MAT03 [ADI]

Low Noise, Matched Dual PNP Transistor; 低噪声,匹配双PNP晶体管
MAT03
型号: MAT03
厂家: ADI    ADI
描述:

Low Noise, Matched Dual PNP Transistor
低噪声,匹配双PNP晶体管

晶体 晶体管
文件: 总12页 (文件大小:255K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Low Noise, Matched  
Dual PNP Transistor  
a
MAT03  
FEATURES  
P IN CO NNECTIO N  
Dual Matched PNP Transistor  
Low Offset Voltage: 100 V m ax  
Low Noise: 1 nV/ Hz @ 1 kHz m ax  
High Gain: 100 m in  
TO -78  
(H Suffix)  
High Gain Bandw idth: 190 MHz typ  
Tight Gain Matching: 3% m ax  
Excellent Logarithm ic Conform ance: rBE Ӎ 0.3 typ  
Available in Die Form  
Each transistor is individually tested to data sheet specifications.  
Device performance is guaranteed at 25°C and over the extended  
industrial and military temperature ranges. T o insure the long-  
term stability of the matching parameters, internal protection  
diodes across the base-emitter junction clamp any reverse base-  
emitter junction potential. T his prevents a base-emitter break-  
down condition which can result in degradation of gain and  
matching performance due to excessive breakdown current.  
GENERAL D ESCRIP TIO N  
T he MAT 03 dual monolithic PNP transistor offers excellent  
parametric matching and high frequency performance. Low  
noise characteristics (1 nV/Hz max @ 1 kHz), high bandwidth  
(190 MHz typical), and low offset voltage (100 µV max), makes  
the MAT 03 an excellent choice for demanding preamplifier ap-  
plications. T ight current gain matching (3% max mismatch) and  
high current gain (100 min), over a wide range of collector cur-  
rent, makes the MAT 03 an excellent choice for current mirrors.  
A low value of bulk resistance (typically 0.3 ) also makes the  
MAT 03 an ideal component for applications requiring accurate  
logarithmic conformance.  
REV. B  
Inform ation furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assum ed by Analog Devices for its  
use, nor for any infringem ents of patents or other rights of third parties  
which m ay result from its use. No license is granted by im plication or  
otherwise under any patent or patent rights of Analog Devices.  
One Technology Way, P.O. Box 9106, Norw ood, MA 02062-9106, U.S.A.  
Tel: 617/ 329-4700  
Fax: 617/ 326-8703  
MAT03–SPECIFICATIONS  
ELECTRICAL CHARACTERISTICS  
(@ T = +25؇C, unless otherwise noted.)  
A
MAT03A  
Min Typ  
MAT03E  
MAT03F  
P aram eter  
Sym bol  
Conditions  
Max Min Typ Max Min Typ Ma x Units  
Current Gain1  
hFE  
VCB = 0 V, –36 V  
IC = 1 mA  
IC = 100 µA  
IC = 10 µA  
IC = 100 µA,VCB = 0 V  
VCB = 0 V, IC = 100 µA  
100 165  
100 165  
80  
70  
60  
165  
150  
120  
0.5  
40  
90  
150  
120  
0.5  
40  
90  
150  
120  
0.5  
40  
80  
80  
Current Gain Matching2 DhFE  
3
100  
3
100  
6
200  
%
µV  
Offset Voltage3  
VOS  
Offset Voltage Change  
vs. Collector Voltage  
DVOS/DVCB IC = 100 µA  
VCB1 = 0 V  
VCB2 = –36 V  
DVOS/DIC VCB = 0 V  
11  
11  
12  
12  
0.3  
0.3  
6
150  
150  
50  
11  
11  
12  
12  
0.3  
0.3  
6
150  
150  
50  
11  
11  
12  
12  
0.3  
0.3  
6
200  
200  
75  
µV  
µV  
µV  
µV  
Offset Voltage Change  
vs. Collector Current  
Bulk Resistance  
IC1 = 10 µA, IC2 = 1 mA  
VCB = 0 V  
10 µA IC 1 mA  
50  
50  
75  
rBE  
IOS  
0.75  
0.75  
35  
0.75  
0.75  
35  
0.75  
0.75  
45  
nA  
Offset Current  
IC = 100 µA, VCB = 0 V  
Collector-Base  
Leakage Current  
ICB0  
eN  
VCB = –36 V = VMAX  
IC = 1 mA, VCB = 0  
fO = 10 Hz  
fO = 100 Hz  
fO = 1 kHz  
50  
200  
50  
200  
50  
400  
pA  
Noise Voltage Density4  
0.8  
0.7  
0.7  
0.7  
2
1
1
1
0.8  
0.7  
0.7  
0.7  
0.8  
0.7  
0.7  
0.7  
nV/÷Hz  
nV/÷Hz  
nV/÷Hz  
nV/÷Hz  
fO = 10 kHz  
Collector Saturation  
Voltage  
VCE(SAT )  
IC = 1 mA, IB = 100 µA  
0.025 0.1  
0.025 0.1  
0.025 0.1  
V
(at –55؇C T +125؇C, unless otherwise noted.)  
ELECTRICAL CHARACTERISTICS  
A
MAT03A  
Typ  
P aram eter  
Sym bol  
Conditions  
Min  
Max  
Units  
Current Gain  
hFE  
VCB = 0 V, –36 V  
IC = 1 mA  
70  
60  
50  
110  
100  
85  
IC = 100 µA  
IC = 10 µA  
Offset Voltage  
VOS  
T CVOS  
IOS  
IC = 100 µA, VCB = 0 V  
IC = 100 µA, VCB = 0 V  
IC = 100 µA, VCB = 0 V  
40  
0.3  
15  
150  
0.5  
85  
µV  
µV/°C  
nA  
Offset Voltage Drift5  
Offset Current  
Breakdown Voltage  
BVCEO  
36  
54  
V
(at –40؇C T +85؇C, unless otherwise noted.)  
ELECTRICAL CHARACTERISTICS  
A
MAT03E  
Min Typ Max  
MAT03F  
Min Typ Max  
P aram eter  
Sym bol  
Conditions  
Units  
Current Gain  
hFE  
VCB = 0 V, –36 V  
IC = 1 mA  
70  
60  
50  
120  
105  
90  
60  
50  
40  
120  
105  
90  
IC = 100 µA  
IC = 10 µA  
Offset Voltage  
VOS  
T CVOS  
IOS  
IC = 100 µA, VCB = 0 V  
IC = 100 µA, VCB = 0 V  
IC = 100 µA, VCB = 0 V  
30  
0.3 0.5  
10 85  
135  
30  
265  
µV  
µV/°C  
nA  
Offset Voltage Drift5  
Offset Current  
0.3 1.0  
10 200  
Breakdown Voltage  
BVCEO  
36  
36  
V
NOT ES  
1Current gain is measured at collector-base voltages (VCB) swept from 0 to VMAX at indicated collector current. T ypicals are measured at VCB = 0 V.  
100 ( IB ) hFE (min )  
2
Current gain matching (hFE) is defined as: hFE =  
.
IC  
IC1  
KT  
q
3Offset voltage is defined as: VOS = VBE1 – VBE2, where VOS is the differential voltage for IC1 = IC2: VOS = VBE1 – VBE2  
4Sample tested. Noise tested and specified as equivalent input voltage for each transistor.  
=
In  
.
IC2  
5Guaranteed by VOS test (TCVOS = VOS/T for VOS Ӷ VBE  
)
where T = 298°K for T A = 25°C.  
Specifications subject to change without notice.  
REV. B  
–2–  
MAT03  
(at 25؇C, unless otherwise noted.)  
WAFER TEST LIMITS  
MAT03N  
Lim its  
P aram eter  
Sym bol  
Conditions  
Units  
Breakdown Voltage  
Offset Voltage  
BVCEO  
VOS  
36  
V min  
µV max  
µV max  
min  
IC = 100 µA, VCB = 0 V  
10 µA IC 1 mA  
200  
200  
80  
60  
6
200  
200  
75  
75  
0.75  
0.1  
Current Gain  
hFE  
IC = 1 mA, VCB = 0 V, –36 V  
IC = 10 µA, VCB = 0 V, –36 V  
IC = 100 µA, VCB = 0 V  
VCB1 = 0 V, IC = 100 µA  
VCB2 = –36 V  
VCB = 0  
IC1 = 10 µA, IC2 = 1 mA  
10 µA IC 1 mA  
min  
Current Gain Match  
Offset Voltage Change vs. VCB  
hFE  
VOS/VCB  
% max  
µV max  
µV max  
µV max  
µV max  
max  
V max  
Offset Voltage Change  
vs. Collector Current  
Bulk Resistance  
VOS/IC  
rBE  
VCE (SAT )  
Collector Saturation Voltage  
IC = 1 mA, IB = 100 µA  
NOT E:  
Electrical tests are performed at wafer probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed  
for standard product dice. Consult factory to negotiate specifications based on dice lot qualification through sample lot assembly and testing.  
D ICE CH ARACTERISTICS  
ABSO LUTE MAXIMUM RATINGS 1  
Collector-Base Voltage (BVCBO  
Collector-Emitter Voltage (BVCEO  
)
. . . . . . . . . . . . . . . . . . . . 36 V  
. . . . . . . . . . . . . . . . . . 36 V  
1. COLLECTOR (1 )  
2. BASE (1 )  
)
3. EMITTER (1 )  
4. COLLECTOR (2)  
5. BASE (2)  
Collector-Collector Voltage (BVCC) . . . . . . . . . . . . . . . . . . 36 V  
Emitter-Emitter Voltage (BVEE) . . . . . . . . . . . . . . . . . . . . . 36 V  
Collector Current (IC) . . . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
Emitter Current (IE) . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 mA  
T otal Power Dissipation  
6. EMITTER (2 )  
SUBSTRATE CAN BE  
CONNECTED TO V– OR  
FLOATED  
Ambient T emperature 70°C2 . . . . . . . . . . . . . . . . 500 mW  
Operating T emperature Range  
MAT 03A . . . . . . . . . . . . . . . . . . . . . . . . . . –55°C to +125°C  
MAT 03E/F . . . . . . . . . . . . . . . . . . . . . . . . . –40°C to +85°C  
Operating Junction T emperature . . . . . . . . . . –55°C to +150°C  
Storage T emperature . . . . . . . . . . . . . . . . . . . –65°C to +150°C  
Lead T emperature (Soldering, 60 sec) . . . . . . . . . . . . . +300°C  
Junction T emperature . . . . . . . . . . . . . . . . . . –65°C to +150°C  
O RD ERING GUID E 1  
VO S m ax  
Tem perature  
P ackage  
O ption  
Model  
MAT 03AH2 100 µV  
(TA = +25؇C) Range  
NOT ES  
1Absolute maximum ratings apply to both DICE and packaged devices.  
2Rating applies to T O-78 not using a heat sink, and LCC; devices in free air only. For  
T O-78, derate linearly at 6.3 mW/°C above 70°C ambient temperature; for LCC,  
derate at 7.8 mW/°C.  
–55°C to +125°C  
–40°C to +85°C  
–40°C to +85°C  
T O-78  
T O-78  
T O-78  
MAT 03EH  
MAT 03FH  
100 µV  
200 µV  
NOT ES  
1Burn-in is available on industrial temperature range parts.  
2For devices processed in total compliance to MIL-ST D-883, add/883 after part  
number. Consult factory for 883 data sheet.  
CAUTIO N  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection.  
Although the MAT 03 features proprietary ESD protection circuitry, permanent damage may  
occur on devices subjected to high energy electrostatic discharges. T herefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
WARNING!  
ESD SENSITIVE DEVICE  
REV. B  
–3–  
MAT03  
Figure 2. Current Gain  
vs. Tem perature  
Figure 3. Gain Bandwidth vs.  
Collector Current  
Figure 1. Current Gain vs.  
Collector Current  
Figure 5. Sm all-Signal Input Resistance  
(hie) vs. Collector Current  
Figure 6. Sm all Signal Output Con-  
ductance (hoe) vs. Collector Current  
Figure 4. Base-Em itter Voltage  
vs. Collector Current  
REV. B  
–4–  
MAT03  
Figure 8. Noise Voltage Density  
vs. Frequency  
Figure 9. Noise Voltage Density  
Figure 7. Saturation Voltage  
vs. Collector Current  
Figure 11. Collector-Base Capacitance vs. VCB  
Figure 10. Total Noise vs. Collector Current  
REV. B  
–5–  
MAT03  
Figure 12. SPICE or SABER Model  
MAT03 NO ISE MEASUREMENT  
AP P LICATIO NS INFO RMATIO N  
MAT03 MO D ELS  
T he MAT 03 model (Figure 12) includes parasitic diodes D3  
through D6. D1 and D2 are internal protection diodes which  
prevent zenering of the base-emitter junctions.  
2
All resistive components (Johnson noise, en = 4kT BR, or en =  
0.13R nV/Hz, where R is in k) and semiconductor junctions  
(Shot noise, caused by current flowing through a junction, pro-  
duces voltage noise in series impedances such as transistor-  
collector load resistors, In = 0.566 I pA/Hz where I is in µA)  
contribute to the system input noise.  
T he analysis programs, SPICE and SABER, are primarily used  
in evaluating the functional performance of systems. T he mod-  
els are provided only as an aid in utilizing these simulation  
programs.  
Figure 13 illustrates a technique for measuring the equivalent  
input noise voltage of the MAT 03. 1 mA of stage current is used  
Figure 13. MAT03 Voltage Noise Measurem ent Circuit  
REV. B  
–6–  
MAT03  
measurement circuit must be thermally isolated. Effects of extrane-  
ous noise sources must also be eliminated by totally shielding  
the circuit.  
to bias each side of the differential pair. T he 5 kcollector re-  
sistors noise contribution is insignificant compared to the volt-  
age noise of the MAT 03. Since noise in the signal path is  
referred back to the input, this voltage noise is attenuated by the  
gain of the circuit. Consequently, the noise contribution of the  
collector load resistors is only 0.048 nV/Hz. T his is consider-  
ably less than the typical 0.8 nV/Hz input noise voltage of the  
MAT 03 transistor.  
SUP ER LO W NO ISE AMP LIFIER  
T he circuit in Figure 14a is a super low noise amplifier with  
equivalent input voltage noise of 0.32 nV/Hz. By paralleling  
three MAT 03 matched pairs, a further reduction of amplifier  
noise is attained by a reduction of the base spreading resistance  
by a factor of 3, and consequently the noise by 3. Additionally,  
the shot noise contribution is reduced by maintaining a high col-  
lector current (2 mA/device) which reduces the dynamic emitter  
resistance and decreases voltage noise. T he voltage noise is in-  
versely proportional to the square root of the stage current, and  
current noise increases proportionally to the square root of the  
stage current. Accordingly, this amplifier capitalizes on voltage  
noise reduction techniques at the expense of increasing the cur-  
rent noise. However, high current noise is not usually important  
when dealing with low impedance sources.  
T he noise contribution of the OP27 gain stages is also negligible  
due to the gain in the signal path. T he op amp stages amplify  
the input referred noise of the transistors to increase the signal  
strength to allow the noise spectral density (ein × 10000) to be  
measured with a spectrum analyzer. And, since we assume  
equal noise contributions from each transistor in the MAT 03,  
the output is divided by 2 to determine a single transistor’s  
input noise.  
Air currents cause small temperature changes that can appear  
as low frequency noise. T o eliminate this noise source, the  
Figure 14a. Super Low Noise Am plifier  
REV. B  
–7–  
MAT03  
T his amplifier exhibits excellent full power ac performance,  
0.08% T HD into a 600 load, making it suitable for exacting  
audio applications (see Figure 14b).  
and the VBE of a silicon transistor is predictable and constant (to  
a few percent) over a wide temperature range. T he voltage differ-  
ence, approximately 1 V, is dropped across the 250 resistor  
which produces a temperature stabilized emitter current.  
CURRENT SO URCES  
A fundamental requirement for accurate current mirrors and ac-  
tive load stages is matched transistor components. Due to the  
excellent VBE matching (the voltage difference between VBE’s  
required to equalize collector current) and gain matching, the  
MAT 03 can be used to implement a variety of standard current  
mirrors that can source current into a load such as an amplifier  
stage. T he advantages of current loads in amplifiers versus resis-  
tors is an increase of voltage gain due to higher impedances,  
larger signal range, and in many applications a wider signal  
bandwidth.  
Figure 16 illustrates a cascode current mirror consisting of two  
MAT 03 transistor pairs.  
T he cascode current source has a common base transistor in se-  
ries with the output which causes an increase in output imped-  
ance of the current source since VCE stays relatively constant.  
High frequency characteristics are improved due to a reduction  
of Miller capacitance. T he small-signal output impedance can  
be determined by consulting “hOF vs. Collector Current” typical  
graph. T ypical output impedance levels approach the perfor-  
mance of a perfect current source.  
Figure 14b. Super Low Noise Am plifier—Total  
Harm onic Distortion  
LO W NO ISE MICRO P H O NE P REAMP LIFIER  
Figure 15 shows a microphone preamplifier that consists of a  
MAT 03 and a low noise op amp. T he input stage operates at a  
relatively high quiescent current of 2 mA per side, which reduces  
the MAT 03 transistor’s voltage noise. T he 1/ƒ corner is less than  
1 Hz. T otal harmonic distortion is under 0.005% for a 10 V p-p  
signal from 20 Hz to 20 kHz. T he preamp gain is 100, but can be  
modified by varying R5 or R6 (VOUT /VIN = R5/R6 + 1).  
Considering a typical collector current of 100 µA, we have:  
1
roQ3  
=
= 1 MΩ  
1. 0 µ MHOS  
A total input stage emitter current of 4 mA is provided by Q2.  
T he constant current in Q2 is set by using the forward voltage of  
a GaAsP LED as a reference. T he difference between this voltage  
Figure 15. Low Noise Microphone Pream plifier  
REV. B  
–8–  
MAT03  
Since Q2 buffers Q3, both transistors in the MAT 03, Q1 and Q3,  
maintain the same collector current. D2 and D3 form a Baker  
clamp which prevents Q2 from turning off, thereby improving  
the switching speed of the current mirror. T he feedback serves  
to increase the output impedance and improves accuracy by re-  
ducing the base-width modulation which occurs with varying  
collector-emitter voltages. Accuracy and linearity performance  
of the current pump is summarized in Figure 19.  
Q2 and Q3 are in series and operate at the same current levels so  
the total output impedance is:  
RO = hFE roQ3 @ (160)(1 M) = 160 M.  
Figure 16. Cascode Current Source  
Figure 17a. Current Matching Circuit  
CURRENT MATCH ING  
T he objective of current source or mirror design is generation of  
currents that are either matched or must maintain a constant ra-  
tio. However, mismatch of base-emitter voltages cause output  
current errors. Consider the example of Figure 17a. If the resis-  
tors and transistors are equal and the collector voltages are the  
same, the collector currents will match precisely. Investigating  
the current-matching errors resulting from a nonzero VOS, we  
define IC as the current error between the two transistors.  
Graph 17b describes the relationship of current matching errors  
versus offset voltage for a specified average current IC. Note that  
since the relative error between the currents is exponentially pro-  
portional to the offset voltage, tight matching is required to de-  
sign high accuracy current sources. For example, if the offset  
voltage is 5 mV at 100 µA collector current, the current match-  
ing error would be 20%. Additionally, temperature effects such  
as offset drift (3 µV/°C per mV of VOS) will degrade performance  
if Q1 and Q2 are not well matched.  
Figure 17b. Current Matching Accuracy %  
vs. Offset Voltage  
D IGITALLY P RO GRAMMABLE BIP O LAR CURRENT  
P UMP  
T he circuit of Figure 18 is a digitally programmable current  
pump. T he current pump incorporates a DAC08, and a fast  
Wilson current source using the MAT 03. Examining Figure 18,  
the DAC08 is set for 2 mA full-scale range so that bipolar cur-  
rent operation of ±2 mA is achieved. T he Wilson current mirror  
maintains linearity within the LSB range of the 8-bit DAC08  
(±2 mA/256 = 15.6 µA resolution) as seen in Figure 19. A  
negative feedback path established by Q2 regulates the collector  
current so that it matches the reference current programmed by  
the DAC08.  
Collector-emitter voltages across both Q1 and Q3 are matched  
by D1, with Q3’s collector-emitter voltage remaining constant,  
independent of the voltage across the current source output.  
Figure 18. Digitally Program m able Bipolar Current Pum p  
REV. B  
–9–  
MAT03  
T he full-scale output of the DAC08, IOUT , is a linear function  
of IREF  
256  
256  
256  
256  
IFR  
=
× IREF, and IOUT  
+
= IREF  
IOUT  
T he current mirror output is IOUT  
= 1, so that if  
IOUT  
IREF = 2 mA:  
I = 2 IOUT 1.992 mA  
Input Code  
= 2  
(2 mA) – 1.992 mA.  
256  
D IGITAL CURRENT P UMP CO D ING  
D igital Input  
Figure 19. Digitally Program m able Current  
Pum pINL Error as Digital Code  
B1 . . . B8  
O utput Current  
FULL RANGE  
HALF-RANGE  
ZERO-SCALE  
1111 1111  
1000 0000  
0000 0000  
I = 1.992 mA  
I = 0.008 mA  
I = –1.992 mA  
REV. B  
–10–  
MAT03  
O UTLINE D IMENSIO NS  
D imensions shown in inches and (mm).  
TO -78 Metal Can  
REFERENCE PLANE  
0.750 (19.05)  
0.500 (12.70)  
0.185 (4.70)  
0.165 (4.19)  
0.250 (6.35) MIN  
0.050 (1.27) MAX  
0.100 (2.54) BSC  
4
0.160 (4.06)  
0.110 (2.79)  
5
0.045 (1.14)  
0.027 (0.69)  
0.200  
(5.08)  
BSC  
3
6
2
1
0.100  
(2.54)  
BSC  
0.019 (0.48)  
0.016 (0.41)  
0.034 (0.86)  
0.027 (0.69)  
0.040 (1.02) MAX  
0.021 (0.53)  
0.016 (0.41)  
0.045 (1.14)  
0.010 (0.25)  
45° BSC  
BASE & SEATING PLANE  
REV. B  
–11–  
–12–  

相关型号:

MAT03-913H

TRANSISTOR SMALL SIGNAL TRANSISTOR, CAN PACKAGE-6, BIP General Purpose Small Signal
ADI

MAT03-913L

TRANSISTOR SMALL SIGNAL TRANSISTOR, CERAMIC, FLATPAK-2, BIP General Purpose Small Signal
ADI

MAT03A

MAT.03A Embedded Active GPS and Cellular Antenna Assembly and Reference Board
TAOGLAS

MAT03AH

Low Noise, Matched Dual PNP Transistor
ADI

MAT03AH

20mA, 36V, 2 CHANNEL, PNP, Si, SMALL SIGNAL TRANSISTOR, TO-78, METAL CAN-6
ROCHESTER

MAT03AH/883

TRANSISTOR 20 mA, 36 V, 2 CHANNEL, PNP, Si, SMALL SIGNAL TRANSISTOR, TO-78, TO-78, 6 PIN, BIP General Purpose Small Signal
ADI

MAT03AH/883C

TRANSISTOR 20 mA, 36 V, 2 CHANNEL, PNP, Si, SMALL SIGNAL TRANSISTOR, TO-78, METAL CAN-6, BIP General Purpose Small Signal
ADI

MAT03AH/883C

20mA, 36V, 2 CHANNEL, PNP, Si, SMALL SIGNAL TRANSISTOR, TO-78, METAL CAN-6
ROCHESTER

MAT03BIFH

TRANSISTOR 20 mA, 36 V, 2 CHANNEL, PNP, Si, SMALL SIGNAL TRANSISTOR, TO-78, BIP General Purpose Small Signal
ADI

MAT03EH

Low Noise, Matched Dual PNP Transistor
ADI

MAT03EHZ

Low Noise, Matched Dual PNP Transistor
ADI

MAT03FH

Low Noise, Matched Dual PNP Transistor
ADI