
internal VGA is bypassed. To change to a differential driving  
source, T41 should be removed along with Resistor R42. The  
0 Ω R43 and R44 resistors should be installed in place of T41 to  
bridge the gap between the input traces. This presents a nominal  
Power to operate the board can be fed to a single VS test point  
located near the LO input port at the top of the evaluation  
board. A GND test point is conveniently provided next to the  
VS test point for the return path.  
Rev. A | Page 23 of 28  
 
 
 
AD8348  
differential impedance of 200 Ω (100 Ω per side). The  
differential inputs should then be fed into SMA connectors  
MXIP and MXIN.  
Baseband Outputs  
The baseband outputs are made available at the IOPP, IOPN,  
QOPP, and QOPN test points and SMA connectors. These  
outputs are not designed to be connected directly to 50 Ω loads  
and should be presented with loads of approximately 2 kΩ or  
greater.  
Mixer Outputs  
The I and Q mixer outputs are available through the IMXO and  
QMXO SMA connectors. These outputs are biased to VCMO  
and are not designed to drive loads smaller than 200 Ω. To  
prevent damage to test equipment that cannot tolerate dc biases,  
pads for series dc-blocking capacitors are provided. These pads  
are populated with 0 Ω by default.  
The dc bias level of the baseband amplifier outputs are by  
default tied to VREF through LK11. If desired, the dc bias level  
can be changed by removing LK11 and driving a dc voltage  
onto the VCMO test point.  
J21  
LO  
4
5
1
+V  
GND  
S
C52  
0.1µF  
C51  
100pF  
T21  
ETC1-1-13  
IOPN  
GND  
QOPN  
GND  
3
J3I  
J3Q  
IOPN  
QOPN  
C21  
C22  
R5I  
R21  
R5Q  
C9I  
C9Q  
1000pF  
1000pF  
28  
0  
60.4Ω  
0Ω  
OPEN  
OPEN  
AD8348  
J2I  
IOPP  
J2Q  
QOPP  
1
2
3
4
5
LOIP  
LOIN  
R4I  
0Ω  
R4Q  
0Ω  
C8I  
OPEN  
C8Q  
OPEN  
IOPP  
QOPP  
MX  
VPOS1 COM1 27  
+V  
S
IF  
26  
25  
IOPN QOPN  
VCMO  
SW12  
C13  
0.1µF  
IOPP  
QOPP  
R3I  
R3Q  
49.9Ω  
49.9Ω  
J1I  
IMXO  
J1Q  
QMXO  
VCMO ENVG 24  
VCMO  
C10Q  
0Ω  
LK4I  
LK4Q  
C10I  
0Ω  
LK11  
IMXO  
QMXO  
IAIN  
QAIN 23  
6
7
8
9
LK3I  
LK1I  
LK3Q  
LK1Q  
L3I  
L2I  
L1I  
OPEN  
L1Q  
OPEN  
L2Q  
L3Q  
OPEN  
OPEN  
OPEN  
OPEN  
COM3 COM3 22  
IMXO QMXO 21  
COM2 VPOS3 20  
LK2I  
LK2Q  
C3I  
C2I  
C1I  
OPEN  
C1Q  
OPEN  
C2Q  
C3Q  
OPEN  
OPEN  
OPEN  
OPEN  
R1I  
R1Q  
OPEN  
R2I  
OPEN  
R2Q  
OPEN  
C7I  
OPEN  
C6I  
OPEN  
C5I  
OPEN  
C4I  
OPEN  
C4Q  
OPEN  
C5Q  
OPEN  
C6Q  
OPEN  
C7Q  
OPEN  
OPEN  
C55  
0.1µF  
C55  
100pF  
VCMO  
VCMO  
10 IFIN  
11 IFIP  
MXIN 19  
MXIP 18  
R44  
OPEN  
+V  
S
R42  
0Ω  
C32  
1000pF  
C43  
1000pF  
MXIN  
MXIP  
C41  
1µF  
T41  
R31  
57.6Ω  
12 VPOS2 VGIN 17  
R32  
174Ω  
ETK4-2T  
IFIP  
13  
16  
15  
IOFS  
QOFS  
ENBL  
C31  
C42  
1000pF  
R41  
OPEN  
1000pF  
R43  
OPEN  
+V  
S
14 VREF  
C54  
0.1µF  
C53  
100pF  
R14  
10kΩ  
LK5I  
LK5Q  
+V  
S
R15  
10kΩ  
POT  
R12  
10kΩ  
C11  
4.7µF  
VREF  
POT  
EXT  
C12  
0.1µF  
VENB  
SW13  
SW11  
ENBL  
VGIN  
R11  
IOFS  
C0I  
0.1µF  
QOFS  
R13  
OPEN  
C0Q  
0.1µF  
49.9Ω  
ENBL  
DENBL  
Figure 60. Evaluation Board Schematic  
Rev. A | Page 24 of 28  
 
AD8348  
Figure 61. Evaluation Board Top Layer  
Figure 62. Evaluation Board Top Silkscreen  
Rev. A | Page 25 of 28  
AD8348  
Figure 63. Evaluation Board Bottom Layer  
Figure 64. Evaluation Board Bottom Silkscreen  
Rev. A | Page 26 of 28  
AD8348  
Table 6. Evaluation Board Configuration Options  
Component  
Function  
Default Condition  
VS, GND  
SW11, ENBL  
Power supply and ground vector pins.  
Not applicable  
SW11 = ENBL  
Device enable: Place SW11 in the ENBL position to connect the ENBL pin to VS. Place SW11 in  
the DENBL position to disable the device by grounding the Pin ENBL through a 50 Ω pull-down  
resistor. The device can also be enabled via an external voltage applied to ENBL or VENB.  
SW13, R15,  
VGIN  
Gain control selection: With SW13 in the POT position, the gain of the VGA can be set using the  
R15 potentiometer. With SW13 in the EXT position, the VGA gain can be set by an external  
voltage to the SMA connector VGIN. For VGA operation, the VGA must first be enabled by  
setting SW12 to the IF position.  
VGA enable selection: With SW12 in the IF position, the ENVG pin is connected to VS and the  
VGA is enabled. The IF input should be used when SW12 is in the IF position. With SW12 in the  
MX position, the ENVG pin is grounded and the VGA is disabled. The MX inputs should be used  
when SW12 is in the MX position.  
SW13 = POT  
SW12 = IF  
SW12  
IFIP, R31, R32 IF inputs: The single-ended IF signal should be connected to this SMA connector. R31 and R32  
form an L pad that presents a 50 Ω termination to the driving source. This L pad introduces an  
11.46 dB loss in the input signal path and should be taken into consideration when calculating  
the gain of the AD8348.  
R31 = 57.6 Ω  
R32 = 174 Ω  
MXIP, MXIN,  
T41,  
R41, R42,  
C42, C43  
Mixer inputs: These inputs can be configured for either differential or single-ended operation.  
The evaluation board is by default set for differential MX drive through a balun (T41) from a  
single-ended source fed into the MXIP SMA connector. To change to a differential driving source,  
T41 should be removed along with Resistor R42. The 0 Ω Resistors R43 and R44 should be installed in  
place of T41 to bridge the gap between the input traces. This will present a nominal differential  
impedance of 200 Ω (100 Ω per side). The differential inputs should then be fed into SMA  
connectors MXIP and MXIN.  
T41 = M/A-COM ETK4-2T;  
R41= OPEN; C42, C43 =  
1000 pF; R42 = 0 Ω  
LK11, VCMO  
Baseband amplifier output bias: Installing LK11 connects VREF to VCMO. This sets the bias level  
on the baseband amplifiers to VREF, which is equal to approximately 1 V. Alternatively, with  
LK11 removed, the bias level of the baseband amplifiers can be set by applying an external  
voltage to the VCMO test point.  
LK11 installed  
C8, C9, R4, R5 Baseband amplifier outputs and output filter: Additional low-pass filtering can be provided at  
(I and Q) the baseband output with these filters.  
C10 (I and Q) Mixer output dc-blocking capacitors: The mixer outputs are biased to VCMO. To prevent  
damage to test equipment that cannot tolerate dc biases, C10 is provided to block the dc  
component, thus protecting the test equipment.  
R4, R5 = 0 Ω  
C10 = 0 Ω  
C1 to C7,  
R1, R2,  
L1 to L3  
(I and Q)  
Baseband filter: These components are provided for baseband filtering between the mixer  
outputs and the baseband amplifier inputs. The baseband amplifier input impedance is high  
and the filter termination impedance is set by R2. See Table 7 for the jumper settings.  
All = OPEN  
LK5 (I and Q) Offset compensation loop disable: Installing these jumpers will disable the offset compensation LK5x = OPEN  
loop for the corresponding channel.  
Table 7. Filter-Jumper Configuration Options  
Condition  
LK1x  
LK2x  
LK3x  
LK4x  
xMXO to xAIN Directly  
xMXO to xAIN via Filter  
xMXO to J1x Directly, xAIN Unused  
xMXO to J1x via Filter, xAIN Unused  
Drive xAIN from J1x  
Rev. A | Page 27 of 28  
 
 
AD8348  
OUTLINE DIMENSIONS  
9.80  
9.70  
9.60  
28  
15  
4.50  
4.40  
4.30  
6.40 BSC  
1
14  
PIN 1  
0.65  
BSC  
1.20 MAX  
0.15  
0.05  
8°  
0°  
0.75  
0.60  
0.45  
0.30  
0.19  
0.20  
0.09  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153AE  
Figure 65. 28-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-28)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
AD8348ARU  
AD8348ARU-REEL7  
AD8348ARUZ1  
AD8348ARUZ-REEL71 −40°C to +85°C  
AD8348-EVAL  
Temperature Range Package Description  
Package Option  
RU-28  
RU-28  
RU-28  
RU-28  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
28-Lead Thin Shrink Small Outline Package [TSSOP]  
28-Lead Thin Shrink Small Outline Package [TSSOP] 7”Tape and Reel  
28-Lead Thin Shrink Small Outline Package [TSSOP]  
28-Lead Thin Shrink Small Outline Package [TSSOP] 7”Tape and Reel  
Evaluation Board  
1 Z = Pb-free part.  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
C03678-0-4/06(A)  
Rev. A | Page 28 of 28  
 
 
 

相关型号:

AD8348XXX

50-1000 MHz Quadrature Demodulator
ADI

AD8349

700 MHz to 2700 MHz Quadrature Modulator
ADI

AD8349ARE

700 MHz to 2700 MHz Quadrature Modulator
ADI

AD8349ARE-REEL7

700 MHz to 2700 MHz Quadrature Modulator
ADI

AD8349AREZ

700 MHz to 2700 MHz Quadrature Modulator
ADI

AD8349AREZ-REEL7

RF/Microwave Modulator/Demodulator, 700 MHz - 2700 MHz RF/MICROWAVE QPSK MODULATOR, LEAD FREE, MO-153ABT, TSSOP-16
ADI

AD834AQ

500 MHz Four-Quadrant Multiplier
ADI

AD834AR

500 MHz Four-Quadrant Multiplier
ADI

AD834AR-REEL

500 MHz Four-Quadrant Multiplier
ADI

AD834AR-REEL7

500 MHz Four-Quadrant Multiplier
ADI

AD834ARZ

500 MHz Four-Quadrant Multiplier
ADI

AD834ARZ-R7

500 MHz Four-Quadrant Multiplier
ADI