EVAL-AD7767-2EDZ [ADI]

24-Bit, 8.5 mW, 109 dB, 128/64/32 kSPS ADCs; 24位, 8.5毫瓦, 109分贝, 128/64/32 kSPS的模数转换器
EVAL-AD7767-2EDZ
型号: EVAL-AD7767-2EDZ
厂家: ADI    ADI
描述:

24-Bit, 8.5 mW, 109 dB, 128/64/32 kSPS ADCs
24位, 8.5毫瓦, 109分贝, 128/64/32 kSPS的模数转换器

转换器 模数转换器
文件: 总24页 (文件大小:2200K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
24-Bit, 8.5 mW, 109 dB,  
128/64/32 kSPS ADCs  
AD7767  
FEATURES  
GENERAL DESCRIPTION  
Oversampled successive approximation (SAR) architecture  
High performance ac and dc accuracy, low power  
115.5 dB dynamic range, 32 kSPS (AD7767-2)  
112.5 dB dynamic range, 64 kSPS (AD7767-1)  
109.5 dB dynamic range, 128 kSPS (AD7767)  
−118 dB THD  
The AD7767/AD7767-1/AD7767-2 are high performance  
24-bit oversampled SAR analog-to-digital converters (ADC).  
The AD7767/AD7767-1/AD7767-2 combine the benefits of a  
large dynamic range and input bandwidth, consuming 15 mW,  
10.5 mW, and 8.5 mW power, respectively, all contained in a  
16-lead TSSOP package.  
Exceptionally low power  
Ideal for ultralow power data acquisition (such as PCI- and  
USB-based systems), the AD7767/AD7767-1/AD7767-2  
provide 24-bit resolution. The combination of exceptional SNR,  
wide dynamic range, and outstanding dc accuracy make the  
AD7767/AD7767-1/AD7767-2 ideally suited for measuring  
small signal changes over a wide dynamic range. This is  
particularly suitable for applications where small changes on the  
input are measured on larger ac or dc signals. In such an  
application, the AD7767/AD7767-1/AD7767-2 accurately  
gather both ac and dc information.  
8.5 mW, 32 kSPS (AD7767-2)  
10.5 mW, 64 kSPS (AD7767-1)  
15 mW, 128 kSPS (AD7767)  
High dc accuracy  
24 bits, no missing codes (NMC)  
INL: 3 ppm (typical), 7.6 ppm (maximum)  
Low temperature drift  
Zero error drift: 15 nV/°C  
Gain error drift: 0.0075% FS  
On-chip low-pass FIR filter  
The AD7767/AD7767-1/AD7767-2 include an on-board digital  
filter (complete with linear phase response) that acts to elimi-  
nate out-of-band noise by filtering the oversampled input  
voltage. The oversampled architecture also reduces front-end  
antialias requirements. Other features of the AD7767 include a  
Linear phase response  
Pass-band ripple: 0.005 dB  
Stop-band attenuation: 100 dB  
2.5 V supply with 1.8 V/2.5 V/3 V/3.6 V logic interface options  
Flexible interfacing options  
SYNC PD  
/
(synchronization/power-down) pin, allowing the  
Synchronization of multiple devices  
Daisy chain capability  
Power-down function  
synchronization of multiple AD7767 devices. The addition of  
an SDI pin provides the option of daisy chaining multiple  
AD7767 devices.  
Temperature range: −40°C to +105°C  
The AD7767/AD7767-1/AD7767-2 operate from a 2.5 V supply  
using a 5 V reference. The devices operate from −40°C to +105°C.  
APPLICATIONS  
Low power PCI/USB data acquisition systems  
Low power wireless acquisition systems  
Vibration analysis  
Instrumentation  
High precision medical acquisition  
RELATED DEVICES  
Table 1. 24-Bit Analog-to-Digital Converters  
Part No.  
Description  
AD7760  
2.5 MSPS, 100 dB dynamic range1, on-board differential  
amp and reference buffer, parallel, variable decimation  
FUNCTIONAL BLOCK DIAGRAM  
625 kSPS, 109 dB dynamic range1, on-board differential  
amp and reference buffer, parallel/serial, variable  
decimation  
AV  
AGND MCLK  
DV  
V
DGND  
AD7762/  
AD7763  
DD  
DD  
DRIVE  
V
REF+  
312 kSPS, 109 dB dynamic range1, on-board differential  
amp and reference buffer, variable decimation (pin)  
156 kSPS, 112 dB dynamic range1, on-board differential  
amp and reference buffer, variable decimation (pin)  
128 kSPS, 109.5 dB1, 15 mW, 16-bit INL, serial interface  
64 kSPS 112.5 dB1,10.5 mW, 16-bit INL, serial interface  
32 kSPS, 115.5 dB1, 8.5 mW, 16-bit INL, serial interface  
V
IN+  
AD7764  
AD7765  
DIGITAL  
FIR FILTER  
SUCCESSIVE-  
APPROXIMATION  
ADC  
SYNC/PD  
CS  
V
IN–  
SERIAL INTERFACE  
AND  
CONTROL LOGIC  
REFGND  
AD7766  
AD7767/  
AD7767-1/  
AD7767-2  
AD7766-1  
AD7766-2  
SCLK DRDY SDO SDI  
1 Dynamic range at maximum output data rate.  
Figure 1.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2007 Analog Devices, Inc. All rights reserved.  
 
AD7767  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
AD7767 Interface ........................................................................... 17  
Initial Power-Up ......................................................................... 17  
Reading Data............................................................................... 17  
Power-Down, Reset, and Synchronization ............................. 17  
Daisy Chaining ............................................................................... 18  
Reading Data in Daisy Chain Mode........................................ 18  
Choosing the SCLK Frequency ................................................ 18  
Daisy Chain Mode Configuration and Timing Diagrams.... 19  
Driving the AD7767....................................................................... 20  
Differential Signal Source ......................................................... 20  
Single-Ended Signal Source ...................................................... 20  
Antialiasing ................................................................................. 21  
Power Dissipation....................................................................... 21  
VREF+ Input Signal ....................................................................... 22  
Multiplexing Analog Input Channels...................................... 22  
Outline Dimensions....................................................................... 23  
Ordering Guide .......................................................................... 23  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Specifications .................................................................. 5  
Timing Diagrams.......................................................................... 6  
Absolute Maximum Ratings............................................................ 8  
ESD Caution.................................................................................. 8  
Pin Configuration and Function Descriptions............................. 9  
Typical Performance Characteristics ........................................... 10  
Terminology .................................................................................... 14  
Theory of Operation ...................................................................... 15  
AD7767/AD7767-1/AD7767-2 Transfer Function................ 15  
Converter Operation.................................................................. 15  
Analog Input Structure.............................................................. 16  
Supply and Reference Voltages ................................................. 16  
REVISION HISTORY  
8/07—Revision 0: Initial Version  
Rev. 0 | Page 2 of 24  
 
AD7767  
SPECIFICATIONS  
AVDD = DVDD = 2.5 V 5ꢀ, VDRIVE = 1.8 V to 3.6 V, VREF = 5 V, MCLK = 1 MHz, common-mode input = VREF/2, TA = −40°C to +105°C,  
unless otherwise noted.  
Table 2.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
OUTPUT DATA RATE  
AD7767  
AD7767-1  
Decimate by 8  
Decimate by 16  
Decimate by 32  
128  
64  
32  
kHz  
kHz  
kHz  
AD7767-2  
ANALOG INPUT1  
Differential Input Voltage  
Absolute Input Voltage  
VIN+ − VIN−  
VIN+  
VREF  
+VREF + 0.1  
V p-p  
V
−0.1  
−0.1  
VIN−  
+VREF + 0.1  
VREF/2 + 5%  
V
V
pF  
Common-Mode Input Voltage  
Input Capacitance  
VREF/2 − 5% VREF/2  
22  
DYNAMIC PERFORMANCE  
AD7767  
Decimate by 8, ODR = 128 kHz  
Shorted inputs  
Dynamic Range2  
108  
107  
109.5  
108.5  
−128  
−118  
dB  
dB  
dB  
dB  
Signal-to-Noise Ratio (SNR)2  
Spurious Free Dynamic Range (SFDR)2  
Total Harmonic Distortion (THD)2  
Intermodulation Distortion (IMD)2  
Full-scale input amplitude, 1 kHz tone  
Full-scale input amplitude, 1 kHz tone  
Full-scale input amplitude, 1 kHz tone  
Tone A = 49.7 kHz, Tone B = 53 kHz  
Second-order terms  
−116  
−105  
−133  
−109  
dB  
dB  
Third-order terms  
AD7767-1  
Dynamic Range2  
Decimate by 16, ODR = 64 kHz  
Shorted inputs  
111  
110  
112.5  
111.5  
−128  
−118  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
Signal-to-Noise Ratio (SNR)2  
Spurious Free Dynamic Range (SFDR)2  
Total Harmonic Distortion (THD)2  
Intermodulation Distortion (IMD)2  
Full-scale input amplitude, 1 kHz tone  
Full-scale input amplitude, 1 kHz tone  
Full-scale input amplitude, 1 kHz tone  
Tone A = 24.7 kHz, Tone B = 25.3 kHz  
Second-order terms  
−116  
−105  
−133  
−108  
Third-order terms  
AD7767-2  
Dynamic Range2  
Decimate by 32, ODR = 32 kHz  
Shorted inputs  
114  
112  
115.5  
113.5  
−128  
−118  
dB  
dB  
dB  
dB  
dB  
dB  
dB  
Signal-to-Noise Ratio (SNR)2  
Spurious Free Dynamic Range (SFDR)2  
Total Harmonic Distortion (THD)2  
Intermodulation Distortion (IMD)2  
Full-scale input amplitude, 1 kHz tone  
Full-scale input amplitude, 1 kHz tone  
Full-scale input amplitude, 1 kHz tone  
Tone A = 11.7 kHz, Tone B = 12.3 kHz  
Second-order terms  
−116  
−105  
−137  
−108  
Third-order terms  
DC ACCURACY1  
For all devices  
Resolution  
No missing codes  
24  
Bits  
Differential Nonlinearity2  
Integral Nonlinearity2  
Zero Error2  
Guaranteed monotonic to 24 bits  
18-bit linearity  
3
20  
0.0075  
15  
0.4  
7.6  
ppm  
μV  
% FS  
nV/°C  
ppm/°C  
dB  
Gain Error2  
0.075  
Zero Error Drift2  
Gain Error Drift2  
Common-Mode Rejection Ratio2  
50 Hz tone  
−110  
Rev. 0 | Page 3 of 24  
 
AD7767  
Parameter  
DIGITAL FILTER RESPONSE1  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
Group Delay  
37/ODR  
74/ODR  
ꢀs  
ꢀs  
Settling Time (Latency)  
Pass-Band Ripple  
Pass Band  
−3 dB Bandwidth  
Stop Band Frequency  
Stop-Band Attenuation  
REFERENCE INPUT1  
VREF+ Input Voltage  
DIGITAL INPUTS (Logic Levels)1  
VIL  
Complete settling  
0.005  
dB  
Hz  
Hz  
Hz  
dB  
0.453 × ODR  
0.49 × ODR  
0.547 × ODR  
100  
+2.4  
2 × AVDD  
V
−0.3  
0.7 × VDRIVE  
0.3 × VDRIVE  
VDRIVE + 0.3  
1
V
V
VIH  
Input Leakage Current  
Input Capacitance  
Master Clock Rate  
Serial Clock Rate  
DIGITAL OUTPUTS1  
Data Format  
μA/pin  
pF  
MHz  
Hz  
5
1.024  
1/t8  
Serial 24 bits, twos complement (MSB  
first)  
VOL  
VOH  
ISINK = +500 μA  
ISOURCE = −500 ꢀA  
0.4  
V
V
VDRIVE – 0.3  
POWER REQUIREMENTS1  
AVDD  
DVDD  
VDRIVE  
5%  
5%  
+2.5  
+2.5  
+2.5  
V
V
V
+1.7  
+3.6  
CURRENT SPECIFICATIONS  
MCLK = 1.024 MHz  
AD7767 (Operational Current)  
128 kHz output data rate  
AIDD  
DIDD  
IREF  
1.3  
3.9  
0.35  
1.5  
4.8  
0.425  
mA  
mA  
mA  
AD7767-1 (Operational Current)  
AIDD  
DIDD  
IREF  
64 kHz output data rate  
32 kHz output data rate  
1.3  
2.2  
0.35  
1.5  
2.85  
0.425  
mA  
mA  
mA  
AD7767-2 (Operational Current)  
AIDD  
DIDD  
IREF  
1.3  
1.37  
0.35  
1.5  
1.86  
0.425  
mA  
mA  
mA  
Static Current (MCLK Stopped)  
AIDD  
DIDD  
Power-Down Mode Current  
AIDD  
For all devices  
For all devices  
0.9  
1
1
93  
mA  
μA  
0.1  
1
6
93  
μA  
μA  
DIDD  
POWER DISSIPATION  
AD7767 (Operational Power)  
AD7767-1 (Operational Power)  
AD7767-2 (Operational Power)  
MCLK = 1.024 MHz  
128 kHz output data rate  
64 kHz output data rate  
32 kHz output data rate  
15  
10.5  
8.5  
18  
13  
10.5  
mW  
mW  
mW  
1 Specifications for all devices, AD7767, AD7767-1, and AD7767-2.  
2 See the Terminology section.  
Rev. 0 | Page 4 of 24  
AD7767  
TIMING SPECIFICATIONS  
AVDD = DVDD = 2.5 V 5ꢀ, VDRIVE = 1.7 V to 3.6 V, VREF = 5 V, common-mode input = VREF/2, TA = −40°C (TMIN) to +105°C (TMAX),  
unless otherwise noted 1  
Table 3.  
Parameter  
DRDY Operation  
t1  
Limit at TMIN, TMAX  
Unit  
Description  
510  
100  
900  
265  
128  
71  
ns typ  
MCLK rising edge to DRDY falling edge  
2
t2  
ns min MCLK high pulse width  
ns max MCLK low pulse width  
t3  
t4  
ns typ  
ns typ  
ns typ  
ns typ  
ns typ  
ns typ  
ns typ  
MCLK rising edge to DRDY rising edge (AD7767)  
MCLK rising edge to DRDY rising edge (AD7767-1)  
MCLK rising edge to DRDY rising edge (AD7767-2)  
DRDY pulse width (AD7767)  
t5  
294  
435  
492  
DRDY pulse width (AD7767-1)  
DRDY pulse width (AD7767-2)  
3
tREAD  
DRDY low period, read data during this period  
tDRDY − t5  
n × 8 × tMCLK  
ns typ  
DRDY period  
3
tDRDY  
Read Operation  
t6  
t7  
t8  
0
ns min DRDY falling edge to CS setup time  
6
ns max CS falling edge to SDO three-state disabled  
ns max Data access time after SCLK falling edge (VDRIVE = 1.7 V)  
ns max Data access time after SCLK falling edge (VDRIVE = 2.3 V)  
ns max Data access time after SCLK falling edge (VDRIVE = 2.7 V)  
ns max Data access time after SCLK falling edge (VDRIVE = 3.0 V)  
ns min SCLK falling edge to data valid hold time (VDRIVE = 3.6 V)  
ns min SCLK high pulse width  
60  
50  
25  
24  
10  
10  
10  
1/t8  
6
t9  
t10  
t11  
tSCLK  
t12  
t13  
ns min SCLK low pulse width  
min  
Minimum SCLK period  
ns max Bus relinquish time after CS rising edge  
ns min CS rising edge to DRDY rising edge  
0
Read Operation with CS Low  
t14  
t15  
0
0
ns min DRDY falling edge to data valid setup time  
ns max DRDY rising edge to data valid hold time  
Daisy Chain Operation  
t16  
t17  
1
2
ns min SDI valid to SCLK falling edge setup time  
ns max SCLK falling edge to SDI valid hold time  
SYNC/PD Operation  
t18  
t19  
t20  
t21  
1
ns typ  
ns typ  
SYNC/PD falling edge to MCLK rising edge  
20  
MCLK rising edge to DRDY rising edge going into SYNC/PD  
1
ns min SYNC/PD rising edge to MCLK rising edge  
510  
ns typ  
tMCLK  
MCLK rising edge to DRDY falling edge coming out of SYNC/PD  
Filter settling time after a reset or power-down  
3
tSETTLING  
592 × (n + 2)  
1 Sample tested during initial release to ensure compliance. All input signals are specified with tr = tf = 5 ns (10% to 90% of DVDD) and timed from a voltage level of 1.7 V.  
2 t2 and t3 allow a ~90% to 10% duty cycle to be used for the MCLK input where the minimum is 10% for the clock high time and 90% for MCLK low time. The maximum  
MCLK frequency is 1.024 MHz.  
3 n = 1 for AD7767, n = 2 for the AD7767-1, n = 4 for the AD7767-2.  
Rev. 0 | Page 5 of 24  
 
 
AD7767  
TIMING DIAGRAMS  
t2  
1
8 × n  
t4  
1
8 × n  
MCLK  
t3  
t1  
t5  
t5  
tREAD  
DRDY  
tDRDY  
DRDY  
Figure 2.  
vs. MCLK Timing Diagram, n = 1 for AD7767 (Decimate by 8), n = 2 for AD7767-1 (Decimate by 16), n = 4 for AD7767-2 (Decimate by 32)  
tDRDY  
tREAD  
DRDY  
t13  
t6  
CS  
t10  
1
23  
SCLK  
t11  
t8  
t9  
t7  
t12  
SDO  
MSB  
D22  
D21  
D20  
D1  
LSB  
CS  
Figure 3. Serial Timing Diagram, Reading Data Using  
CS = 0  
DRDY  
tDRDY  
tREAD  
t14  
t10  
1
23  
24  
SCLK  
SDO  
t11  
t8  
t9  
t15  
DATA  
INVALID  
DATA  
INVALID  
MSB  
D22  
D21  
D20  
D1  
LSB  
CS  
Figure 4. Serial Timing Diagram, Reading Data Setting Logic Low  
Rev. 0 | Page 6 of 24  
 
 
 
AD7767  
PART OUT OF POWER-DOWN  
FILTER RESET  
PART IN POWER-DOWN  
A
BEGINS SAMPLING  
MCLK (I)  
B
C
D
t20  
t18  
SYNC/PD (I)  
t21  
t19  
DRDY (O)  
DOUT (O)  
tSETTLING  
VALID DATA  
INVALID DATA  
VALID DATA  
Figure 5. Reset, Synchronization, and Power-Down Timing Diagram  
Rev. 0 | Page 7 of 24  
 
AD7767  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 4.  
Parameter  
Rating  
AVDD to AGND  
DVDD to DGND  
AVDD to DVDD  
VREF+ to REFGND  
REFGND to AGND  
VDRIVE to DGND  
VIN+, VIN– to AGND  
Digital Inputs to DGND  
Digital Outputs to DGND  
AGND to DGND  
−0.3 V to +3 V  
−0.3 V to +3 V  
−0.3 V to +0.3 V  
−0.3 V to +7 V  
−0.3 V to + 0.3 V  
−0.3 V to +6 V  
−0.3 V to VREF +0.3 V  
−0.3 V to VDRIVE + 0.3 V  
−0.3 V to VDRIVE + 0.3 V  
−0.3 V to +0.3 V  
10 mA  
ESD CAUTION  
Input Current to Any Pin Except  
Supplies1  
Operating Temperature Range  
Storage Temperature Range  
Junction Temperature  
TSSOP Package  
−40°C to +105°C  
−65°C to +150°C  
150°C  
θJA Thermal Impedance  
θJC Thermal Impedance  
Lead Temperature, Soldering  
Vapor Phase (60 sec)  
Infrared (15 sec)  
150.4°C/W  
27.6°C/W  
215°C  
220°C  
1 kV  
ESD  
1 Transient currents of up to 100 mA do not cause SCR latch-up.  
Rev. 0 | Page 8 of 24  
 
 
 
AD7767  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
AV  
CS  
DD  
SDI  
V
REF+  
AD7767/  
AD767-1/  
AD7767-2  
TOP VIEW  
(Not to Scale)  
REFGND  
MCLK  
SCLK  
DRDY  
DGND  
SDO  
V
IN+  
V
IN–  
AGND  
SYNC/PD  
DV  
V
DRIVE  
DD  
Figure 6. 16-Lead TSSOP Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No. Mnemonic Description  
1
2
AVDD  
VREF+  
+2.5 V Analog Power Supply.  
Reference Input for the AD7767. An external reference must be applied to this input pin. The VREF+ input can range  
from 2.4 V to 5 V. The reference voltage input is independent of the voltage magnitude applied to the AVDD pin.  
3
REFGND  
Reference Ground. Ground connection for the reference voltage. The input reference voltage (VREF+) should be  
decoupled to this pin.  
4
5
6
7
VIN+  
VIN−  
AGND  
SYNC/PD  
Positive Input of the Differential Analog Input.  
Negative Input of the Differential Analog Input.  
Power Supply Ground for Analog Circuitry.  
Synchronization and Power-Down Input Pin. This pin has dual functionality. It can be used to synchronize multiple  
AD7767 devices and/or put the AD7767 device into power-down mode. See the Power-Down, Reset, and  
Synchronization section for further details.  
8
9
DVDD  
VDRIVE  
Digital Power Supply Input. This pin can be connected directly to VDRIVE.  
Logic Power Supply Input, +1.8 V to +3.6 V. The voltage supplied at this pin determines the operating voltage of  
the digital logic interface.  
10  
SDO  
Serial Data Output (SDO). The conversion result from the AD7767 is output on the SDO pin as a 24-bit, twos  
complement, MSB first, serial data stream.  
11  
12  
DGND  
DRDY  
Digital Logic Power Supply Ground.  
Data Ready Output. A falling edge on the DRDY signal indicates that a new conversion data result is available in the  
output register of the AD7767. See the AD7767 Interface section for further details.  
13  
SCLK  
Serial Clock Input. The SCLK input provides the serial clock for all serial data transfers with the AD7767 device. See  
the AD7767 Interface section for further details.  
14  
15  
16  
MCLK  
SDI  
CS  
Master Clock Input. The AD7767 sampling frequency is equal to the MCLK frequency.  
Serial Data Input. This is the daisy chain input of the AD7767. See the Daisy Chaining section for further details.  
Chip Select Input. The CS input selects the AD7767 device and acts as an enable on the SDO pin. In cases where CS  
is used, the MSB of the conversion result is clocked onto the SDO line on the CS falling edge. The CS input allows  
multiple AD7767 devices to share the same SDO line. This allows the user to select the appropriate device by  
supplying it with a logic low CS signal, which enables the SDO pin of the device concerned. See the AD7767  
Interface section for further details.  
Rev. 0 | Page 9 of 24  
 
AD7767  
TYPICAL PERFORMANCE CHARACTERISTICS  
AVDD = DVDD = 2.5 V 5ꢀ, VDRIVE = 1.8 V to 3.6 V, VREF = 5 V, MCLK = 1 MHz, common-mode input = VREF/2. TA = 25°C, unless  
otherwise noted. All FFTs were generated using 8192 samples using a 4-term Blackman-Harris window.  
0
0
–20  
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–100  
–120  
–140  
–160  
–180  
0
8k  
16k  
24k  
32k  
40k  
48k  
56k  
64k  
0
8k  
16k  
24k  
32k  
40k  
48k  
56k  
64k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 10. AD7767 FFT, 1 kHz, −6 dB Input Tone  
Figure 7. AD7767 FFT, 1 kHz, −0.5 dB Input Tone  
0
–20  
0
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–100  
–120  
–140  
–160  
–180  
0
4k  
8k  
12k  
16k  
20k  
24k  
28k  
32k  
0
4k  
8k  
12k  
16k  
20k  
24k  
28k  
32k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 11. AD7767-1 FFT, 1 kHz, −6 dB Input Tone  
Figure 8. AD7767-1 FFT, 1 kHz, −0.5 dB Input Tone  
0
–20  
0
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–100  
–120  
–140  
–160  
–180  
0
4k  
8k  
12k  
16k  
0
4k  
8k  
12k  
16k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 9. AD7767-2 FFT, 1 kHz, −0.5 dB Input Tone  
Figure 12. AD7767-2 FFT, 1 kHz, −6 dB Input Tone  
Rev. 0 | Page 10 of 24  
 
AD7767  
0
–20  
0
–20  
TONE A: 49.7kHz  
TONE B: 50.3kHz  
SECOND-ORDER IMD = –133.71dB  
THIRD-ORDER IMD = –109.05dB  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–100  
–120  
–140  
–160  
–180  
0
0
0
8k  
16k  
24k  
32k  
40k  
48k  
56k  
64k  
32k  
16k  
0
8k  
16k  
24k  
32k  
40k  
48k  
56k  
64k  
32k  
16k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 13. AD7767 FFT, 1 kHz, −60 dB Input Tone  
Figure 16. AD7767 IMD FFT, 50 kHz Center Frequency  
0
–20  
0
–20  
TONE A: 24.7kHz  
TONE B: 25.3kHz  
SECOND-ORDER IMD = –133.33dB  
THIRD-ORDER IMD = –108.15dB  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–100  
–120  
–140  
–160  
–180  
4k  
8k  
12k  
16k  
20k  
24k  
28k  
0
4k  
8k  
12k  
16k  
20k  
24k  
28k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 14. AD7767-1 FFT, 1 kHz, −60 dB Input Tone  
Figure 17. AD7767-1 IMD FFT, 25 kHz Center Frequency  
0
–20  
0
–20  
TONE A: 11.7kHz  
TONE B: 12.3kHz  
SECOND-ORDER IMD = –137.96dB  
THIRD-ORDER IMD = –108.1dB  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–100  
–120  
–140  
–160  
–180  
4k  
8k  
12k  
0
4k  
8k  
12k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 15. AD7767-2 FFT, 1 kHz, −60 dB Input Tone  
Figure 18. AD7767-2 IMD FFT, 12 kHz Center Frequency  
Rev. 0 | Page 11 of 24  
AD7767  
–110  
–112  
–114  
–116  
–118  
–120  
–122  
–124  
–126  
–128  
120  
115  
110  
105  
100  
95  
DYNAMIC RANGE  
AD7767-2  
OPEN INPUTS  
AD7767-1  
AD7767  
FULL-SCALE 921Hz  
–130  
0
90  
100k 200k 300k 400k 500k 600k 700k 800k 900k 1M  
FREQUENCY (Hz)  
0
10k  
20k  
30k  
40k  
50k  
60k  
fNOISE (Hz)  
Figure 19. AD7767/AD7767-1/AD7767-2 THD vs. MCLK Frequency  
Figure 22. AD7767 CMRR vs. Common-Mode Ripple Frequency  
115  
200  
MAX = 8388637  
MIN = 8388493  
SPREAD = 145  
180  
160  
140  
120  
100  
80  
114  
AD7767-2  
113  
112  
111  
AD7767-1  
110  
60  
109  
AD7767  
40  
108  
107  
20  
0
0
100k 200k 300k 400k 500k 600k 700k 800k 900k 1M  
FREQUENCY (Hz)  
CODES  
Figure 20. AD7767/AD7767-1/AD7767-2 SNR and THD vs. MCLK Frequency  
Figure 23. AD7767 24-Bit Histogram  
150  
250  
200  
150  
100  
50  
AV  
DD  
DV  
MAX = 8388507  
DD  
MIN = 8388608  
SPREAD = 102 CODES  
140  
130  
120  
110  
100  
V
DRIVE  
0
0
10k  
20k  
30k  
fNOISE (Hz)  
40k  
50k  
60k  
CODES  
Figure 21. AD7767 Power Supply Sensitivity vs. Supply Ripple Frequency with  
Decoupling Capacitors  
Figure 24. AD7767-1 24-Bit Histogram  
Rev. 0 | Page 12 of 24  
AD7767  
3.80  
3.04  
2.28  
1.52  
0.76  
0
MAX = 8388593  
LOW TEMPERATURE  
NOMINAL TEMPERATURE  
HIGH TEMPERATURE  
350  
300  
250  
200  
150  
100  
50  
MIN = 8388526  
SPREAD = 69 CODES  
–0.76  
–1.52  
–2.28  
–3.04  
–3.80  
0
0
4194304  
2097152 6291456  
24-BIT CODES  
8388608  
12582912  
16777216  
10485760  
14680064  
CODES  
Figure 25. AD7767-2 24-Bit Histogram  
Figure 27. AD7767/AD7767-1/AD7767-2, 24-Bit INL  
1.0  
0.8  
0.6  
0.4  
0.2  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
0
4194304  
2097152 6291456  
24-BIT CODES  
8388608  
12582912  
16777216  
10485760  
14680064  
Figure 26. AD7767/AD7767-1/AD7767-2, 24-Bit DNL  
Rev. 0 | Page 13 of 24  
AD7767  
TERMINOLOGY  
Signal-to-Noise Ratio (SNR)  
sum of the individual distortion products to the rms amplitude  
of the sum of the fundamentals expressed in decibels.  
SNR is the ratio of the rms value of the actual input signal to the  
rms sum of all other spectral components below the Nyquist  
frequency, excluding harmonics and dc. The value for SNR is  
expressed in decibels.  
Integral Nonlinearity (INL)  
INL is the maximum deviation from a straight line passing  
through the endpoints of the ADC transfer function.  
Total Harmonic Distortion (THD)  
THD is the ratio of the rms sum of harmonics to the fundamen-  
tal. For the AD7767, it is defined as  
Differential Nonlinearity (DNL)  
DNL is the difference between the measured and the ideal  
1 LSB change between any two adjacent codes in the ADC.  
V22 + V32 + V42 + V52 + V62  
Zero Error  
THD  
where:  
(dB) = 20 log  
Zero error is the difference between the ideal midscale input  
voltage (when both inputs are shorted together) and the actual  
voltage producing the midscale output code.  
V1  
V1 is the rms amplitude of the fundamental.  
V2, V3, V4, V5, and V6 are the rms amplitudes of the second to  
the sixth harmonics.  
Zero Error Drift  
Zero error drift is the change in the actual zero error value due  
to a temperature change of 1°C. It is expressed as a percentage  
of full scale at room temperature.  
Nonharmonic Spurious-Free Dynamic Range (SFDR)  
SFDR is the ratio of the rms signal amplitude to the rms value  
of the peak spurious spectral component, excluding harmonics.  
Gain Error  
The first transition (from 100…000 to 100…001) should occur  
for an analog voltage ½ LSB above the nominal negative full  
scale. The last transition (from 011…110 to 011…111) should  
occur for an analog voltage 1½ LSB below the nominal full  
scale. The gain error is the deviation of the difference between  
the actual level of the last transition and the actual level of the  
first transition, from the difference between the ideal levels.  
Dynamic Range  
Dynamic range is the ratio of the rms value of the full scale to  
the rms noise measured with the inputs shorted together. The  
value for the dynamic range is expressed in decibels.  
Intermodulation Distortion  
With inputs consisting of sine waves at two frequencies, fa  
and fb, any active device with nonlinearities creates distortion  
products at sum and difference frequencies of mfa nfb, where  
m, n = 0, 1, 2, 3, and so on. Intermodulation distortion terms  
are those for which neither m nor n are equal to 0. For example,  
the second-order terms include (fa + fb) and (fa − fb), and the  
third-order terms include (2fa + fb), (2fa − fb), (fa + 2fb), and  
(fa − 2fb).  
Gain Error Drift  
Gain error drift is the change in the actual gain error value due  
to a temperature change of 1°C. It is expressed as a percentage  
of full scale at room temperature.  
Common-Mode Rejection Ratio (CMRR)  
CMRR is defined as the ratio of the power in the ADC output  
at full-scale frequency f to the power of a 100 mV sine wave  
applied to the common-mode voltage of the VIN+ and VIN−  
inputs at frequency fs.  
The AD7767 is tested using the CCIF standard, where two input  
frequencies near the top end of the input bandwidth are used.  
In this case, the second-order terms are usually distanced in  
frequency from the original sine waves, and the third-order  
terms are usually at a frequency close to the input frequencies.  
As a result, the second- and third-order terms are specified  
separately. The calculation of the intermodulation distortion is  
as per the THD specification, where it is the ratio of the rms  
CMRR (dB) = 10 log(Pf/Pfs)  
where Pf is the power at the frequency f in the ADC output and  
Pfs is the power at the frequency fs in the ADC output.  
Rev. 0 | Page 14 of 24  
 
AD7767  
THEORY OF OPERATION  
The AD7767/AD7767-1/AD7767-2 operate using a fully  
differential analog input applied to a successive approximation  
(SAR) core. The output of the oversampled SAR is filtered using  
a linear phase digital FIR filter. The fully filtered data is output  
in a serial format, with the MSB being clocked out first.  
The digital filtering that follows the converter output acts to  
remove the out-of-band quantization noise (see Figure 30). This  
also has the effect of reducing the data rate from fMCLK at the  
input of the filter to fMCLK/8, fMCLK/16, or fMCLK/32 at the digital  
output, depending on which model of the device is being used.  
The digital filter consists of three separate filter blocks. Figure 31  
shows the three constituent blocks of the filter. The order of  
decimation of the first filter block is set as 2, 4, or 8. The  
remaining sections both operate in decimate by 2.  
AD7767/AD7767-1/AD7767-2 TRANSFER  
FUNCTION  
The conversion results of the AD7767/AD7767-1/AD7767-2 are  
output in a twos complement, 24-bit serial format. The fully  
differential inputs VIN+ and VIN− are scaled by the AD7767/  
AD7767-1/AD7767-2 relative to the reference voltage input  
(VREF+), as shown in Figure 28.  
DIGITAL FILTER  
STAGE 1  
STAGE 2  
STAGE 3  
DATA  
STREAM  
SINC FILTER  
FIR FILTER  
FIR FILTER  
SDO  
24 BITS  
TWOS  
COMPLEMENT  
DEC × (2 × n)  
DEC × 2  
DEC × 2  
011...111  
011...110  
Figure 31. FIR Filter Stages  
(n = 1 for AD7767, n = 2 for AD7767-1, n = 4 for AD7767-2)  
000...010  
000...001  
Table 6 shows the three available models of the AD7767, listing  
the change in output data rate relative to the order of decimation  
rate implemented. This brings into focus the trade-off that  
exists between extra filtering and reduction in bandwidth,  
whereby using a filter option with a larger decimation rate  
increases the noise performance while decreasing the usable  
input bandwidth.  
000...000  
111...111  
111...110  
100...001  
100...000  
Table 6. AD7767 Models  
V
= 0V  
V
V
V
= V  
– 1LSB  
IN+  
REF  
2
REF  
IN+  
REF  
Model  
Decimation Rate  
Output Data Rate (ODR)  
V
V
=
=
IN+  
V
= V  
– 1LSB  
V
= 0V  
IN–  
REF  
IN–  
AD7767  
AD7767-1  
AD7767-2  
8
16  
32  
128 kHz  
64 kHz  
32 kHz  
IN–  
2
Figure 28. AD7767/AD7767-1/AD7767-2 Transfer Function  
CONVERTER OPERATION  
Note that the output data rates shown in Table 6 are realized  
when using the maximum MCLK input frequency of 1.024 MHz.  
The output data rate scales linearly with the MCLK frequency,  
as does the digital power dissipated in the device.  
Internally, the input waveform applied to the SAR core is  
converted and an equivalent digital word is output to the digital  
filter at a rate equal to MCLK. By employing oversampling, the  
quantization noise of the converter is spread across a wide  
bandwidth from 0 to fMCLK. This means that the noise energy  
contained in the signal band of interest is reduced (see  
Figure 29).  
The settling time of the filter implemented on the AD7767,  
AD7767-1, and AD7767-2 is related to the length of the filter  
employed. The response of the filter in the time domain sets the  
filter settling time. Table 7 shows the filter settling times of the  
AD7767/AD7767-1/AD7767-2.  
The frequency responses of the digital filters on the AD7767,  
AD7767-1, and AD7767-2 are shown in Figure 32, Figure 33,  
and Figure 34, respectively. At the Nyquist frequency (output  
data rate/2), the digital filter provides 6 dB of attenuation. In each  
case, the filter provides stop-band attenuation of 100 dB and  
pass-band ripple of 0.005 dB.  
QUANTIZATION NOISE  
fMCLK/2  
BAND OF INTEREST  
Figure 29. Quantization Noise  
DIGITAL FILTER CUTOFF FREQUENCY  
fMCLK/2  
BAND OF INTEREST  
Figure 30. Digital Filter Cutoff Frequency  
Rev. 0 | Page 15 of 24  
 
 
 
 
 
 
AD7767  
0
ANALOG INPUT STRUCTURE  
–20  
The AD7767/AD7767-1/AD7767-2 are configured as a  
differential input structure. A true differential signal is sampled  
between the analog inputs VIN+ and VIN−, Pin 4 and Pin 5,  
respectively. Using differential inputs provides rejection of  
signals that are common to both the VIN+ and VIN− pins.  
–40  
–60  
–80  
Figure 35 shows the equivalent analog input circuit of the  
AD7767/AD7767-1/AD7767-2. The two diodes on each of the  
differential inputs provide ESD protection for the analog inputs.  
–100  
–120  
–140  
V
REF+  
D
D
–160  
0
C2  
R
IN  
16k  
32k  
48k  
64k  
80k  
96k  
112k  
128k  
V
IN+  
FREQUENCY (Hz)  
C1  
Figure 32. AD7767 Digital Filter Frequency Response  
GND  
AGND  
V
REF+  
0
–20  
D
C2  
R
IN  
V
IN–  
C1  
D
–40  
GND  
AGND  
–60  
Figure 35. Equivalent Analog Input Structure  
–80  
Take care to ensure that the analog input signal does not exceed  
the reference supply voltage VREF+ by more than 0.3 V as specified  
in the Absolute Maximum Ratings section. The diodes become  
forward biased if the input voltage exceeds this limit and start to  
conduct current. The diodes can handle 130 mA maximum.  
–100  
–120  
–140  
–160  
The impedance of the analog inputs can be modeled as a  
parallel combination of C1 and the network formed by the  
series connection of RIN, C1, and C2. The value of C1 is  
dominated by the pin capacitance. RIN is typically 1.4 kΩ, the  
lumped component of serial resistors and the RON of the  
switches. C2 is typically 22 pF, and its value is dominated by the  
sampling capacitor.  
0
8k  
16k  
24k  
32k  
40k  
48k  
56k  
64k  
FREQUENCY (Hz)  
Figure 33. AD7767-1 Digital Filter Frequency Response  
0
–20  
SUPPLY AND REFERENCE VOLTAGES  
–40  
The AD7767/AD7767-1/AD7767-2 operate from a 2.5 V supply  
applied to the DVDD, AVDD pins. The interface is specified to  
operate between 1.7 V and 3.6 V. The AD7767/AD7767-1/  
AD7767-2 operate from a 5 V reference applied to the VREF+ pin.  
The recommended reference devices are the ADR445 or the  
ADR425. The 5 V reference operates both as a reference supply  
and as a power supply to the AD7767/AD7767-1/AD7767-2  
device. This feature means that the full-scale differential input  
range of the AD7767/AD7767-1/AD7767-2 is 10 V. See the  
Driving the AD7767 section for details on the maximum input  
voltage.  
–60  
–80  
–100  
–120  
–140  
–160  
0
4k  
8k  
12k  
16k  
20k  
24k  
28k  
32k  
FREQUENCY (Hz)  
Figure 34. AD7767-2 Digital Filter Frequency Response  
Rev. 0 | Page 16 of 24  
 
 
 
 
 
AD7767  
AD7767 INTERFACE  
The AD7767 provides the user with a flexible serial interface,  
enabling the user to implement the most desirable interfacing  
scheme for their application. The AD7767 interface comprises  
seven different signals. Five of these signals are inputs: MCLK,  
CS  
is logic  
devices indicating permission to use the bus. When  
high, the SDO line of the AD7767 is tristated.  
There are two distinct patterns that can be initiated to read data  
CS  
from the AD7767 device; these are for the cases when the  
falling edge occurs after the falling edge and for the case  
CS SYNC PD  
,
/
, SCLK, and SDI. There are two output signals:  
DRDY  
falling edge occurs before the  
is set to logic low).  
DRDY  
and SDO.  
CS  
when the  
CS  
falling edge  
DRDY  
INITIAL POWER-UP  
(when  
When the  
MSB of the conversion result is available on the SDO line on  
CS  
On initial power-up, apply a continuous MCLK signal. It is  
recommended that the user reset the AD7767 to clear the filters  
and ensure correct operation. The reset is completed as described  
in Figure 5, with all events occurring relative to the rising edge  
CS  
falling edge occurs after  
falling edge, the  
DRDY  
this  
falling edge. The remaining bits of the conversion result  
(MSB-1, MSB-2, and so on) are clocked onto the SDO line by  
of MCLK. A negative pulse on the  
/
input initiates the  
SYNC PD  
CS  
the falling edges of SCLK that follow the  
details this interfacing scheme.  
falling edge. Figure 3  
reset, and the  
output switches to logic high and remains  
DRDY  
high until valid data is available. Following the power-up of the  
SYNC PD  
CS  
When  
is tied low, the AD7767 serial interface can operate in  
3-wire mode as shown in Figure 4. In this case, the MSB of the  
conversion result is available on the SDO line on the falling  
. The remaining bits of the data conversion result  
(MSB-1, MSB-2, and so on) are clocked onto the SDO line by  
the subsequent SCLK falling edges.  
AD7767 by transitioning the  
/
pin to logic high, a  
settling time is required before valid data is output by the  
device. This settling time, tSETTLING, is a function of the MCLK  
frequency and the decimation rate. Table 7 lists the settling time  
of each of the AD7767 models and should be referenced to  
Figure 5.  
DRDY  
edge of  
POWER-DOWN, RESET, AND SYNCHRONIZATION  
SYNC PD  
Table 7. Filter Settling Time After  
/
SYNC  
1
The AD7767  
/
pin allows the user to synchronize  
PD  
Model  
Decimation Rate  
tSETTLING  
multiple AD7767 devices. This pin also allows the user to reset  
and power down the AD7767 device. These features are  
implemented relative to the rising edges of MCLK and are  
shown in Figure 5.  
AD7767  
AD7767-1  
AD7767-2  
8
16  
32  
594 × (tMCLK + t21)  
1186 × (tMCLK + t21)  
2370 × (tMCLK + t21)  
1 tSETTLING is measured from the first MCLK rising edge after the rising edge of  
to the falling edge of  
/
.
DRDY  
SYNC PD  
To power down, reset, or synchronize a device, the AD7767  
/
pin should be taken low. On the first rising edge of  
SYNC PD  
READING DATA  
MCLK, the AD7767 is powered down. The  
pin transi-  
DRDY  
tions to logic high, indicating that the data in the output register  
is no longer valid. The status of the pin is checked on  
The AD7767 outputs its data conversion results in an MSB first,  
twos complement, 24-bit format on the serial data output pin  
(SDO). MCLK is the master clock, which controls all the AD7767  
conversions. The SCLK is the serial clock input for the device.  
All data transfers take place with respect to the SCLK signal.  
/
SYNC PD  
each subsequent rising edge of MCLK. On the first rising edge  
of MCLK after the pin is taken high, the AD7767 is  
/
SYNC PD  
taken out of power-down. On the next rising edge, the filter of  
the AD7767 is reset. On the following rising edge, the first new  
sample is taken.  
The  
line is used as a status signal to indicate when the  
DRDY  
data is available to be read from the AD7767. The falling edge of  
indicates that a new data-word is available in the output  
DRDY  
register of the device.  
A settling time, tSETTLING, from the filter reset, must pass before  
valid data is output by the device (as listed in Table 7). The  
stays low during the period that  
DRDY  
output data is permitted to be read from the SDO pin. The  
signal returns to logic high to indicate when not to read  
DRDY  
output goes logic low after tSETTLING to indicate when  
valid data is available on SDO for readback.  
DRDY  
from the device. Ensure that a data read is not attempted during  
this period as the output register is being updated.  
The AD7767 offers the user the option of using a chip select  
CS  
CS  
input signal ( ) in its data read cycle. The  
signal is a gate  
for the SDO pin and allows many AD7767 devices to share the  
same serial bus, acting as an instruction signal to each of these  
Rev. 0 | Page 17 of 24  
 
 
 
 
AD7767  
DAISY CHAINING  
Daisy chaining devices allows numerous devices to use the same  
digital interface lines by cascading the outputs of multiple ADCs  
on a single data line. This feature is especially useful for reduc-  
ing component count and wiring connections, for example, in  
isolated multiconverter applications or for systems with a limited  
interfacing capacity. Data readback is analogous to clocking a  
shift register where data is clocked on the falling edge of SCLK.  
DRDY  
signal is active low. This is  
illustrated in the example shown where the conversion results  
from devices A, B, C, and D are clocked onto SDO (A) in the  
device in the chain while its  
DRDY  
time between the falling edge of  
DRDY  
(A) and the rising edge  
of  
(A).  
CHOOSING THE SCLK FREQUENCY  
As shown in Figure 36, the number of SCLK falling edges that  
The block diagram in Figure 36 shows the way in which devices  
must be connected in order to achieve daisy chain functionality.  
This scheme operates by passing the output data of the SDO pin  
of an AD7767 device to the SDI input of the next AD7767 device  
in the chain. The data then continues through the chain until it  
is clocked onto the SDO pin of the first device on the chain.  
DRDY  
occur during the period when  
(A) is active low must  
match the number of devices in the chain multiplied by 24 (the  
number of bits that must be clocked through onto SDO (A) for  
each device).  
The period of SCLK (tSCLK) required for a known daisy chain  
length using a known common MCLK frequency must  
therefore be established in advance. Note that the maximum  
SCLK frequency is governed by t8 and is specified in the Timing  
Specifications table for different VDRIVE voltages.  
READING DATA IN DAISY CHAIN MODE  
An example of a daisy chain of four AD7767 devices is shown in  
Figure 36 and Figure 37. In the case illustrated in Figure 36, the  
output of AD7767 (A) is the output of the full daisy chain. The  
last device in the chain (AD7767 (D)) has its serial data in (SDI)  
pin connected to ground. All the devices in the chain must use  
CS  
In the case where  
is tied logic low,  
tREAD  
tSCLK  
(1)  
CS  
SYNC PD  
common MCLK, SCLK, , and  
/ signals.  
24 × K  
To enable the daisy chain conversion process, apply a common  
SYNC PD  
the chain (see the Power-Down, Reset, and Synchronization  
section).  
where:  
K is the number of AD7767 devices in the chain.  
/
pulse to all devices, synchronizing all the devices in  
t
SCLK is the period of the SCLK.  
t
READ equals tDRDY − t5.  
SYNC PD  
pulse to all the devices, there is a  
After applying a  
/
CS  
In the case where  
is used in the daisy chain interface,  
delay (as listed in Table 7) before valid conversion data appears  
at the output of the chain of devices. As shown in Figure 37,  
the first conversion result is output from the device labeled  
AD7767 (A). This 24-bit conversion result is followed by the  
conversion results from the devices B, C, and D, respectively,  
with all conversion results output in an MSB first sequence. The  
stream of conversion results is clocked through each device in  
the chain and is eventually clocked onto the SDO pin of the  
AD7767 (A) device. The conversion results of the all the devices  
in the chain must be clocked onto the SDO pin of the final  
(
t
)
(
t6 + t7 + t13  
)
READ  
tSCLK  
(2)  
24 × K  
where:  
K is the number of AD7767 devices in the chain.  
Note that the maximum value of SCLK is governed by t8 and is  
specified in the Timing Specifications table for different VDRIVE  
voltages.  
Rev. 0 | Page 18 of 24  
 
 
AD7767  
DAISY CHAIN MODE CONFIGURATION AND TIMING DIAGRAMS  
SYNC/PD  
CS  
SYNC/PD  
SYNC/PD  
SYNC/PD  
SYNC/PD  
CS DRDY  
CS  
CS  
CS  
AD7767  
(D)  
AD7767  
(C)  
AD7767  
(B)  
AD7767  
(A)  
SDO  
SDI  
SDI  
SDO  
SDI  
SDO  
SDI  
SDO  
SDI  
SCLK  
SCLK  
SCLK  
SCLK  
MCLK  
MCLK  
MCLK  
MCLK  
SCLK  
MCLK  
Figure 36. AD7767 Daisy Chain Configuration with Four AD7767 Devices  
1
8 × n  
MCLK  
DRDY (A)  
CS  
24 × tSCLK  
24 × tSCLK  
24 × tSCLK  
24 × tSCLK  
SCLK  
AD7767 (A)  
AD7767 (B)  
AD7767 (C)  
AD7767 (D)  
AD7767 (B)  
AD7767 (C)  
AD7767 (D)  
AD7767 (C)  
AD7767 (D)  
AD7767 (D)  
AD7767 (A)  
AD7767 (B)  
AD7767 (C)  
AD7767 (D)  
SDO (A)  
SDI (A) = SDO (B)  
SDI (B) = SDO (C)  
SDI (C) = SDO (D)  
Figure 37. AD7767 Daisy Chain Timing Diagram (n = 1 for AD7767, n = 2 for AD7767-1, n = 4 for AD7767-2) Driving the AD7767  
1
MCLK  
DRDY (A)  
CS  
SDO (A)  
SCLK  
MSB (A)  
LSB (A) MSB (B)  
LSB (B) MSB (C)  
LSB (C)  
t16  
t17  
MSB (B)  
LSB (B) MSB (C)  
LSB (C) MSB (D)  
LSB (D)  
SDI (A) = SDO (B)  
Figure 38. AD7767 Daisy Chain SDI Setup and Hold Timing  
Rev. 0 | Page 19 of 24  
 
 
 
AD7767  
DRIVING THE AD7767  
The AD7767 must be driven with fully differential inputs. The  
common-mode voltage of the differential inputs to the AD7767  
device and thus the limits on the differential inputs are set by  
the reference voltage VREF applied to the device. The common-  
mode voltage of the AD7767 is VREF/2. Where the AD7767 VREF+  
pin is supplied with a 5 V supply (the ADR445 or ADR425), the  
common mode is at 2.5 V. This means that the maximum inputs  
that can be applied on the AD7767 differential inputs are a  
5 V p-p input around 2.5 V.  
DIFFERENTIAL SIGNAL SOURCE  
An example of some recommended driving circuitry that can  
be employed in conjunction with the AD7767/AD7767-1/  
AD7767-2 is shown in Figure 40. Figure 40 shows how the  
ADA4841-1 device can be used to drive an input to the AD7767/  
AD7767-1/AD7767-2 from a differential source. Each of the  
differential paths is driven by an ADA4841-1 device.  
499  
3.3nF  
V
REF  
499Ω  
2.5V  
1
A
IN+  
3.3Ω  
V
ADA4841-1  
V
REF  
2
IN+  
4
5
V
V
AV  
DD  
IN+  
499Ω  
10nF  
AD7767  
0V  
3.3nF  
V
REF+  
IN–  
V
REF  
2
499Ω  
1kΩ  
A
IN–  
3.3Ω  
V
IN–  
ADR425  
ADA4841-1  
V
REF  
2
2× V  
CM  
1kΩ  
0V  
Figure 40. Driving the AD7767 from a Fully Differential Source  
Figure 39. Maximum Differential Inputs to the AD7767  
SINGLE-ENDED SIGNAL SOURCE  
An analog voltage of 2.5 V supplies the AD7767 AVDD pin.  
However, the AD7767 allows the user to apply a reference  
voltage of up to 5 V. This provides the user with an increased  
full-scale range, offering the user the option of using the  
AD7767 with a larger LSB voltage size. Figure 39 shows the  
maximum and minimum inputs to the AD7767.  
In the case where the AD7767 is being supplied from a single-  
ended source, the application circuit in Figure 41 can be used to  
drive the AD7767 device. Figure 41 shows how the ADA4941-1  
single-to-differential amplifier can be used to create a fully  
differential input to the AD7767. The single-ended signal input  
is applied to the positive input of the ADA4941-1 device.  
Arrange the values of the resistor elements to create a 2.5 V  
common-mode input to the AD7767/AD7767-1/AD7767-2  
device. R3 and C2 default to 3.3 Ω and 10 nF, respectively.  
V
SS–  
R1  
A
IN+  
R1  
C1  
2.5V  
8
7
6
5
1
R3  
4
5
V
V
AV  
IN+  
DD  
C2  
R3  
AD7767  
V
REF+  
IN–  
ADA4941-1  
2
ADR425  
1
2
3
4
R4  
C3  
V
OFFSET  
R2  
V
SS+  
R5  
2× V  
CM  
R2  
R
FB  
C
FB  
Figure 41. Driving the AD7767 from a Single-Ended Source  
Rev. 0 | Page 20 of 24  
 
 
 
 
 
AD7767  
in use. For instance, operating the AD7767 device with an  
MCLK of 800 kHz gives an output data rate of 100 kHz due to  
the decimate by 8 filtering.  
ANTIALIASING  
The AD7767/AD7767-1/AD7767-2 sample the analog input  
at a maximum rate of 1.024 MHz. The on-board digital filter  
provides up to 100 dB attenuation of any possible aliasing  
frequencies in the range from the beginning of the filter stop  
band (0.547 × ODR) to where the image of the digital filter pass  
band occurs at MCLK − filter stop band (MCLK − 0.547 × ODR),  
which is the first alias point. This is illustrated in Figure 42.  
4.5  
4.0  
3.5  
DI  
DD  
3.0  
2.5  
2.0  
1.5  
fMCLK  
AI  
I
DD  
DIGITAL FILTER  
IMAGE AT fMCLK  
1.0  
0.5  
0
DIGITAL FILTER 100dB  
ANTIALIAS PROTECTION  
REF  
fMCLK – (0.547 × ODR)  
FIRST ALIAS POINT  
BAND OF INTEREST  
0
100k 200k 300k 400k 500k 600k 700k 800k 900k 1000k  
FREQUENCY (Hz)  
Figure 42. AD7767/AD7767-1/AD7767 Spectrum  
Figure 43. AD7767 Current vs. MCLK Frequency  
Table 8 shows the attenuation achieved by various orders of  
front-end antialias filters prior to the AD7767/AD7767-1/  
AD7767-2 at the image of the digital filter stop band, which is  
1.024 MHz 0.547 × ODR.  
2.5  
2.0  
1.5  
1.0  
0.5  
0
Table 8. Antialias Filter Order Attenuation at First Alias Point  
DI  
DD  
Attenuation at  
1.024 MHz – 0.547 × ODR  
Model  
Filter Order  
AD7767  
1st  
27 dB  
50 dB  
70 dB  
33 dB  
62 dB  
89 dB  
38 dB  
74 dB  
110 dB  
2nd  
3rd  
1st  
2nd  
3rd  
1st  
AI  
DD  
AD7767-1  
AD7767-2  
I
REF  
2nd  
3rd  
0
100k 200k 300k 400k 500k 600k 700k 800k 900k 1000k  
FREQUENCY (Hz)  
Figure 44. AD7767-1 Current vs. MCLK Frequency  
The AD7764 and AD7765 sigma-delta devices are available to  
customers that require extra antialias protection. These devices  
sample internally at a rate of 20 MHz to achieve up to a maxi-  
mum of 156 kHz or 312 kHz output data rate. This means that  
the first alias point of these devices when run at the maximum  
speeds are 19.921 MHz and 19.843 MHz, respectively.  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
DI  
DD  
AI  
DD  
POWER DISSIPATION  
The AD7767/AD7767-1/AD7767-2 offer exceptional perform-  
ance at ultralow power. Figure 43, Figure 44, and Figure 45  
show how the current consumption of the AD7767/AD7767-1/  
AD7767-2 scales with the MCLK frequency applied to the  
device. Both the digital and analog currents scale as the MCLK  
frequency is reduced. The actual throughput of each of the  
AD7767/AD7767-1/AD7767-2 equals the MCLK frequency  
applied divided by the decimation rate employed by the device  
I
REF  
0
100k 200k 300k 400k 500k 600k 700k 800k 900k 1000k  
FREQUENCY (Hz)  
Figure 45. AD7767-2 Current vs. MCLK Frequency  
Rev. 0 | Page 21 of 24  
 
 
 
 
 
AD7767  
VREF+ INPUT SIGNAL  
MULTIPLEXING ANALOG INPUT CHANNELS  
The AD7767/AD7767-1/AD7767-2 VREF + pin is supplied with a  
5 V input, which is generated by a low noise voltage reference.  
Either the ADR445 or the ADR425 can be used with the AD7767/  
AD7767-1/AD7767-2 device. This reference voltage input also  
acts as a power supply to the AD7767/AD7767-1/AD7767-2  
device.  
The AD7767/AD7767-1/AD7767-2 can be used with a multi-  
plexer configuration. As per any converter that uses a digital  
filtering block, the maximum switching rate, or output data rate  
per channel, is a function of the digital filter settling time.  
A user multiplexing the analog inputs to a converter that  
employs a digital filter must wait the full digital filter settling  
time before a valid conversion result is achieved; at this point,  
the channel can be switched. After switching the channel, the  
full settling time must again be observed before a valid conver-  
sion result is available and the input is switched once more.  
The output of the low noise voltage reference does not require a  
buffer; however, it is important to provide a passive filter network  
between the VOUT pin of the voltage reference and the VREF+  
input on the ADC. Figure 46 shows a reference signal network  
that can be used with both the ADR445 and the ADR425.  
The AD7767 filter settling time equals 74 divided by the output  
data rate in use. The maximum switching frequency in a  
multiplexed application is therefore 1/(74/ODR), where the  
output data rate (ODR) is a function of the applied MCLK  
frequency and the decimation rate employed by the device in  
question. For example, applying a 1.024 MHz MCLK frequency  
to the AD7767 gives a maximum output data rate of 128 kHz,  
which in turn allows a 1.729 kHz multiplexer switching rate.  
The 100 nF capacitor on the output of the ADR445 or ADR425  
stabilizes the reference output voltage. The series resistor coupled  
with the other capacitive values on the reference acts as a low-  
pass filter. Figure 46 shows the optimal reference voltage input  
circuit.  
100  
5V  
V
V
REF+  
OUT  
ADR445  
OR  
ADR425  
C39  
100nF  
C40  
100µF  
C15  
10µF  
C38  
100nF  
AD7767/  
AD7767-1/  
AD7767-2  
The AD7767-1 and the AD7767-2 employ digital filters with  
longer settling time to achieve greater precision; thus, the  
maximum switching frequency for these devices is 864 Hz and  
432 Hz, respectively.  
Figure 46. AD7767/AD7767-1/AD7767-2 Reference Filtering,  
ADR445 or ADR425 Circuit Topology  
For the capacitor designated C40 in Figure 46, either an  
electrolytic or tantalum capacitor can be used. This capacitor  
acts as a reservoir of charge. Further decoupling capacitors are  
placed as close as possible to the VREF+ pin.  
Rev. 0 | Page 22 of 24  
 
 
AD7767  
OUTLINE DIMENSIONS  
5.10  
5.00  
4.90  
16  
9
8
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
1.20  
MAX  
0.15  
0.05  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.30  
0.19  
0.65  
BSC  
SEATING  
PLANE  
COPLANARITY  
0.10  
COMPLIANT TO JEDEC STANDARDS MO-153-AB  
Figure 47. 16-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-16)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
Temperature Range  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
Package Description  
Package Option  
AD7767BRUZ1  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Thin Shrink Small Outline Package [TSSOP]  
Evaluation Board  
Evaluation Board  
Evaluation Board  
Converter Evaluation and Development Board  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
RU-16  
AD7767BRUZ-RL71  
AD7767BRUZ-11  
AD7767BRUZ-1-RL71  
AD7767BRUZ-21  
AD7767BRUZ-2-RL71  
EVAL-AD7767EDZ1  
EVAL-AD7767-1EDZ1  
EVAL-AD7767-2EDZ1  
EVAL-CED1Z1  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 23 of 24  
 
AD7767  
NOTES  
©2007 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06859-0-8/07(0)  
Rev. 0 | Page 24 of 24  

相关型号:

EVAL-AD7767EDZ

24-Bit, 8.5 mW, 109 dB, 128/64/32 kSPS ADCs
ADI

EVAL-AD7768-4FMCZ

8-/4-Channel, 24-Bit, Simultaneous Sampling ADCs with Power Scaling, 110.8 kHz BW
ADI

EVAL-AD7768FMCZ

8-/4-Channel, 24-Bit, Simultaneous Sampling ADCs with Power Scaling, 110.8 kHz BW
ADI

EVAL-AD7783EB

Read-Only, Pin Configured 24-Bit ADC with Excitation Current Sources
ADI

EVAL-AD7785EBZ

3-Channel, Low Noise, Low Power, 20-Bit ⒉-ツ ADC with On-Chip In-Amp and Reference
ADI

EVAL-AD7787EB

Low Power, 2-Channel 24-Bit Sigma-Delta ADC
ADI

EVAL-AD7788EB

Low Power, 16-/24-Bit, Sigma-Delta ADCs
ADI

EVAL-AD7789EB

Low Power, 16-/24-Bit, Sigma-Delta ADCs
ADI

EVAL-AD7792EBZ1

3-Channel, Low Noise, Low Power, 16-/24-Bit Σ-Δ ADC with On-Chip In-Amp and Reference
ADI

EVAL-AD7793EBZ1

3-Channel, Low Noise, Low Power, 16-/24-Bit Σ-Δ ADC with On-Chip In-Amp and Reference
ADI

EVAL-AD7794EB

6-Channel, Low Noise, Low Power, 24-/16-Bit Σ-Δ ADC with On-Chip In-Amp and Reference
ADI

EVAL-AD7795

Evaluation Board for the AD7795 16-Bit, Low Power Sigma-Delta ADC (6 Channels)
ADI