EVAL-AD7768FMCZ [ADI]

8-/4-Channel, 24-Bit, Simultaneous Sampling ADCs with Power Scaling, 110.8 kHz BW;
EVAL-AD7768FMCZ
型号: EVAL-AD7768FMCZ
厂家: ADI    ADI
描述:

8-/4-Channel, 24-Bit, Simultaneous Sampling ADCs with Power Scaling, 110.8 kHz BW

文件: 总99页 (文件大小:2306K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
8-/4-Channel, 24-Bit, Simultaneous Sampling  
ADCs with Power Scaling, 110.8 kHz BW  
Data Sheet  
AD7768/AD7768-4  
Low latency sinc5 filter  
FEATURES  
Wideband brick wall filter: 0.005 dB pass-band ripple  
from dc to 102.4 kHz  
Analog input precharge buffers  
Precision ac and dc performance  
8-/4-channel simultaneous sampling  
256 kSPS maximum ADC output data rate per channel  
108 dB dynamic range  
Power supply  
AVDD1 = 5.0 V, AVDD2 = 2.25 V to 5.0 V  
IOVDD = 2.5 V to 3.3 V or IOVDD = 1.8 V  
64-lead LQFP package, no exposed pad  
Temperature range: −40°C to +105°C  
110.8 kHz maximum input bandwidth (−3 dB bandwidth)  
−120 dB total harmonic distortion (THD) typical  
2 ppm of full-scale range (FSR) integral nonlinearity  
(INL), 50 µV offset error, 30 ppm gain error  
Optimized power dissipation vs. noise vs. input bandwidth  
Selectable power, speed, and input bandwidth (BW) modes  
Fast: highest speed; 110.8 kHz BW, 51.5 mW per channel  
Median: half speed, 55.4 kHz BW, 27.5 mW per channel  
Eco: lowest power, 13.8 kHz BW, 9.375 mW per channel  
Input BW range: dc to 110.8 kHz  
APPLICATIONS  
Data acquisition systems: USB/PXI/Ethernet  
Instrumentation and industrial control loops  
Audio test and measurement  
Vibration and asset condition monitoring  
3-phase power quality analysis  
Programmable input bandwidth/sampling rates  
Cyclic redundancy check (CRC) error checking on data interface  
Daisy-chaining  
Sonar  
High precision medical electroencephalogram (EEG)/  
electromyography (EMG)/electrocardiogram (ECG)  
Linear phase digital filter  
FUNCTIONAL BLOCK DIAGRAM  
AVDD1A,  
AVDD1B  
AVDD2A, REGCAPA,  
REFx+ REFx–  
AVDD2B REGCAPB DGND  
IOVDD  
DREGCAP  
BUFFERED  
VCM  
1.8V  
LDO  
1.8V  
LDO  
PRECHARGE  
REFERENCE  
BUFFERS  
VCM  
×8  
VCM  
SYNC_IN  
SYNC_OUT  
START  
AIN0+  
AIN0–  
AIN1+  
AIN1–  
P
P
P
P
P
P
OFFSET,  
Σ-Δ  
RESET  
DIGITAL  
FILTER  
ENGINE  
CH 0  
GAIN PHASE  
CORRECTION  
ADC  
FORMAT1*  
FORMAT0  
OFFSET,  
GAIN PHASE  
CORRECTION  
Σ-Δ  
ADC  
CH 1  
ADC  
OUTPUT  
DATA  
DRDY  
SINC5  
LOW LATENCY  
FILTER  
AIN2+  
AIN2–  
DCLK  
SERIAL  
OFFSET,  
GAIN PHASE  
CORRECTION  
Σ-Δ  
ADC  
CH 2  
INTERFACE  
DOUT0  
DOUT1  
DOUT2  
DOUT3  
DOUT4*  
DOUT5*  
DOUT6*, DIN  
DOUT7*  
AIN3+  
AIN3–  
AIN4+  
AIN4–  
P
P
OFFSET,  
GAIN PHASE  
CORRECTION  
Σ-Δ  
ADC  
CH 3  
CH 4*  
CH 5*  
WIDEBAND  
LOW RIPPLE  
FILTER  
P
P
OFFSET,  
GAIN PHASE  
CORRECTION  
Σ-Δ  
ADC  
AIN5+  
AIN5–  
P
P
OFFSET,  
GAIN PHASE  
CORRECTION  
Σ-Δ  
ADC  
ST0/CS  
SPI  
ST1*/SCLK  
DEC0/SDO  
DEC1/SDI  
CONTROL  
INTERFACE  
P
P
AIN6+  
AIN6–  
OFFSET,  
Σ-Δ  
CH 6*  
CH 7*  
GAIN PHASE  
CORRECTION  
ADC  
AIN7+  
AIN7–  
P
P
OFFSET,  
GAIN PHASE  
CORRECTION  
Σ-Δ  
ADC  
PIN/SPI  
×16 ANALOG INPUT  
PRECHARGE BUFFERS (P)  
AD7768/AD7768-4  
AVSS  
XTAL2/MCLK XTAL1  
MODE3/GPIO3 FILTER/GPIO4  
TO  
*THESE CHANNELS/PINS EXIST ONLY ON THE AD7768.  
MODE0/GPIO0  
Figure 1.  
Rev. A  
Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2016 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
AD7768/AD7768-4  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
AD7768 Register Map Details (SPI Control).............................. 72  
AD7768 Register Map................................................................ 72  
Channel Standby Register ......................................................... 74  
Channel Mode A Register......................................................... 74  
Channel Mode B Register ......................................................... 75  
Channel Mode Select Register.................................................. 75  
Power Mode Select Register...................................................... 76  
General Device Configuration Register.................................. 76  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 3  
General Description......................................................................... 5  
Specifications..................................................................................... 6  
1.8 V IOVDD Specifications..................................................... 12  
Timing Specifications ................................................................ 16  
1.8 V IOVDD Timing Specifications....................................... 17  
Absolute Maximum Ratings.......................................................... 21  
Thermal Resistance .................................................................... 21  
ESD Caution................................................................................ 21  
Pin Configurations and Function Descriptions ......................... 22  
Typical Performance Characteristics ........................................... 30  
Terminology .................................................................................... 40  
Theory of Operation ...................................................................... 41  
Clocking, Sampling Tree, and Power Scaling ............................. 41  
Noise Performance and Resolution.......................................... 42  
Applications Information .............................................................. 44  
Power Supplies ............................................................................ 45  
Device Configuration ................................................................ 46  
Pin Control.................................................................................. 46  
SPI Control.................................................................................. 49  
SPI Control Functionality ......................................................... 50  
SPI Control Mode Extra Diagnostic Features ........................ 53  
Circuit Information........................................................................ 54  
Core Signal Chain....................................................................... 54  
Analog Inputs.............................................................................. 55  
VCM............................................................................................. 56  
Reference Input........................................................................... 56  
Clock Selection ........................................................................... 56  
Digital Filtering........................................................................... 56  
Decimation Rate Control .......................................................... 58  
Antialiasing ................................................................................. 58  
Calibration................................................................................... 59  
Data Interface.................................................................................. 61  
Setting the Format of Data Output .......................................... 61  
ADC Conversion Output: Header and Data .......................... 62  
Functionality ................................................................................... 71  
GPIO Functionality.................................................................... 71  
Data Control: Soft Reset, Sync, and Single-Shot Control  
Register ........................................................................................ 77  
Interface Configuration Register.............................................. 78  
Digital Filter RAM Built In Self Test (BIST) Register............ 78  
Status Register............................................................................. 79  
Revision Identification Register ............................................... 79  
GPIO Control Register .............................................................. 79  
GPIO Write Data Register......................................................... 80  
GPIO Read Data Register.......................................................... 80  
Analog Input Precharge Buffer Enable Register Channel 0 to  
Channel 3 .................................................................................... 80  
Analog Input Precharge Buffer Enable Register Channel 4 to  
Channel 7 .................................................................................... 81  
Positive Reference Precharge Buffer Enable Register............ 81  
Negative Reference Precharge Buffer Enable Register .......... 82  
Offset Registers........................................................................... 82  
Gain Registers............................................................................. 83  
Sync Phase Offset Registers ...................................................... 83  
ADC Diagnostic Receive Select Register ................................ 83  
ADC Diagnostic Control Register ........................................... 84  
Modulator Delay Control Register........................................... 85  
Chopping Control Register....................................................... 85  
AD7768-4 Register Map Details (SPI Control).......................... 86  
AD7768-4 Register Map............................................................ 86  
Channel Standby Register ......................................................... 88  
Channel Mode A Register......................................................... 88  
Channel Mode B Register ......................................................... 89  
Channel Mode Select Register.................................................. 89  
Power Mode Select Register...................................................... 89  
General Device Configuration Register.................................. 90  
Data Control: Soft Reset, Sync, and Single-Shot Control  
Register ........................................................................................ 91  
Interface Configuration Register.............................................. 91  
Rev. A | Page 2 of 99  
Data Sheet  
AD7768/AD7768-4  
Digital Filter RAM Built In Self Test (BIST) Register ............92  
Status Register..............................................................................92  
Revision Identification Register................................................93  
GPIO Control Register...............................................................93  
GPIO Write Data Register .........................................................94  
GPIO Read Data Register ..........................................................94  
Negative Reference Precharge Buffer Enable Register...........95  
Offset Registers............................................................................96  
Gain Registers..............................................................................96  
Sync Phase Offset Registers.......................................................96  
ADC Diagnostic Receive Select Register.................................96  
ADC Diagnostic Control Register............................................97  
Modulator Delay Control Register ...........................................97  
Chopping Control Register........................................................98  
Outline Dimensions........................................................................99  
Ordering Guide ...........................................................................99  
Analog Input Precharge Buffer Enable Register Channel 0  
And Channel 1.............................................................................94  
Analog Input Precharge Buffer Enable Register Channel 2  
And Channel 3.............................................................................95  
Positive Reference Precharge Buffer Enable Register.............95  
REVISION HISTORY  
3/16—Rev. 0 to Rev. A  
Changes to RAM Built In Self Test Section .................................53  
Changes to Analog Inputs Section and Figure 85.......................55  
Added Figure 86 ..............................................................................55  
Added Table 27................................................................................56  
Changes to VCM Section, Reference Input Section, and Digital  
Filtering Section ..............................................................................56  
Changes to Figure 87, Figure 88, and Figure 89..........................57  
Changes to Antialiasing Section and Modulator Sampling  
Added AD7768-4 ...............................................................Universal  
Changed Precharge Analog Input Reference to Analog Input  
Precharge........................................................................ Throughout  
Changes to General Description Section.......................................5  
Changes to Table 1 ............................................................................6  
Changes to Table 2 ..........................................................................12  
Changes to Table 3 and t30 Parameter, Table 4.............................16  
Changes to Table 5 ..........................................................................17  
Changes to t30 Parameter, Table 6 and Figure 2...........................18  
Changes to Figure 4 and Figure 7..................................................19  
Changes to Figure 8 and Figure 9..................................................20  
Changes to Figure 10 and Table 9 .................................................22  
Added Figure 11 and Table 10; Renumbered Sequentially........26  
Changes to Typical Performance Characteristics Section .........30  
Changes to Theory of Operation Section and Clocking,  
Frequency Section...........................................................................58  
Changes to Modulator Chopping Frequency Section and  
Table 29, and Modulator Saturation Point Section,....................59  
Changes to Sync Phase Offset Adjustment Section....................60  
Changes to Setting the Format of Data Output Section ............61  
Added Table 32 and Figure 93.......................................................61  
Changes to Figure 94 Caption and ADC Conversion Output:  
Header and Data Section ...............................................................62  
Changes to Data Interface: Standard Conversion Operation  
Section ..............................................................................................63  
Changes to Figure 99 ......................................................................64  
Added Figure 100............................................................................64  
Added Figure 101............................................................................65  
Changes to Daisy-Chaining Section and Figure 104..................66  
Added Figure 105............................................................................67  
Changes to CRC Check on Data Interface Section ....................68  
Changes to Table 35 ........................................................................69  
Changes to Table 36 ........................................................................70  
Changes to GPIO Functionality Section and Figure 108...........71  
Added Figure 109............................................................................71  
Changes to AD7768 Register Map Details (SPI Control) Section  
and Table 37 .....................................................................................72  
Changes to Channel Standby Register Section ...........................74  
Changes to Table 42 and Table 43.................................................76  
Changes to Table 44 ........................................................................77  
Changes to Table 45 and Table 46.................................................78  
Changes to Table 49 ........................................................................79  
Changes to Table 61 ........................................................................85  
Added AD7768-4 Register Map Details (SPI Control) Section and  
Table 63 ......................................................................................................86  
Sampling Tree, and Power Scaling Section..................................41  
Changes to Table 11 ........................................................................42  
Added Example of Power vs. Noise Performance Optimization  
Section and Clocking Out the ADC Conversion Results  
(DCLK) Section...............................................................................42  
Changes to Applications Information Section and Figure 73 ...44  
Changes to Table 14 and Power Supplies Section.......................45  
Moved 1.8 V IOVDD Operation Section.....................................46  
Changes to Figure 75, Analog Supply Internal Connectivity  
Section, and Pin Control Section..................................................46  
Added Figure 76 ..............................................................................47  
Changes to Channel Standby Section and Accessing the ADC  
Register Map Section ......................................................................49  
Added Table 22 ................................................................................49  
Changes to Channel Configuration Section................................50  
Changes to Channel Modes Section, Reset over SPI Control  
Interface Section, Sleep Mode Section, and Channel Standby  
Section ..............................................................................................51  
Changes to MCLK Source Selection Section, Interface  
Configuration Section, and ADC Synchronization over SPI  
Section ..............................................................................................52  
Added Figure 81 ..............................................................................52  
Rev. A | Page 3 of 99  
 
AD7768/AD7768-4  
Data Sheet  
Added Table 64 and Table 65.................................................................88  
Added Table 66, Table 67, and Table 68...............................................89  
Added Table 69.........................................................................................90  
Added Table 70 and Table 71 .................................................................91  
Added Table 72 and Table 73.................................................................92  
Added Table 74 and Table 75.................................................................93  
Added Table 76, Table 77, and Table 78...............................................94  
Added Table 79, Table 80, and Table 81...............................................95  
Added Table 82, Table 83, Table 84, and Table 85..............................96  
Added Table 86 and Table 87.................................................................97  
Added Table 88.........................................................................................98  
Changes to Ordering Guide...................................................................99  
1/16—Revision 0: Initial Version  
Rev. A | Page 4 of 99  
Data Sheet  
AD7768/AD7768-4  
GENERAL DESCRIPTION  
The AD7768/AD7768-4 are 8-channel and 4-channel,  
simultaneous sampling sigma-delta (Σ-Δ) analog-to-digital  
converters (ADCs), respectively, with a Σ-Δ modulator and digital  
filter per channel, enabling synchronized sampling of ac and dc  
signals.  
Within these filter options, the user can improve the dynamic  
range by selecting from decimation rates of ×32, ×64, ×128,  
×256, ×512, and ×1024. The ability to vary the decimation  
filtering optimizes noise performance to the required input  
bandwidth.  
The AD7768/AD7768-4 achieve 108 dB dynamic range at a  
maximum input bandwidth of 110.8 kHz, combined with typical  
performance of 2 ppm INL, 50 µV offset error, and 30 ppm  
gain error.  
Embedded analog functionality on each ADC channel makes  
design easier, such as a precharge buffer on each analog input  
that reduces analog input current and a reference precharge  
buffer per channel reduces input current and glitches on the  
reference input terminals.  
The AD7768/AD7768-4 user can trade off input bandwidth,  
output data rate, and power dissipation, and select one of three  
power modes to optimize for noise targets and power  
consumption. The flexibility of the AD7768/AD7768-4 allows  
them to become reusable platforms for low power dc and high  
performance ac measurement modules.  
The device operates with a 5 V AVDD1A and AVDD1B supply,  
a 2.25 V to 5.0 V AVDD2A and AVDD2B supply, and a 2.5 V to  
3.3 V or 1.8 V IOVDD supply (see the 1.8 V IOVDD Operation  
section for specific requirements for operating at 1.8 V IOVDD).  
The device requires an external reference; the absolute input  
reference voltage range is 1 V to AVDD1 − AVSS.  
The AD7768/AD7768-4 have three modes: fast mode (256 kSPS  
maximum, 110.8 kHz input bandwidth, 51.5 mW per channel),  
median mode (128 kSPS maximum, 55.4 kHz input bandwidth,  
27.5 mW per channel) and eco mode (32 kSPS maximum,  
13.8 kHz input bandwidth, 9.375 mW per channel).  
For the purposes of clarity within this document, the AVDD1A  
and AVDD1B supplies are referred to as AVDD1 and the AVDD2A  
and AVDD2B supplies are referred to as AVDD2. For the negative  
supplies, AVSS refers to the AVSS1A, AVSS1B, AVSS2A,  
AVSS2B, and AVSS pins.  
The AD7768/AD7768-4 offer extensive digital filtering  
capabilities, such as a wideband, low 0.005 dB pass-band  
ripple, antialiasing low-pass filter with sharp roll-off, and  
105 dB stop band attenuation at the Nyquist frequency.  
The specified operating temperature range is −40°C to +105°C.  
The device is housed in a 10 mm × 10 mm 64-lead LQFP package  
with a 12 mm × 12 mm printed circuit board (PCB) footprint.  
Frequency domain measurements can use the wideband linear  
phase filter. This filter has a flat pass band ( 0.005 dB ripple)  
from dc to 102.4 kHz at 256 kSPS, from dc to 51.2 kHz at  
128 kSPS, or from dc to 12.8 kHz at 32 kSPS.  
Throughout this data sheet, multifunction pins, such as  
XTAL2/MCLK, are referred to either by the entire pin name or  
by a single function of the pin, for example MCLK, when only  
that function is relevant.  
The AD7768/AD7768-4 also offer sinc response via a sinc5  
filter, a low latency path for low bandwidth, and low noise  
measurements. The wideband and sinc5 filters can be selected  
and run on a per channel basis.  
Rev. A | Page 5 of 99  
 
AD7768/AD7768-4  
SPECIFICATIONS  
Data Sheet  
AVDD1A = AVDD1B = 4.5 V to 5.5 V, AVDD2A = AVDD2B = 2.0 V to 5.5 V, IOVDD = 2.25 V to 3.6 V, AVSS = DGND = 0 V, REFx+ =  
4.096 V and REFx− = 0 V, MCLK = 32.768 MHz, analog input precharge buffers on, reference precharge buffers off, wideband filter, fCHOP  
=
f
MOD/32, TA = −40°C to +105°C, unless otherwise noted. See Table 2 for specifications at 1.8 V IOVDD.  
Table 1.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
ADC SPEED AND PERFORMANCE  
Output Data Rate (ODR), per  
Channel1  
Fast  
8
256  
kSPS  
Median  
Eco  
Fast, wideband filter  
Median, wideband filter  
Eco, wideband filter  
4
1
128  
32  
110.8  
55.4  
13.8  
kSPS  
kSPS  
kHz  
kHz  
kHz  
−3 dB Bandwidth  
Data Output Coding  
No Missing Codes2  
Twos complement, MSB first  
24  
Bits  
DYNAMIC PERFORMANCE  
For 1.8 V operation, see Table 2; for  
dynamic range and SNR across all dec-  
imation rates, see Table 12 and Table 13  
Fast  
Decimation by 32, 256 kSPS ODR  
Shorted input, wideband filter  
1 kHz, −0.5 dBFS, sine wave input  
Sinc5 filter  
Dynamic Range  
Signal-to-Noise Ratio (SNR)  
106.2  
108  
dB  
109  
106  
104.7  
111  
107.8  
107.5  
dB  
dB  
dB  
Wideband filter  
Signal-to-Noise-and-  
1 kHz, −0.5 dBFS, sine wave input  
Distortion Ratio (SINAD)  
Total Harmonic Distortion  
(THD)  
Spurious-Free Dynamic  
Range (SFDR)  
1 kHz, −0.5 dBFS, sine wave input  
−120  
128  
−107  
dB  
dBc  
Median  
Dynamic Range  
SNR  
Decimation by 32, 128 kHz ODR  
Shorted input, wideband filter  
Sinc5 filter, 1 kHz, −0.5 dBFS, sine wave  
input  
106.2  
109  
108  
111  
dB  
dB  
Wideband filter, 1 kHz, −0.5 dBFS, sine  
wave input  
106  
107.8  
dB  
SINAD  
THD  
SFDR  
1 kHz, −0.5 dBFS, sine wave input  
1 kHz, −0.5 dBFS, sine wave input  
105.8  
107.5  
−120  
128  
dB  
dB  
dBc  
−113  
Eco  
Decimation by 32, 32 kHz ODR  
Shorted input, wideband filter  
Sinc5 filter, 1 kHz, −0.5 dBFS, sine wave  
input  
Dynamic Range  
SNR  
106.2  
109  
108  
111  
dB  
dB  
Wideband filter, 1 kHz, −0.5 dBFS, sine  
wave input  
106  
107.8  
dB  
SINAD  
THD  
SFDR  
1 kHz, −0.5 dBFS, sine wave input  
1 kHz, −0.5 dBFS, sine wave input  
105.8  
107.5  
−120  
128  
dB  
dB  
dBc  
−113  
INTERMODULATON DISTORTION fa = 9.7 kHz, fb = 10.3 kHz  
(IMD)3  
Second order  
Third order  
−125  
−125  
dB  
dB  
Rev. A | Page 6 of 99  
 
 
 
Data Sheet  
AD7768/AD7768-4  
Parameter  
ACCURACY  
INL  
Test Conditions/Comments  
See Table 2 for 1.8 V operation  
Endpoint method  
DCLK frequency ≤ 24 MHz  
24 MHz to 32.768 MHz DCLK frequency2  
DCLK frequency ≤ 24 MHz  
24 MHz to 32.768 MHz DCLK frequency  
TA = 25°C  
Min  
Typ  
Max  
Unit  
2
50  
75  
250  
750  
30  
7
115  
150  
ppm of FSR  
µV  
µV  
nV/°C  
nV/°C  
Offset Error4  
Offset Error Drift  
Gain Error4  
Gain Drift vs. Temperature2  
VCM PIN  
70  
1
ppm of FSR  
ppm/°C  
0.5  
Output  
With respect to AVSS  
(AVDD1 −  
AVSS)/2  
V
Load Regulation (∆VOUT/∆IL)  
Voltage Regulation  
400  
5
µV/mA  
µV/V  
Applies to the following VCM output  
options only: VCM = ∆VOUT/∆(AVDD1 −  
AVSS)/2; VCM = 1.65 V; and VCM = 2.5 V  
Short-Circuit Current  
ANALOG INPUTS  
30  
mA  
See the Analog Inputs section  
Differential Input Voltage Range VREF = (REFx+) − (REFx−)  
Input Common-Mode Range2  
Absolute Analog Input  
Voltage Limits2  
−VREF  
AVSS  
AVSS  
+VREF  
AVDD1  
AVDD1  
V
V
V
Analog Input Current  
Unbuffered  
Fast mode  
Differential component  
Common-mode component  
48  
17  
−20  
µA/V  
µA/V  
µA  
Precharge Buffer On5  
Input Current Drift  
Unbuffered  
Precharge Buffer On  
EXTERNAL REFERENCE  
Reference Voltage  
Fast mode; see Figure 62  
5
31  
nA/V/°C  
nA/°C  
VREF = (REFx+) − (REFx−)  
Reference precharge buffers off  
1
AVDD1 − AVSS  
AVDD1 + 0.05  
V
V
Absolute Reference Voltage  
Limits2  
AVSS − 0.05  
Reference precharge buffer on  
Fast mode; see Figure 63  
AVSS  
AVDD1  
V
Average Reference Current  
Reference precharge buffers off  
Reference precharge buffers on  
72  
16  
µA/V/channel  
µA/V/channel  
Average Reference Current Drift Fast mode; see Figure 63  
Reference precharge buffers off  
1.7  
49  
95  
nA/V/°C  
nA/V/°C  
dB  
Reference precharge buffers on  
Common-Mode Rejection  
DIGITAL FILTER RESPONSE  
Low Ripple Wideband Filter  
Decimation Rate  
FILTER = 0  
Up to six selectable decimation rates; see  
the Decimation Rate Control section  
32  
1024  
Group Delay  
Settling Time  
Pass-Band Ripple2  
Pass Band  
Latency  
34/ODR  
68/ODR  
sec  
sec  
dB  
Hz  
Hz  
Hz  
Hz  
dB  
Complete settling, see Table 35  
From dc to 102.4 kHz at 256 kSPS  
0.005 dB bandwidth  
−0.1 dB bandwidth  
−3 dB bandwidth  
0.005  
0.4 × ODR  
0.409 × ODR  
0.433 × ODR  
0.499 × ODR  
105  
Stop Band Frequency  
Stop Band Attenuation  
Attenuation > 105 dB  
See the Wideband Low Ripple Filter section  
Rev. A | Page 7 of 99  
AD7768/AD7768-4  
Data Sheet  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
Sinc5 Filter  
FILTER = 1  
Decimation Rate  
Up to six selectable decimation rates; see  
the Decimation Rate Control section  
32  
1024  
Group Delay  
Settling Time  
Pass Band  
Latency  
Complete settling, see Table 36  
−3 dB bandwidth  
3/ODR  
7/ODR  
0.204 × ODR  
sec  
sec  
Hz  
REJECTION  
AC Power Supply Rejection  
Ratio (PSRR)  
VIN = 0.1 V, AVDD1 = 5 V, AVDD2 = 5 V,  
IOVDD = 2.5 V  
AVDD1  
AVDD2  
IOVDD  
90  
100  
75  
dB  
dB  
dB  
DC PSRR  
AVDD1  
AVDD2  
IOVDD  
VIN = 1 V  
100  
118  
90  
dB  
dB  
dB  
Analog Input Common-Mode  
Rejection Ratio (CMRR)  
DC  
AC  
Crosstalk  
VIN = 0.1 V  
Up to 10 kHz  
−0.5 dBFS input on adjacent channels  
95  
8
dB  
dB  
dB  
95  
−120  
CLOCK  
Crystal Frequency  
External Clock (MCLK)  
Duty Cycle  
32.768  
32.768  
50:50  
34  
MHz  
MHz  
%
See the Timing Specifications section  
For data sheet performance  
Functionality  
MCLK Pulse Width2  
Logic Low  
Logic High  
12.2  
12.2  
ns  
ns  
CMOS Clock Input Voltage  
High, VINH  
Low, VINL  
LVDS Clock2  
See the logic inputs parameter  
RL = 100 Ω  
Differential Input Voltage  
Common-Mode Input  
Voltage  
100  
800  
650  
1575  
mV  
mV  
Absolute Input Voltage  
ADC RESET2  
ADC Start-Up Time After Reset6  
1.88  
1.66  
V
Time to first DRDY, fast mode, decimation  
by 32  
1.58  
ms  
Minimum RESET Low Pulse  
Width  
t
MCLK = 1/MCLK  
2 × tMCLK  
LOGIC INPUTS  
Input Voltage2  
High, VINH  
See Table 2 for 1.8 V operation  
0.65 ×  
V
IOVDD  
Low, VINL  
0.7  
V
V
µA  
µA  
Hysteresis2  
0.04  
−10  
−10  
0.09  
+10  
+10  
Leakage Current  
+0.03  
7
RESET  
pin  
LOGIC OUTPUTS  
Output Voltage2  
High, VOH  
See Table 2 for 1.8 V operation  
ISOURCE = 200 μA  
ISINK = 400 µA  
0.8 × IOVDD  
V
V
Low, VOL  
0.4  
Rev. A | Page 8 of 99  
Data Sheet  
AD7768/AD7768-4  
Parameter  
Test Conditions/Comments  
Floating state  
Min  
Typ  
Max  
Unit  
µA  
Leakage Current  
−10  
+10  
Output Capacitance  
SYSTEM CALIBRATION2  
Full-Scale Calibration Limit  
Zero-Scale Calibration Limit  
Input Span  
Floating state  
10  
pF  
1.05 × VREF  
2.1 × VREF  
V
V
V
−1.05 × VREF  
0.4 × VREF  
POWER REQUIREMENTS  
Power Supply Voltage  
AVDD1 − AVSS  
4.5  
2.0  
−2.75  
2.25  
5.0  
2.25 to 5.0  
5.5  
5.5  
0
V
V
V
V
AVDD2 − AVSS  
AVSS − DGND  
IOVDD − DGND  
See Table 2 for 1.8 V operation  
2.5 to 3.3  
3.6  
POWER SUPPLY CURRENTS  
Maximum output data rate, CMOS MCLK,  
eight DOUTx signals, all supplies at  
maximum voltages, all channels in  
Channel Mode A except where  
otherwise specified  
AD7768  
Eight channels active  
Fast Mode  
AVDD1 Current  
AVDD2 Current  
IOVDD Current  
Reference precharge buffers off/on  
36/57.5  
37.5  
63  
40/64  
40  
67  
mA  
mA  
mA  
mA  
Wideband filter  
Sinc5 filter  
27  
29  
Median Mode  
AVDD1 Current  
AVDD2 Current  
IOVDD Current  
Reference precharge buffers off/on  
18.5/29  
21.3  
34  
20.5/32.5  
mA  
mA  
mA  
mA  
23  
37  
18  
Wideband filter  
Sinc5 filter  
16  
Eco Mode  
AVDD1 Current  
AVDD2 Current  
IOVDD Current  
Reference precharge buffers off/on  
5.1/8  
9.3  
12.5  
8
5.8/9  
10.1  
13.7  
9
mA  
mA  
mA  
mA  
Wideband filter  
Sinc5 filter  
AD7768-4  
Four Channels Active  
Fast Mode  
AVDD1 Current  
AVDD2 Current  
IOVDD Current  
Reference precharge buffers off/on  
Wideband filter2  
18.2/28.8  
18.8  
43.5  
20.3/32.5  
20.3  
46.8  
mA  
mA  
mA  
mA  
Wideband filter, SPI mode only;  
37  
40  
Channel Mode A set to sinc5 filter8  
Sinc5 filter2  
17  
18.6  
mA  
Median Mode  
AVDD1 Current  
AVDD2 Current  
IOVDD Current  
Reference precharge buffers off/on  
Wideband filter2  
9.3/14.7  
10.7  
24.4  
10.5/16.6  
11.7  
26.4  
mA  
mA  
mA  
mA  
Wideband filter, SPI mode only;  
21  
23  
Channel Mode A set to sinc5 filter8  
Sinc5 filter2  
11  
12.3  
mA  
Eco Mode  
AVDD1 Current  
AVDD2 Current  
Reference precharge buffers off/on  
2.7/4.1  
4.7  
3.1/4.7  
5.3  
mA  
mA  
Rev. A | Page 9 of 99  
 
 
AD7768/AD7768-4  
Data Sheet  
Parameter  
Test Conditions/Comments  
Min  
Typ  
10  
9
Max  
11.1  
10  
Unit  
mA  
mA  
IOVDD Current  
Wideband filter2  
Wideband filter, SPI mode only;  
Channel Mode A set to sinc5 filter8  
Sinc5 filter2  
6.5  
7.6  
mA  
AD7768 and AD7768-4Two  
Channels Active2  
Serial peripheral interface (SPI) control  
mode only; see the Channel Standby  
section for details on disabling channels  
Fast Mode  
AVDD1 Current  
AVDD2 Current  
IOVDD Current  
Reference precharge buffers off/on  
9.3/14.7  
9.5  
33.7  
10.5/16.6  
10.5  
36.3  
mA  
mA  
mA  
mA  
Wideband filter  
Wideband filter; disabled channels in  
Channel Mode A, and set to sinc5 filter  
mode8  
23.4  
25.5  
Sinc5 filter  
11.9  
13.3  
mA  
Median Mode  
AVDD1 Current  
AVDD2 Current  
IOVDD Current  
Reference precharge buffers off/on  
Wideband filter  
Wideband filter; disabled channels in  
Channel Mode A, and set to sinc5 filter  
mode8  
4.8/7.5  
5.5  
19.4  
14.1  
5.5/8.6  
6.2  
21.1  
15.5  
mA  
mA  
mA  
mA  
Sinc5 filter  
8.5  
9.6  
mA  
Eco Mode  
AVDD1 Current  
AVDD2 Current  
IOVDD Current  
Reference precharge buffers off/on  
Wideband filter  
Wideband filter; disabled channels in  
Channel Mode A, and set to sinc5 filter  
mode8  
1.52/2.2  
2.4  
8.6  
1.77/2.6  
3
9.7  
8
mA  
mA  
mA  
mA  
7.2  
Sinc5 filter  
All channels disabled (sinc5 filter enabled)  
Full power-down (SPI control mode only)  
Extra current in IOVDD when using an  
external crystal compared to using the  
CMOS MCLK  
5.8  
6.5  
0.73  
540  
6.7  
8
1.2  
mA  
mA  
mA  
µA  
Standby Mode  
Sleep Mode2  
Crystal Excitation Current  
POWER DISSIPATION  
External CMOS MCLK, all channels  
active, MCLK = 32.768 MHz, all channels  
in Channel Mode A except where  
otherwise specified  
Full Operating Mode  
AD7768  
Analog precharge buffers on  
Wideband Filter  
Fast  
AVDD1 = 5 V, AVDD2 = IOVDD = 2.5 V,  
reference precharge buffers off2  
AVDD1 = 5 V, AVDD2 = IOVDD = 3.3 V,  
reference precharge buffers on2  
AVDD1 = 5.5 V, AVDD2 = 5.5 V, IOVDD =  
3.6 V, reference precharge buffers off  
AVDD1 = 5 V, AVDD2 = IOVDD = 2.5 V,  
reference precharge buffers off2  
AVDD1 = 5 V, AVDD2 = IOVDD = 3.3 V,  
reference precharge buffers on2  
AVDD1 = 5.5 V, AVDD2 = 5.5 V, IOVDD =  
3.6 V, reference precharge buffers off  
412  
600  
631  
220  
320  
341  
446  
645  
681  
240  
345  
372  
mW  
mW  
mW  
mW  
mW  
mW  
Median  
Rev. A | Page 10 of 99  
Data Sheet  
AD7768/AD7768-4  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
Eco  
AVDD1 = 5 V, AVDD2 = IOVDD = 2.5 V,  
reference precharge buffers off2  
75  
85  
mW  
AVDD1 = 5 V, AVDD2 = IOVDD = 3.3 V,  
reference precharge buffers on2  
AVDD1 = 5.5 V, AVDD2 = 5.5 V, IOVDD =  
3.6 V, reference precharge buffers off  
107  
124  
118  
137  
mW  
mW  
Sinc5 Filter  
Fast  
AVDD1 = 5 V, AVDD2 = IOVDD = 2.5 V,  
reference precharge buffers off2  
AVDD1 = 5 V, AVDD2 = IOVDD = 3.3 V,  
reference precharge buffers on2  
AVDD1 = 5.5 V, AVDD2 = 5.5 V, IOVDD =  
3.6 V, reference precharge buffers off  
AVDD1 = 5 V, AVDD2 = IOVDD = 2.5 V,  
reference precharge buffers off2  
AVDD1 = 5 V, AVDD2 = IOVDD = 3.3 V,  
reference precharge buffers on2  
AVDD1 = 5.5 V, AVDD2 = 5.5 V, IOVDD =  
3.6 V, reference precharge buffers off  
AVDD1 = 5 V, AVDD2 = IOVDD = 2.5 V,  
reference precharge buffers off2  
AVDD1 = 5 V, AVDD2 = IOVDD = 3.3 V,  
reference precharge buffers on2  
325  
475  
501  
175  
260  
277  
65  
355  
525  
545  
195  
285  
304  
72  
mW  
mW  
mW  
mW  
mW  
mW  
mW  
mW  
mW  
Median  
Eco  
95  
105  
120  
AVDD1 = 5.5 V, AVDD2 = 5.5 V, IOVDD =  
3.6 V, reference precharge buffers off  
108  
AD7768-4  
Wideband Filter  
Fast  
AVDD1 = 5 V, AVDD2 = IOVDD = 2.5 V,  
reference precharge buffers off  
AVDD1 = 5 V, AVDD2 = IOVDD = 3.3 V,  
reference precharge buffers on  
AVDD1 = 5.5 V, AVDD2 = 5.5 V, IOVDD =  
3.6 V, reference precharge buffers off2  
SPI mode only; AVDD1 = 5.5 V, AVDD2 =  
5.5 V, IOVDD = 3.6 V, reference precharge  
buffers off, Channel Mode A set to sinc5  
filter8  
235  
336  
360  
337  
mW  
mW  
mW  
mW  
392  
368  
Median  
AVDD1 = 5 V, AVDD2 = IOVDD = 2.5 V,  
reference precharge buffers off  
AVDD1 = 5 V, AVDD2 = IOVDD = 3.3 V,  
reference precharge buffers on  
AVDD1 = 5.5 V, AVDD2 = 5.5 V, IOVDD =  
3.6 V, reference precharge buffers off2  
SPI mode only; AVDD1 = 5.5 V, AVDD2 =  
5.5 V, IOVDD = 3.6 V, reference precharge  
buffers off, Channel Mode A set to sinc5  
filter8  
127  
181  
198  
186  
mW  
mW  
mW  
mW  
218  
205  
Eco  
AVDD1 = 5 V, AVDD2 = IOVDD = 2.5 V,  
reference precharge buffers off  
AVDD1 = 5 V, AVDD2 = IOVDD = 3.3 V,  
reference precharge buffers on  
AVDD1 = 5.5 V, AVDD2 = 5.5 V, IOVDD =  
3.6 V, reference precharge buffers off2  
SPI mode only; AVDD1 = 5.5 V, AVDD2 =  
5.5 V, IOVDD = 3.6 V, reference precharge  
buffers off, Channel Mode A set to sinc5  
filter8  
49  
66  
77  
73  
mW  
mW  
mW  
mW  
87  
83  
Rev. A | Page 11 of 99  
AD7768/AD7768-4  
Data Sheet  
Parameter  
Sinc5 Filter  
Fast  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
AVDD1 = 5 V, AVDD2 = IOVDD = 2.5 V,  
reference precharge buffers off  
AVDD1 = 5 V, AVDD2 = IOVDD = 3.3 V,  
reference precharge buffers on  
AVDD1 = 5.5 V, AVDD2 = 5.5 V, IOVDD =  
3.6 V, reference precharge buffers off  
AVDD1 = 5 V, AVDD2 = IOVDD = 2.5 V,  
reference precharge buffers off  
AVDD1 = 5 V, AVDD2 = IOVDD = 3.3 V,  
reference precharge buffers on  
AVDD1 = 5.5 V, AVDD2 = 5.5 V, IOVDD =  
3.6 V, reference precharge buffers off  
AVDD1 = 5 V, AVDD2 = IOVDD = 2.5 V,  
reference precharge buffers off  
AVDD1 = 5 V, AVDD2 = IOVDD = 3.3 V,  
reference precharge buffers on  
168  
248  
265  
94  
mW  
mW  
mW  
mW  
mW  
mW  
mW  
mW  
mW  
291  
167  
74  
Median  
137  
150  
40  
Eco  
55  
AVDD1 = 5.5 V, AVDD2 = 5.5 V, IOVDD =  
3.6 V, reference precharge buffers off  
64  
Standby Mode  
Sleep Mode2  
All channels disabled (sinc5 filter enabled),  
AVDD1 = 5 V, AVDD2 = IOVDD = 2.5 V2  
18  
26  
29  
mW  
mW  
mW  
AVDD1 = 5 V, AVDD2 = IOVDD = 3.3 V2  
AVDD1 = AVDD2 = 5.5 V, IOVDD = 3.6 V  
Full power-down (SPI control mode),  
AVDD1 = 5 V, AVDD2 = IOVDD = 2.5 V  
AVDD1 = 5 V, AVDD2 = IOVDD = 3.3 V  
AVDD1 = AVDD2 = 5.5 V, IOVDD = 3.6 V  
1.8  
2.5  
2.7  
4
5
6.5  
mW  
mW  
mW  
1 The output data rate ranges refer to the programmable decimation rates available on the AD7768/AD7668-4 for a fixed MCLK rate of 32.768 MHz. Varying MCLK rates  
allow users a wider variation of ODR.  
2 These specifications are not production tested but are supported by characterization data at initial product release.  
3 See the Terminology section for more information about the fa and fb input frequencies.  
4 Following a system zero-scale calibration, the offset error is in the order of the noise for the programmed output data rate selected. A system full-scale calibration  
reduces the gain error to the order of the noise for the programmed output data rate.  
5 −25 µA is measured when the analog input is close to either the AVDD1 or AVSS rail. The input current reduces as the common-mode voltage approaches (AVDD1 −  
AVSS)/2. The analog input current scales with the MCLK frequency and device power mode. See Figure 85 and Figure 86 for more details on how the analog input  
current scales with input voltage.  
For lower MCLK rates or higher decimation rates, use Table 35 and Table 36 to calculate any additional delay before the first  
6
DRDY  
pulse.  
7
RESET  
The  
pin has an internal pull-up device to IOVDD.  
8 Configuring Channel Mode A to the sinc5 filter and/or assigning disabled channels to Channel Mode A allows a lower power consumption to be achieved. To do this,  
the user must be operating in SPI control mode because it requires assigning channels to different channel modes (only possible in SPI control mode). If using pin  
control mode, all channels, whether active or in standby, are assigned to the same channel group and use the same filter type. This means that, in pin control mode, a  
higher current consumption is seen from disabled channels than can be achieved in SPI mode. See the Channel Modes section for more details.  
1.8 V IOVDD SPECIFICATIONS  
AVDD1A = AVDD1B = 4.5 V to 5.5 V, AVDD2A = AVDD2B = 2.0 V to 5.5 V, IOVDD = 1.72 V to 1.88 V, AVSS = DGND = 0 V, REFx+ =  
4.096 V and REFx− = 0 V, MCLK = 32.76 8 MHz, analog precharge buffers on, reference precharge buffers off, wideband filter, fCHOP  
MOD/32, TA = −40°C to +105°C, unless otherwise noted.  
=
f
Table 2.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
DYNAMIC PERFORMANCE  
For dynamic range and SNR across all decimation  
rates, see Table 12 and Table 13  
Fast  
Decimation by 32, 256 kSPS ODR  
Dynamic Range  
SNR  
Shorted input, wideband filter  
Sinc5 filter, 1 kHz, −0.5 dBFS, sine wave input  
Wideband filter, 1 kHz, −0.5 dBFS, sine wave input  
106.2  
109  
106  
108  
111  
107.8  
dB  
dB  
dB  
Rev. A | Page 12 of 99  
 
 
Data Sheet  
AD7768/AD7768-4  
Parameter  
SINAD1  
Test Conditions/Comments  
1 kHz, −0.5 dBFS, sine wave input  
1 kHz, −0.5 dBFS, sine wave input  
Min  
Typ  
Max  
Unit  
dB  
dB  
103.8  
107.5  
−120  
128  
THD  
SFDR  
−107  
dBc  
Median  
Dynamic Range  
SNR  
Decimation by 32, 128 kHz ODR  
Shorted input, wideband filter  
1 kHz, −0.5 dBFS, sine wave input  
Sinc5 filter  
106.2  
108  
dB  
109  
106  
111  
dB  
dB  
dB  
dB  
dBc  
Wideband filter  
107.8  
107.5  
−120  
128  
SINAD  
THD  
SFDR  
1 kHz, −0.5 dBFS, sine wave input  
1 kHz, −0.5 dBFS, sine wave input  
105.8  
−113  
Eco  
Decimation by 32, 32 kHz ODR  
Dynamic Range  
SNR  
Shorted input, wideband filter  
106.2  
109  
106  
108  
111  
107.8  
107.5  
−120  
128  
dB  
dB  
dB  
dB  
dB  
dBc  
Sinc5 filter, 1 kHz, −0.5 dBFS, sine wave input  
Wideband filter, 1 kHz, −0.5 dBFS, sine wave input  
1 kHz, −0.5 dBFS, sine wave input  
SINAD  
THD  
SFDR  
105.8  
1 kHz, −0.5 dBFS, sine wave input  
−113  
7
ACCURACY1  
INL  
Endpoint method  
2
ppm of  
FSR  
µV  
Offset Error2  
DCLK frequency ≤ 24 MHz  
50  
115  
170  
24 MHz to 32.768 MHz DCLK frequency  
DCLK frequency ≤ 24 MHz  
24 MHz to 32.768 MHz DCLK frequency  
TA = 25°C  
75  
µV  
Offset Error Drift  
250  
750  
60  
nV/°C  
nV/°C  
ppm/FSR  
ppm/°C  
Gain Error2  
Gain Drift vs. Temperature  
LOGIC INPUTS  
Input Voltage1  
High, VINH  
120  
2
0.5  
0.65 × IOVDD  
V
Low, VINL  
0.4  
0.2  
+10  
+10  
V
V
µA  
µA  
Hysteresis1  
0.04  
−10  
−10  
Leakage Current  
+0.03  
RESET pin  
LOGIC OUTPUTS  
Output Voltage1  
High, VOH  
ISOURCE = 200 µA  
ISINK = 400 µA  
Floating state  
Floating state  
0.8 × IOVDD  
−10  
V
V
µA  
pF  
Low, VOL  
0.4  
+10  
Leakage Current  
Output Capacitance  
POWER REQUIREMENTS  
Power Supply Voltage  
AVDD1 − AVSS  
AVDD2 − AVSS  
AVSS − DGND  
IOVDD − DGND  
POWER SUPPLY CURRENTS1  
10  
4.5  
2.0  
−2.75  
1.72  
5.0  
5.5  
V
V
V
V
2.25 to 5.0 5.5  
0
DREGCAP shorted to IOVDD  
1.8  
1.88  
Maximum output data rate, CMOS MCLK, eight DOUTx  
signals, all supplies at maximum voltages, all channels in  
Channel Mode A except where otherwise specified  
AD7768  
Eight channels active  
Fast Mode  
AVDD1 Current  
AVDD2 Current  
Reference precharge buffers off/on  
36/57.5  
37.5  
40/64  
40  
mA  
mA  
Rev. A | Page 13 of 99  
 
 
AD7768/AD7768-4  
Data Sheet  
Parameter  
Test Conditions/Comments  
Wideband filter  
Min  
Typ  
63  
Max  
Unit  
mA  
IOVDD Current  
69  
Sinc5 filter  
26  
28.4  
mA  
Median Mode  
AVDD1 Current  
AVDD2 Current  
IOVDD Current  
Reference precharge buffers off/on  
18.5/29  
21.3  
34  
20.5/32.5 mA  
23  
mA  
mA  
mA  
Wideband filter  
Sinc5 filter  
36.8  
16.8  
15  
Eco Mode  
AVDD1 Current  
AVDD2 Current  
IOVDD Current  
Reference precharge buffers off/on  
5.1/8  
9.3  
11.6  
7
5.8/9  
10.1  
12.9  
8.1  
mA  
mA  
mA  
mA  
Wideband filter  
Sinc5 filter  
AD7768-4  
Four channels active  
Fast Mode  
AVDD1 Current  
AVDD2 Current  
IOVDD Current  
Reference precharge buffers off/on  
Wideband filter  
Wideband filter, SPI mode only; Channel Mode A set  
to sinc5 filter3  
18.2/28.8  
18.8  
43.9  
20.3/32.5 mA  
20.3  
47.7  
41  
mA  
mA  
mA  
36.8  
Sinc5 filter  
16  
17.7  
mA  
Median Mode  
AVDD1 Current  
AVDD2 Current  
IOVDD Current  
Reference precharge buffers off/on  
Wideband filter  
Wideband filter, SPI mode only; Channel Mode A set  
to sinc5 filter3  
9.3/14.7  
10.7  
24  
10.5/16.6 mA  
11.7  
26.1  
22.7  
mA  
mA  
mA  
20.4  
Sinc5 filter  
10  
11.3  
mA  
Eco Mode  
AVDD1 Current  
AVDD2 Current  
IOVDD Current  
Reference precharge buffers off/on  
Wideband filter  
Wideband filter, SPI mode only; Channel Mode A set  
to sinc5 filter3  
2.7/4.1  
4.7  
9
3.1/4.7  
5.3  
10.2  
9.2  
mA  
mA  
mA  
mA  
8.1  
Sinc5 filter  
5.5  
6.5  
mA  
AD7768 and AD7768-4—  
Two Channels Active  
SPI control mode only; see the Channel Standby section  
for details on disabling channels  
Fast Mode  
AVDD1 Current  
AVDD2 Current  
IOVDD Current  
Reference precharge buffers off/on  
9.3/14.7  
9.5  
33.8  
10.5/16.6 mA  
10.5  
36.7  
25.6  
mA  
mA  
mA  
Wideband filter  
Wideband filter, SPI mode only; disabled channels in  
Channel Mode A, and set to sinc5 filter3  
23.1  
Sinc5 filter  
11  
12.3  
mA  
Median Mode  
AVDD1 Current  
AVDD2 Current  
IOVDD Current  
Reference precharge buffers off/on  
Wideband filter  
Wideband filter, SPI mode only; disabled channels in  
Channel Mode A, and set to sinc5 filter3  
4.8/7.5  
5.5  
18.9  
13.4  
5.5/8.6  
6.2  
20.6  
15.1  
mA  
mA  
mA  
mA  
Sinc5 filter  
7.4  
8.6  
mA  
Eco Mode  
AVDD1 Current  
AVDD2 Current  
Reference precharge buffers off/on  
1.52/2.2  
2.4  
1.77/2.6  
3
mA  
mA  
Rev. A | Page 14 of 99  
 
Data Sheet  
AD7768/AD7768-4  
Parameter  
Test Conditions/Comments  
Min  
Typ  
7.6  
Max  
8.8  
Unit  
mA  
IOVDD Current  
Wideband filter  
Wideband filter, SPI mode only; disabled channels in  
Channel Mode A, and set to sinc5 filter3  
6.3  
7.2  
mA  
Sinc5 filter  
All channels disabled (sinc5 filter enabled)  
Full power-down (SPI control mode)  
Extra current in IOVDD when using an external crystal  
compared to using the CMOS MCLK  
4.8  
6.5  
0.73  
540  
5.8  
8
1.2  
mA  
mA  
mA  
µA  
Standby Mode  
Sleep Mode  
Crystal Excitation Current  
POWER DISSIPATION1  
External CMOS MCLK, all channels active, AVDD1 =  
AVDD2 = 5.5 V, IOVDD = 1.88 V, MCLK = 32.768 MHz, all  
channels in Channel Mode A except where otherwise  
noted  
Full Operating Mode  
AD7768  
Analog precharge buffers on  
Eight channels active  
Wideband Filter  
Fast  
Reference precharge buffers off  
Reference precharge buffers on  
Reference precharge buffers off  
Reference precharge buffers on  
Reference precharge buffers off  
Reference precharge buffers on  
524  
638  
284  
342  
98.5  
118  
571  
704  
309  
375  
109  
130  
mW  
mW  
mW  
mW  
mW  
mW  
Median  
Eco  
Sinc5 Filter  
Fast  
Median  
Eco  
AD7768-4  
Wideband Filter  
Fast  
Reference precharge buffers off  
Reference precharge buffers off  
Reference precharge buffers off  
Four channels active  
455  
248  
94  
495  
271  
105  
mW  
mW  
mW  
Reference precharge buffers off  
Reference precharge buffers on  
Reference precharge buffers off  
Reference precharge buffers on  
Reference precharge buffers off  
Reference precharge buffers on  
287  
345  
156  
185  
58  
314  
381  
172  
206  
66  
mW  
mW  
mW  
mW  
mW  
mW  
Median  
Eco  
66  
75  
Sinc5 Filter  
Fast  
Median  
Reference precharge buffers off  
Reference precharge buffers off  
Reference precharge buffers off  
All channels disabled (sinc5 filter enabled)  
Full power-down (SPI control mode)  
234  
129  
51  
257  
144  
59  
17  
4.5  
mW  
mW  
mW  
mW  
mW  
Eco  
Standby Mode  
Sleep Mode  
1.5  
1 These specifications are not production tested but are supported by characterization data at initial product release.  
2 Following a system zero-scale calibration, the offset error is in the order of the noise for the programmed output data rate selected. A system full-scale calibration  
reduces the gain error to the order of the noise for the programmed output data rate.  
3 This configuration of setting Channel Mode A to the sinc5 filter and/or assigning disabled channels to Channel Mode A allows a lower power consumption to be  
achieved due to the disabling of internal clocks on the disabled only and sinc5 only channel modes. This configuration requires assigning sinc5 and wideband filters to  
different channels, or channel modes, and is only available in SPI control mode. In pin control mode, all channels, whether active or in standby, effectively use the  
same channel mode. See the Channel Modes section for more details.  
Rev. A | Page 15 of 99  
 
AD7768/AD7768-4  
Data Sheet  
TIMING SPECIFICATIONS  
AVDD1A = AVDD1B = 5 V, AVDD2A = AVDD2B = 5 V, IOVDD = 2.25 V to 3.6 V, Input Logic 0 = DGND, Input Logic 1 = IOVDD;  
CLOAD = 10 pF on the DCLK pin, CLOAD = 20 pF on the other digital outputs; REFx+ = 4.096 V, TA = −40°C to +105°C. See Table 5 and  
Table 6 for timing specifications at 1.8 V IOVDD.  
Table 3. Data Interface Timing1  
Parameter Description  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
MHz  
Hz  
Hz  
Hz  
ns  
MCLK  
fMOD  
Master clock  
Modulator frequency  
1.15  
34  
Fast mode  
Median mode  
Eco mode  
MCLK/4  
MCLK/8  
MCLK/32  
28  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
DRDY high time  
tDCLK = t8 + t9  
tDCLK − 10%  
−3.5  
DCLK rising edge to DRDY rising edge  
DCLK rising to DRDY falling  
DCLK rise to DOUTx valid  
DCLK rise to DOUTx invalid  
DOUTx valid to DCLK falling  
DCLK falling edge to DOUTx invalid  
DCLK high time, DCLK = MCLK/1  
t8a = DCLK = MCLK/2  
2
ns  
0
ns  
1.5  
ns  
ns  
ns  
ns  
−3  
9.5  
9.5  
tDCLK/2  
tDCLK/2  
tDCLK/2  
tDCLK/2  
tMCLK  
2 × tMCLK  
4 × tMCLK  
50:50 CMOS clock  
tMCLK = 1/MCLK  
(tDCLK/2) + 5 ns  
ns  
ns  
ns  
t8b = DCLK = MCLK/4  
t8c = DCLK = MCLK/8  
t9  
DCLK low time DCLK = MCLK/1  
t9a = DCLK = MCLK/2  
t9b = DCLK = MCLK/4  
t9c = DCLK = MCLK/8  
MCLK rising to DCLK rising  
Setup time (daisy-chain inputs)  
50:50 CMOS clock  
(tDCLK/2) − 5 tMCLK/2  
tMCLK  
tDCLK/2  
ns  
ns  
ns  
ns  
ns  
ns  
2 × tMCLK  
4 × tMCLK  
t10  
t11  
CMOS clock  
DOUT6 and DOUT7 on the AD7768,  
DIN on the AD7768-4  
30  
14  
t12  
Hold time (daisy-chain inputs)  
DOUT6 and DOUT7 on the AD7768,  
DIN on the AD7768-4  
0
ns  
ns  
t13  
t14  
START low time  
1 × tMCLK  
MCLK to SYNC_OUT valid  
CMOS clock  
SYNC_OUT RETIME_EN bit disabled;  
measured from falling edge of MCLK  
SYNC_OUT RETIME_EN bit enabled;  
measured from rising edge of MCLK  
CMOS clock  
4.5  
9.5  
22  
ns  
ns  
27.5  
t15  
t16  
SYNC_IN setup time  
SYNC_IN hold time  
0
ns  
ns  
CMOS clock  
10  
1 These specifications are not production tested but are supported by characterization data at initial product release.  
Table 4. SPI Control Interface Timing1  
Parameter  
Description  
Test Conditions/Comments  
Min  
100  
26.5  
27  
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t17  
t18  
t19  
t20  
t21  
t22  
t23  
t24  
t25  
t26  
t27  
SCLK period  
CS falling edge to SCLK rising edge  
SCLK falling edge to CS rising edge  
CS falling edge to data output enable  
SCLK high time  
22.5  
20  
20  
40.5  
15  
50  
50  
SCLK low time  
SCLK falling edge to SDO valid  
SDO hold time after SCLK falling  
SDI setup time  
SDI hold time  
SCLK enable time  
7
0
6
0
Rev. A | Page 16 of 99  
 
 
 
Data Sheet  
AD7768/AD7768-4  
Parameter  
Description  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
ns  
ns  
t28  
t29  
t30  
SCLK disable time  
CS high time  
0
10  
CS low time  
f
MOD = MCLK/4  
1.1 × tMCLK  
2.2 × tMCLK  
8.8 × tMCLK  
ns  
fMOD = MCLK/8  
fMOD = MCLK/32  
ns  
ns  
1 These specifications are not production tested but are supported by characterization data at initial product release.  
1.8 V IOVDD TIMING SPECIFICATIONS  
AVDD1A = AVDD1B = 5 V, AVDD2A = AVDD2B = 5 V, IOVDD = 1.72 V to 1.88 V (DREGCAP tied to IOVDD), Input Logic 0 =  
DGND, Input Logic 1 = IOVDD, CLOAD = 10 pF on DCLK pin, CLOAD = 20 pF on other digital outputs, TA = −40°C to +105°C. tODR is  
1/ODR.  
Table 5. Data Interface Timing1  
Parameter Description  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
MCLK  
fMOD  
Master clock  
Modulator frequency  
1.15  
34  
MHz  
Hz  
Hz  
Hz  
ns  
Fast mode  
Median mode  
Eco mode  
MCLK/4  
MCLK/8  
MCLK/32  
28  
t1  
t2  
t3  
t4  
t5  
t6  
t7  
t8  
DRDY high time  
tDCLK − 10%  
DCLK rising edge to DRDY rising edge  
DCLK rising to DRDY falling  
DCLK rise to DOUTx valid  
DCLK rise to DOUTx invalid  
DOUTx valid to DCLK falling  
DCLK falling edge to DOUTx invalid  
DCLK high time, DCLK = MCLK/1  
t8a = DCLK = MCLK/2  
t8b = DCLK = MCLK/4  
t8c = DCLK = MCLK/8  
DCLK low time DCLK=MCLK/1  
t9a = DCLK = MCLK/2  
t9b = DCLK = MCLK/4  
2
ns  
−4.5  
0
ns  
2.0  
ns  
ns  
ns  
ns  
−4  
8.5  
8.5  
tDCLK/2  
tDCLK/2  
tDCLK/2  
tDCLK/2  
tMCLK  
2 × tMCLK  
4 × tMCLK  
50:50 CMOS clock  
50:50 CMOS clock  
CMOS clock  
(tDCLK/2) + 5 ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t9  
(tDCLK/2) − 5 tMCLK/2  
tMCLK  
(tDCLK/2  
2 × tMCLK  
4 × tMCLK  
t9c = DCLK = MCLK/8  
MCLK rising to DCLK rising  
Setup time (daisy-chain inputs)  
t10  
t11  
37  
DOUT6 and DOUT7 on the  
14  
AD7768, DIN on the AD7768-4  
t12  
Hold time (daisy-chain inputs)  
DOUT6 and DOUT7 on the  
AD7768, DIN on the AD7768-4  
0
ns  
ns  
t13  
t14  
START low time  
1 × tMCLK  
MCLK to SYNC_OUT valid  
CMOS clock  
SYNC_OUT RETIME_EN bit  
disabled; measured from falling  
edge of MCLK  
SYNC_OUT RETIME_EN bit  
enabled; measured from rising  
edge of MCLK  
10  
15  
31  
37  
ns  
ns  
t15  
t16  
SYNC_IN setup time  
SYNC_IN hold time  
CMOS clock  
CMOS clock  
0
ns  
ns  
11  
1 These specifications are not production tested but are supported by characterization data at initial product release.  
Rev. A | Page 17 of 99  
 
 
AD7768/AD7768-4  
Data Sheet  
Table 6. SPI Control Interface Timing1  
Parameter  
Description  
Test Conditions/Comments  
Min  
100  
31.5  
30  
Typ  
Max  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t17  
t18  
t19  
t20  
t21  
t22  
t23  
t24  
t25  
t26  
t27  
t28  
t29  
t30  
SCLK period  
CS  
falling edge to SCLK rising edge  
CS  
SCLK falling edge to rising edge  
CS  
29  
54  
16  
falling edge to data output enable  
SCLK high time  
SCLK low time  
SCLK falling edge to SDO valid  
SDO hold time after SCLK falling  
SDI setup time  
SDI hold time  
SCLK enable time  
SCLK disable time  
20  
20  
50  
50  
7
0
10  
0
0
10  
CS  
CS  
high time  
low time  
fMOD = MCLK/4  
fMOD = MCLK/8  
fMOD = MCLK/32  
1.1 × tMCLK  
2.2 × tMCLK  
8.8 × tMCLK  
1 These specifications are not production tested but are supported by characterization data at initial product release.  
Timing Diagrams  
t1  
tODR  
DRDY  
t2  
t8  
DCLK  
t9  
t5  
t3  
t4  
t6  
DOUTx  
LSB  
MSB  
LSB  
t7  
Figure 2. Data Interface Timing Diagram  
MCLK  
t10  
t8a  
DCLK = MCLK/2  
DCLK = MCLK/4  
DCLK = MCLK/8  
t9a  
t8b  
t9b  
t8c  
t9c  
Figure 3. MCLK to DCLK Divider Timing Diagram  
Rev. A | Page 18 of 99  
 
Data Sheet  
AD7768/AD7768-4  
tODR  
DRDY  
DCLK  
t11  
DOUT6  
AND  
DOUT7  
t12  
Figure 4. Daisy-Chain Setup and Hold Timing Diagram  
MCLK  
START  
t14  
t13  
SYNC_OUT  
START  
SYNC_OUT  
Timing Diagram  
Figure 5. Asynchronous  
and  
MCLK  
SYNC_IN  
t15  
t16  
t15  
SYNC_IN  
Figure 6. Synchronous  
Pulse Timing Diagram  
t30  
CS  
t18  
t19  
t17  
t21  
SCLK  
SDO  
t22  
MSB  
t20  
t23  
t24  
Figure 7. SPI Serial Read Timing Diagram  
Rev. A | Page 19 of 99  
AD7768/AD7768-4  
Data Sheet  
t30  
CS  
t18  
SCLK  
t25  
t26  
SDI  
MSB  
LSB  
Figure 8. SPI Serial Write Timing Diagram  
t29  
CS  
SCLK  
t28  
t27  
Figure 9. SCLK Enable and Disable Timing Diagram  
Rev. A | Page 20 of 99  
Data Sheet  
AD7768/AD7768-4  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 7.  
θJA is specified for the worst case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Parameter  
Rating  
AVDD1, AVDD2 to AVSS1  
AVDD1 to DGND  
IOVDD to DGND  
−0.3 V to +6.5 V  
−0.3 V to +6.5 V  
−0.3 V to +6.5 V  
Table 8. Thermal Resistance  
Package Type  
θJA  
θJC  
Unit JEDEC Board Layers  
°C/W 2P2S1  
IOVDD, DREGCAP to DGND (IOVDD Tied −0.3 V to +2.25 V  
to DREGCAP for 1.8 V Operation)  
64-Lead LQFP  
38  
9.2  
IOVDD to AVSS  
AVSS to DGND  
−0.3 V to +7.5 V  
1 2P2S is a JEDEC standard PCB configuration per JEDEC Standard JESD51-7.  
−3.25 V to +0.3 V  
−0.3 V to AVDD1 + 0.3 V  
−0.3 V to AVDD1 + 0.3 V  
−0.3 V to IOVDD + 0.3 V  
−0.3 V to IOVDD + 0.3 V  
−40°C to +105°C  
−65°C to +150°C  
260°C  
Analog Input Voltage to AVSS  
Reference Input Voltage to AVSS  
Digital Input Voltage to DGND  
Digital Output Voltage to DGND  
Operating Temperature Range  
Storage Temperature Range  
ESD CAUTION  
Pb-Free Temperature, Soldering  
Reflow (10 sec to 30 sec)  
Maximum Junction Temperature  
Maximum Package Classification  
Temperature  
150°C  
260°C  
1 Transient currents of up to 100 mA do not cause SCR latch-up.  
Stresses at or above those listed under Absolute Maximum  
Ratings may cause permanent damage to the product. This is a  
stress rating only; functional operation of the product at these  
or any other conditions above those indicated in the operational  
section of this specification is not implied. Operation beyond  
the maximum operating conditions for extended periods may  
affect product reliability.  
Rev. A | Page 21 of 99  
 
 
 
AD7768/AD7768-4  
Data Sheet  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
AIN1–  
AIN5–  
2
3
AIN1+  
AVSS1A  
AIN5+  
AVSS1B  
AVDD1B  
REF2–  
4
AVDD1A  
5
REF1–  
6
REF1+  
REF2+  
7
AIN2–  
AIN6–  
AD7768  
TOP VIEW  
(Not to Scale)  
8
AIN6+  
AIN2+  
9
AIN3–  
AIN7–  
10  
11  
12  
13  
14  
15  
16  
AIN3+  
AIN7+  
FILTER/GPIO4  
MODE0/GPIO0  
MODE1/GPIO1  
MODE2/GPIO2  
MODE3/GPIO3  
ST0/CS  
SYNC_OUT  
START  
SYNC_IN  
IOVDD  
DREGCAP  
DGND  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
SUPPLY AND GROUND PINS  
DIGITAL PINS  
ANALOG INPUTS AND OUTPUTS  
DECOUPLING CAPACITOR PINS  
Figure 10. AD7768 Pin Configuration  
Table 9. Pin Function Descriptions  
Pin No. Mnemonic  
Type1  
Description  
1
2
3
4
5
AIN1−  
AIN1+  
AVSS1A  
AVDD1A  
REF1−  
AI  
AI  
P
P
AI  
Negative Analog Input to ADC Channel 1.  
Positive Analog Input to ADC Channel 1.  
Negative Analog Supply. This pin is nominally 0 V.  
Analog Supply Voltage, 5 V 10% with Respect to AVSS.  
Reference Input, Negative. REF1− is the negative reference terminal for Channel 0 to Channel 3. The  
REF1− voltage range is from AVSS to (AVDD1 − 1V). Decouple this pin to AVSS with a high quality  
capacitor, and maintain a low impedance between this capacitor and Pin 3.  
6
REF1+  
AI  
Reference Input, Positive. REF1+ is the positive reference terminal for Channel 0 to Channel 3.  
The REF1+ voltage range is from (AVSS + 1 V) to AVDD1. Apply an external differential reference  
voltage between REF1+ and REF1− in the range from 1 V to |AVDD1 − AVSS|. Decouple this pin  
to AVSS with a high quality capacitor, and maintain a low impedance between this capacitor and  
Pin 3.  
7
AIN2−  
AI  
Negative Analog Input to ADC Channel 2.  
8
AIN2+  
AI  
Positive Analog Input to ADC Channel 2.  
9
AIN3−  
AI  
Negative Analog Input to ADC Channel 3.  
10  
11  
AIN3+  
FILTER/GPIO4  
AI  
DI/O  
Positive Analog Input to ADC Channel 3.  
Filter Select/General-Purpose Input/Output 4. In pin control mode, this pin selects the filter type.  
Set this pin to Logic 1 for the sinc5 filter. This sinc5 filter is a low latency filter, and is best for dc  
applications or where a user has specialized postfiltering implemented off chip.  
Set this pin to Logic 0 for the wideband low ripple filter response. This filter has a steep  
transition band and 105 dB stop band attenuation. Full attenuation at Nyquist (ODR/2) means  
that no aliasing occurs at ODR/2 out to the first chopping zone.  
When in SPI control mode, this pin can be used as a general-purpose input/output (GPIO4). See  
Table 49 for more details.  
Rev. A | Page 22 of 99  
 
Data Sheet  
AD7768/AD7768-4  
Pin No. Mnemonic  
Type1  
DI/DI/O Mode Selection/General-Purpose Input/Output Pin 0 to Pin 3.  
Description  
12, 13,  
14, 15  
MODE0/GPIO0,  
MODE1/GPIO1,  
MODE2/GPIO2,  
MODE3/GPIO3  
In pin control mode, the MODEx pins set the mode of operation for all ADC channels, controlling  
power consumption, DCLK frequency, and the ADC conversion type, allowing one-shot  
conversion operation.  
In SPI control mode, the GPIOx pins, in addition to the FILTER/GPIO4 pin, form five general-  
purpose input/output pins (GPIO4 to GPIO0). See Table 49 for more details.  
16  
17  
ST0/CS  
DI  
DI  
Standby 0/Chip Select Input.  
In pin control mode, a Logic 1 places Channel 0 to Channel 3 into standby mode.  
In SPI control mode, this pin is the active low chip select input to the SPI control interface. The  
VCM voltage output is associated with the Channel 0 circuitry. If Channel 0 is put into standby  
mode, the VCM voltage output is also disabled for maximum power savings. Channel 0 must be  
enabled while VCM is being used externally to the AD7768.  
ST1/SCLK  
Standby 1/Serial Clock Input.  
In pin control mode, a Logic 1 on this pin places Channel 4 to Channel 7 into standby mode.  
In SPI control mode, this pin is the serial clock input pin for the SPI control interface. The crystal  
excitation circuitry is associated with the Channel 4 circuitry. If Channel 4 is put into standby  
mode, the crystal circuitry is also disabled for maximum power savings. Channel 4 must be  
enabled while the external crystal is used on the AD7768.  
18  
19  
20  
DEC1/SDI  
DEC0/SDO  
DOUT7  
DI  
Decimation Rate Control Input 1/Serial Data Input.  
In pin control mode, the DEC0 and DEC1 pins configure the decimation rate for all ADC  
channels. See Table 17 in the Setting the Decimation Rate section for more information.  
In SPI control mode, this pin is the serial data input pin used to write data to the AD7768 register  
bank.  
Decimation Rate Control Input 0/Serial Data Output.  
In pin control mode, the DEC0 and DEC1 pins configure the decimation rate for all ADC  
channels. See Table 17 in the Setting the Decimation Rate section for more information.  
In SPI control mode, this pin is the serial data output pin, allowing readback from the AD7768  
registers.  
Conversion Data Output 7. This pin is synchronous to DCLK and framed by DRDY. This pin acts  
as a digital input from a separate AD7768 device if configured in a synchronized multidevice  
daisy chain when the FORMATx pins are configured as 01. To use the AD7768 in a daisy chain,  
hardwire the FORMATx pins as 01, 10, or 11, depending on the best interfacing format for the  
application. When FORMATx is set to 01, 10, or 11, and daisy-chaining is not used, connect this  
pin to ground through a pull-down resistor.  
DI/O  
DI/O  
21  
DOUT6  
DI/O  
Conversion Data Output 6. This pin is synchronous to DCLK and framed by DRDY. This pin acts  
as a digital input from a separate AD7768 device if configured in a synchronized multidevice  
daisy chain. To use this pin in a daisy chain, hardwire the FORMATx pins as 01, 10, or 11,  
depending on the best interfacing format for the application. When FORMATx is set to 01, 10, or  
11, and daisy chaining is not used, connect this pin to ground through a pull-down resistor.  
22  
23  
24  
25  
26  
27  
28  
DOUT5  
DOUT4  
DOUT3  
DOUT2  
DOUT1  
DOUT0  
DCLK  
DO  
DO  
DO  
DO  
DO  
DO  
DO  
Conversion Data Output 5. This pin is synchronous to DCLK and framed by DRDY.  
Conversion Data Output 4. This pin is synchronous to DCLK and framed by DRDY.  
Conversion Data Output 3. This pin is synchronous to DCLK and framed by DRDY.  
Conversion Data Output 2. This pin is synchronous to DCLK and framed by DRDY.  
Conversion Data Output 1. This pin is synchronous to DCLK and framed by DRDY.  
Conversion Data Output 0. This pin is synchronous to DCLK and framed by DRDY  
ADC Conversion Data Clock. This pin clocks conversion data out to the digital host (digital signal  
processor (DSP)/field-programmable gate array (FPGA)). This pin is synchronous with DRDY and  
any conversion data output on DOUT0 to DOUT7 and is derived from the MCLK signal. This pin  
is unrelated to the control SPI interface.  
29  
30  
DRDY  
RESET  
DO  
DI  
Data Ready. DRDY is a periodic signal output framing the conversion results from the eight  
ADCs. This pin is synchronous to DCLK and DOUT0 to DOUT7.  
Hardware Asynchronous Reset Input. After the device is fully powered up, it is recommended to  
perform a hard reset using this pin or, alternatively, to perform a soft reset by issuing a reset  
over the SPI control interface  
Rev. A | Page 23 of 99  
AD7768/AD7768-4  
Data Sheet  
Pin No. Mnemonic  
Type1  
Description  
31  
XTAL1  
DI  
Input 1 for Crystal or Connection to an LVDS Clock. When CLK_SEL is 0, connect XTAL1 to DGND.  
The crystal excitation circuitry is associated with the Channel 4 circuitry. If Channel 4 is put into  
standby mode, the crystal circuitry is also disabled for maximum power savings. Channel 4 must  
be enabled while the external crystal is used on the AD7768. When used with an LVDS clock,  
connect this pin to one trace of the LVDS signal pair. When used as an LVDS input, a rising edge  
on this pin is detected as a rising MCLK edge by the AD7768.  
32  
XTAL2/MCLK  
DI  
Input 2 for CMOS or Crystal/LVDS Sampling Clock. See the CLK_SEL pin for the details of this  
configuration.  
External crystal: XTAL2 is connected to the external crystal.  
LVDS clock: when used with an LVDS clock, connect this pin to the second trace of the LVDS  
signal pair.  
CMOS clock: this pin operates as an MCLK input. This pin is a CMOS input with a logic level of  
IOVDD/DGND. When used as a CMOS clock input, a rising edge on this pin is detected as a rising  
MCLK edge by the AD7768.  
The crystal excitation circuitry is associated with the Channel 4 circuitry. If Channel 4 is put into  
standby mode, the crystal circuitry is also disabled for maximum power savings. Channel 4 must  
be enabled while the external crystal is used on the AD7768.  
33  
34  
DGND  
DREGCAP  
P
AO  
Digital Ground. This pin is nominally 0 V.  
Digital Low Dropout (LDO) Regulator Output. Decouple this pin to DGND with a high quality,  
low ESR, 10 µF capacitor. For optimum performance, use a decoupling capacitor with an ESR  
specification of less than 400 mΩ. This pin is not for use in circuits external to the AD7768. For  
1.8 V IOVDD operation, connect this pin to IOVDD via an external trace to provide power to the  
digital processing core.  
35  
36  
IOVDD  
P
Digital Supply. This pin sets the logic levels for all interface pins. IOVDD also powers the digital  
processing core via the digital LDO when IOVDD is at least 2.25 V. For 1.8 V IOVDD operation,  
connect this pin to DREGCAP via an external trace to provide power to the digital processing core.  
SYNC_IN  
DI  
Synchronization Input. SYNC_IN receives the synchronous signal from SYNC_OUT. It is used in  
the synchronization of any AD7768 that requires simultaneous sampling or is in a daisy chain.  
Ignore the START and SYNC_OUT functions if the SYNC_IN pin is connected to the system  
synchronization pulse. This signal pulse must be synchronous to the MCLK clock domain. In a  
daisy-chained system of AD7768 devices, two successive synchronization pulses must be  
applied to guarantee that all ADCs are synchronized. Two synchronization pulses are also  
required in a system of more than one AD7768 device sharing a single MCLK signal, where the  
DRDY pin of only one device is used to detect new data.  
37  
START  
DI  
Start Signal. The START pulse synchronizes the AD7768 to other devices. The signal can be  
asynchronous. The AD7768 samples the input and then outputs a SYNC_OUT pulse. This  
SYNC_OUT pulse must be routed to the SYNC_IN pin of this device, and any other AD7768  
devices that must be synchronized together. This means that the user does not need to run the  
ADCs and their digital host from the same clock domain, which is useful when there are long  
traces or back planes between the ADC and the controller. If this pin is not used, it must be tied  
to a Logic 1 through a pull-up resistor. In a daisy-chained system of AD7768 devices, two  
successive synchronization pulses must be applied to guarantee that all ADCs are synchronized.  
Two synchronization pulses are also required in a system of more than one AD7768 device  
sharing a single MCLK signal, where the DRDY pin of only one device is used to detect new data.  
38  
SYNC_OUT  
DO  
Synchronization Output. This pin operates only when the START input is used. When using the  
START input feature, the SYNC_OUT pin must be connected to SYNC_IN via an external trace.  
SYNC_OUT is a digital output that is synchronous to the MCLK signal; the synchronization signal  
driven in on START is internally synchronized to the MCLK signal and is driven out on SYNC_OUT.  
SYNC_OUT can also be routed to other AD7768 devices requiring simultaneous sampling and/or  
daisy-chaining, ensuring synchronization of devices related to the MCLK clock domain. It must  
then be wired to drive the SYNC_IN pin on the same AD7768 and on the other AD7768 devices.  
39  
40  
41  
42  
43  
AIN7+  
AIN7−  
AIN6+  
AIN6−  
REF2+  
AI  
AI  
AI  
AI  
AI  
Positive Analog Input to ADC Channel 7.  
Negative Analog Input to ADC Channel 7.  
Positive Analog Input to ADC Channel 6.  
Negative Analog Input to ADC Channel 6.  
Reference Input, Positive. REF2+ is the positive reference terminal for Channel 4 to Channel 7.  
The REF2+ voltage range is from (AVSS + 1 V) to AVDD1. Apply an external differential reference  
voltage between REF2+ and REF2− in the range from 1 V to |AVDD1 − AVSS|. Decouple this pin to  
AVSS with a high quality capacitor, and maintain a low impedance between this capacitor and Pin 46.  
Rev. A | Page 24 of 99  
Data Sheet  
AD7768/AD7768-4  
Pin No. Mnemonic  
Type1  
Description  
44  
REF2−  
AI  
Reference Input, Negative. REF2− is the negative reference terminal for Channel 4 to Channel 7.  
The REF2− voltage range is from AVSS to (AVDD1 − 1 V). Decouple this pin to AVSS with a high  
quality capacitor, and maintain a low impedance between this capacitor and Pin 46.  
45  
46  
47  
48  
49  
50  
51  
52  
AVDD1B  
AVSS1B  
AIN5+  
AIN5−  
AIN4+  
P
P
Analog Supply Voltage. This pin is 5 V 10% with respect to AVSS.  
Negative Analog Supply. This pin is nominally 0 V.  
Positive Analog Input to ADC Channel 5.  
Negative Analog Input to ADC Channel 5.  
Positive Analog Input to ADC Channel 4.  
AI  
AI  
AI  
AI  
P
AO  
P
P
AIN4−  
Negative Analog Input to ADC Channel 4.  
AVSS2B  
REGCAPB  
AVDD2B  
AVSS  
Negative Analog Supply. This pin is nominally 0 V.  
Analog LDO Regulator Output. Decouple this pin to AVSS with a 1 µF capacitor.  
Analog Supply Voltage. This pin is 2 V to 5.5 V with respect to AVSS.  
Negative Analog Supply. This pin is nominally 0 V.  
53  
54  
55, 56  
FORMAT1,  
FORMAT0  
DI  
Format Selection Pins. Hardwire the FORMATx pins to the required values in pin control and SPI  
control mode. These pins set the number of DOUTx pins used to output ADC conversion data. The  
FORMATx pins are checked by the AD7768 on power-up; the AD7768 then remains in this data  
output configuration (see Table 31).  
57  
PIN/SPI  
DI  
Pin Control/SPI Control. This pin sets the control method.  
Logic 0 = pin control mode for the AD7768. Pin control mode allows a pin strapped  
configuration of the AD7768 by tying logic input pins to required logic levels. Tie the logic pins  
(MODE0 to MODE4, DEC0 and DEC1, and FILTER) as required for the configuration. See the Pin  
Control section for more details.  
Logic 1 = SPI control mode for the AD7768. Use the SPI control interface signals (CS, SCLK, SDI,  
and SDO) for reading and writing to the AD7768 memory map.  
Clock Select.  
Logic 0 = pull this pin low for the CMOS clock option. The clock is applied to Pin 32 (Connect  
Pin 31 to DGND).  
Logic 1 = pull this pin high for the crystal or LVDS clock option. The crystal or LVDS clock is  
applied to Pin 31 and Pin 32. The LVDS option is available only in SPI control mode. A write is  
required to enable the LVDS clock option.  
Common-Mode Voltage Output. This pin outputs (AVDD1 − AVSS)/2 V, which is 2.5 V by default  
in pin control mode. Configure this pin to (AVDD1 − AVSS)/2 V, 2.5 V, 2.14 V, or 1.65 V in SPI  
control mode. When driving capacitive loads larger than 0.1 µF, it is recommended to place a  
50 Ω series resistor between the pin and the capacitive load for stability. The VCM voltage  
output is associated with the Channel 0 circuitry. If Channel 0 is put into standby mode, the VCM  
voltage output is also disabled for maximum power savings. Channel 0 must be enabled while  
VCM is being used externally to the AD7768.  
58  
59  
CLK_SEL  
VCM  
DI  
AO  
60  
61  
62  
63  
64  
AVDD2A  
REGCAPA  
AVSS2A  
AIN0−  
P
AO  
P
AI  
AI  
Analog Supply Voltage. This pin is 2 V to 5.5 V with respect to AVSS.  
Analog LDO Regulator Output. Decouple this pin to AVSS with a 1 µF capacitor.  
Negative Analog Supply. This pin is nominally 0 V.  
Negative Analog Input to ADC Channel 0.  
Positive Analog Input to ADC Channel 0.  
AIN0+  
1 AI is analog input, P is power, DI/O is digital input/output, DI is digital input, DO is digital output, and AO is analog output.  
Rev. A | Page 25 of 99  
 
AD7768/AD7768-4  
Data Sheet  
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49  
1
2
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
AIN1–  
AIN1+  
AIN3–  
AIN3+  
3
AVSS1B  
AVDD1B  
REF2–  
AVSS1A  
4
AVDD1A  
5
REF1–  
6
REF1+  
REF2+  
AVSS  
7
AVSS  
AD7768-4  
TOP VIEW  
(Not to Scale)  
8
AVSS  
AVSS  
9
AVSS  
AVSS  
10  
11  
12  
13  
14  
15  
16  
AVSS  
AVSS  
FILTER/GPIO4  
MODE0/GPIO0  
MODE1/GPIO1  
MODE2/GPIO2  
MODE3/GPIO3  
ST0/CS  
SYNC_OUT  
START  
SYNC_IN  
IOVDD  
DREGCAP  
DGND  
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32  
SUPPLY AND GROUND PINS  
DIGITAL PINS  
ANALOG INPUTS AND OUTPUTS  
DECOUPLING CAPACITOR PINS  
NOTES  
1. DNC = DO NOT CONNECT. DO NOT CONNECT TO THIS PIN.  
Figure 11. AD7768-4 Pin Configuration  
Table 10. AD7768-4 Pin Function Descriptions  
Pin No.  
Mnemonic  
Type1  
Description  
1
2
3
4
5
AIN1−  
AIN1+  
AVSS1A  
AVDD1A  
REF1−  
AI  
AI  
P
P
AI  
Negative Analog Input to ADC Channel 1.  
Positive Analog Input to ADC Channel 1.  
Negative Analog Supply. This pin is nominally 0 V.  
Analog Supply Voltage, 5 V 10% with respect to AVSS.  
Reference Input Negative. REF1− is the negative reference terminal for Channel 0 and  
Channel 1. The REF1− voltage range is from AVSS to (AVDD1 − 1 V). Decouple this pin to  
AVSS with a high quality capacitor, and maintain a low impedance between this capacitor  
and Pin 3.  
6
REF1+  
AI  
Reference Input Positive. REF1+ is the positive reference terminal for Channel 0 and  
Channel 1. The REF1+ voltage range is from (AVSS + 1 V) to AVDD1. Apply an external  
differential reference voltage between REF1+ and REF1− in the range from 1 V to |AVDD1  
− AVSS|. Decouple this pin to AVSS with a high quality capacitor, and maintain a low  
impedance between this capacitor and Pin 3.  
7 to 10,  
39 to 42,  
54  
AVSS  
AI  
Negative Analog Supply. This pin is nominally 0 V.  
11  
FILTER/GPIO4  
DI/O  
Filter Select/General-Purpose Input-Output. In pin control mode, this pin selects the filter type.  
Set this pin to Logic 1 for the sinc5 filter. This sinc5 filter is a low latency filter, and is best  
for dc applications or where a user has specialized postfiltering implemented off chip.  
Set this pin to Logic 0 for the wideband low ripple filter response. This filter has a steep  
transition band and 105 dB stop band attenuation. Full attenuation at Nyquist (ODR/2)  
means that no aliasing occurs at ODR/2 out to the first chopping zone.  
When in SPI control mode, this pin can be used as a general-purpose input/output  
(GPIO4). See Table 75 for more details.  
Rev. A | Page 26 of 99  
Data Sheet  
AD7768/AD7768-4  
Pin No.  
Mnemonic  
Type1  
DI/DI/O Mode Selection/General-Purpose Input/Output Pin 0 to Pin 3.  
Description  
12, 13,  
14, 15  
MODE0/GPIO0,  
MODE1/GPIO1,  
MODE2/GPIO2,  
MODE3/GPIO3  
In pin control mode, the MODEx pins set the mode of operation for all ADC channels,  
controlling power consumption, DCLK frequency, and the ADC conversion type, allowing  
one-shot conversion operation.  
In SPI control mode, the GPIOx pins, in addition to the FILTER/GPIO4 pin, form five general-  
purpose input/output pins (GPIO4 to GPIO0). See Table 75 for more details.  
16  
ST0/CS  
DI  
Standby 0/Chip Select Input.  
In pin control mode, a Logic 1 on this pin places Channel 0 to Channel 3 into standby  
mode.  
In SPI control mode, this pin is the active low chip select input to the SPI control interface.  
The VCM voltage output is associated with the Channel 0 circuitry. If Channel 0 is put into  
standby mode, the VCM voltage output is also disabled for maximum power savings.  
Channel0 must be enabled while VCM is being used externally to the AD7768-4. The  
crystal excitation circuitry is associated with the Channel 2 circuitry. If Channel 2 is put into  
standby mode, the crystal circuitry is also disabled for maximum power savings. Channel 2  
must be enabled while the external crystal is used on the AD7768-4.  
17  
18  
SCLK  
DI  
DI  
Serial Clock Input.  
In SPI control mode, this pin is the serial clock input pin for the SPI control interface.  
In pin control mode, tie this pin to a Logic 0 or DGND.  
Decimation Rate Control Input 1/Serial Data Input.  
DEC1/SDI  
In pin control mode, the DEC0 and DEC1 pins configure the decimation rate for all ADC  
channels. See Table 17 in the Setting the Decimation Rate section.  
In SPI control mode, this pin is the serial data input pin used to write data to the AD7768-4  
register bank.  
19  
DEC0/SDO  
DI/O  
Decimation Rate Control Input 0/Serial Data Output.  
In pin control mode, the DEC0 and DEC1 pins configure the decimation rate for all ADC  
channels. See Table 17 in the Setting the Decimation Rate section.  
In SPI control mode, this pin is the serial data output pin, allowing readback from the  
AD7768-4 registers.  
20  
21  
DNC/DGND  
DIN  
DO/DI  
DI  
Do Not Connect/Digital Ground. This is an unused pin. Leave this pin floating if FORMAT0 is  
tied to logic low. If FORMAT0 is tied to logic high, connect this pin to DGND through a pull-  
down resistor.  
Data Input Daisy Chain. This pin acts as a digital input from a separate AD7768-4 device if  
configured in a synchronized multidevice daisy-chain. To use this pin in a daisy-chain,  
hardwire the FORMAT0 pin to logic high. If FORMAT0 is tied to logic low, or the daisy  
chaining input pin is not used, then tie this pin to DGND through a pull-down resistor.  
22, 23  
24  
DNC  
DO  
DO  
DO  
DO  
DO  
DO  
Do Not Connect. Do not connect to this pin.  
DOUT3  
DOUT2  
DOUT1  
DOUT0  
DCLK  
Conversion Data Output 3. This pin is synchronous to DCLK and framed by DRDY.  
Conversion Data Output 2. This pin is synchronous to DCLK and framed by DRDY.  
Conversion Data Output 1. This pin is synchronous to DCLK and framed by DRDY.  
Conversion Data Output 0. This pin is synchronous to DCLK and framed by DRDY  
25  
26  
27  
28  
ADC Conversion Data Clock. This pin clocks conversion data out to the digital host (DSP/FPGA).  
This pin is synchronous with DRDY and any conversion data output on DOUT0 to DOUT3  
and is derived from the MCLK signal. This pin is unrelated to the control SPI interface.  
29  
30  
DRDY  
RESET  
DO  
DI  
Data Ready. DRDY is a periodic signal output framing the conversion results from the four  
ADCs. This pin is synchronous to DCLK and DOUT0 to DOUT3.  
Hardware Asynchronous Reset Input. After the device is fully powered up, it is  
recommended to perform a hard reset using this pin or, alternatively, to perform a soft  
reset by issuing a reset over the SPI control interface  
31  
XTAL1  
DI  
Input 1 for Crystal or Connection to an LVDS Clock. When CLK_SEL is 0, connect XTAL1 to  
DGND. When used with an LVDS clock, it is recommended that this pin be connected to  
one trace of the LVDS signal pair. When used as an LVDS input, a rising edge on this pin is  
detected as a rising MCLK edge by the AD7768-4.  
Rev. A | Page 27 of 99  
AD7768/AD7768-4  
Data Sheet  
Pin No.  
Mnemonic  
Type1  
Description  
32  
XTAL2/MCLK  
DI  
Input 2 for CMOS/Crystal/LVDS Sampling Clock. See the CLK_SEL pin for the details of this  
configuration.  
External crystal: XTAL2 is connected to the external crystal.  
LVDS: when used with an LVDS clock, connect this pin to the second trace of the LVDS  
signal pair.  
CMOS clock: this pin operates as an MCLK input. This pin is a CMOS input with logic level  
of IOVDD/DGND. When used as a CMOS clock input, a rising edge on this pin is detected  
as a rising MCLK edge by the AD7768-4.  
33  
34  
DGND  
DREGCAP  
P
AO  
Digital Ground. Nominally GND (0 V).  
Digital LDO Regulator Output. Decouple this pin to DGND with a high quality, low ESR,  
10 µF capacitor. For optimum performance, use a decoupling capacitor with an ESR  
specification of less than 400 mΩ. This pin is not for use in circuits external to the AD7768-4.  
For 1.8 V IOVDD operation, connect this pin to IOVDD via an external trace to provide  
power to the digital processing core.  
35  
36  
IOVDD  
P
Digital Supply. This pin sets the logic levels for all interface pins. IOVDD also powers the  
digital processing core, via the digital LDO, when IOVDD is at least 2.25 V. For 1.8 V IOVDD  
operation, connect this pin to DREGCAP via an external trace to provide power to the  
digital processing core.  
Synchronization Input. SYNC_IN receives the synchronous signal from SYNC_OUT. It is  
used in the synchronization of any AD7768-4 that requires simultaneous sampling or is in  
a daisy chain. The user can ignore the START and SYNC_OUT function if the AD7768-4  
SYNC_IN pin is connected to the system synchronization pulse. This signal pulse must be  
synchronous to the MCLK clock domain.  
SYNC_IN  
DI  
37  
START  
DI  
Start Signal. The START pulse acts to synchronize the AD7768-4 to other devices. The  
signal can be asynchronous. The AD7768-4 samples the input and then outputs a  
SYNC_OUT pulse. This SYNC_OUT pulse must be routed to the SYNC_IN pin of this device,  
and any other AD7768-4 devices that must be synchronized together. This means that the  
user does not need to run the ADCs and their digital host from the same clock domain,  
which is useful when there are long traces or back planes between the ADC and the  
controller. If this pin is not used, it must be tied to a Logic 1 through a pull-up resistor. In a  
daisy-chained system of AD7768-4 devices, two successive synchronization pulses must  
be applied to guarantee that all ADCs are synchronized. Two synchronization pulses are  
also required in a system of more than one AD7768-4 device sharing a single MCLK signal,  
where the DRDY pin of only one device is used to detect new data.  
38  
SYNC_OUT  
DO  
Synchronization Output. This pin operates only when the START input is used. When using  
the START input feature, the SYNC_OUT must be connected to SYNC_IN via an external  
trace. SYNC_OUT is a digital output that is synchronous to the MCLK signal; the synchroniza-  
tion signal driven in on START is internally synchronized to the MCLK signal and is driven  
out on SYNC_OUT. SYNC_OUT can also be routed to other AD7768-4 devices requiring  
simultaneous sampling and/or daisy-chaining, ensuring synchronization of devices  
related to the MCLK clock domain. It must then be wired to drive the SYNC_IN pin on the  
same AD7768-4 and on the other AD7768-4 devices.  
43  
44  
REF2+  
REF2−  
AI  
AI  
Reference Input Positive. REF2+ is the positive reference terminal for Channel 2 and  
Channel 3. The REF2+ voltage range is from (AVSS + 1 V) to AVDD1. Apply an external  
differential reference voltage between REF2+ and REF2− in the range from 1 V to |AVDD1  
− AVSS|. Decouple this pin to AVSS with a high quality capacitor, and maintain a low  
impedance between this capacitor and Pin 3.  
Reference Input Negative. REF2− is the negative reference terminal for Channel 2 and  
Channel 3. The REF2− voltage range is from AVSS to (AVDD1 − 1 V). Decouple this pin to  
AVSS with a high quality capacitor, and maintain a low impedance between this capacitor  
and Pin 3.  
45  
46  
47  
48  
49  
50  
51  
52  
AVDD1B  
AVSS1B  
AIN3+  
AIN3−  
AIN2+  
AIN2−  
AVSS2B  
REGCAPB  
P
P
Analog Supply Voltage. This pin is 5 V 10% with respect to AVSS.  
Negative Analog Supply. This pin is nominally 0 V.  
Positive Analog Input to ADC Channel 3.  
Negative Analog Input to ADC Channel 3.  
Positive Analog Input to ADC Channel 2.  
AI  
AI  
AI  
AI  
P
Negative Analog Input to ADC Channel 2.  
Negative Analog Supply. This pin is nominally 0 V.  
Analog LDO Regulator Output. Decouple this pin to AVSS with a 1 µF capacitor.  
Rev. A | Page 28 of 99  
AO  
Data Sheet  
AD7768/AD7768-4  
Pin No.  
53  
55  
Mnemonic  
Type1  
Description  
AVDD2B  
DGND  
P
P
Analog Supply Voltage. 2 V to 5.5 V with respect to AVSS.  
Digital Ground. This pin is nominally 0 V.  
56  
FORMAT0  
DI  
Format Selection. Hardwire the FORMAT0 pin to the required value in pin and SPI control  
mode. This pin sets the number of DOUTx pins used to output ADC conversion data. The  
FORMAT0 pin is checked by the AD7768-4 on power-up, the AD7768-4 then remains in this  
data output configuration. See Table 32.  
57  
PIN/SPI  
DI  
Pin Control/SPI Control. This pin sets the AD7768-4 control method.  
Logic 0 = pin control mode for the AD7768-4. Pin control mode allows pin strapped  
configuration of the AD7768-4 by tying logic input pins to required logic levels. Tie logic  
pins MODE0 to MODE4, DEC0 and DEC1, and FILTER as required for the configuration. See the  
Pin Control section for more details.  
Logic 1 = SPI control mode for the AD7768-4. Use the SPI control interface signals (CS, SCLK,  
SDI, and SDO) for reading and writing to the AD7768-4 memory map.  
Clock Select.  
Logic 0 = pull this pin low for the CMOS clock option. The clock is applied to Pin 32  
(Connect Pin 31 to DGND).  
Logic 1 = pull this pin high for the crystal or LVDS clock option. The crystal or LVDS clock is  
applied to Pin 31 and Pin 32. The LVDS option is available only in SPI control mode. A write  
is required to enable the LVDS clock option.  
Common-Mode Voltage Output. This pin outputs (AVDD1 − AVSS)/2 V, which is 2.5 V by  
default in pin control mode. Configure this pin to (AVDD1 − AVSS)/2 V, 2.5 V, 2.14 V, or  
1.65 V in SP control mode. When driving capacitive loads larger than 0.1 µF, it is  
recommended to place a 50 Ω series resistor between the pin and the capacitive load for  
stability. The VCM voltage output is associated with the Channel 0 circuitry. If Channel 0 is  
put into standby mode, the VCM voltage output is also disabled for maximum power  
savings. Channel 0 must be enabled while VCM is being used externally to the AD7768-4.  
58  
59  
CLK_SEL  
VCM  
DI  
AO  
60  
61  
62  
63  
64  
AVDD2A  
REGCAPA  
AVSS2A  
AIN0−  
P
AO  
P
AI  
AI  
Analog Supply Voltage. This pin is 2 V to 5.5 V with respect to AVSS.  
Analog LDO Regulator Output. Decouple this pin to AVSS with a 1 µF capacitor.  
Negative Analog Supply. This pin is nominally 0 V.  
Negative Analog Input to ADC Channel 0.  
Positive Analog Input to ADC Channel 0.  
AIN0+  
1 AI is analog input, P is power, DI/O is digital input/output, DI is digital input, DO is digital output, and AO is analog output.  
Rev. A | Page 29 of 99  
AD7768/AD7768-4  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
AVDD1 = 5 V, AVDD2 = 2.5 V, AVSS = 0 V, IOVDD = 2.5 V, VREF = 4.096 V, TA = 25°C, fast power mode, wideband filter, decimation =  
×32, MCLK = 32.768 MHz, analog input precharge buffers on, reference precharge buffers off, unless otherwise noted.  
0
0
SNR = 107.8dB  
THD = –126.4dB  
SNR = 107.9dB  
THD = –129.8dB  
–20  
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–200  
–100  
–120  
–140  
–160  
–180  
–200  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 12. FFT, Fast Mode, Wideband Filter, −0.5 dBFS  
Figure 15. FFT, Fast Mode, Wideband Filter, −6 dBFS  
0
–20  
0
–20  
SNR = 107.9dB  
THD = –129.3dB  
SNR = 108.1dB  
THD = –128.8dB  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–200  
–100  
–120  
–140  
–160  
–180  
–200  
10  
100  
1k  
10k  
100k  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 13. FFT, Median Mode, Wideband Filter, −0.5 dBFS  
Figure 16. FFT, Median Mode, Wideband Filter, −6 dBFS  
0
0
SNR = 108.0dB  
THD = –129.7dB  
SNR = 108.1dB  
THD = –129.7dB  
–20  
–20  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–200  
–100  
–120  
–140  
–160  
–180  
–200  
10  
100  
1k  
10k  
10  
100  
1k  
10k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 14. FFT, Eco Mode, Wideband Filter, −0.5 dBFS  
Figure 17. FFT, Eco Mode, Wideband Filter, −6 dBFS  
Rev. A | Page 30 of 99  
 
Data Sheet  
AD7768/AD7768-4  
0
–20  
0
–20  
SNR = 111.1dB  
THD = –126.5dB  
SNR = 111.1dB  
THD = –129.3dB  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–100  
–120  
–140  
–160  
–180  
–200  
–200  
10  
100  
1k  
10k  
100k  
10  
10  
10  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 18. FFT, Fast Mode, Sinc5 Filter, −0.5 dBFS  
Figure 21. FFT, Fast Mode, Sinc5 Filter, −6 dBFS  
0
–20  
0
–20  
SNR = 111.1dB  
THD = –128.8dB  
SNR = 111.1dB  
THD = –130.2dB  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–200  
–100  
–120  
–140  
–160  
–180  
–200  
10  
100  
1k  
10k  
100k  
100  
1k  
10k  
100k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 19. FFT, Median Mode, Sinc5 Filter, −0.5 dBFS  
Figure 22. FFT, Median Mode, Sinc5 Filter, −6 dBFS  
0
–20  
0
–20  
SNR = 111.1dB  
THD = –130.1dB  
SNR = 111.5dB  
THD = –131.7dB  
–40  
–40  
–60  
–60  
–80  
–80  
–100  
–120  
–140  
–160  
–180  
–200  
–100  
–120  
–140  
–160  
–180  
–200  
10  
100  
1k  
10k  
100  
1k  
10k  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 20. FFT, Eco Mode, Sinc5 Filter, −0.5 dBFS  
Figure 23. FFT, Eco Mode, Sinc5 Filter, −6 dBFS  
Rev. A | Page 31 of 99  
AD7768/AD7768-4  
Data Sheet  
0
FAST  
MEDIAN  
ECO  
SNR = 113.3dB  
THD = –130.8dB  
–20  
fS = 8.192kHz  
fIN = 1kHz  
250  
200  
150  
100  
50  
–40  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
–200  
0
5
50  
500  
FREQUENCY (Hz)  
5000  
SHORTED NOISE (µV)  
Figure 27. Shorted Noise, Sinc5 Filter  
Figure 24. FFT One-Shot-Mode, Sinc5 Filter, Median Mode,  
SYNC_IN  
Decimation = ×64, −0.5 dBFS,  
Frequency = MCLK/4000  
0
SECOND-ORDER IMD = –135.2dB  
THIRD-ORDER IMD = –129.3dB  
200  
150  
100  
50  
–20  
–40  
–40°C  
+25°C  
+105°C  
–60  
–80  
–100  
–120  
–140  
–160  
–180  
–200  
0
100  
1k  
10k  
FREQUENCY (Hz)  
100k  
SHORTED NOISE (µV)  
Figure 28. Shorted Noise vs. Temperature, Wideband Filter  
Figure 25. IMD with Input Signals at 9.7 kHz and 10.3 kHz  
15  
14  
13  
12  
11  
10  
9
200  
FAST  
MEDIAN  
ECO  
150  
100  
50  
WIDEBAND  
8
SINC5  
7
6
0
5
SHORTED NOISE (µV)  
TEMPERATURE (°C)  
Figure 29. RMS Noise vs. Temperature, Fast Mode  
Figure 26. Shorted Noise, Wideband Filter  
Rev. A | Page 32 of 99  
Data Sheet  
AD7768/AD7768-4  
15  
14  
13  
12  
0
–20  
fIN = 3.15kHz  
INTERFERER (1kHz) ON ALL OTHER CHANNELS  
–40  
–60  
WIDEBAND  
11  
10  
9
–80  
–100  
–120  
–140  
–160  
–180  
8
SINC5  
7
6
5
0
1
2
3
4
5
6
7
CHANNEL  
TEMPERATURE (°C)  
Figure 33. Crosstalk  
Figure 30. RMS Noise vs. Temperature, Median Mode  
110  
100  
90  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
15  
14  
13  
12  
11  
10  
9
WIDEBAND  
SNR, FAST  
THD, FAST  
DYNAMIC RANGE, FAST  
THD + N, FAST  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
–180  
8
SINC5  
7
6
fIN = 1kHz  
5
80  
5
0
10  
15  
20  
25  
30  
35  
40  
MCLK FREQUENCY (MHz)  
TEMPERATURE (°C)  
Figure 34. SNR, Dynamic Range, THD, and THD +N vs. MCLK Frequency  
Figure 31. RMS Noise vs. Temperature, Eco Mode  
0
–20  
–40  
12.0  
11.8  
11.6  
11.4  
11.2  
11.0  
10.8  
10.6  
10.4  
10.2  
10.0  
–60  
FAST  
MEDIAN  
ECO  
–80  
–100  
–120  
–140  
–160  
–180  
V
V
V
= 5.00V  
= 4.096V  
= 2.500V  
REF  
REF  
REF  
10  
100  
1k  
INPUT FREQUENCY (Hz)  
10k  
100k  
0
1
2
3
4
5
6
7
CHANNEL  
Figure 35. THD vs. Input Frequency, Three Power Modes, Wideband Filter  
Figure 32. RMS Noise per Channel for Various VREF Values  
Rev. A | Page 33 of 99  
AD7768/AD7768-4  
Data Sheet  
120  
118  
116  
114  
112  
110  
108  
106  
104  
102  
100  
0
–20  
–40  
FAST MODE, SINC5 FILTER  
FAST MODE, WIDEBAND FILTER  
MEDIAN MODE, SINC5 FILTER  
MEDIAN MODE, WIDEBAND FILTER  
ECO MODE, SINC5 FILTER  
ECO MODE, WIDEBAND FILTER  
–60  
FAST  
MEDIAN  
ECO  
–80  
–100  
–120  
–140  
–160  
–180  
–140  
–120  
–100  
–80  
–60  
–40  
–20  
0
10  
100  
1k  
INPUT FREQUENCY (Hz)  
10k  
100k  
INPUT AMPLITUDE (dBFS)  
Figure 39. SNR vs. Input Amplitude  
Figure 36. THD vs. Input Frequency, Three Power Modes, Sinc5 Filter  
4
0
FAST THD  
fIN = 1kHz  
FAST THD + N  
–20  
3
2
MEDIAN THD  
MEDIAN THD + N  
ECO THD  
V
V
V
= 2.500V  
= 4.096V  
= 5.000V  
REF  
–40  
REF  
REF  
ECO THD + N  
–60  
1
–80  
–100  
–120  
–140  
–160  
–180  
0
–1  
–2  
–3  
–4  
–V  
0V  
INPUT VOLTAGE (V)  
+V  
REF  
–140  
–120  
–100  
–80  
–60  
–40  
–20  
0
REF  
INPUT AMPLITUDE (dBFS)  
Figure 40. INL Error vs. Input Voltage for Various Voltage Reference (VREF  
Levels, Fast Mode  
)
Figure 37. THD and THD + N vs. Input Amplitude, Wideband Filter  
0
4
3
FAST THD  
fIN = 1kHz  
FAST THD + N  
MEDIAN THD  
MEDIAN THD + N  
ECO THD  
–20  
–40  
V
V
V
= 2.500V  
= 4.096V  
= 5.000V  
REF  
REF  
REF  
2
1
ECO THD + N  
–60  
–80  
0
–100  
–120  
–140  
–160  
–180  
–1  
–2  
–3  
–4  
–V  
0V  
INPUT VOLTAGE (V)  
+V  
REF  
–140  
–120  
–100  
–80  
–60  
–40  
–20  
0
REF  
INPUT AMPLITUDE (dBFS)  
Figure 38. THD and THD + N vs. Input Amplitude, Sinc5 Filter  
Figure 41. INL Error vs. Input Voltage for Various Voltage Reference (VREF  
Levels, Median Mode  
)
Rev. A | Page 34 of 99  
Data Sheet  
AD7768/AD7768-4  
4
+105°C  
+25°C  
–40°C  
50  
40  
30  
20  
10  
0
3
V
V
V
= 2.500V  
= 4.096V  
= 5.000V  
REF  
REF  
REF  
2
1
0
–1  
–2  
–3  
–4  
–60  
–50  
–40  
–30  
–20  
–10  
0
10  
20  
–V  
0V  
INPUT VOLTAGE (V)  
+V  
REF  
REF  
OFFSET ERROR (µV)  
Figure 42. INL Error vs. Input Voltage for Various Voltage Reference (VREF  
Levels, Eco Mode  
)
Figure 45. Offset Error Distribution, DCLK = 24 MHz  
1.5  
+105°C  
50  
40  
30  
20  
10  
0
+25°C  
–40°C  
FULL SCALE (–4.015V TO +4.015V)  
1.0  
HALF SCALE (–2.008V TO +2.008V)  
QUARTER SCALE (–1.004V TO +1.004V)  
0.5  
0
–0.5  
–1.0  
–1.5  
–V  
0V  
+V  
REF  
–140 –120 –100 –80  
–60  
–40  
–20  
0
20  
40  
REF  
INPUT VOLTAGE (V)  
OFFSET ERROR (µV)  
Figure 43. INL Error vs. Input Voltage, Full-Scale, Half-Scale, and  
Quarter-Scale Inputs  
Figure 46. Offset Error Distribution, DCLK = 32 MHz  
3
120  
100  
80  
60  
40  
20  
0
–40°C  
0°C  
+25°C  
+85°C  
+105°C  
2
1
0
–1  
–2  
–3  
–150 –100 –50  
0
50 100 150 200 250 300 350  
OFFSET ERROR DRIFT (nV/°C)  
INPUT VOLTAGE (V)  
Figure 44. INL Error vs. Input Voltage for Various Temperatures,  
Fast Mode  
Figure 47. Offset Error Drift, DCLK = 24 MHz  
Rev. A | Page 35 of 99  
AD7768/AD7768-4  
Data Sheet  
45  
40  
35  
30  
25  
20  
15  
10  
5
600  
500  
400  
300  
200  
100  
0
+105°C  
+25°C  
–40°C  
0
–350 –300 –250 –200 –150 –100 –50  
0
50 100 150 200 250 300 350  
–40353025201510 –5  
0
5 10 15 20 25 30 35  
OFFSET ERROR DRIFT (nV/°C)  
GAIN ERROR (ppm)  
Figure 48. Offset Error Drift, DCLK = 32 MHz  
Figure 51. Gain Error Distribution  
600  
500  
400  
300  
200  
100  
0
60  
50  
40  
30  
20  
10  
0
1.8V IOVDD  
2.5V IOVDD  
4
6
8
10 12 14 16 18 20 22 24 26 28 30 32 34  
DCLK FREQUENCY (MHz)  
2
3
4
5
6
7
8
9
10 11 12  
GAIN ERROR (ppm)  
Figure 49. Offset Drift vs. DCLK Frequency  
Figure 52. Channel to Channel Gain Error Matching  
120  
0
–20  
100  
80  
60  
40  
20  
0
FAST MODE  
–40  
–60  
MEDIAN MODE  
ECO MODE  
–80  
–100  
–120  
–140  
–160  
–180  
40  
25  
TEMPERATURE (°C)  
105  
10  
100  
1k  
10k  
100k  
1M  
10M  
INPUT FREQUENCY (Hz)  
Figure 53. AC CMRR vs. Input Frequency  
Figure 50. Channel Offset Error Matching  
Rev. A | Page 36 of 99  
 
Data Sheet  
AD7768/AD7768-4  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
20  
0
DCLK = 32.768MHz  
AVDD1 = 5V + 100mV p-p  
–20  
–40  
ECO  
–60  
MEDIAN  
FAST  
–80  
CH0  
CH4  
CH1  
CH5  
CH2  
CH6  
CH3  
CH7  
–100  
–120  
–140  
–160  
–180  
–100  
100  
1k  
10k  
100k  
1M  
10M  
0.1  
0.3  
0.5  
0.7  
0.9  
1.1  
1.3  
1.5  
FREQUENCY (Hz)  
NORMALIZED INPUT FREQUENCY (  
f
IN/fODR)  
Figure 57. Wideband Filter Profile, Amplitude vs. fIN/fODR  
Figure 54. AC PSRR vs. Frequency, AVDD1  
5
4
18000000  
16000000  
14000000  
12000000  
10000000  
8000000  
6000000  
4000000  
2000000  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
DCLK = 32.768MHz  
AVDD2 = 5V + 100mV p-p  
3
A
D
IN  
2
OUT  
1
0
CH0  
CH4  
CH1  
CH5  
CH2  
CH6  
CH3  
CH7  
–1  
–2  
–3  
–4  
0
10  
20  
30  
40  
50  
60  
70  
80  
100  
1k  
10k  
100k  
1M  
10M  
SAMPLES  
FREQUENCY (Hz)  
Figure 58. Step Response, Wideband Filter  
Figure 55. AC PSRR vs. Frequency, AVDD2  
0.005  
0.004  
0.003  
0.002  
0.001  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
ECO  
MEDIAN  
FAST  
IOVDD = 1.8V, DCLK = 32.768MHz, CH 7  
IOVDD = 2.5V, DCLK = 32.768MHz, CH 7  
IOVDD = 1.8V, DCLK = 8.192MHz, CH 7  
IOVDD = 2.5V, DCLK = 8.192MHz, CH 7  
–0.001  
–0.002  
–0.003  
–0.004  
–0.005  
0
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50  
NORMALIZED INPUT FREQUENCY (fIN  
100  
1k  
10k  
100k  
1M  
10M  
/fODR)  
FREQUENCY (Hz)  
Figure 59. Wideband Filter Ripple  
Figure 56. AC PSRR vs. Frequency, IOVDD  
Rev. A | Page 37 of 99  
AD7768/AD7768-4  
Data Sheet  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–20  
–40  
–60  
–80  
–100  
–120  
–140  
FAST WITH PRECHARGE  
FAST, NO PRECHARGE  
MEDIAN WITH PRECHARGE  
MEDIAN, NO PRECHARGE  
ECO WITH PRECHARGE  
ECO, NO PRECHARGE  
MEASUREMENT LIMIT = 130dB  
–160  
–180  
–200  
–40  
25  
TEMPERATURE (°C)  
105  
0
1
2
3
4
5
6
NORMALIZED INPUT FREQUENCY (fIN  
/
fODR)  
Figure 60. Sinc5 Filter Profile, Amplitude vs. fIN/fODR  
Figure 63. Reference Input Current vs. Temperature, Reference Precharge  
Buffers On/Off  
5
4
18000000  
16000000  
14000000  
12000000  
10000000  
8000000  
6000000  
4000000  
2000000  
0
AVDD1 = 5V, AVSS = 0V  
VCM_VSEL = 10  
PART TO PART DISTRIBUTION  
120  
3
100  
80  
60  
40  
20  
0
A
D
IN  
2
OUT  
1
0
–1  
–2  
–3  
–4  
0
5
10  
15  
20  
25  
30  
2.42  
2.43  
2.44  
2.45  
(V)  
2.46  
2.47  
SAMPLES  
V
CM  
Figure 61. Step Response, Sinc5 Filter  
Figure 64. VCM Output Voltage Distribution  
60  
50  
40  
35  
30  
25  
20  
15  
10  
5
DIFFERENTIAL COMPONENT, NO PRECHARGE (µA/V)  
COMMON-MODE COMPONENT, NO PRECHARGE (µA/V)  
FAST  
40  
30  
20  
10  
MEDIAN  
ECO  
0
–10  
–20  
–30  
–40  
TOTAL CURRENT, PRECHARGE ON (µA)  
0
40  
25  
105  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95  
110  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 62. Analog Input Current vs. Temperature, Analog Input Precharge  
Buffers On/Off  
Figure 65. Supply Current vs. Temperature, AVDD1  
Rev. A | Page 38 of 99  
 
 
Data Sheet  
AD7768/AD7768-4  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
40  
FAST, WIDEBAND FILTER  
FAST, SINC5 FILTER  
FAST  
35  
30  
25  
20  
15  
10  
5
MEDIAN  
ECO  
MEDIAN, WIDEBAND FILTER  
MEDIAN, SINC5 FILTER  
ECO, WIDEBAND FILTER  
ECO, SINC5 FILTER  
0
0
–40  
25  
105  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95  
110  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 66. Supply Current vs. Temperature, AVDD2  
Figure 68. Total Power vs. Temperature  
70  
60  
50  
40  
30  
20  
10  
0
FAST, SINC5  
FAST, WIDEBAND  
MEDIAN, SINC5  
MEDIAN, WIDEBAND  
ECO, SINC5  
ECO, WIDEBAND  
–40 –25 –10  
5
20  
35  
50  
65  
80  
95  
110  
TEMPERATURE (°C)  
Figure 67. Supply Current vs. Temperature, IOVDD  
Rev. A | Page 39 of 99  
AD7768/AD7768-4  
Data Sheet  
TERMINOLOGY  
AC Common-Mode Rejection Ratio (AC CMRR)  
AC CMRR is defined as the ratio of the power in the ADC output  
at frequency, f, to the power of a sine wave applied to the common-  
mode voltage of AINx+ and AINx− at frequency, fS.  
the second-order and third-order terms are specified separately.  
The calculation of the intermodulation distortion is as per the  
THD specification, where it is the ratio of the rms sum of the  
individual distortion products to the rms amplitude of the sum  
of the fundamentals, expressed in decibels.  
AC CMRR (dB) = 10log(Pf/PfS)  
Least Significant Bit (LSB)  
where:  
The least significant bit, or LSB, is the smallest increment that  
can be represented by a converter. For a fully differential input  
ADC with N bits of resolution, the LSB expressed in volts is as  
follows:  
Pf is the power at frequency, f, in the ADC output.  
PfS is the power at frequency, fS, in the ADC output.  
Gain Error  
The first transition (from 100 … 000 to 100 … 001) occurs at a  
level ½ LSB above nominal negative full scale (−4.0959375 V for  
the 4.096 V range). The last transition (from 011 … 110 to  
011 … 111) occurs for an analog voltage 1½ LSB below the  
nominal full scale (+4.0959375 V for the 4.096 V range). The  
gain error is the deviation of the difference between the actual  
level of the last transition and the actual level of the first  
transition from the difference between the ideal levels.  
LSB (V) = (2 × VREF)/2N  
For the AD7768/AD7768-4, VREF is the difference voltage  
between the REFx+ and REFx− pins, and N = 24.  
Offset Error  
Offset error is the difference between the ideal midscale input  
voltage (0 V) and the actual voltage producing the midscale  
output code.  
Gain Error Drift  
Power Supply Rejection Ratio (PSRR)  
Gain error drift is the gain error change due to a temperature  
change of 1°C. It is expressed in parts per million per degree  
Celsius.  
Variations in power supply affect the full-scale transition but  
not the linearity of the converter. PSRR is the maximum change  
in the full-scale transition point due to a change in the power  
supply voltage from the nominal value.  
Integral Nonlinearity (INL) Error  
INL error refers to the deviation of each individual code from a  
line drawn from negative full scale through positive full scale.  
The point used as negative full scale occurs ½ LSB before the  
first code transition. Positive full scale is defined as a level  
1½ LSB beyond the last code transition. The deviation is measured  
from the middle of each code to the true straight line.  
Signal-to-Noise Ratio (SNR)  
SNR is the ratio of the rms value of the actual input signal to  
the rms sum of all other spectral components below the Nyquist  
frequency, excluding harmonics and dc. The value for SNR is  
expressed in decibels.  
Signal-to-Noise-and-Distortion Ratio (SINAD)  
Intermodulation Distortion (IMD)  
SINAD is the ratio of the rms value of the actual input signal to  
the rms sum of all other spectral components below the Nyquist  
frequency, including harmonics but excluding dc. The value for  
SINAD is expressed in decibels.  
With inputs consisting of sine waves at two frequencies, fa and  
fb, any active device with nonlinearities creates distortion  
products at the sum and difference frequencies of mfa and nfb,  
where m, n = 0, 1, 2, 3, and so on. Intermodulation distortion  
terms are those for which neither m or n are equal to 0. For  
example, the second-order terms include (fa + fb) and (fa − fb),  
and the third-order terms include (2fa + fb), (2fa − fb), (fa +  
2fb), and (fa − 2fb).  
Spurious-Free Dynamic Range (SFDR)  
SFDR is the difference, in decibels, between the rms amplitude  
of the input signal and the peak spurious signal (excluding the  
first five harmonics).  
Total Harmonic Distortion (THD)  
The AD7768/AD7768-4 are tested using the CCIF standard,  
where two input frequencies near to each other are used. In this  
case, the second-order terms are usually distanced in frequency  
from the original sine waves, and the third-order terms are  
usually at a frequency close to the input frequencies. As a result,  
THD is the ratio of the rms sum of the first five harmonic  
components to the rms value of a full-scale input signal and  
is expressed in decibels.  
Rev. A | Page 40 of 99  
 
Data Sheet  
AD7768/AD7768-4  
THEORY OF OPERATION  
The AD7768 and AD7768-4 are 8-channel and 4-channel,  
simultaneously sampled, low noise, 24-bit ∑-Δ ADCs,  
respectively.  
CLOCKING, SAMPLING TREE, AND POWER SCALING  
The AD7768/AD7768-4 include multiple ADC cores. Each of  
these ADCs receives the same master clock signal, MCLK. The  
MCLK signal can be sourced from one of three options: a CMOS  
clock, a crystal connected between the XTAL1 and XTAL2 pins,  
or in the form of an LVDS signal. The MCLK signal received by  
Each ADC within the AD7768/AD7768-4 employs a Σ-ꢀ modula-  
tor whose clock runs at a frequency of fMOD. The modulator  
samples the inputs at a rate of 2 × fMOD to convert the analog  
input into an equivalent digital representation. These samples  
therefore represent a quantized version of the analog input signal.  
the AD7768/AD7768-4 defines the modulator clock rate, fMOD  
and, in turn, the sampling frequency of the modulator of 2 ×  
MOD. The same MCLK signal is also used to define the digital  
,
f
The Σ-ꢀ conversion technique is an oversampled architecture.  
This oversampled approach spreads the quantization noise over  
a wide frequency band (see Figure 69). To reduce the quantization  
noise in the signal band, the high order modulator shapes the noise  
spectrum so that most of the noise energy is shifted out of the  
band of interest (see Figure 70). The digital filter that follows the  
modulator removes the large out of band quantization noise  
(see Figure 71).  
output clock, DCLK. The fMOD and DCLK internal signals are  
synchronous with MCLK.  
Figure 72 illustrates the clock tree from the MCLK input to the  
modulator, the digital filter, and the DCLK output. There are  
divider settings for MCLK and DCLK. These dividers in  
conjunction with the power mode and digital filter decimation  
settings are key to AD7768/AD7768-4 operation.  
For further information on the basics as well as more advanced  
concepts of Σ-ꢀ ADCs, see the MT-022 Tutorial and the  
MT-023 Tutorial.  
The AD7768/AD7768-4 have the ability to scale power consump-  
tion vs. the input bandwidth or noise desired. The user controls  
two parameters to achieve this: MCLK division and power mode.  
Combined, these two settings determine the clock frequency of  
the modulator (fMOD) and the bias current supplied to each  
modulator. The power mode (fast, median, or eco) sets the noise,  
speed capability, and current consumption of the modulator. It  
is the dominant control for scaling the power consumption of  
the ADC. All settings of MCLK division and power mode apply  
to all ADC channels.  
Digital filtering has certain advantages over analog filtering.  
First, it is insensitive to component tolerances and the variation  
of component parameters over time and temperature. Because  
digital filtering on the AD7768/AD7768-4 occurs after the analog  
to digital conversion, it can remove some of the noise injected  
during the conversion process; analog filtering cannot remove  
noise injected during conversion. Second, the digital filter com-  
bines low pass-band ripple with a steep roll-off, and high stop  
band attenuation, while also maintaining a linear phase response,  
which is difficult to achieve in an analog filter implementation.  
DCLK_DIV  
00: DCLK = MCLK/8  
01: DCLK = MCLK/4  
10: DCLK = MCLK/2  
11: DCLK = MCLK/1  
MCLK_DIV  
MCLK/4  
MCLK/8  
MCLK/32  
QUANTIZATION NOISE  
DCLK  
DIGITAL  
FILTER  
DATA  
INTERFACE  
CONTROL  
ADC  
MODULATOR  
fMOD/2  
DRDY  
BAND OF INTEREST  
DOUTx  
Figure 69. Σ-Δ ADC Quantization Noise (Linear Scale X-Axis)  
POWER MODES:  
FAST  
MEDIAN  
ECO  
DECIMATION RATES = x32, x64,  
x128, x256, x512, x1024  
NOISE SHAPING  
Figure 72. Sampling Structure, Defined by MCLK, DCLK_DIV, and MCLK_DIV  
Settings  
fMOD/2  
BAND OF INTEREST  
The modulator clock frequency (fMOD) is determined by selecting  
one of three clock divider settings: MCLK/4, MCLK/8, or  
MCLK/32.  
Figure 70. Σ-Δ ADC Noise Shaping (Linear Scale X-Axis)  
Although the MCLK division and power modes are independent  
settings, there are restrictions that must be adhered to. A valid  
range of modulator frequencies exists for each power mode.  
Table 11 describes this recommended range, which allows the  
device to achieve the best performance while minimizing power  
consumption. The AD7768/AD7768-4 specifications do not cover  
the performance and function beyond the maximum fMOD for a  
given power mode.  
DIGITAL FILTER CUTOFF FREQUENCY  
fMOD/2  
BAND OF INTEREST  
Figure 71. Σ-Δ ADC Digital Filter Cutoff Frequency (Linear Scale X-Axis)  
Rev. A | Page 41 of 99  
 
 
 
 
 
 
AD7768/AD7768-4  
Data Sheet  
For example, in fast mode, to maximize the speed of conversion  
or input bandwidth, an MCLK of 32.768 MHz is required and  
MCLK_DIV = 4 must be selected for a modulator frequency of  
8.192 MHz.  
Decimation = ×64 (digital filter setting)  
ODR = 62.5 kHz  
This configuration maximizes the available decimation rate (or  
oversampling ratio) for the bandwidth required and MCLK rate  
available. The decimation averages the noise from the modulator,  
maximizing the dynamic range.  
Table 11. Recommended fMOD Range for Each Power Mode  
Recommended fMOD (MHz) Range,  
Power Mode MCLK = 32.768 MHz  
Configuration B  
Eco  
Median  
Fast  
0.036 to 1.024  
1.024 to 4.096  
4.096 to 8.192  
To minimize power, use the following settings:  
MCLK = 16 MHz  
Median power  
Control of the settings for power mode, the modulator frequency  
and the data clock frequency differs in pin control mode vs. SPI  
control mode.  
f
MOD = MCLK/8  
Decimation = ×32 (digital filter setting)  
ODR = 62.5 kHz  
In SPI control mode, the user can program the power mode,  
MCLK divider (MCLK_DIV), and DCLK frequency using  
Register 0x04 and Register 0x07 (see Table 42 and Table 45 for  
register information for the AD7768 or Table 68 and Table 71 for  
the AD7768-4). Independent selection of the power mode and  
MCLK_DIV allows full freedom in the MCLK speed selection to  
achieve a target modulator frequency.  
This configuration reduces the clocking speed of the modulator  
and the digital filter.  
Compared to Configuration A, Configuration B saves 48 mW  
of power. The trade-off in the case of Configuration B is that the  
digital filter must run at a 2× lower decimation rate. This 2×  
reduction in decimation rate (or oversampling ratio) results in a  
3 dB reduction in the dynamic range vs. Configuration A.  
In pin control mode, the MODEx pins determine the power  
mode, modulator frequency, and DCLK frequency. The modulator  
frequency tracks the power mode. This means that fMOD is fixed  
at MCLK/32 for eco mode, MCLK/8 for median mode, and  
MCLK/4 for fast mode (see Table 20).  
Clocking Out the ADC Conversion Results (DCLK)  
The AD7768/AD7768-4 DCLK is a divided version of the  
master clock input. As shown in Figure 72, the DCLK_DIV  
setting determines the speed of the DCLK. DCLK is a  
continuous clock.  
Example of Power vs. Noise Performance Optimization  
The user can set the DCLK frequency rate to one of four  
divisions of MCLK: MCLK/1, MCLK/2, MCLK/4, and  
MCLK/8. Because there are eight channels and 32 bits of data  
per conversion, the conversion time and the setting of DCLK  
directly determine the number of data output lines that are  
required via the FORMAT0 and FORMAT1 pin settings on the  
AD7768, or the FORMAT0 pin on the AD7768-4. Thus, the  
intended minimum decimation and desired DCLK_DIV setting  
must be understood prior to choosing the setting of the  
FORMATx pins.  
Depending on the bandwidth of interest for the measurement,  
the user can choose a strategy of either lowest current consump-  
tion or highest resolution. This choice is due to an overlap in  
the coverage of each power mode. The devices offer the ability  
to balance the MCLK division ratio with the rate of decimation  
(averaging) set in the digital filter. Lower power can be achieved  
by using lower modulator clock frequencies. Conversely, the  
highest resolution can be achieved by using higher modulator  
clock frequencies and maximizing the amount of oversampling.  
As an example, consider a system constraint with a maximum  
available MCLK of 16 MHz. The system is targeting a measure-  
ment bandwidth of approximately 25 kHz with the wideband  
filter, setting the output data rate of the AD7768/AD7768-4 to  
62.5 kHz. Because of the low MCLK frequency available and  
system power budget, median power mode is used.  
NOISE PERFORMANCE AND RESOLUTION  
Table 12 and Table 13 show the noise performance for the  
wideband and sinc5 digital filters of the AD7768/AD7768-4 for  
various output data rates and power modes. The noise values  
and dynamic range specified are typical for the bipolar input  
range with an external 4.096 V reference (VREF). The rms noise is  
measured with shorted analog inputs, which are driven to  
(AVDD1 − AVSS)/2 using the on-board VCM buffer output.  
In median power mode, this 25 kHz input bandwidth can be  
achieved by setting the MCLK division and decimation ratio to  
balance, using two configurations. This flexibility is possible in  
SPI control mode only.  
The dynamic range is calculated as the ratio of the rms shorted  
input noise to the rms full-scale input signal range.  
Configuration A  
Dynamic Range (dB) = 20log10((2 × VREF/2√2)/(RMS Noise)  
To maximize the dynamic range, use the following settings:  
The LSB size with 4.096 V reference is 488 nV, and is calculated  
as follows:  
MCLK = 16 MHz  
Median power  
LSB (V) = (2 × VREF)/224  
f
MOD = MCLK/4  
Rev. A | Page 42 of 99  
 
 
AD7768/AD7768-4  
Data Sheet  
Table 12. Wideband Filter Noise: Performance vs. Output Data Rate (VREF = 4.096 V)  
Output Data Rate (kSPS)  
−3 dB Bandwidth (kHz)  
Shorted Input Dynamic Range (dB)  
RMS Noise (µV)  
Fast Mode  
256  
128  
64  
32  
16  
8
110.8  
55.4  
27.7  
13.9  
6.9  
107.96  
111.43  
114.55  
117.58  
120.56  
123.5  
11.58  
7.77  
5.42  
3.82  
2.72  
1.94  
3.5  
Median Mode  
128  
64  
32  
16  
8
4
55.4  
27.7  
13.9  
6.9  
3.5  
1.7  
108.13  
111.62  
114.75  
117.79  
120.8  
11.36  
7.6  
5.3  
3.74  
2.64  
1.87  
123.81  
Eco Mode  
32  
16  
8
4
2
13.9  
6.9  
3.5  
1.7  
0.87  
0.43  
108.19  
111.69  
114.83  
117.26  
120.88  
123.88  
11.28  
7.54  
5.25  
3.71  
2.62  
1.85  
1
Table 13. Sinc5 Filter Noise: Performance vs. Output Data Rate (VREF = 4.096 V)  
Output Data Rate (kSPS)  
−3 dB Bandwidth (kHz)  
Shorted Input Dynamic Range (dB)  
RMS Noise (µV)  
Fast Mode  
256  
128  
64  
32  
16  
8
52.224  
26.112  
13.056  
6.528  
3.264  
1.632  
111.36  
114.55  
117.61  
120.61  
123.52  
126.39  
7.83  
5.43  
3.82  
2.71  
1.93  
1.39  
Median Mode  
128  
64  
32  
16  
8
4
26.112  
13.056  
6.528  
3.264  
1.632  
0.816  
111.53  
114.75  
117.81  
120.82  
123.82  
126.79  
7.68  
5.3  
3.72  
2.64  
1.87  
1.33  
Eco Mode  
32  
16  
8
4
2
6.528  
3.264  
1.632  
0.816  
0.408  
0.204  
111.57  
114.82  
117.88  
120.9  
123.91  
126.89  
7.65  
5.26  
3.7  
2.61  
1.85  
1.31  
1
Rev. A | Page 43 of 99  
 
 
AD7768/AD7768-4  
Data Sheet  
APPLICATIONS INFORMATION  
The AD7768/AD7768-4 offer users a multichannel platform  
measurement solution for ac and dc signal processing.  
Wideband, low ripple, digital filter for ac measurement.  
Fast sinc5 filter for precision low frequency measurement.  
Two channel modes, defined by the user selected filter choice,  
and decimation ratios, can be defined for use on different  
ADC channels. This enables optimization of the input  
bandwidth versus the signal of interest.  
Option of SPI or pin strapped control and configuration.  
Offset, gain, and phase calibration registers per channel.  
Common-mode voltage output buffer for use by driver  
amplifier.  
Flexible filtering allows the AD7768/AD7768-4 to be config-  
ured to simultaneously sample ac and dc signals on a per channel  
basis. Power scaling allows users to trade off the input bandwidth  
of the measurement vs. the current consumption. This ability,  
coupled with the flexibility of the digital filtering, allows the  
user to optimize the energy efficiency of the measurement,  
while still meeting power, bandwidth, and performance targets.  
Key capabilities that allow users to choose the AD7768/AD7768-4  
as their platform high resolution ADC are highlighted as follows:  
On-board AVDD2 and IOVDD LDOs for the low power,  
1.8 V, internal circuitry.  
Eight fully differential or pseudo differential analog inputs  
on the AD7768 (four channels on the AD7768-4).  
Fast throughput simultaneous sampling ADCs catering for  
input signals up to 110.8 kHz.  
Three selectable power modes (fast, median, and eco) for  
scaling the current consumption and input bandwidth of  
the ADC for optimal measurement efficiency.  
Analog input precharge and reference precharge buffers  
reduce the drive requirements of external amplifiers.  
Control of reference and analog input precharge buffers on a  
per channel basis.  
Refer to Figure 73 and Table 14 for the typical connections  
and minimum requirements to get started using the  
AD7768/AD7768-4.  
Table 15 shows the typical power and performance of the  
AD7768/AD7768-4 for the available power modes, for each  
filter type.  
AVDD1A,  
AVDD1B  
AVDD2A,  
AVDD2B  
IOVDD  
SUGGESTED OP AMPS:  
FAST MODE: ADA4896-2 OR ADA4807-2  
MEDIAN MODE: ADA4940-2 OR ADA4807-2  
ECO MODE: ADA4805-2  
REGCAPA,  
REGCAPB  
DREGCAP  
SYNC_IN  
SYNC_OUT  
START  
VCM  
AD7768/AD7768-4  
5V  
RESET  
FORMATx  
DRDY  
DCLK  
DOUT0  
DOUT1  
DOUT2  
DOUT3  
DOUT4*  
DOUT5*  
AIN0+  
ADC  
DATA  
ADA4940-1/  
ADA4940-2  
AIN0–  
SERIAL  
INTERFACE  
SINC5  
LOW LATENCY FILTER  
SPI  
CONTROL  
INTERFACE  
AIN7+*  
AIN7–*  
24-BIT  
Σ-Δ  
ADC  
DOUT6*, DIN  
DOUT7*  
WIDEBAND  
LOW RIPPLE FILTER  
PRECHARGE  
BUFFERS  
ST0/CS  
ST1*/SCLK  
DEC0/SDO  
DEC1/SDI  
FILTER/GPIO4  
AVSS  
REFx–  
REFx+  
XTAL1  
XTAL2/MCLK  
PIN/SPI  
MODE3/GPIO3  
TO  
V
IN  
MODE0/GPIO0  
V
V
OUT  
+
IN  
ADR4540  
ADA4841-1  
*THESE PINS EXIST ONLY ON THE AD7768.  
Figure 73. Typical Connection Diagram  
Rev. A | Page 44 of 99  
 
 
Data Sheet  
AD7768/AD7768-4  
Table 14. Requirements to Operate the AD7768/AD7768-4  
Requirement  
Description  
Power Supplies  
External Reference  
External Driver Amplifiers  
External Clock  
5 V AVDD1 supply, 2.25 V to 5 V AVDD2 supply, 1.8 V or 2.5 V to 3.3 V IOVDD supply (ADP7104/ADP7118)  
2.5 V, 4.096 V, or 5 V (ADR4525, ADR4540, or ADR4550)  
The ADA4896-2, the ADA4940-1/ADA4940-2, the ADA4805-2, and the ADA4807-2  
Crystal or a CMOS/LVDS clock for the ADC modulator sampling  
FPGA or DSP  
Input/output voltage of 2.5 V to 3.6 V, or 1.8 V (see the 1.8 V IOVDD Operation section)  
Table 15. Speed, Dynamic Range, THD, and Power Overview; Eight Channels Active, Decimate by 321  
Sinc5 Filter  
Bandwidth Power Dissipation Dynamic  
Range (dB) (kHz)  
Wideband Filter  
Output  
Data Rate THD  
(kSPS)  
Power  
Mode  
Dynamic  
Bandwidth  
(kHz)  
Power Dissipation  
(mW per channel)  
(dB)  
(mW per channel)  
Range (dB)  
108  
Fast  
256  
Median 128  
Eco 32  
−115  
−120  
−120  
111  
111  
111  
52.224  
26.112  
6.528  
41  
22  
8.5  
110.8  
55.4  
13.9  
52  
28  
9.5  
108  
108  
1 Analog precharge buffers on, reference precharge buffers and VCM disabled, typical values, AVDD1 = 5 V, AVDD2 = IOVDD = 2.5 V, VREF = 4.096 V, MCLK = 32.768 MHz,  
DCLK = MCLK/4, TA = 25°C.  
IOVDD powers the internal 1.8 V digital LDO regulator. This  
regulator powers the digital logic of the ADC. IOVDD also sets  
the voltage levels for the SPI interface of the ADC. IOVDD is  
referenced to DGND, and the voltage on IOVDD can vary from  
2.25 V (minimum) to 3.6 V (maximum), with respect to DGND.  
IOVDD can also be configured to run at 1.8 V. In this case, IOVDD  
and DREGCAP must be tied together and must be within the  
range of 1.72 V (minimum) to 1.88 V (maximum), with respect  
to DGND. See the 1.8 V IOVDD Operation section for more  
information on operating the AD7768/AD7768-4 at 1.8 V  
IOVDD.  
POWER SUPPLIES  
The AD7768/AD7768-4 have three independent power  
supplies: AVDD1 (AVDD1A and AVDD2A), AVDD2  
(AVDD2A and AVDD2B), and IOVDD.  
The reference potentials for these supplies are AVSS and DGND.  
Tie all the AVSS supply pins (AVSS1A, AVSS1B, AVSS2A,  
AVSS2B, and AVSS) to the same potential with respect to  
DGND. AVDD1A, AVDD1B, AVDD2A, and AVDD2B are  
referenced to this AVSS rail. IOVDD is referenced to DGND.  
The supplies can be powered within the following ranges:  
Recommended Power Supply Configuration  
AVDD1 = 5 V 10%, relative to AVSS  
AVDD2 = 2 V to 5.5 V, relative to AVSS  
IOVDD (with internal regulator) = 2.25 V to 3.6 V, relative  
to DGND  
Analog Devices, Inc., has a wide range of power management  
products to meet the requirements of most high performance  
signal chains.  
IOVDD (bypassing regulator) = 1.72 V to 1.88 V, relative to  
DGND  
AVSS = −2.75 V to 0 V, relative to DGND  
An example of a power solution that uses the ADP7118 is shown  
in Figure 74. The ADP7118 provides positive supply rails for  
optimal converter performance, creating either a single 5 V,  
3.3 V, or dual AVDD1x and AVDD2x/IOVDD, depending on  
the required supply configuration. The ADP7118 can operate  
from input voltages of up to 20 V.  
The AVDD1A and AVDD1B (AVDD1) supplies power the analog  
front end, reference input, and common-mode output circuitry.  
AVDD1 is referenced to AVSS, and all AVDD1 supplies must be  
tied to the same potential with respect to AVSS. If AVDD1 supplies  
are used in a 2.5 V split supply configuration, the ADC inputs are  
truly bipolar. When using split supplies, reference the absolute  
maximum ratings, which apply to the voltage allowed between  
AVSS and IOVDD supplies.  
ADP7118  
12V  
5V: AVDD1x  
LDO  
INPUT  
ADP7118  
LDO  
3.3V: AVDD2x/IOVDD  
Figure 74. Power Supply Configuration  
Alternatively, the ADP7112 or ADP7104 can be selected for  
powering the AD7768/AD7768-4. Refer to the AN-1120  
Application Note for more information regarding low noise  
LDO performance and power supply filtering.  
The AVDD2A and AVDD2B (AVDD2) supplies connect to  
internal 1.8 V analog LDO regulators. The regulators power the  
ADC core. AVDD2 is referenced to AVSS, and all AVDD2 supplies  
must be tied to the same potential with respect to AVSS. The  
voltage on AVDD2 can range from 2 V (minimum) to 5.5 V  
(maximum), with respect to AVSS.  
Rev. A | Page 45 of 99  
 
 
 
 
AD7768/AD7768-4  
Data Sheet  
1.8 V IOVDD Operation  
DEVICE CONFIGURATION  
The AD7768/AD7768-4 contain an internal 1.8 V LDO on the  
IOVDD supply to regulate the IOVDD down to the operating  
voltage of the digital core. This internal LDO allows the internal  
logic to operate efficiently at 1.8 V and the input/output logic to  
operate at the level set by IOVDD. The IOVDD supply is rated  
from 2.25 V to 3.6 V for normal operation, and 1.8 V for LDO  
bypass setup.  
The AD7768/AD7768-4 have independent paths for reading  
data from the ADC conversions and for controlling the device  
functionality.  
For control, the device can be configured in either of two  
modes. The two modes of configuration are  
Pin control mode: pin strapped digital logic inputs (which  
allows a subset of the configurability options)  
SPI control mode: over a 3-wire or 4-wire SPI interface  
(complete configurability)  
38  
SYNC_OUT  
37  
START  
1.8V IOVDD  
SUPPLY  
36  
SYNC_IN  
PIN  
On power-up, the state of the  
/SPI pin determines the mode  
35  
IOVDD  
34  
used. Immediately after power-up, the user must apply a soft or  
hard reset to the device when using either control mode.  
DREGCAP  
33  
DGND  
28 29 30 31 32  
Interface Data Format  
When operating the device, the data format of the serial inter-  
face is determined by the FORMAT0 and FORMAT1 pin settings  
on the AD7768, or the FORMAT0 pin on the AD7768-4. Table 31  
shows that each ADC can be assigned a DOUTx pin, or,  
alternatively, the data can be arranged to share the DOUTx pins in  
a time division multiplexed manner. For more details, see the  
Data Interface section.  
Figure 75. DREGCAP and IOVDD Connection Diagram for 1.8 V IOVDD  
Operation  
Users can bypass the LDO by shorting the DREGCAP pin to  
IOVDD (see Figure 75), which pulls the internal LDO out of  
regulation and sets the internal core voltage and input/output  
logic levels to the IOVDD level. When bypassing the internal  
LDO, the maximum operating voltage of the IOVDD supply is  
equal to the maximum operating voltage of the internal digital core,  
which is 1.72 V to 1.88 V.  
PIN CONTROL  
Pin control mode eliminates the need for an SPI communication  
interface. When a single known configuration is required by the  
user, or when only limited reconfiguration is required, the number  
of signals that require routing to the digital host can be reduced  
using this mode. Pin control mode is useful in digitally isolated  
applications where minimal adjustment of the configuration is  
needed. Pin control offers a subset of the core functionality and  
ensures a known state of operation after power-up, reset, or a  
fault condition on the power supply. In pin control mode, the  
analog input precharge buffers are enabled by default for best  
performance. The reference input precharge buffers are disabled  
in pin control mode.  
There are a number of performance differences to consider when  
operating at 1.8 V IOVDD. See the 1.8 V IOVDD Specifications  
section for detailed specifications while operating at 1.8 V IOVDD.  
Analog Supply Internal Connectivity  
The AD7768/AD7768-4 have two analog supply rails, AVDD1 and  
AVDD2, which are both referred to AVSS. These supplies are  
completely separate from the digital pins IOVDD, DREGCAP, and  
DGND. To achieve optimal performance and isolation of the  
ADCs, more than one device pin supplies these analog rails to the  
internal ADCs.  
After any change to the configuration in pin control mode, the  
user must provide a sync signal to the AD7768/AD7768-4 by  
START  
SYNC_IN  
applying the appropriate pulse to the  
pin or  
pin  
AVSS1A (Pin 3) and AVSS2A (Pin 62) are internally  
connected.  
to ensure that the configuration changes are applied correctly to  
the ADC and digital filters.  
AVSS (Pin 54) is connected to the substrate, and is connected  
internally to AVSS1B (Pin 46) and AVSS2B (Pin 51).  
The following supply and reference input pins are separate  
on chip: AVDD1A, AVDD1B, AVDD2A, AVDD2B,  
REF1+, REF1−, REF2+, and REF2−.  
On the AD7768-4, the following AVSS pins are separate on  
chip: Pin 7, Pin 8, Pin 9, Pin 10, Pin 39, Pin 40, Pin 41, and  
Pin 42.  
Setting the Filter  
The filter function chooses between the two filter settings. In  
pin control mode, all ADC channels use the same filter type,  
which is selected by the FILTER pin, as shown in Table 16.  
Table 16. FILTER Control Pin  
Logic Level  
Function  
1
0
Sinc5 filter selected  
Wideband filter selected  
The details of which individual supplies are shorted internally are  
given in this section for information purposes. In general,  
connect the supplies as described in the Power Supplies section.  
Rev. A | Page 46 of 99  
 
 
 
 
 
Data Sheet  
AD7768/AD7768-4  
The MODEx pins map to 16 distinct settings. The settings are  
selected to optimize the use cases of the AD7768/AD7768-4,  
allowing the user to reduce the DCLK frequency for lower, less  
demanding power modes and selecting either the one-shot or  
standard conversion modes.  
Setting the Decimation Rate  
Pin control mode allows selection from four possible decimation  
rates. The decimation rate is selected via the DEC1 and DEC0 pins.  
The chosen decimation rate is used on all ADC channels. Table 17  
shows the truth table for the DECx pins.  
See Table 20 for the complete selection of operating modes that  
are available via the MODEx pins in pin control mode.  
Table 17. Decimation Rate Control Pins Truth Table  
DEC1  
DEC0  
Decimation Rate  
The power mode setting automatically scales the bias currents  
of the ADC and divides the applied MCLK signal to the correct  
setting for that mode. Note that this is not the same as using SPI  
control, where separate bit fields exist to control the bias currents  
of the ADC and MCLK division.  
0
0
1
1
0
1
0
1
×32  
×64  
×128  
×1024  
Operating Mode  
In pin control mode, the modulator rate is fixed for each power  
mode to achieve the best performance. Table 19 shows the  
modulator division for each power mode.  
The MODE3 to MODE0 pins determine the configuration of all  
channels when using pin control mode. The variables controlled by  
the MODEx pins are shown in Table 18. The user selects how  
much current the device consumes, the sampling speed of the  
ADC (power mode), how fast the ADC result is received by the  
digital host (DCLK_DIV), and how the ADC conversion is  
initiated (conversion operation). Figure 76 illustrates the inputs  
used to configure the AD7768 in pin control mode, and Figure 77  
illustrates the inputs used to configure the AD7768-4 in pin  
control mode.  
Table 19. Modulator Rate, Pin Control Mode  
Power Mode  
Modulator Rate, fMOD  
Fast  
MCLK/4  
Median  
Eco  
MCLK/8  
MCLK/32  
Diagnostics  
Pin control mode offers a subset of diagnostics features. Internal  
errors are reported in the status header output with the data  
conversion results for each channel.  
Table 18. MODEx Pins: Variables for Control  
Control Variable  
Possible Settings  
Sampling Speed/Power Consumption  
Power Mode  
Fast  
Internal CRC errors, memory map flipped bits, and external  
clocks not detected are reported by Bit 7 of the status header  
and indicate that a reset is required. The status header also  
reports filter not settled, filter type, and filter saturated signals.  
Users can determine when to ignore data by monitoring these  
error flags. For more information on the status header, see the  
ADC Conversion Output: Header and Data section.  
Median  
Eco  
Data Clock Output Frequency (DCLK_DIV) DCLK = MCLK/1  
DCLK = MCLK/2  
DCLK = MCLK/4  
DCLK = MCLK/8  
Conversion Operation  
Standard conversion  
One-shot conversion  
PIN CONTROL MODE  
PIN/SPI = LOW  
CHANNEL STANDBY  
CH 0 TO CH 3 STANDBY  
CH 4 TO CH 7 STANDBY  
OUTPUT DATA FORMAT  
1 CHANNEL PER PIN  
4 CHANNELS PER PIN  
8 CHANNELS PER PIN  
PIN/SPI  
ST0  
ST1  
FORMAT0  
FORMAT1  
DOUT0  
DOUT1  
TO DSP/  
FPGA  
AD7768  
OPTION TO  
SELECT  
BETWEEN FILTERS  
FILTER  
DOUT7  
MODE0  
MODE1  
MODE2  
MODE3  
DEC0/  
DEC1  
DECIMATION RATES  
MODE CONFIGURATION  
MODE 0x0 TO MODE 0xF  
SET UP VIA 4 PINS  
/32  
/64  
/128  
/1024  
Figure 76. AD7768 Pin Configurable Functions  
Rev. A | Page 47 of 99  
 
 
 
 
 
AD7768/AD7768-4  
Data Sheet  
PIN CONTROL MODE  
PIN/SPI = LOW  
CHANNEL STANDBY  
CH 0 TO CH 3 STANDBY  
OUTPUT DATA FORMAT  
1 CHANNEL PER PIN  
4 CHANNELS PER PIN  
PIN/SPI  
ST0  
FORMAT0  
DOUT0  
DOUT1  
DOUT2  
DOUT3  
TO DSP/  
FPGA  
AD7768-4  
OPTION TO  
SELECT  
BETWEEN FILTERS  
FILTER  
MODE0  
MODE1  
MODE2  
MODE3  
DEC0/  
DEC1  
DECIMATION RATES  
MODE CONFIGURATION  
MODE 0x0 TO MODE 0xF  
SET UP VIA 4 PINS  
/32  
/64  
/128  
/1024  
Figure 77. AD7768-4 Pin Configurable Functions  
Table 20. MODEx Selection Details: Pin Control Mode  
Mode Hex. MODE3  
MODE2  
MODE1  
MODE0  
Power Mode  
Eco  
Eco  
Eco  
Eco  
DCLK Frequency  
MCLK/1  
MCLK/2  
MCLK/4  
MCLK/8  
MCLK/1  
MCLK/2  
MCLK/4  
MCLK/8  
MCLK/1  
MCLK/2  
MCLK/4  
MCLK/8  
MCLK/1  
MCLK/1  
MCLK/2  
MCLK/1  
Data Conversion  
0x0  
0x1  
0x2  
0x3  
0x4  
0x5  
0x6  
0x7  
0x8  
0x9  
0xA  
0xB  
0xC  
0xD  
0xE  
0xF  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Standard  
Standard  
Standard  
Standard  
Standard  
Standard  
Standard  
Standard  
Standard  
Standard  
Standard  
Standard  
One-shot  
One-shot  
One-shot  
One-shot  
Median  
Median  
Median  
Median  
Fast  
Fast  
Fast  
Fast  
Eco  
Median  
Fast  
Fast  
Thus, for this example, where MCLK = 32.768 MHz,  
Configuration Example  
In the example shown in Table 23, the lowest current consumption  
is used, and the AD7768/AD7768-4 are connected to an FPGA.  
The FORMATx pins are set such that all eight data outputs,  
DOUT0 to DOUT7, connect to the FPGA. For the lowest  
power, the lowest DCLK frequency is used. The input bandwidth  
is set through the combination of selecting decimation by 64  
and selecting the wideband filter.  
ODR = (32.768 MHz/32) ÷ 64 = 16 kHz  
Minimizing the DCLK frequency means selecting DCLK =  
MCLK/8, which results in a 4 MHz DCLK signal. The period of  
DCLK in this case is 1/4 MHz = 250 ns. The data conversion on  
each DOUTx pin is 32 bits long. The conversion data takes 32 ×  
250 ns = 8 μs to be output. All 32 bits must be output within the  
ODR period of 1/16 kHz, which is approximately 64 μs. In this  
case, the 8 μs required to read out the conversion data is well  
within the 64 μs between conversion outputs. Therefore, this  
combination, which is summarized in Table 23, is viable for use.  
ODR = fMOD ÷ Decimation Ratio  
where:  
MCLK = 32.768 MHz.  
fMOD is MCLK/32 for eco mode (see Table 19).  
Decimation Ratio = 64.  
Rev. A | Page 48 of 99  
 
 
Data Sheet  
AD7768/AD7768-4  
Channel Standby  
SPI CONTROL  
Table 21 and Table 23 show how the user can put channels into  
standby mode. Set either ST0 or ST1 to Logic 1 to place banks of  
four channels into standby mode. When in standby mode, the  
channels are disabled but still hold their position in the output  
data stream. The 8-bit header and 24-bit conversion result are  
set to all zeros when the ADC channels are set to standby.  
The AD7768/AD7768-4 have a 4-wire SPI interface that is  
compatible with QSPI™, MICROWIRE®, and DSPs. The interface  
operates in SPI Mode 0. In SPI Mode 0, SCLK idles low, the  
CS  
falling edge of  
clocks out the MSB, the falling edge of SCLK  
is the drive edge, and the rising edge of SCLK is the sample  
edge. This means that data is clocked out on the falling/drive  
edge and data is clocked in on the rising/sample edge.  
The VCM voltage output is associated with the Channel 0  
circuitry. If Channel 0 is put into standby mode, the VCM  
voltage output is also disabled for maximum power savings.  
Channel 0 must be enabled while VCM is being used externally  
to the AD7768/AD7768-4.  
DRIVE EDGE  
SAMPLE EDGE  
The crystal excitation circuitry is associated with the Channel 4  
(Channel 2 on the AD7768-4) circuitry. If Channel 4 (Channel 2  
on the AD7768-4) is put into standby mode, the crystal circuitry is  
also disabled for maximum power savings. Channel 4 must be  
enabled while the external crystal is used on the AD7768.  
Channel 2 must be enabled while the external crystal is used on  
the AD7768-4.  
Figure 78. SPI Mode 0 SCLK Edges  
Accessing the ADC Register Map  
PIN  
To use SPI control mode, set the  
/SPI pin to logic high. The  
SPI control operates as a 16-bit, 4-wire interface, allowing read  
and write access. Figure 80 shows the interface format between  
the AD7768/AD7768-4 and the digital host.  
Table 21. Truth Table for the AD7768 ST0 and ST1 Pins  
The SPI serial control interface of the AD7768 is an independent  
path for controlling and monitoring the AD7768. There is no  
direct link to the data interface. The timing of MCLK and  
DCLK is not directly related to the timing of the SPI control  
interface. However, the user must ensure that the SPI reads and  
writes satisfy the minimum t30 specification (see Table 4 and  
Table 6) so that the AD7768/AD7768-4 can detect changes to  
the register map.  
ST1  
ST0  
Function  
0
0
0
1
All channels operational.  
Channel 0 to Channel 3 in  
standby. Channel 4 to  
Channel 7 operational.  
Channel 4 to Channel 7 in  
standby. Channel 0 to  
Channel 3 operational.  
1
1
0
1
All channels in standby.  
SPI access is ignored during the period immediately after a  
reset. Allow the full ADC start-up time after reset (see Table 1)  
to elapse before accessing the AD7768/AD7768-4 over the SPI  
interface.  
Table 22. Truth Table for the AD7768-4 ST0 Pin  
ST0  
Function  
0
1
All channels operational.  
Channel 0 to Channel 3 in standby.  
Table 23. MODEx Example Selection  
Mode Hex  
MODE3  
MODE2  
MODE1 MODE0  
Power Mode  
DCLK Frequency  
Data Conversion  
0x3  
0
0
1
1
Eco  
MCLK/8  
Standard  
Rev. A | Page 49 of 99  
 
 
 
 
AD7768/AD7768-4  
Data Sheet  
SPI Interface Details  
Eco power mode with fMOD = MCLK/32.  
Interface configuration of DCLK = MCLK/8, header  
output enabled, and CRC disabled.  
Each SPI access frame is 16 bits long. The MSB (Bit 15) of the  
SDI command is the R/ bit; 1 = read and 0 = write. Bits[14:8]  
W
Filter configuration of Channel Mode A and Channel Mode B  
is set to sinc5 and decimation = ×1024.  
Channel mode select is set to 0x00, and all channels are  
assigned to Channel Mode A.  
The analog input precharge buffers are enabled and the  
reference precharge buffers are disabled on all channels.  
The offset, gain, and phase calibration are set to the zero  
position.  
of the SDI command are the address bits.  
The SPI control interface uses an off frame protocol. This means  
that the master (FPGA/DSP) communicates with the AD7768/  
AD7768-4 in two frames. The first frame sends a 16-bit instruction  
W
(R/ , address, and data) and the second frame is the response  
where the AD7768/AD7768-4 send 16 bits back to the master.  
During the master write command, the SDO output contains  
eight leading zeros, followed by eight bits of data, as shown in  
Figure 80.  
Continuous conversion mode is enabled.  
SPI CONTROL FUNCTIONALITY  
Figure 79 illustrates the off frame protocol. Register access  
SPI control offers the superset of flexibility and diagnostics to  
the user. The following sections highlight the functionality and  
diagnostics offered when SPI control is used.  
CS  
responses are always offset by one  
frame. In Figure 79, the  
response (read RESP 1) to the first command (CMD 1) is  
CS  
output by the AD7768/AD7768-4 during the following  
frame at the same time as the second command (CMD 2) is  
being sent.  
After any change to these configuration register settings, the  
user must provide a sync signal to the AD7768/AD7768-4  
through either the SPI_SYNC command, or by applying the  
SCLK  
START  
SYNC_IN  
appropriate pulse to the  
pin or  
pin to ensure  
CS  
that the configuration changes are applied correctly to the ADC  
and digital filters.  
CMD 1  
CMD 2  
SDI  
Channel Configuration  
READ RESP 1  
SDO  
The AD7768 has eight fully differential analog input channels.  
The AD7768-4 has four fully differential analog input channels.  
The channel configuration registers allow the channel to be  
individually configured to adapt to the measurement required  
on that channel. Channels can be enabled or disabled using the  
channel standby register, Register 0x00. Analog input and  
reference precharge buffers can be assigned per input terminal.  
Gain, offset, and phase calibration can be controlled on a per  
channel basis using the calibration registers. See the Per  
Channel Calibration Gain, Offset, and Sync Phase section for  
more information.  
Figure 79. Off Frame Protocol  
SPI Control Interface Error Handling  
The AD7768/AD7768-4 SPI control interface detects whether it  
has received an illegal command. An illegal command is a write  
to a read only register, a write to a register address that does not  
exist, or a read from a register address that does not exist. If any  
of these illegal commands are received by the AD7768/AD7768-4,  
the AD7768/AD7768-4 responds with an error output of 0x0E00.  
SPI Reset Configuration  
After a power-on or reset, the AD7768/AD7768-4 default  
configuration is set to the following low current consumption  
settings:  
SCLK  
CS  
SDI  
R/W A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0  
SDO  
0
0
0
0
0
0
0
0
D7 D6 D5 D4 D3 D2 D1 D0  
Figure 80. Write/Read Command  
Rev. A | Page 50 of 99  
 
 
 
Data Sheet  
AD7768/AD7768-4  
Table 25. Channel Mode Selection, Register 0x03  
Channel Modes  
Bits Bit Name  
Setting  
Description  
Channel x  
Mode A  
Reset Access  
In SPI control mode, the user can set up two channel modes,  
Channel Mode A (Register 0x01), and Channel Mode B  
(Register 0x02). Each channel mode register can have a specific  
filter type and decimation ratio. Using the channel mode select  
register (Register 0x03), the user can assign each channel to  
either Channel Mode A or Channel Mode B, which maps that  
mode to the required ADC channels. These modes allow  
different filter types and decimation rates to be selected and  
mapped to any of the ADC channels.  
[7:0] CH_x_MODE  
0x0 RW  
0
1
Mode B  
Reset over SPI Control Interface  
Two successive commands must be written to the AD7768/  
AD7768-4 data control register to initiate a full reset of the  
device over the SPI interface. This action fully resets all registers  
to the default conditions. Details of the commands and their  
sequence are shown in Table 44 for the AD7768 or Table 70 for  
the AD7768-4.  
When different decimation rates are selected on different  
channels, the AD7768/AD7768-4 output a data ready signal at  
the fastest selected decimation rate. Any channel that runs at a  
lower output data rate is updated only at that slower rate. In  
between valid result data, the data for that channel is set to zero  
and the repeated data bit is set in the header status bits to  
distinguish it from a real conversion result (see the ADC  
Conversion Output: Header and Data section).  
After a reset over the SPI control interface, the AD7768/AD7768-4  
respond to the first command sent to them with 0x0E00. This  
response, in addition to the fact that all registers have assumed  
their default values, indicates that the software reset succeeded.  
Sleep Mode  
On the AD7768, consider Channel Mode A as the primary  
group. In this respect, it is recommended that there always be at  
least one channel assigned to Channel Mode A. If all eight  
channels of the AD7768 are assigned to Channel Mode B,  
conversion data is not output on the data interface for any of the  
channels. This consideration does not affect the AD7768-4.  
Sleep mode puts the AD7768/AD7768-4 into their lowest power  
mode. In sleep mode, all ADCs are disabled and a large portion  
of the digital core is inactive.  
The AD7768/AD7768-4 SPI remains active and is available to  
the user when in sleep mode. Write to Register 0x04, Bit 7 to  
exit sleep mode. For the lowest power consumption, select the  
sinc5 filter before entering sleep mode.  
On the AD7768-4, it is recommended that Channel Mode A be  
set to the sinc5 filter whenever possible. There is a small power  
saving in IOVDD current when Channel Mode A is set to the  
sinc5 filter compared to setting Channel Mode A to the wideband  
filter.  
Channel Standby  
For efficient power usage, users can place the selected channels  
into standby mode, effectively disabling them, when not in use.  
Setting the bits in Register 0x00 disables the corresponding channel  
(see Table 38 for the AD7768 or Table 64 for the AD7768-4). For  
maximum power savings, switch disabled channels to the sinc5  
filter using the channel mode configurations, which disables  
some clocks associated with the wideband filters of those  
channels.  
For example, to assign two channels of the AD7768-4 to the  
wideband filter, and the remaining two channels to the sinc5  
filter, it is recommended to assign the two sinc5 filter channels  
to Channel Mode A. Set Channel Mode A to the sinc5 filter, set  
Channel Mode B to the wideband filter, and assign the two  
wideband filter channels to Channel Mode B. Similarly, to  
assign all four channels of the AD7768-4 to wideband filter,  
assign all four channels to Channel Mode B. Set Channel Mode  
B to the wideband filter, and keep Channel Mode A set to the  
sinc5 filter. Assigning the channels in this way ensures that the  
lowest IOVDD current is achieved.  
For highest power savings when disabling channels on the  
AD7768-4, set Channel Mode A to the sinc5 filter, and assign  
the disabled channels to Channel Mode A, while keeping any  
active channels in Channel Mode B.  
The VCM voltage output is associated with the Channel 0  
circuitry. If Channel 0 is put into standby mode, the VCM  
voltage output is also disabled for maximum power savings.  
Channel 0 must be enabled while VCM is being used externally  
to the AD7768/AD7768-4.  
Table 24. Channel Mode A/Channel Mode B, Register 0x01  
and Register 0x02  
Bits Bit Name  
Setting Description  
Reset Access  
3
FILTER_TYPE_x  
Filter output  
0x1  
RW  
The crystal excitation circuitry is associated with the Channel 4  
(Channel 2 on the AD7768-4) circuitry. If Channel 4 (Channel 2  
on the AD7768-4) is put into standby mode, the crystal circuitry is  
also disabled for maximum power savings. Channel 4 must be  
enabled while the external crystal is used on the AD7768.  
Channel 2 must be enabled while the external crystal is used on  
the AD7768-4.  
0
1
Wideband filter  
Sinc5 filter  
[2:0] DEC_RATE_x  
Decimation rate 0x5  
×32 to ×1024  
RW  
000 to  
101  
Rev. A | Page 51 of 99  
 
AD7768/AD7768-4  
Data Sheet  
Clocking Selections  
where MCLK DCLK.  
The internal modulator frequency (fMOD) that is used by each of  
the ADCs in the AD7768/AD7768-4 is derived from the  
externally applied MCLK signal. The MCLK division bits allow  
the user to control the ratio between the MCLK frequency and  
the internal modulator clock frequency. This control allows the  
user to select the division ratio that is best for their configuration.  
With eight ADCs enabled, an MCLK rate of 32.768 MHz, an ODR  
of 256 kSPS, and two DOUTx channels, DCLK (minimum) is  
256 kSPS × 4 channels per DOUTx × 32 bits = 32.768 MHz  
where DCLK = MCLK/1.  
For more information on the status header, CRC, and interface  
configuration, see the Data Interface section.  
The appropriate clock configuration depends on the power  
mode, the decimation rate, and the base MCLK frequency  
available in the system. See the Clocking, Sampling Tree section  
for further information on setting MCLK_DIV correctly.  
CRC Protection  
The AD7768/AD7768-4 can be configured to output a CRC  
message per channel every 4 or 16 samples. This function is  
available only with SPI control. CRC is enabled in the interface  
control register, Register 0x07 (see the CRC Check on Data  
Interface section).  
MCLK Source Selection  
The following clocking options are available as the MCLK input  
source in SPI control mode:  
ADC Synchronization over SPI  
LVDS  
External crystal  
CMOS input MCLK  
The ADC synchronization over SPI allows the user to request a  
synchronization pulse to the ADCs over the SPI interface. To  
initiate the synchronization in this manner, write to Bit 7 in  
Register 0x06 twice.  
Setting CLK_SEL to logic low configures the AD7768/AD7768-4  
for correct operation using a CMOS clock. Setting CLK_SEL to  
logic high enables the use of an external crystal.  
SYNC_OUT  
logic high again.  
First, the user must write a 0, which sets  
low, and  
SYNC_OUT  
then write a 1 to set the  
If CLK_SEL is set to logic high and Bit 3 of Register 0x04 is also  
set, the application of an LVDS clock signal to the MCLK pin is  
enabled. LVDS clocking is exclusive to SPI control mode and  
requires the register selection for operation (see Table 42 for the  
AD7768 or Table 68 for the AD7768-4).  
The SPI_SYNC command is recognized after the last rising edge of  
SCLK in the SPI instruction, where the SPI_SYNC bit is changed  
from low to high. The SPI_SYNC command is then output synchro-  
nously to the AD7768/AD7768-4 MCLK signal on the  
SYNC_OUT  
SYNC_OUT  
pin. The user must connect the  
pin on the PCB.  
IOVDD  
signal  
The DCLK rate is derived from MCLK. DCLK division (the  
ratio between MCLK and DCLK) is controlled in the interface  
configuration selection register, Register 0x07 (see Table 45 for  
the AD7768 or Table 71 for the AD7768-4).  
SYNC_IN  
to the  
AD7768/  
AD7768-4  
START  
Interface Configuration  
SYNC_OUT  
MCLK  
SYNCHRONIZATION  
LOGIC  
MASTER  
CLOCK  
The data interface is a master output interface, where ADC  
conversion results are output by the AD7768/AD7768-4 at a  
rate based on the mode selected. The interface consists of a data  
DIGITAL FILTER  
DRDY  
DOUTx  
SPI INTERFACE  
SYNC_IN  
DRDY  
clock (DCLK), the data ready (  
) framing output, and the  
data output pins (DOUT0 to DOUT7 for the AD7768, DOUT0  
to DOUT3 for the AD7768-4).  
DSP/  
FPGA  
On the AD7768, the interface can be configured to output  
conversion data on one, two, or eight of the DOUTx pins. The  
DOUTx configuration for the AD7768 is selected using the  
FORMATx pins (see Table 31).  
Figure 81. Connection Diagram for Synchronization Using SPI_SYNC  
SYNC_OUT  
SYNC_IN  
pins of  
The  
pin can also be routed to the  
other AD7768/AD7768-4 devices, allowing simultaneous  
sampling to occur across larger channel count systems. Any  
daisy-chained system of AD7768/AD7768-4 devices requires that  
all ADCs be synchronized.  
On the AD7768-4, the interface can be configured to output  
conversion data on one or four of the DOUTx pins. The  
DOUTx configuration for the AD7768-4 is selected using  
the FORMAT0 pin (see Table 32).  
In a daisy-chained system of AD7768/AD7768-4 devices, two  
successive synchronization pulses must be applied to guarantee  
that all ADCs are synchronized. Two synchronization pulses are  
also required in a system of more than one AD7768/AD7768-4  
The DCLK rate is a direct division of the MCLK input and can  
be controlled using Bits[1:0] of Register 0x07. The minimum  
DCLK rate can be calculated as  
DRDY  
device sharing a single MCLK signal, where the  
only one device is used to detect new data.  
pin of  
DCLK (minimum) = Output Data Rate × Channels per  
DOUTx × 32 bits  
Rev. A | Page 52 of 99  
Data Sheet  
AD7768/AD7768-4  
SYNC_IN  
As per any synchronization pulse present on the  
pin,  
SPI CONTROL MODE EXTRA DIAGNOSTIC  
the digital filters of the AD7768/AD7768-4 are reset by the  
SPI_SYNC command. The full settling time of the filters must  
then elapse before valid data is output on the data interface.  
FEATURES  
RAM Built In Self Test  
The RAM built in self test (BIST) is a coefficient check for the  
digital filters. The AD7768/AD7768-4 DSP path uses some  
internal memories for storing data associated with filtering and  
calibration. A user may, if desired, initiate a built in self test (BIST)  
of these memories. Normal conversions are not possible while  
BIST is running. The test is started by writing to the BIST control  
register, Register 0x08. The results and status of the test are  
available in the status register, Register 0x09 (see Table 47 for the  
AD7768 or Table 73 for the AD7768-4).  
Analog Input Precharge Buffers  
The AD7768/AD7768-4 contain precharge buffers on each  
analog input to ease the drive requirements on the external  
amplifier. Each analog input precharge buffer can be enabled or  
disabled using the analog input precharge buffer registers (see  
Table 52 and Table 53 for the AD7768 or Table 78 and Table 79  
for the AD7768-4).  
Reference Precharge Buffers  
Normal ADC conversion is disrupted when this test is run. A  
synchronization pulse is required after this test is complete to  
resume normal ADC operation.  
The AD7768/AD7768-4 contain reference precharge buffers on  
each reference input to ease the drive requirements on the  
external reference and help to settle any nonlinearity on the  
reference inputs. Each reference precharge buffer can be  
enabled or disabled using the reference precharge buffer  
registers (see Table 54 and Table 55 for the AD7768 or Table 80  
and Table 81 for the AD7768-4).  
Revision Identification Number  
The AD7768/AD7768-4 contain an identification register that  
can be accessed in SPI control mode, the revision identification  
register. This register is an excellent way to verify the correct  
operation of the serial control interface. Register information is  
available in the Revision Identification Register section.  
Per Channel Calibration Gain, Offset, and Sync Phase  
The user can adjust the gain, offset, and sync phase of the  
AD7768/AD7768-4. These options are available only in SPI  
control mode. Further register information and calibration  
instructions are available in the Offset Registers section, the Gain  
Registers section, and the Sync Phase Offset Registers section.  
See the Calibration section for information on calibration  
equations.  
Diagnostic Meter Mode  
The diagnostic metering mode can be used to verify the  
functionality of each ADC by internally passing a positive full-  
scale, midscale, or negative full-scale voltage to the ADC. The  
user can then read the resulting ADC conversion result to  
determine that the ADC is operating correctly. To configure  
ADC conversion diagnostics, see the ADC Diagnostic Receive  
Select Register section and the ADC Diagnostic Control Register  
section.  
GPIOs  
The AD7768/AD7768-4 have five general-purpose input/output  
(GPIO) pins available when operating in SPI control mode. For  
further information on GPIO configuration, see the GPIO  
Functionality section.  
Rev. A | Page 53 of 99  
 
 
AD7768/AD7768-4  
Data Sheet  
CIRCUIT INFORMATION  
Table 11 shows the recommended fMOD frequencies for each  
CORE SIGNAL CHAIN  
power mode, and Table 42 shows the register information for  
the AD7768, and Table 68 shows the register information for  
the AD7768-4.  
Each ADC channel on the AD7768/AD7768-4 has an identical  
signal path from the analog input pins to the data interface.  
Figure 83 shows a top level implementation of the core signal  
chain. Each ADC channel has its own Σ-Δ modulator that  
oversamples the analog input and passes the digital representation  
to the digital filter block. The modulator sampling frequency  
(fMOD) ranges are explained in the Clocking, Sampling Tree, and  
Power Scaling section. The data is filtered, scaled for gain and  
offset (depending on user settings), and then output on the data  
interface. Control of the flexible settings for the signal chain is  
provided by either using the pin control or the SPI control set at  
011 ... 111  
011 ... 110  
011 ... 101  
PIN  
power-up by the state of the  
/SPI input pin.  
100 ... 010  
100 ... 001  
100 ... 000  
The AD7768/AD7768-4 can use up to a 5 V reference and  
converts the differential voltage between the analog inputs (AINx+  
and AINx−) into a digital output. The analog inputs can be  
configured as either differential or pseudo differential inputs. As a  
pseudo differential input, either AINx+ or AINx− can be  
connected to a constant input voltage (such as 0 V, GND, AVSS,  
or some other reference voltage). The ADC converts the voltage  
difference between the analog input pins into a digital code on  
the output. Using a common-mode voltage of AVDD1/2 for the  
analog inputs, AINx+ and AINx−, maximizes the ADC input  
range. The 24-bit conversion result is in twos complement, MSB  
first, format. Figure 82 shows the ideal transfer functions for the  
AD7768/AD7768-4.  
–FS  
–FS + 1LSB  
+FS – 1LSB  
+FS – 1.5LSB  
–FS + 0.5LSB  
ANALOG INPUT  
Figure 82. ADC Ideal Transfer Functions (FS is Full Scale)  
Table 26. Output Codes and Ideal Input Voltages  
Analog Input  
(AINx+ − (AINx−)) Digital Output Code,  
VREF = 4.096 V  
Description  
Twos Complement (Hex.)  
FS − 1 LSB  
+4.095999512 V  
0x7FFFFF  
0x000001  
0x000000  
0xFFFFFF  
Midscale + 1 LSB +488 nV  
Midscale 0 V  
Midscale − 1 LSB −488 nV  
ADC Power Modes  
−FS + 1 LSB  
−FS  
−4.095999512 V  
−4.096 V  
0x800001  
0x800000  
The AD7768/AD7768-4 have three selectable power modes. In  
pin control mode, the modulator rate and power mode are tied  
together for best performance. In SPI control mode, the user  
can select the power mode and modulator MCLK divider settings.  
The choice of power modes gives more flexibility to control the  
bandwidth and power dissipation for the AD7768/AD7768-4.  
MCLK  
START  
SYNC_OUT  
SYNC_IN  
RESET  
SIGNAL CHAIN  
FOR SINGLE CHANNEL  
PRECHARGE  
BUFFER  
DRDY  
DOUTx  
DCLK  
AINx+  
AINx–  
DATA  
INTERFACE  
CONTROL  
Σ-Δ  
DIGITAL  
FILTER  
MODULATOR  
ESD  
PROTECTION  
CONTROL BLOCK  
PIN/SPI  
CONTROL  
OPTION  
PIN OR SPI  
PIN CONTROL  
SPI CONTROL  
FILTER/GPIO4 MODE3/GPIO3  
CS SCLK SDO SDI  
TO  
MODE0/GPIO0  
Figure 83. Top Level Core Signal Chain and Control  
Rev. A | Page 54 of 99  
 
 
 
 
Data Sheet  
AD7768/AD7768-4  
0
–5  
ANALOG INPUTS  
PRECHARGE BUFFERED AINx+  
PRECHARGE BUFFERED AINx–  
Figure 84 shows the AD7768/AD7768-4 analog front end. The  
ESD protection diodes that are designed to protect the ADC  
from some short duration overvoltage and ESD events are  
shown on the signal path. The analog input is sampled at twice  
the modulator sampling frequency, fMOD, which is derived from  
MCLK. By default, the ADC internal sampling capacitors, CS1  
and CS2, are driven by a per channel analog input precharge  
buffer to ease the driving requirement of the external network.  
–10  
–15  
–20  
–25  
–30  
BPS 0+  
AVDD1  
PHI 0  
AIN0+  
CS1  
CS2  
0
1
2
3
4
PHI 1  
INPUT VOLTAGE (V  
)
DIFF  
AVSS  
Figure 86. Analog Input Current (AIN) vs. Input Voltage, Analog Input  
Precharge Buffer On, VCM = 2.5 V, fMOD = 8.192 MHz  
PHI 1  
PHI 0  
BPS 0–  
AVDD1  
The analog input precharge buffers can be turned on/off by means  
of a register write to Register 0x11 and Register 0x12 (Precharge  
Buffer Register 1 and Precharge Buffer Register 2). Each analog  
input precharge buffer is selectable per channel. In pin control  
mode, the analog input precharge buffers are always enabled for  
optimum performance.  
AIN0–  
AVSS  
Figure 84. Analog Front End  
The analog input precharge buffers provide the initial rough  
charging of the switched capacitor network for 25% of the sampling  
phase. During this first phase, the bypass switches, BPS 0+ and  
BPS 0−, remain open. For the remaining 75% of the sampling  
phase, the bypass switches are closed, and the fine accuracy  
settling charge is provided by the external source. PHI 0 and PHI 1  
represent the modulator clock sampling phases that switch the  
input signals onto the sampling capacitors, CS1 and CS2.  
When the analog input precharge buffers are disabled, the  
analog input current is sourced completely from the analog  
input source. The unbuffered analog input current is calculated  
from two components: the differential input voltage on the  
analog input pair, and the analog input voltage with respect to  
AVSS. With the precharge buffers disabled, for 32.768 MHz  
MCLK in fast mode with fMOD = MCLK/4, the differential input  
current is approximately 48 µA/V and the current with respect  
to ground is approximately 17 µ A / V.  
The analog input precharge buffers reduce the switching kickback  
from the sampling stage to the external circuitry. The precharge  
buffer reduces the average input current by a factor of eight, and  
makes the input current more signal independent, to reduce the  
effects of sampling distortion. This reduction in drive requirements  
allows pairing of the AD7768/AD7768-4 with lower power, lower  
bandwidth front end driver amplifiers such as the ADA4940-1/  
ADA4940-2.  
For example, if the precharge buffers are off, with AIN1+= 5 V,  
and AIN1− = 0 V, estimate the current in each input pin as  
follows:  
AIN1+ = 5 V × 48 µA/V + 5 V × 17 µA/V = 325 µA  
AIN1− = −5 V × 48 µA/V + 0 V × 17 µA/V = −240 µA  
400  
When the precharge buffers are enabled, the absolute voltage with  
respect to AVSS determines the majority of the current. The  
maximum input current of approximately −25 µA is measured  
when the analog input is close to either the AVDD1 or AVSS rails.  
300  
200  
100  
0
With either precharge buffers enabled or disabled, the analog  
input current scales linearly with the modulator clock rate. The  
analog input current versus input voltage is shown in Figure 85.  
–100  
–200  
Full settling of the analog inputs to the ADC requires the use  
of an external amplifier. Pair amplifiers such as the ADA4805-2  
for eco mode, the ADA4807-2 or ADA4940-1/ADA4940-2 for  
median mode, and the ADA4807-2 or ADA4896-2 for fast mode  
with the AD7768/AD7768-4 (see Table 27 for details). Running  
the AD7768/AD7768-4 in median and eco modes or reducing  
the MCLK rate reduces the load and speed requirements of the  
amplifier; therefore, lower power amplifiers can be paired with  
the analog inputs to achieve the optimum signal chain efficiency.  
–300  
UNBUFFERED AINx+  
UNBUFFERED AINx–  
–400  
0
1
2
3
4
5
6
INPUT VOLTAGE (V  
)
DIFF  
Figure 85. Analog Input Current (AIN) vs. Input Voltage, Analog Input  
Precharge Buffer Off, VCM = 2.5 V, fMOD = 8.192 MHz  
Rev. A | Page 55 of 99  
 
 
 
 
AD7768/AD7768-4  
Data Sheet  
Table 27. Amplifier Pairing Options  
Amplifier Power  
Analog Input Precharge  
Buffer  
Total Power (Amplifier + AD7768)  
Power Mode Amplifier  
(mW/channel)1  
(mW/channel)1  
Fast  
Fast  
Median  
Eco  
ADA4896-2  
ADA4807-2  
ADA4805-2  
ADA4805-2  
40.6  
13.6  
7.5  
On  
On  
On  
On  
92.1  
65.1  
35.0  
16.9  
7.525  
1 Typical power at 25°C.  
With the precharge buffers on, REFx+ = 5 V, and REFx− = 0 V,  
VCM  
REFx = 5 V × 16 µA/V = 80 µA  
The AD7768/AD7768-4 provide a buffered common-mode  
voltage output on Pin 59. This output can bias up analog input  
signals. By incorporating the VCM buffer into the ADC, the  
AD7768/AD7768-4 reduce component count and board space.  
In pin control mode, the VCM potential is fixed to (AVDD1 −  
AVSS)/2, and is enabled by default.  
For the best performance and headroom, it is recommended to  
use a 4.096 V reference such as the ADR444 or the ADR4540.  
For the best performance at high sampling rates, it is  
recommended to use an external reference drive amplifier such  
as the ADA4841-1 or the AD8031.  
In SPI control mode, configure the VCM potential using the  
general configuration register (Register 0x05). The output can  
be enabled or disabled, and set to (AVDD1 − AVSS)/2, 1.65 V,  
2.14 V, or 2.5 V, with respect to AVSS.  
CLOCK SELECTION  
The AD7768/AD7768-4 have an internal oscillator that is used  
for initial power-up of the device. After the AD7768/AD7768-4  
have completed their start-up routine, the devices normally  
transfer control of the internal clocking to the externally applied  
MCLK. The AD7768/AD7768-4 count the falling edges of the  
external MCLK over a given number of internal clock cycles to  
determine if the clock is valid and at least a frequency of 1.15 MHz.  
If there is a fault with the external MCLK, the transfer of control  
does not occur, the AD7768/AD7768-4 output an error in the  
status header, and the clock error bit is set in the device status  
register. No conversion data is output and a reset is required to  
exit this error state.  
The VCM voltage output is associated with the Channel 0  
circuitry. If Channel 0 is put into standby mode, the VCM  
voltage output is also disabled for maximum power savings.  
Channel 0 must be enabled while VCM is being used externally  
to the AD7768/AD7768-4.  
REFERENCE INPUT  
The AD7768/AD7768-4 have two differential reference input  
pairs. On the AD7768 REF1+ and REF1− are the reference  
inputs for Channel 0 to Channel 3, and REF2+ and REF2− are  
for Channel 4 to Channel 7. On the AD7768-4 REF1+ and  
REF1− are the reference inputs for Channel 0 and Channel 1,  
and REF2+ and REF2− are for Channel 2 and Channel 3. The  
absolute input reference voltage range is 1 V to AVDD1 − AVSS.  
Three clock source input options are available to the AD7768/  
AD7768-4: external CMOS, crystal oscillator, or LVDS. The clock  
is selected on power-up and is determined by the state of the  
CLK_SEL pin.  
Like the analog inputs, the reference inputs have a precharge buffer  
option. Each ADC has an individual buffer for each REFx+ and  
REFx−. The precharge buffers help reduce the burden on the  
external reference circuitry.  
If CLK_SEL = 0, the CMOS clock option is selected and the  
clock is applied to Pin 32 (Pin 31 is tied to DGND).  
If CLK_SEL = 1, the crystal or LVDS option is selected and the  
crystal or LVDS is applied to Pin 31 and Pin 32. The LVDS  
option is available only in SPI control mode. An SPI write to  
Bit 3 of Register 0x04 enables the LVDS clock option.  
In pin control mode, the reference precharge buffers are off by  
default. In SPI control mode, the user can enable or disable the  
reference precharge buffers. In the case of unipolar analog  
supplies, in SPI control mode, the user can achieve the best  
performance and power efficiency by enabling only the REFx+  
buffers. The reference input current scales linearly with the  
modulator clock rate.  
DIGITAL FILTERING  
The AD7768/AD7768-4 offer two types of digital filters. In SPI  
control mode, these filters can be chosen on a per channel basis.  
In pin control mode, only one filter can be selected for all channels.  
The digital filters available on the AD7768/AD7768-4 are  
For 32 MHz MCLK and MCLK/4 fast mode, the differential  
input current is ~72 µA/V per channel unbuffered, and  
~16 µA/V per channel with the precharge buffers enabled.  
Sinc5 low latency filter, −3 dB at 0.204 × ODR  
Wideband low ripple filter, −3 dB at 0.433 × ODR  
With the precharge buffers off, REFx+ = 5 V, and REFx− = 0 V,  
Both filters can be operated in one of six different decimation rates,  
allowing the user to choose the optimal input bandwidth and speed  
of the conversion versus the desired power mode or resolution.  
REFx = 5 V × 72 µA/V = 360 µA  
Rev. A | Page 56 of 99  
 
 
 
 
 
Data Sheet  
AD7768/AD7768-4  
0
–10  
Sinc5 Filter  
Most precision Σ-Δ ADCs use a sinc filter. The sinc5 filter offered  
in the AD7768/AD7768-4 enables a low latency signal path  
useful for dc inputs, for control loops, or where other specific  
postprocessing is required. The sinc5 filter path offers the lowest  
noise and power consumption. The sinc5 filter has a −3 dB BW  
of 0.204 × ODR. Table 13 contains the noise performance for the  
sinc5 filter across power modes and decimation ratios.  
0
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
–110  
–120  
–130  
–140  
–20  
–40  
–60  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
NORMALIZED INPUT FREQUENCY (fIN  
/fODR)  
–80  
–100  
–120  
–140  
–160  
–180  
–200  
Figure 88. Wideband Filter Frequency Response  
0.010  
0.008  
0.006  
0.004  
0.002  
0
0
2
4
6
8
10  
12  
14  
16  
NORMALIZED INPUT FREQUENCY (fIN  
/
fODR)  
–0.002  
–0.004  
–0.006  
–0.008  
–0.010  
Figure 87. Sinc5 Filter Frequency Response (Decimation = ×32)  
The settling times for the AD7768/AD7768-4 when using the  
sinc5 filter are shown in Table 36.  
Wideband Low Ripple Filter  
0
0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50  
NORMALIZED INPUT FREQUENCY (fIN  
The wideband filter has a low ripple pass band, within 0.005 dB  
of ripple, of 0.4 × ODR. The wideband filter has full attenuation  
at 0.499 × ODR (Nyquist), maximizing antialias protection. The  
wideband filter has a pass-band ripple of 0.005 dB and a stop  
band attenuation of 105 dB from Nyquist out to fCHOP. For more  
information on antialiasing and fCHOP aliasing, see the  
Antialiasing section.  
/
fODR)  
Figure 89. Wideband Filter Pass-Band Ripple  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
The wideband filter is a very high order digital filter with a  
group delay of approximately 34/ODR. After a synchronization  
SYNC_IN  
pulse, there is an additional delay from the  
rising  
edge to fully settled data. The settling times for the AD7768/  
AD7768-4 when using the wideband filter are shown in Table 35.  
See Table 12 for the noise performance of the wideband filter  
across power modes and decimation rates.  
–0.2  
0
10  
20  
30  
40  
50  
60  
70  
80  
OUTPUT DATA RATE SAMPLES  
Figure 90. Wideband Filter Step Response  
Rev. A | Page 57 of 99  
 
AD7768/AD7768-4  
Data Sheet  
Modulator Sampling Frequency  
DECIMATION RATE CONTROL  
The AD7768/AD7768-4 modulator signal transfer function  
includes a notch, at odd multiples of fMOD, to reject tones or  
harmonics related to the modulator clock. The modulator itself  
attenuate signals at frequencies of fMOD, 3 × fMOD., 5 × fMOD, and  
so on. For an MCLK frequency of 32.768 MHz, the attenuation  
is approximately 35 dB in fast mode, 41 dB in median mode,  
and 53 dB in eco mode. Attenuation is increased by 6 dB across  
each power mode, with every halving of the MCLK frequency,  
for example, when reducing the clock from 32.768 MHz to  
16.384 MHz.  
The AD7768/AD7768-4 have programmable decimation rates  
for the digital filters. The decimation rates allow the user to reduce  
the measurement bandwidth, reducing the speed but increasing the  
resolution. When using the SPI control, control the decimation  
rate on the AD7768/AD7768-4 through the channel mode regis-  
ters. These registers set two separate channel modes with a given  
decimation rate and filter type. Each ADC is mapped to one of  
these modes via the channel mode select register. Table 28 details  
both the decimation rates available, and the filter types for selection,  
within Mode A and Mode B.  
The modulator has no rejection to signals that are at frequencies in  
zones around 2 × fMOD and all even multiples of fMOD.. Signals at  
these frequencies are aliased by the AD7768/AD7768-4. For the  
AD7768/AD7768-4, the first of these zones that requires protec-  
tion is at 2 × fMOD. Because typical switch capacitor, discrete  
time Σ-Δ modulators provide no protection to aliasing at the  
frequency, fMOD, the AD7768/AD7768-4 provide a distinct  
advantage in this regard.  
In pin control mode, the decimation ratio is controlled by the  
DEC0 and DEC1 pins; see Table 17 for decimation configuration in  
pin control mode.  
Table 28. Channel x Mode Registers, Register 0x01 and  
Register 0x02  
Bits  
Name  
Logic Value  
Decimation Rate  
3
FILTER_TYPE_x  
0
Wideband filter  
1
Sinc5 filter  
32  
64  
128  
256  
Figure 91 shows the frequency response of the modulator and  
wideband digital filter to out of band tones at the analog input.  
Figure 91 shows the magnitude of an alias that is seen in band  
vs. the frequency of the signal sampled at the analog input. The  
relationship between the input signal and the modulator frequency  
is expressed in a normalized manner as a ratio of the input signal  
(fIN) to the modulator frequency (fMOD). This data demonstrates the  
ADC frequency response relative to out of band tones when using  
the wideband filter. The input frequency (fIN) is swept from dc to  
20 MHz. In fast mode, using an 8.192MHz fMOD frequency, the  
x-axis spans ratios of fIN/fMOD from 0 to 2.44 (equivalent to fIN of  
0 Hz to 20 MHz). A similar characteristic occurs in median and  
eco modes.  
[2:0]  
DEC_RATE_x  
000  
001  
010  
011  
100  
101  
110  
111  
512  
1024  
1024  
1024  
ANTIALIASING  
Because the AD7768/AD7768-4 are switched capacitor, discrete  
time ADCs, the user may wish to employ external analog antialias-  
ing filters to protect against fold back of out of band tones.  
The notch appears in Figure 91 with the input frequency (fIN) at  
Within this section, an out of band tone refers to an input fre-  
quency greater than the pass band frequency specification of  
the digital filter that is applied at the analog input.  
f
MOD (designated at fIN/fMOD = 1.00 on the x-axis). An input at this  
frequency is attenuated by 35 dB, which adds to the attenuation of  
any external antialiasing filter, thus reducing the frequency roll-  
off requirement of the external filter. If the plot is swept further  
in frequency, the notch is seen to recur at fIN/fMOD = 3.00.  
When designing an antialiasing filter for the AD7768/AD7768-4,  
three main aliasing regions must be taken into account. After  
the alias requirements of each zone are understood, the user can  
design an antialiasing filter to meet the needs of the specific  
application. The three zones for consideration are related to the  
modulator sampling frequency, the modulator chopping fre-  
quency, and the modulator saturation point.  
The point where fIN = 2 × fMOD (designated on the x-axis at 2.00)  
offers 0 dB attenuation, indicating that all signals falling at this  
frequency alias directly back into the ADC conversion results,  
in accordance with sampling theory.  
The AD7768/AD7768-4 wideband digital filter also offers an  
added protection against aliasing. Because the wideband filter has  
full attenuation at the Nyquist frequency (fODR/2, where fODR  
MOD/Decimation Rate), input frequencies, and in particular  
=
f
harmonics of input frequencies, that may fall close to fODR/2, do not  
fold back into the pass-band of the AD7768/AD7768-4.  
Rev. A | Page 58 of 99  
 
 
 
Data Sheet  
AD7768/AD7768-4  
0
AD7768/AD7768-4 digital filter can pass when using a  
decimate by 32 filter setting.  
–10  
fCHOP  
fCHOP  
=
=
fMOD/32  
fMOD/8  
–20  
–30  
Table 29. External Antialiasing Filter Attenuation  
–40  
–50  
f
MOD/32  
fMOD/16  
(dB)  
fMOD/8  
(dB)  
2 × fMOD  
(dB)  
–60  
RC Filter  
(dB)  
–70  
First Order  
−6  
−12  
−24  
−36  
−18  
−36  
−54  
−42  
−84  
−126  
–80  
Second Order −12  
Third Order −18  
–90  
–100  
–110  
–120  
–130  
–140  
–150  
Modulator Saturation Point  
A Σ-Δ modulator can be considered a standard control loop,  
employing negative feedback. The control loop works to ensure  
that the average processed error signal is very small over time. It  
uses an integrator to remember preceding errors and force the  
mean error to be zero. As the input signal rate of change increases  
with respect to the modulator clock, fMOD, a larger voltage feedback  
error is processed. Above a certain frequency, the error begins  
to saturate the modulator.  
fIN/fMOD  
Figure 91. AD7768/AD7768-4 Rejection of Out of Band Input Tones,  
Wideband Filter, Decimation = ×32, fMOD = 8.192 MHz, Analog Input Sweep  
from DC to 20 MHz  
Modulator Chopping Frequency  
Figure 91 plots two scenarios that relate to the chopping frequency  
of the AD7768/AD7768-4 modulators.  
For theAD7768/AD7768-4, the modulator may saturate for full-  
scale input frequencies greater than fMOD/16, depending on the  
rate of change of input signal, input signal amplitude, and reference  
input level. A half power input tone at fMOD/8 also causes the  
modulator to saturate. In applications where there may be high  
amplitude and frequency out of band tones, a first-order antialias-  
ing filter is required with a −3 dB corner frequency set at fMOD/16 to  
protect against modulator saturation. For example, if operating  
the AD7768/AD7768-4 at full speed and using a decimation rate  
of ×32 to achieve an output data rate of 256 kSPS, the modulator  
rate is equal to 8.192 MHz. In this instance, to protect against  
saturation, set the antialiasing filter −3 dB corner frequency to  
512 kHz.  
The AD7768/AD7768-4 use a chopping technique in the modula-  
tor similar to that of a chopped amplifier to remove offset, offset  
drift, and 1/f noise. The AD7768/AD7768-4 default chopping  
rate is fMOD/32. In pin control mode, the chop frequency is  
hardwired to fMOD/32. In SPI control mode, the user can select  
the chop frequency to be either fMOD/32 or fMOD/8.  
As shown in Figure 91, the stop band rejection of the digital filter is  
reduced at frequencies that relate to even multiples of the  
chopping frequency (fCHOP). All other out of band frequencies  
(excluding those already discussed relating to the modulator clock  
frequency fMOD) are rejected by the stop band attenuation of the  
digital filter. An out of band tone with a frequency in the range of  
CALIBRATION  
(2 × fCHOP  
)
f3dB, where f3dB is the filter bandwidth employed, is  
In SPI control mode, the AD7768/AD7768-4 offer users the ability  
to adjust offset, gain, and phase delay on a per channel basis.  
attenuated to the envelope determined by the chop frequency  
setting (see Figure 91), and aliased into the pass band. Out of  
band tones near additional even multiples of fCHOP (that is, N ×  
fCHOP, where N is an even integer), are attenuated and aliased in  
the same way.  
Offset Adjustment  
The CHx_OFFSET_MSB, CHx_OFFSET_MID, and CHx_  
OFFSET_LSB registers are 24-bit, signed twos complement  
registers for channel offset adjustment. If the channel gain setting is  
at its ideal nominal value of 0x555555, an LSB of offset register  
adjustment changes the digital output by −4/3 LSBs. For example,  
changing the offset register from 0 to 100 changes the digital  
output by −133 LSBs. Because offset calibration occurs before  
gain calibration, the ratio of 4/3 changes linearly with gain  
adjustment via the Channel x gain registers (see Table 56 and  
Table 57 for the AD7768, or Table 82 and Table 83 for the  
AD7768-4). After a reset or power cycle, the offset register values  
revert to the default factory setting.  
Chopping at fMOD/32 offers the best performance for noise,  
offset, and offset drift for the AD7768/AD7768-4.  
For ac performance it may be useful to select chopping at fMOD/8  
as this moves the first chopping tone to a higher frequency.  
However, chopping at fMOD/8 may lead to slightly degraded  
noise (approximately 1 dB loss in dynamic range) and offset  
performance compared to the default chop rate of fMOD/32.  
Table 29 shows the aliasing achieved by different order  
antialiasing filter options at the critical frequencies of fMOD/32  
and fMOD/8 for chop aliasing, fMOD/16 for modulator saturation,  
and 2 × fMOD for the first zone with 0 dB attenuation. It assumes  
the corner frequency of the antialiasing filter is at fMOD/64,  
which is just above the maximum input bandwidth that the  
Rev. A | Page 59 of 99  
 
 
 
AD7768/AD7768-4  
Data Sheet  
Table 30. Phase Delay Resolution  
Gain Adjustment  
Decimation  
Ratio  
Phase Register  
Bits  
Each ADC channel has an associated gain coefficient. The  
coefficient is stored in three single-byte registers split up as  
MSB, MID, and LSB. Each of the gain registers are factory  
programmed. Nominally, this gain is around the value 0x555555  
(for an ADC channel). The user may overwrite the gain register  
setting. However, after a reset or power cycle, the gain register  
values revert to the hard coded programmed factory setting.  
Resolution Steps  
×32  
×64  
×128  
×256  
×512  
×1024  
1/fMOD  
1/fMOD  
1/fMOD  
1/fMOD  
2/fMOD  
4/fMOD  
32  
64  
128  
256  
256  
256  
[7:3]  
[7:2]  
[7:1]  
[7:0]  
[7:0]  
[7:0]  
Calculate the approximate result that is output using the  
following formula:  
Adjusting the sync phase of channels can affect the time to the  
DRDY  
first  
pulse after the sync pulse, as well as the time to Bit 6  
3×VIN  
VREF  
Gain 4,194,300  
4
of the header status (filter not settled data bit) being cleared,  
that is, the time to settled data.  
Data =  
×221 (Offset) ×  
×
242  
where:  
If all channels are using the Sinc5 filter, the time to the first  
Offset is the offset register setting.  
Gain is the gain register setting.  
DRDY  
pulse is not affected by the adjustment of the sync phase  
offset, assuming that at least one channel has zero sync phase  
offset adjustment. If all channels have a nonzero sync phase offset  
Sync Phase Offset Adjustment  
DRDY  
setting, the time to the first  
pulse is delayed according to  
The AD7768/AD7768-4 have one synchronization signal for all  
channels. The sync phase offset register allows the user to vary  
the phase delay on each of the channels relative to the synchroniza-  
tion edge received on the  
By default, all ADC channels react simultaneously to the  
SYNC_IN  
to equalize known external phase differences on ADC input  
channels, relative to one another. The range of phase compensation  
is limited to a maximum of one conversion cycle, and the resolution  
of the correction depends on the decimation rate in use.  
the channel that has the least offset applied. Channels with a  
sync offset adjustment setting that delays the internal sync signal,  
relative to other channels, may not output settled data until  
SYNC_IN  
pin.  
DRDY  
after the next  
pulse. In other words, there may be a delay  
of one ODR period between the settled data being output by the  
AD7768/AD7768-4 for the channels with added phase delay.  
pulse. The sync phase registers can be programmed  
If all channels are using the wideband filter, the time to the first  
DRDY  
pulse and the time to settled data is delayed according to  
the channel with the maximum phase delay setting. In this case,  
the interface waits for the latest channel and outputs data for all  
channels when that channel is ready.  
Table 30 displays the resolution and register bits used for phase  
offset for each decimation ratio.  
Rev. A | Page 60 of 99  
 
 
Data Sheet  
AD7768/AD7768-4  
DATA INTERFACE  
with higher DCLK frequencies. For the best offset and offset  
drift performance, use the lowest DCLK frequency possible.  
The user can choose to reduce the DCLK frequency by an  
appropriate selection of MCLK frequency, DCLK divider,  
and/or the number of DOUTx lines used. Table 1 and Table 2  
give the offset and offset drift specifications for ranges of DCLK  
frequency, and Figure 49 shows the typical offset drift over a  
range of DCLK frequencies.  
SETTING THE FORMAT OF DATA OUTPUT  
The data interface format is determined by setting the FORMATx  
pins. The logic state of the FORMATx pins are read on power-  
up and determine how many data lines (DOUTx) the ADC  
conversions are output on.  
Because the FORMATx pins are read on power-up of the  
AD7768 and the device remains in this output configuration,  
this function must always be hardwired and cannot be altered  
dynamically. Table 31, Figure 92, Figure 93, and Figure 95 show  
the formatting configuration for the digital output pins on the  
AD7768.  
Table 31. FORMATx Truth Table for the AD7768  
FORMAT1  
FORMAT0 Description  
0
0
Each ADC channel outputs on its own  
dedicated pin. DOUT0 to DOUT7 are  
in use.  
Calculate the minimum required DCLK rate for a given data  
interface configuration as follows:  
0
1
1
The ADCs share the DOUT0 and  
DOUT1 pins: Channel 0 to Channel 3  
output on DOUT0. Channel 4 to  
Channel 7 output on DOUT1. The ADC  
channels share data pins in time  
division multiplexed (TDM) output.  
DOUT0 and DOUT1 are in use.  
DCLK (minimum) = Output Data Rate × Channels per  
DOUTx × 32  
where MCLK ≥ DCLK.  
For example, if MCLK = 32.768 MHz, with two DOUTx lines,  
DCLK (minimum) = 256 kSPS × 4 channels per DOUTx ×  
32 = 32.768 Mbps  
X
All channels output on the DOUT0 pin,  
in TDM output. Only DOUT0 is in use.  
Therefore, DCLK = MCLK/1.  
Table 32. FORMAT0 Truth Table for the AD7768-4  
Alternatively, if MCLK = 32.768 MHz, with eight DOUTx lines,  
FORMAT0  
Description  
DCLK (minimum) = 256 kSPS × 1 channel per DOUTx ×  
32 = 8.192 Mbps  
0
Each ADC channel outputs on its own dedicated  
pin. DOUT0 to DOUT3 are in use.  
1
All channels output on the DOUT0 pin, in TDM  
output. Only DOUT0 is in use.  
Therefore, DCLK = MCLK/4.  
Higher DCLK rates make it easier to receive the conversion data  
from the AD7768/AD7768-4 with a lower number of DOUTx  
lines; however, there is a trade-off against ADC offset performance  
AD7768  
DRDY  
DCLK  
CH 0  
CH 1  
DOUT0  
DOUT1  
FORMAT0  
FORMAT1  
EACH ADC HAS A  
DEDICATED DOUTx PIN  
0
0
CH 7  
DOUT7  
DGND  
DAISY-CHAINING IS  
NOT POSSIBLE IN THIS FORMAT  
Figure 92. AD7768 FORMATx = 00, Eight Data Output Pins  
AD7768  
DRDY  
DCLK  
IOVDD  
CHANNEL0 TO CHANNEL3  
DOUT0  
DOUT1  
1
0
OUTPUT ON DOUT0  
FORMAT0  
FORMAT1  
CHANNEL4 TO CHANNEL7  
OUTPUT ON DOUT1  
DGND  
DAISY-CHAINING IS  
POSSIBLE IN THIS FORMAT  
Figure 93. AD7768 FORMATx = 01, Two Data Output Pins  
Rev. A | Page 61 of 99  
 
 
 
 
 
 
AD7768/AD7768-4  
Data Sheet  
AD7768-4  
DRDY  
DCLK  
CH 0  
CH 1  
DOUT0  
DOUT1  
DOUT2  
DOUT3  
FORMAT0  
EACH ADC HAS A  
DEDICATED DOUTx PIN  
0
CH 2  
CH 3  
DGND  
DAISY-CHAINING IS  
NOT POSSIBLE IN THIS FORMAT  
Figure 94. AD7768-4 FORMAT0 = 0, Four Data Output Pins  
AD7768  
DRDY  
IOVDD  
CHANNEL0 TO CHANNEL7  
OUTPUT ON DOUT0  
DCLK  
1
1
FORMAT0  
FORMAT1  
DOUT0  
DAISY-CHAINING IS  
POSSIBLE IN THIS FORMAT  
Figure 95. AD7768 FORMATx = 10 or 11, or AD7768-4 FORMAT0 = 1, One Data Output Pin  
Chip Error  
ADC CONVERSION OUTPUT: HEADER AND DATA  
The chip error bit indicates that a serious error has occurred. If  
this bit is set, a reset is required to clear this bit. This bit indicates  
that the external clock is not detected, a memory map bit has  
unexpectedly changed state, or an internal CRC error has been  
detected.  
The AD7768 data is output on the DOUT0 to DOUT7 pins,  
depending on the FORMATx pins. The AD7768-4 data is  
output on the DOUT0 to DOUT3 pins, depending on the  
FORMAT0 pin. The actual structure of the data output for each  
ADC result is shown in Figure 96. Each ADC result comprises  
32 bits. The first eight bits are the header status bits, which  
contain status information and the channel number. The names  
of each of the header status bits are shown in Table 33, and their  
functions are explained in the subsequent sections. This header  
is followed by a 24-bit ADC output in twos complement coding,  
MSB first.  
In the case where an external clock is not detected, the conversion  
results are output as all zeros regardless of the analog input  
voltages applied to the ADC channels.  
Filter Not Settled  
After power-up, reset, or synchronization, the AD7768/AD7768-4  
clear the digital filters and begins conversion. Due to the weighting  
of the digital filters, there is a delay from the first conversion to  
fully settled data. The settling times for the AD7768/AD7768-4  
when using the wideband and sinc5 filters are shown in Table 35  
and Table 36, respectively. This bit is set if this settling delay has not  
yet elapsed.  
DRDY  
ADC DATA N  
24 BITS  
N – 1  
HEADER N  
8 BITS  
DOUTx  
Figure 96. ADC Output: 8-Bit Header, 24-Bit ADC Conversion Data  
Repeated Data  
Table 33. Header Status Bits  
If different channels use different decimation rates, data outputs  
are repeated for the slower speed channels. In these cases, the  
header is output as normal with the repeated data bit set to 1,  
and the following repeated ADC result is output as all zeros.  
This bit indicates that the conversion result of all zeros is not  
real; it indicates that there is a repeated data condition because  
two different decimation rates are selected. This condition can  
only occur during SPI control of the AD7768/AD7768-4.  
Bit  
Bit Name  
7
6
5
4
CHIP_ERROR  
Filter not settled  
Repeated data  
Filter type  
3
[2:0]  
Filter saturated  
Channel ID[2:0]  
Rev. A | Page 62 of 99  
 
 
 
 
Data Sheet  
AD7768/AD7768-4  
Filter Type  
AD7768-4 supply the data, the data clock (DCLK), and a falling  
DRDY  
edge framing signal (  
) to the slave device. All of these  
In pin control mode, all channels operate using one filter  
selection. The filter selected in pin control mode is determined  
by the logic level of the FILTER pin. In SPI control mode, the  
digital filters can be selected on a per channel basis, using the  
mode registers. This header bit is 0 for channels using the  
wideband filter, and 1 for channels using the sinc5 filter.  
signals are synchronous. The data interface connections to  
DSP/FPGA are shown in Figure 102. The FORMATx pins  
determine how the data is output from the AD7768/AD7768-4.  
Figure 97 through Figure 99 show the data interface operating  
in standard mode at the maximum data rate. In all instances,  
DRDY  
is asserted one clock cycle before the MSB of the data  
conversion is made available on the data pin.  
DRDY  
Filter Saturated  
The filter saturated bit indicates that the filter output is clipping at  
either positive or negative full scale. The digital filter clips if the  
signal goes beyond the specification of the filter; it does not wrap.  
The clipping may be caused by the analog input exceeding the  
analog input range, or by a step change in the input, which may  
cause overshoot in the digital filter. Clipping may also occur  
when the combination of the analog input signal and the channel  
gain register setting cause the signal seen by the filter to be  
higher than the analog input range.  
Each  
falling edge starts the output of the new ADC  
DRDY  
conversion data. The first eight bits output after the  
falling  
edge are the header bits; the last 24 bits are the ADC conversion  
result.  
Figure 97, Figure 98, and Figure 99 are distinct examples of the  
impact of the FORMATx pins on the AD7768 output operating in  
standard conversion operation. Figure 100 and Figure 101 show  
two examples of the AD7768-4 interface configuration.  
Channel ID  
Figure 97 to Figure 99 represent running the AD7768 at  
maximum data rate for the three FORMATx options.  
The channel ID bits indicate the ADC channel from which the  
succeeding conversion data originates (see Table 34).  
Figure 97 shows FORMATx = 00 each ADC has its own data  
out pin running at the MCLK/4 bit rate. In pin control mode, this is  
achieved by selecting Mode 0xA (fast mode, DCLK = MCLK/4,  
standard conversion, see Table 20) with the decimation rate set as  
×32.  
Table 34. Channel ID vs. Channel Number  
Channel  
Channel ID 2  
Channel ID 1  
Channel ID 0  
Channel 0  
Channel 1  
Channel 2  
Channel 3  
Channel 4  
Channel 5  
Channel 6  
Channel 7  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Figure 98 shows FORMATx = 01 share DOUT1 at the maximum  
bit rate. In pin control mode, this is achieved by selecting Mode 0x8  
(fast mode, DCLK = MCLK/1, standard conversion) with a  
decimation rate of ×32.  
If running in pin control mode, the example shown in Figure 99  
represents Mode 0x4 (median mode, DCLK = MCLK/1,  
standard conversion) with a decimation rate of ×32, giving the  
maximum output data capacity possible on one DOUTx pin.  
Data Interface: Standard Conversion Operation  
In standard mode operation, the AD7768/AD7768-4 operate as  
the master and stream data to the DSP or FPGA. The AD7768/  
DCLK  
SAMPLE N  
SAMPLE N + 1  
DRDY  
DOUT0  
DOUT1  
D0 D31 D30 D29 D28 D27 D... D5 D4 D3 D2 D1 D0 D31 D30 D29 D28 D27 D... D5 D4 D3 D2 D1 D0  
D0 D31 D30 D29 D28 D27 D... D5 D4 D3 D2 D1 D0 D31 D30 D29 D28 D27 D... D5 D4 D3 D2 D1 D0  
D0 D31 D30 D29 D28 D27 D... D5 D4 D3 D2 D1 D0 D31 D30 D29 D28 D27 D... D5 D4 D3 D2 D1 D0  
DOUT7  
Figure 97. AD7768 FORMATx = 00: Each ADC Has a Dedicated Data Output Pin, Maximum Data Rate  
Rev. A | Page 63 of 99  
 
 
AD7768/AD7768-4  
Data Sheet  
DCLK  
SAMPLE N  
SAMPLE N + 1  
DRDY  
CH0 (N)  
CH1 (N)  
CH5 (N)  
CH2 (N)  
CH3 (N)  
CH7 (N)  
CH0 (N+1)  
CH4 (N+1)  
CH1 (N+1)  
CH2 (N+1)  
CH6 (N+1)  
CH3 (N+1)  
CH7 (N+1)  
DOUT0  
CH4 (N)  
CH6 (N)  
CH5 (N+1)  
DOUT1  
DOUT2  
DOUT7  
Figure 98. AD7768 FORMATx = 01: Channel 0 to Channel 3 Share DOUT0, and Channel 4 to Channel 7 Share DOUT1, Maximum Data Rate  
DCLK  
SAMPLE N  
SAMPLE N + 1  
SAMPLE N + 2  
DRDY  
DOUT0  
DOUT1  
DOUT7  
Figure 99. AD7768 FORMATx = 11 or 10: Channel 0 to Channel 7 Output on DOUT0 Only, Maximum Data Rate  
DCLK  
SAMPLE N  
SAMPLE N + 1  
DRDY  
DOUT0  
D0 D31 D30 D29 D28 D27 D... D5 D4 D3 D2 D1 D0 D31 D30 D29 D28 D27 D... D5 D4 D3 D2 D1 D0  
D0 D31 D30 D29 D28 D27 D... D5 D4 D3 D2 D1 D0 D31 D30 D29 D28 D27 D... D5 D4 D3 D2 D1 D0  
D0 D31 D30 D29 D28 D27 D... D5 D4 D3 D2 D1 D0 D31 D30 D29 D28 D27 D... D5 D4 D3 D2 D1 D0  
D0 D31 D30 D29 D28 D27 D... D5 D4 D3 D2 D1 D0 D31 D30 D29 D28 D27 D... D5 D4 D3 D2 D1 D0  
Figure 100. AD7768-4 FORMAT0 = 0: Each ADC Has a Dedicated Data Output Pin, Maximum Data Rate  
DOUT1  
DOUT2  
DOUT3  
Rev. A | Page 64 of 99  
 
 
 
Data Sheet  
AD7768/AD7768-4  
DCLK  
SAMPLE N  
SAMPLE N + 1  
SAMPLE N + 2  
DRDY  
DOUT0  
DOUT1  
DOUT2  
DOUT3  
Figure 101. AD7768-4 FORMAT0 = 1: Channel 0 to Channel 3 Output on DOUT0 Only, Maximum Data Rate  
DSP/FPGA  
AD7768  
DCLK  
DRDY  
DOUT0 TO  
DOUT7  
MCLK  
Figure 102. Data Interface: Standard Conversion Operation, AD7768 = Master, DSP/FPGA = Slave  
SYNC_IN  
tSETTLE  
SETTLED  
DATA  
SETTLED  
DATA  
DOUT0  
DOUT1  
SETTLED  
DATA  
SETTLED  
DATA  
SETTLED  
DATA  
SETTLED  
DATA  
DOUT7  
DRDY  
32 DCLKs  
32 DCLKs  
Figure 103. AD7768 One-Shot Mode  
Rev. A | Page 65 of 99  
 
 
 
AD7768/AD7768-4  
Data Sheet  
Data Interface: One-Shot Conversion Operation  
ADC device has its data interface in direct connection with the  
digital host.  
One-shot mode is available in both SPI and pin control modes.  
This conversion mode is available by selecting one of Mode 0xC to  
Mode 0xF when in pin control mode. In SPI control mode, set  
Bit 4 (one shot) of Register 0x06, the data control register.  
Figure 103 shows the device operating in one-shot mode.  
For the AD7768/AD7768-4, this connection can be implemented  
by cascading DOUT0 and DOUT1 through a number of devices,  
or just using DOUT0; whether two data output pins or only one  
data output pin is enabled depends on the FORMATx pins. The  
ability to daisy-chain devices and the limit on the number of  
devices that can be handled by the chain is dependent on the  
power mode, DCLK, and the decimation rate employed.  
In one-shot mode, the AD7768/AD7768-4 are pseudo slaves.  
Conversions occur on request by the master device, for example,  
SYNC_IN  
the DSP or FPGA. The  
request. In one-shot mode, all ADCs run continuously; however,  
SYNC_IN  
pin initiates the conversion  
The maximum usable DCLK frequency allowed when daisy-  
chaining devices is limited by the combination of timing  
specifications in Table 3 or Table 5, as well as by the propagation  
delay of the data between devices and any skew between the MCLK  
signals at each AD7768/AD7768-4 device. The propagation delay  
and MCLK skew are dependent on the PCB layout and trace  
lengths.  
the rising edge of the  
pin controls the point in time  
from which data is output.  
SYNC_IN  
DRDY  
low.  
To receive data, the master must pulse the  
pin to  
subsequently goes  
high to indicate to the master device that the device has valid  
DRDY  
DRDY  
reset the filter and force  
settled data available. Unlike standard mode,  
remains  
This feature is especially useful for reducing component count  
and wiring connections, for example, in isolated multiconverter  
applications or for systems with a limited interfacing capacity.  
high for the number of clock periods of valid data before it goes  
low again; thus, in this conversion mode, it is an active high  
frame of the data.  
When daisy-chaining, on the AD7768, DOUT6 and DOUT7  
become serial data inputs, and DOUT0 and DOUT1 remain as  
serial data outputs under the control of the FORMATx pins. For  
the AD7768-4 the DIN pin is the daisy chain serial data input  
pin and DOUT0 is the serial data output pin.  
SYNC_IN  
When the master pulses  
and the AD7768/AD7768-4  
receive the rising edge of this signal, the digital filter is reset and  
the full settling time of the filter elapses before the data is available.  
The duration of the settling time depends on the filter path and  
decimation rate. Running one-shot mode with the sinc5 filter  
allows the fastest throughput, because this filter has a lower  
settling time than the wideband filter.  
AD7768  
START  
SYNC_OUT  
MCLK  
SYNCHRONIZATION  
LOGIC  
As soon as settled data is available on any channel, the device  
outputs data from all channels. The contents of Bit 6 of the channel  
header status bits indicates whether the data is fully settled.  
DIGITAL FILTER  
DRDY  
DOUT0  
DOUT1  
DOUT6 DOUT7 SYNC_IN  
The period before the data is settled on all channels (tSETTLE) is  
shown in Figure 103. After the data has settled on all channels,  
DSP/  
FPGA  
DRDY  
IOVDD  
is asserted high and the device outputs the required settled  
DRDY  
data on all channels before  
ures the same filter and decimation rate on each ADC, the data is  
DRDY  
is asserted low. If the user config-  
AD7768  
START  
SYNC_OUT  
DRDY  
MCLK  
MASTER  
CLOCK  
SYNCHRONIZATION  
LOGIC  
DNC  
DNC  
settled for all channels on the first  
output frame, which  
avoids a period of unsettled data prior to the settled data and  
ensures that all data is output at the same time on all ADCs. The  
DIGITAL FILTER  
DOUT0  
DOUT1  
DOUT6 DOUT7 SYNC_IN  
SYNC_IN  
device then waits for another  
more data.  
signal before outputting  
IOVDD  
Because all the ADCs are sampling continuously, one-shot mode  
affects the sampling theory of the AD7768/AD7768-4. Particularly,  
AD7768  
START  
SYNC_IN  
a user periodically sending a  
form of subsampling of the ADC output. The subsampling occurs  
SYNC_IN SYNC_IN  
pulse must be  
pulse to the device is a  
MCLK  
SYNC_OUT  
DRDY  
SYNCHRONIZATION  
LOGIC  
DNC  
DNC  
at the rate of the  
pulses. The  
DIGITAL FILTER  
DOUT0  
DOUT1  
synchronous with the master clock to ensure coherent sampling  
and to reduce the effects of jitter on the frequency response.  
DOUT6 DOUT7 SYNC_IN  
Figure 104. Daisy-Chaining Multiple AD7768 Devices  
Daisy-Chaining  
Daisy-chaining devices allows numerous devices to use the  
same data interface lines by cascading the outputs of multiple  
ADCs from separate AD7768/AD7768-4 devices. Only one  
Figure 104 shows an example of daisy-chaining AD7768 devices,  
when FORMATx = 01. In this case, the DOUT1 and DOUT0  
pins of the AD7768 devices are cascaded to the DOUT6 and  
DOUT7 pins of the next device in the chain. Data readback is  
Rev. A | Page 66 of 99  
 
Data Sheet  
AD7768/AD7768-4  
analogous to clocking a shift register where data is clocked on the  
rising edge of DCLK.  
Synchronization  
An important consideration for daisy-chaining more than two  
AD7768/AD7768-4 devices is synchronization. The basic  
provision for synchronizing multiple devices is that each device  
is clocked with the same base MCLK signal.  
The scheme operates by passing the output data of the DOUT0  
and DOUT1 pins of an AD7768 upstream device to the DOUT6  
and DOUT7 inputs of the next AD7768 device downstream in the  
chain. The data then continues through the chain until it is  
clocked onto the DOUT0 and DOUT1 pins of the final down-  
stream device in the chain.  
The AD7768/AD7768-4 offer three options to allow ease of system  
synchronization. Choosing between the options depends on the  
system, but is determined by whether the user can supply a  
synchronization pulse that is truly synchronous with the base  
MCLK signal.  
The devices in the chain must be synchronized by using one of  
the following methods:  
If the user cannot provide a signal that is synchronous to the  
base MCLK signal, one of the following two methods can be  
employed:  
SYNC_IN  
pin of all  
Applying a synchronous signal to the  
devices in the chain  
SYNC_OUT  
By routing the  
pin of the first device to the  
SYNC_IN  
SYNC_IN  
pin of that same device and to the  
START  
pulse to the first AD7768 or AD7768-4  
Apply a  
device. The first AD7768 or AD7768-4 device samples the  
pins of all other devices in the chain and applying an  
START  
asynchronous signal to the  
input.  
START  
asynchronous  
pulse and generates a pulse on  
Issuing an SPI_SYNC command over the SPI control  
interface.  
SYNC_OUT  
signal for distribution locally.  
of the first device related to the base MCLK  
Use synchronization over SPI (only available in SPI control  
mode) to write a synchronization command to the first  
Figure 104 shows the configuration where an asynchronous  
START  
SYNC_OUT  
pins of all devices  
signal is applied to the  
pin, and the  
SYNC_IN  
pin of  
START  
AD7768 or AD7768-4 device. Similarly to the  
SYNC_OUT  
pin  
of  
the first device is connected to the  
in the chain  
method, the SPI sync generates a pulse on  
the first device related to the base MCLK signal for  
distribution locally.  
Daisy chaining can be achieved in a similar manner on the  
AD7768 and AD7768-4 when using only the DOUT0 pin. In  
this case, only Pin 21 of the AD7768/AD7768-4 is used as the  
serial data input pin.  
SYNC_OUT  
In both cases, route the  
the  
pin of the first device to  
SYNC_IN  
SYNC_IN  
pins  
pin of that same device and to the  
of all other devices that are to be synchronized (see Figure 105).  
SYNC_OUT  
In a daisy-chained system of AD7768/AD7768-4 devices, two  
successive synchronization pulses must be applied to guarantee that  
all ADCs are synchronized. Two synchronization pulses are also  
required in a system of more than one AD7768/AD7768-4 device  
The  
pins of the other devices must remain open  
START  
circuit. Tie all unused  
resistors.  
pins to a Logic 1 through pull-up  
DRDY  
sharing a single MCLK signal, where the  
device is used to detect new data.  
pin of only one  
AD7768/  
AD7768-4  
START  
SYNC_OUT  
MCLK  
The maximum DCLK frequency that can be used when daisy-  
chaining devices is a function of the AD7768/AD7768-4 timing  
specifications (t4, t8, and t11 in Table 3 and Table 5) and any timing  
differences between the AD7768/AD7768-4 devices due to layout  
and spacing of devices on the PCB.  
SYNCHRONIZATION  
LOGIC  
DIGITAL FILTER  
SYNC_IN  
DRDY  
DOUT0  
DOUT1  
DSP/  
FPGA  
MASTER  
CLOCK  
Use the following formula to aid in determining the maximum  
operating frequency of the interface:  
IOVDD  
1
AD7768/  
fMAX  
=
AD7768-4  
START  
2×(t11 + t4 + t8 + tP + tSKEW  
)
SYNC_OUT  
DRDY  
MCLK  
DNC  
DNC  
SYNCHRONIZATION  
LOGIC  
where:  
MAX is the maximum useable DCLK frequency.  
t11, t4, and t8 are the AD7768/AD7768-4 timing specifications  
(see Table 3 and Table 5).  
f
DIGITAL FILTER  
SYNC_IN  
tP is the maximum propagation delay of the data between  
successive AD7768/AD7768-4 devices in the chain.  
Figure 105. Synchronizing Multiple AD7768/AD7768-4 Devices Using  
SYNC_OUT  
tSKEW is the maximum skew in the MCLK signal seen by any pair of  
AD7768/AD7768-4 devices in the chain.  
Rev. A | Page 67 of 99  
 
AD7768/AD7768-4  
Data Sheet  
If the user can provide a signal that is synchronous to the base  
The following is an example of how the CRC works for four-  
sample mode (see Figure 107):  
SYNC_IN  
MCLK, this signal can be applied directly to the  
Route the signal from a star point and connect it directly to the  
SYNC_IN  
pin.  
1. After a synchronization pulse is applied to the  
AD7768/AD7768-4, the CRC register is cleared to 0xFF.  
2. The next four 24-bit conversion data samples (N to N + 3)  
for a given channel stream into the CRC calculation.  
3. For the first three samples that are output after the  
synchronization pulse (N to N + 2), the header contains  
the normal status bits.  
4. For the fourth sample after the synchronization pulse (N +  
3), the 8-bit CRC is sent out instead of the normal header  
status bits, followed by the sample conversion data. This  
CRC calculation includes the conversion data that is output  
immediately after the CRC header.  
pin of each AD7768/AD7768-4 device (see Figure 106).  
The signal is sampled on the rising MCLK edge; setup and hold  
SYNC_IN  
times are associated with the  
AD7768/AD7768-4 MCLK rising edge.  
START  
input are relative to the  
In this case, tie the  
SYNC_OUT  
pin to Logic 1 through a pull-up  
is not used and can remain open circuit.  
resistor;  
IOVDD  
AD7768/  
AD7768-4  
START  
MCLK  
SYNCHRONIZATION  
LOGIC  
5. The CRC register is then cleared back to 0xFF and the  
cycle begins again for the fifth to eighth samples after the  
synchronization pulse.  
DIGITAL FILTER  
SYNC_IN  
DRDY  
DOUT0  
DOUT1  
DSP/  
FPGA  
It is possible to have channels outputting at different rates (for  
example decimation by 32 on Channel 0 and decimation by 64 on  
Channel 1). In such cases, the CRC header still appears across all  
IOVDD  
AD7768/  
AD7768-4  
DRDY  
channels at the same time, that is, at every fourth  
a synchronization. For the channels operating at a relatively slower  
DRDY  
pulse after  
START  
MCLK  
SYNCHRONIZATION  
LOGIC  
DRDY  
DOUT0  
DOUT1  
ODR, the CRC is still calculated and emitted every 4 or 16  
DIGITAL FILTER  
SYNC_IN  
cycles, even if this means that the nulled data is included.  
Therefore, a CRC is calculated for only nulled samples or for a  
combination of nulled samples and actual conversion data.  
Figure 106. Synchronizing Multiple AD7768/AD7768-4 Devices Using Only  
SYNC_IN  
The AD7768/AD7768-4 use a CRC polynomial to calculate the  
CRC message. The 8-bit CRC polynomial used is x8 + x2 + x + 1.  
CRC Check on Data Interface  
To generate the checksum, the data is left shifted by eight bits to  
create a number ending in eight 1s.  
The AD7768/AD7768-4 deliver 32 bits per channel as standard,  
which by default consists of 8 status header bits and 24 bits of  
data.  
The polynomial is aligned such that its MSB is adjacent to the  
leftmost Logic 1 of the data. An exclusive OR (XOR) function is  
applied to the data to produce a new, shorter number. The polyno-  
mial is again aligned such that its MSB is adjacent to the leftmost  
Logic 1 of the new result, and the procedure is repeated. This  
process repeats until the original data is reduced to a value less  
than the polynomial. This is the 8-bit checksum.  
The header bits default per the description in Table 33. However,  
there is also the option to employ a CRC check on the ADC  
conversion data. This functionality is available only when operating  
in SPI control mode. The function is controlled by CRC_SELECT  
in the interface configuration register (Register 0x07). When  
employed, the CRC message is calculated internally by the  
AD7768/AD7768-4 on a per channel basis. The CRC then  
replaces the 8-bit header every four samples or every 16 samples.  
DRDY  
DOUT0  
N – 1  
HEADER N  
8 BITS  
DATA N  
24 BITS  
HEADER N + 1  
8 BITS  
DATA N + 1  
24 BITS  
HEADER N + 2  
8 BITS  
DATA N + 2  
24 BITS  
CRC  
DATA N + 3  
24 BITS  
8 BITS  
Figure 107. CRC 4-Bit Stream  
Rev. A | Page 68 of 99  
 
 
 
Data Sheet  
AD7768/AD7768-4  
SYNC_IN  
Table 35. Wideband Filter  
to Settled Data  
Delay from First MCLK Rise After SYNC_IN  
Rise to Earliest Settled Data DRDY Rise  
Delay from First MCLK  
Rise After SYNC_IN Rise  
to First DRDY Rise  
Filter Type  
Power  
Decimation Factor  
MCLK Periods  
Mode  
Group A  
Group B  
Group A Group B  
MCLK Periods  
336  
620  
1187  
2325  
4601  
9153  
758  
758  
758  
758  
758  
758  
759  
760  
762  
782  
806  
Group A  
8400  
Group B  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
8822  
17,014  
33,526  
66,934  
133,622  
267,253  
8823  
8824  
8826  
8846  
8870  
Fast  
Wideband Wideband 32  
Wideband Wideband 64  
Wideband Wideband 128  
Wideband Wideband 256  
Wideband Wideband 512  
Wideband Wideband 1024  
Wideband Wideband 32  
Wideband Wideband 32  
Wideband Wideband 32  
Wideband Wideband 32  
Wideband Wideband 32  
Wideband Wideband 32  
Wideband Wideband 64  
Wideband Wideband 128  
Wideband Wideband 256  
Wideband Wideband 512  
Wideband Wideband 1024  
Wideband Wideband 32  
Wideband Wideband 64  
Wideband Wideband 128  
Wideband Wideband 256  
Wideband Wideband 512  
Wideband Wideband 1024  
Wideband Wideband 32  
Wideband Wideband 32  
Wideband Wideband 32  
Wideband Wideband 32  
Wideband Wideband 32  
Wideband Wideband 32  
Wideband Wideband 64  
Wideband Wideband 128  
Wideband Wideband 256  
Wideband Wideband 512  
Wideband Wideband 1024  
Wideband Wideband 32  
Wideband Wideband 64  
Wideband Wideband 128  
Wideband Wideband 256  
Wideband Wideband 512  
Wideband Wideband 1024  
Wideband Wideband 32  
Wideband Wideband 32  
Wideband Wideband 32  
Wideband Wideband 32  
Wideband Wideband 32  
Wideband Wideband 32  
Wideband Wideband 64  
Wideband Wideband 128  
Wideband Wideband 256  
Wideband Wideband 512  
Wideband Wideband 1024  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
32  
64  
128  
256  
512  
1024  
32  
32  
32  
32  
16,748  
33,443  
66,837  
133,625  
267,201  
8822  
8822  
8822  
8822  
8822  
8822  
17,015  
33,528  
66,938  
133,646  
267,302  
16,784  
33,481  
66,871  
133,659  
267,235  
534,387  
16,948  
16,948  
16,948  
16,948  
16,948  
16,948  
33,590  
66,872  
133,708  
267,332  
534,612  
67,099  
133,879  
267,439  
534,591  
1,068,895  
2,137,503  
67,099  
67,099  
67,099  
67,099  
67,099  
67,099  
134,683  
267,803  
535,067  
1,069,595  
2,137,627  
32  
Median  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
32  
64  
128  
256  
512  
1024  
32  
32  
32  
32  
656  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
16,948  
33,588  
66,868  
133,684  
267,316  
534,580  
16,950  
16,952  
16,972  
16,964  
16,980  
1225  
2359  
4635  
9187  
18,291  
820  
820  
820  
820  
820  
820  
822  
824  
844  
836  
852  
32  
Eco  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
32  
64  
128  
256  
512  
1024  
32  
32  
32  
32  
2587  
4855  
9391  
18,495  
36,703  
73,119  
2587  
2587  
2587  
2587  
2587  
2587  
2587  
2587  
2587  
2587  
2587  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
67,099  
134,683  
267,803  
535,067  
1,069,595  
2,137,627  
67,099  
67,099  
67,099  
67,099  
67,099  
32  
Rev. A | Page 69 of 99  
 
AD7768/AD7768-4  
Data Sheet  
1
SYNC_IN  
Table 36. Sinc5 Filter  
to Settled Data  
Delay from First MCLK Rise After SYNC_IN  
Rise to Earliest Settled Data DRDY Rise  
Delay from First MCLK  
Rise After SYNC_IN Rise  
to First DRDY Rise  
Filter Type  
Decimation Factor  
Group A  
MCLK Periods  
839  
Group B  
MCLK Periods  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
839  
Power  
Mode  
Group A  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Group B  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Sinc5  
Group A  
Group B  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
32  
MCLK Periods  
199  
327  
Fast  
32  
64  
1607  
3143  
6215  
128  
256  
512  
1024  
32  
32  
32  
32  
32  
32  
64  
1024  
32  
64  
128  
256  
512  
1024  
32  
32  
32  
32  
32  
32  
64  
1024  
32  
64  
128  
256  
512  
1024  
32  
32  
32  
32  
32  
583  
1095  
2119  
4167  
199  
12359  
24,647  
839  
64  
128  
256  
512  
1024  
32  
32  
199  
839  
1607  
199  
839  
3143  
199  
839  
6215  
199  
839  
12,359  
199  
839  
24,647  
199  
1607  
839  
199  
24,647  
1663  
839  
Median  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
32  
64  
128  
256  
512  
383  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
1663  
639  
3199  
6271  
12,415  
24,703  
49,279  
1663  
1151  
2175  
4223  
8319  
383  
383  
1663  
3199  
383  
1663  
6271  
398  
1663  
12,415  
398  
1663  
24,703  
1024  
32  
32  
398  
1663  
49,279  
383  
3199  
1663  
398  
49,279  
6607  
1663  
Eco  
Unused  
Unused  
Unused  
Unused  
Unused  
Unused  
32  
64  
128  
256  
512  
1487  
2511  
4559  
8655  
16,847  
33,231  
1487  
1487  
1487  
1487  
1487  
1487  
1487  
1487  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
Not applicable  
6607  
12,751  
25,039  
49,615  
98,767  
12,751  
25,039  
49,615  
98,767  
197,071  
6607  
6607  
6607  
6607  
6607  
32  
64  
1024  
1024  
32  
32  
6607  
12,751  
197,071  
197,071  
6607  
6607  
1 This table is based on default internal clock divide settings of MCLK/4 in fast mode, MCLK/8 in median mode, and MCLK/32 in eco mode.  
Rev. A | Page 70 of 99  
 
Data Sheet  
AD7768/AD7768-4  
FUNCTIONALITY  
11  
12  
13  
14  
15  
16  
FILTER/GPIO4  
MODE0/GPIO0  
MODE1/GPIO1  
MODE2/GPIO2  
MODE3/GPIO3  
ST0/CS  
GPIO FUNCTIONALITY  
The AD7768/AD7768-4 have additional GPIO functionality  
when operated in SPI mode. This fully configurable mode  
allows the device to operate five GPIOs. The GPIOx pins can be  
set as inputs or outputs (read or write) on a per pin basis.  
17 18 19 20 21 22 23 24 25  
In write mode, these GPIO pins can be used to control other  
circuits such as switches, multiplexers, buffers, over the same  
SPI interface as the AD7768/AD7768-4. Sharing the SPI interface  
in this way allows the user to use a lower overall number of data  
lines from the controller compared to a system where multiple  
control signals are required. This sharing is especially useful in  
systems where reducing the number of control lines across an  
isolation barrier is important. See Figure 108 and Figure 109 for  
details of the GPIO pin options available on the AD7768 and  
AD7768-4, respectively.  
TO DSP/FPGA  
Figure 108. AD7768 GPIO Functionality  
11  
12  
13  
14  
15  
16  
FILTER/GPIO4  
MODE0/GPIO0  
MODE1/GPIO1  
MODE2/GPIO2  
MODE3/GPIO3  
ST0/CS  
Similarly, a GPIO read is a useful feature because it allows a  
peripheral device to send information to the input GPIO and  
then this information can be read from the SPI interface of the  
AD7768/AD7768-4.  
17 18 19 20 21 22 23 24 25  
TO DSP/FPGA  
Figure 109. AD7768-4 GPIO Functionality  
Configuration control and readback of the GPIOx pins are set  
in Register 0x0E, Register 0x0F, and Register 0x10 (see Table 49,  
Table 50, and Table 51 for more information for the AD7768, and  
Table 75, Table 76, and Table 77 for the AD7768-4).  
Rev. A | Page 71 of 99  
 
 
 
 
AD7768/AD7768-4  
Data Sheet  
AD7768 REGISTER MAP DETAILS (SPI CONTROL)  
AD7768 REGISTER MAP  
See Table 63 and the AD7768-4 Register Map Details (SPI Control) section for the AD7768-4 register map and register functions.  
Table 37. Detailed AD7768 Register Map  
Reg. Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset RW  
0x00 RW  
0x0D RW  
0x0D RW  
0x00 Channel standby CH_7  
0x01 Channel Mode A  
CH_6  
CH_5  
CH_4  
CH_3  
CH_2  
CH_1  
CH_0  
Unused  
Unused  
FILTER_TYPE_A  
FILTER_TYPE_B  
CH_3_MODE  
DEC_RATE_A  
DEC_RATE_B  
CH_1_MODE  
0x02 Channel Mode B  
0x03 Channel mode  
select  
CH_7_MODE CH_6_MODE  
CH_5_MODE CH_4_MODE  
CH_2_MODE  
CH_0_MODE 0x00 RW  
0x04 POWER_MODE  
SLEEP_MODE Unused  
POWER_MODE  
LVDS_ENABLE  
Reserved  
Unused  
Unused  
MCLK_DIV  
VCM_VSEL  
0x00 RW  
0x08 RW  
0x05 General  
configuration  
Unused  
Reserved  
RETIME_EN VCM_PD  
0x06 Data control  
SPI_SYNC  
Unused  
SINGLE_SHOT_EN  
Unused  
Unused  
CRC_SELECT  
SPI_RESET  
DCLK_DIV  
0x80 RW  
0x07 Interface  
configuration  
Unused  
0x0  
0x0  
0x0  
RW  
RW  
R
0x08 BIST control  
RAM_BIST_  
START  
0x09 Device status  
Unused  
CHIP_ERROR  
REVISION_ID  
NO_CLOCK_  
ERROR  
RAM_BIST_PASS RAM_BIST_  
RUNNING  
0x0A Revision ID  
0x0B Reserved  
0x0C Reserved  
0x0D Reserved  
0x0E GPIO control  
0x06  
0x00  
0x00  
0x00  
R
R
R
R
Reserved  
Reserved  
Reserved  
UGPIO_  
ENABLE  
Unused  
GPIOE4_FILTER GPIOE3_MODE3 GPIOE2_MODE2 GPIOE1_MODE1 GPIO0_MODE0 0x00 RW  
0x0F GPIO write data  
0x10 GPIO read data  
Unused  
Unused  
GPIO4_WRITE  
GPIO4_READ  
GPIO3_WRITE  
GPIO3_READ  
GPIO2_WRITE  
GPIO2_READ  
GPIO1_WRITE  
GPIO1_READ  
GPIO0_WRITE 0x00 RW  
GPIO0_READ 0x00  
R
0x11 Precharge Buffer 1 CH3_PREBUF_ CH3_PREBUF_ CH2_PREBUF_ CH2_PREBUF_  
NEG_EN POS_EN NEG_EN POS_EN  
0x12 Precharge Buffer 2 CH7_PREBUF_ CH7_PREBUF_ CH6_PREBUF_ CH6_PREBUF_  
CH1_PREBUF_  
NEG_EN  
CH1_PREBUF_  
POS_EN  
CH0_PREBUF_  
NEG_EN  
CH0_PREBUF_ 0xFF RW  
POS_EN  
CH5_PREBUF_  
NEG_EN  
CH5_PREBUF_  
POS_EN  
CH4_PREBUF_  
NEG_EN  
CH4_PREBUF_ 0xFF RW  
POS_EN  
NEG_EN  
POS_EN  
NEG_EN  
POS_EN  
0x13 Positive reference CH7_REFP_  
precharge buffer BUF  
CH6_REFP_  
BUF  
CH5_REFP_ CH4_REFP_BUF CH3_REFP_BUF CH2_REFP_BUF CH1_REFP_BUF CH0_REFP_  
BUF BUF  
CH5_REFN_ CH4_REFN_BUF CH3_REFN_BUF CH2_REFN_BUF CH1_REFN_BUF CH0_REFN_  
BUF BUF  
0x00 RW  
0x00 RW  
0x00 RW  
0x14 Negative reference CH7_REFN_  
CH6_REFN_  
BUF  
precharge buffer  
BUF  
0x1E Channel 0 offset  
CH0_OFFSET_MSB  
CH0_OFFSET_MID  
CH0_OFFSET_LSB  
CH1_OFFSET_MSB  
CH1_OFFSET_MID  
CH1_OFFSET_LSB  
CH2_OFFSET_MSB  
CH2_OFFSET_MID  
CH2_OFFSET_LSB  
CH3_OFFSET_MSB  
CH3_OFFSET_MID  
CH3_OFFSET_LSB  
CH4_OFFSET_MSB  
CH4_OFFSET_MID  
CH4_OFFSET_LSB  
CH5_OFFSET_MSB  
CH5_OFFSET_MID  
CH5_OFFSET_LSB  
CH6_OFFSET_MSB  
CH6_OFFSET_MID  
CH6_OFFSET_LSB  
CH7_OFFSET_MSB  
CH7_OFFSET_MID  
CH7_OFFSET_LSB  
0x1F  
0x20  
0x21 Channel 1 offset  
0x00 RW  
0x00 RW  
0x00 RW  
0x00 RW  
0x00 RW  
0x00 RW  
0x00 RW  
0x22  
0x23  
0x24 Channel 2 offset  
0x25  
0x26  
0x27 Channel 3 offset  
0x28  
0x29  
0x2A Channel 4 offset  
0x2B  
0x2C  
0x2D Channel 5 offset  
0x2E  
0x2F  
0x30 Channel 6 offset  
0x31  
0x32  
0x33 Channel 7 offset  
0x34  
0x35  
Rev. A | Page 72 of 99  
 
 
Data Sheet  
AD7768/AD7768-4  
Reg. Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset RW  
0x36 Channel 0 gain  
CH0_GAIN_MSB  
CH0_GAIN_MID  
CH0_GAIN_LSB  
CH1_GAIN_MSB  
CH1_GAIN_MID  
CH1_GAIN_LSB  
CH2_GAIN_MSB  
CH2_GAIN_MID  
CH2_GAIN_LSB  
CH3_GAIN_MSB  
CH3_GAIN_MID  
CH3_GAIN_LSB  
CH4_GAIN_MSB  
CH4_GAIN_MID  
CH4_GAIN_LSB  
CH5_GAIN_MSB  
CH5_GAIN_MID  
CH5_GAIN_LSB  
CH6_GAIN_MSB  
CH6_GAIN_MID  
CH6_GAIN_LSB  
CH7_GAIN_MSB  
CH7_GAIN_MID  
CH7_GAIN_LSB  
CH0_SYNC_OFFSET  
0xXX RW  
0x37  
0x38  
0x39 Channel 1 gain  
0xXX RW  
0xXX RW  
0xXX RW  
0xXX RW  
0xXX RW  
0xXX RW  
0xXX RW  
0x3A  
0x3B  
0x3C Channel 2 gain  
0x3D  
0x3E  
0x3F Channel 3 gain  
0x40  
0x41  
0x42 Channel 4 gain  
0x43  
0x44  
0x45 Channel 5 gain  
0x46  
0x47  
0x48 Channel 6 gain  
0x49  
0x4A  
0x4B Channel 7 gain  
0x4C  
0x4D  
0x4E Channel 0 sync  
offset  
0x00 RW  
0x00 RW  
0x00 RW  
0x00 RW  
0x00 RW  
0x00 RW  
0x00 RW  
0x00 RW  
0x00 RW  
0x00 RW  
0x02 RW  
0x0A RW  
0x4F Channel 1 sync  
offset  
CH1_SYNC_OFFSET  
CH2_SYNC_OFFSET  
CH3_SYNC_OFFSET  
CH4_SYNC_OFFSET  
CH5_SYNC_OFFSET  
CH6_SYNC_OFFSET  
CH7_SYNC_OFFSET  
CH3_RX  
0x50 Channel 2 sync  
offset  
0x51 Channel 3 sync  
offset  
0x52 Channel 4 sync  
offset  
0x53 Channel 5 sync  
offset  
0x54 Channel 6 sync  
offset  
0x55 Channel 7 sync  
offset  
0x56 Diagnostic receiver CH7_RX  
(Rx)  
CH6_RX  
CH5_RX  
CH4_RX  
CH2_RX  
CH1_RX  
CH0_RX  
0x57 Diagnostic mux  
control  
Unused  
GRPB_SEL  
Unused  
Unused  
Unused  
GRPA_SEL  
Reserved  
GRPB_CHOP  
0x58 Modulator delay  
control  
CLK_MOD_DEL_EN  
GRPA_CHOP  
0x59 Chop control  
Rev. A | Page 73 of 99  
AD7768/AD7768-4  
Data Sheet  
CHANNEL STANDBY REGISTER  
Address: 0x00, Reset: 0x00, Name: Channel Standby  
Each of the ADC channels can be put into standby mode independently by setting the appropriate bit in the channel standby register.  
When a channel is in standby mode, its position in the data output stream is held. The 8-bit header is all zeros, as is the conversion result  
output of 24 zeros.  
The VCM voltage output is associated with the Channel 0 circuitry. If Channel 0 is put into standby mode, the VCM voltage output is also  
disabled for maximum power savings. Channel 0 must be enabled while VCM is being used externally to the AD7768.  
The crystal excitation circuitry is associated with the Channel 4 circuitry. If Channel 4 is put into standby mode, the crystal circuitry is  
also disabled for maximum power savings. Channel 4 must be enabled while the external crystal is used on the AD7768.  
Table 38. Bit Descriptions for Channel Standby  
Bits  
Bit Name  
Settings  
Description  
Channel 7  
Enabled  
Standby  
Channel 6  
Enabled  
Standby  
Channel 5  
Enabled  
Standby  
Channel 4  
Enabled  
Standby  
Channel 3  
Enabled  
Standby  
Channel 2  
Enabled  
Standby  
Channel 1  
Enabled  
Standby  
Channel 0  
Enabled  
Standby  
Reset  
Access  
7
CH_7  
0x0  
RW  
0
1
6
5
4
3
2
1
0
CH_6  
CH_5  
CH_4  
CH_3  
CH_2  
CH_1  
CH_0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
CHANNEL MODE A REGISTER  
Address: 0x01, Reset: 0x0D, Name: Channel Mode A  
Two mode options are available on the AD7768 ADCs. The channel modes are defined by the contents of the Channel Mode A and  
Channel Mode B registers. Each mode is then mapped as desired to the required ADC channel. Channel Mode A and Channel Mode B  
allow different filter types and decimation rates to be selected and mapped to any of the ADC channels.  
When different decimation rates are selected, the AD7768 output a data ready signal at the fastest selected decimation rate. Any channel  
that runs at a lower output data rate is updated only at that slower rate. In between valid result data, the data for that channel is set to zero  
and the repeated data bit is set in the header status bits to distinguish it from a real conversion result (see the ADC Conversion Output:  
Header and Data section).  
Rev. A | Page 74 of 99  
 
 
 
Data Sheet  
AD7768/AD7768-4  
Table 39. Bit Descriptions for Channel Mode A  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
3
FILTER_TYPE_A  
Filter selection  
Wideband filter  
Sinc5 filter  
0x1  
RW  
0
1
[2:0]  
DEC_RATE_A  
Decimation rate selection  
0x5  
RW  
000 ×32  
001 ×64  
010 ×128  
011 ×256  
100 ×512  
101 ×1024  
110 ×1024  
111 ×1024  
CHANNEL MODE B REGISTER  
Address: 0x02, Reset: 0x0D, Name: Channel Mode B  
Table 40. Bit Descriptions for Channel Mode B  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
3
FILTER_TYPE_B  
Filter selection  
Wideband filter  
Sinc5 filter  
0x1  
RW  
0
1
[2:0]  
DEC_RATE_B  
Decimation rate selection  
0x5  
RW  
000 ×32  
001 ×64  
010 ×128  
011 ×256  
100 ×512  
101 ×1024  
110 ×1024  
111 ×1024  
CHANNEL MODE SELECT REGISTER  
Address: 0x03, Reset: 0x00, Name: Channel Mode Select  
This register selects the mapping of each ADC channel to either Channel Mode A or Channel Mode B.  
Table 41. Bit Descriptions for Channel Mode Select  
Bits  
7
Bit Name  
CH_7_MODE  
Settings  
Description  
Channel 7  
Mode A  
Reset  
0x0  
Access  
RW  
0
1
Mode B  
6
5
4
3
CH_6_MODE  
CH_5_MODE  
CH_4_MODE  
CH_3_MODE  
Channel 6  
Mode A  
Mode B  
Channel 5  
Mode A  
Mode B  
Channel 4  
Mode A  
Mode B  
Channel 3  
Mode A  
Mode B  
0x0  
0x0  
0x0  
0x0  
RW  
RW  
RW  
RW  
0
1
0
1
0
1
0
1
Rev. A | Page 75 of 99  
 
 
AD7768/AD7768-4  
Data Sheet  
Bits  
2
Bit Name  
CH_2_MODE  
Settings  
Description  
Channel 2  
Mode A  
Reset  
0x0  
Access  
RW  
0
1
Mode B  
1
0
CH_1_MODE  
CH_0_MODE  
Channel 1  
Mode A  
Mode B  
Channel 0  
Mode A  
Mode B  
0x0  
0x0  
RW  
RW  
0
1
0
1
POWER MODE SELECT REGISTER  
Address: 0x04, Reset: 0x00, Name: POWER_MODE  
Table 42. Bit Descriptions for POWER_MODE  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
7
SLEEP_MODE  
In sleep mode, many of the digital clocks are disabled and all of the ADCs  
are disabled. The analog LDOs are not disabled.  
0x0  
RW  
The AD7768 SPI is live and is available to the user. Writing to this bit brings  
the AD7768 out of sleep mode again.  
0
1
Normal operation.  
Sleep mode.  
[5:4]  
POWER_MODE  
Power mode. The power mode bits control the power mode setting for  
the bias currents used on all ADCs on the AD7768. The user can select the  
current consumption target to meet the application. The power modes of  
fast, median, and eco give optimum performance when mapped to the  
correct MCLK division setting. These power mode bits do not control the  
MCLK division of the ADCs. See the MCLK_DIV bits for control of the  
division of the MCLK input.  
0x0  
RW  
00 Eco mode.  
10 Median mode.  
11 Fast mode.  
LVDS clock.  
3
LVDS_ENABLE  
MCLK_DIV  
0x0  
0x0  
RW  
RW  
0
1
LVDS input clock disabled.  
LVDS input clock enabled.  
[1:0]  
MCLK division. The MCLK division bits control the divided ratio between  
the MCLK applied at the input to the AD7768 and the clock used by each  
of the ADC modulators. The appropriate division ratio depends on the  
following factors: power mode, decimation rate, and the base MCLK  
available in the system. See the Clocking, Sampling Tree, and Power Scaling  
section for more information on setting MCLK_DIV correctly.  
00 MCLK/32: with a base MCLK of 32.768 MHz, set to MCLK/32 for eco mode.  
10 MCLK/8: with a base MCLK of 32.768 MHz, set to MCLK/8 for median mode.  
11 MCLK/4: with a base MCLK of 32.768 MHz, set to MCLK/4 for fast mode.  
GENERAL DEVICE CONFIGURATION REGISTER  
Address: 0x05, Reset: 0x08, Name: General Configuration  
Table 43. Bit Descriptions for General Configuration  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
5
RETIME_EN  
SYNC_OUT signal retime enable bit.  
Disabled: normal timing of SYNC_OUT.  
0x0  
RW  
0
1
Enabled: SYNC_OUT signal derived from alternate MCLK  
edge.  
Rev. A | Page 76 of 99  
 
 
 
Data Sheet  
AD7768/AD7768-4  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
4
VCM_PD  
VCM buffer power-down.  
0x0  
RW  
0
1
Enabled: VCM buffer normal mode.  
Powered down: VCM buffer powered down.  
[1:0]  
VCM_VSEL  
VCM voltage. These bits select the output voltage of the  
VCM pin. This voltage is derived from the AVDD1 supply  
and can be output as half of that AVDD1 voltage, or other  
fixed voltages, with respect to AVSS. The VCM voltage  
output is associated with the Channel 0 circuitry. If  
Channel 0 is put into standby mode, the VCM voltage  
output is also disabled for maximum power savings.  
Channel 0 must be enabled while VCM is being used  
externally to the AD7768.  
0x0  
RW  
00 (AVDD1 − AVSS)/2 V.  
01 1.65 V.  
10 2.5 V.  
11 2.14 V.  
DATA CONTROL: SOFT RESET, SYNC, AND SINGLE-SHOT CONTROL REGISTER  
Address: 0x06, Reset: 0x80, Name: Data Control  
Table 44. Bit Descriptions for Data Control  
Bits Bit Name  
Settings Description  
Software synchronization of the AD7768. This command has the same effect as  
START  
Reset Access  
7
SPI_SYNC  
0x1  
RW  
sending a signal pulse to the  
pin. To operate the SPI_SYNC, the user must  
write to this bit two separate times. First, write a zero, putting SPI_SYNC low, and  
then write a 1 to set SPI_SYNC logic high again. The SPI_SYNC command is recog-  
nized after the last rising edge of SCLK in the SPI instruction where the SPI_SYNC  
bit is changed from low to high. The SPI_SYNC command is then output synchro-  
SYNC_OUT  
nous to the AD7768 MCLK on the  
pin. The user must connect the  
SYNC_OUT  
SYNC_IN  
SYNC_OUT  
signal to the  
pin on the PCB. The pin can also be  
SYNC_IN  
routed to the  
pins of other AD7768 devices, allowing larger channel  
count simultaneous sampling systems. As per any synchronization pulse seen by  
SYNC_IN  
the  
pin, the digital filters of the AD7768 are reset. The full settling time  
of the filters must elapse before data is output on the data interface. In a daisy-  
chained system of AD7768 devices, two successive synchronization pulses must  
be applied to guarantee that all ADCs are synchronized. Two synchronization  
pulses are also required in a system of more than one AD7768 device sharing a  
DRDY  
single MCLK signal, where the  
data.  
pin of only one device is used to detect new  
0
1
Change to SPI_SYNC low.  
Change to SPI_SYNC high.  
4
SINGLE_SHOT_EN  
One-shot mode. Enables one-shot mode. In one-shot mode, the AD7768 output  
0x0  
0x0  
RW  
RW  
SYNC_IN  
a conversion result in response to a  
rising edge.  
0
1
Disabled.  
Enabled.  
[1:0] SPI_RESET  
Soft reset. These bits allow a full device reset over the SPI port. Two successive  
commands must be received in the correct order to generate a reset: first, write  
0x03 to the soft reset register, and then write 0x02 to the soft reset register. This  
sequence causes the digital core to reset and all registers return to their default  
values. Following a soft reset, if the SPI master sends a command to the AD7768,  
the devices respond on the next frame to that command with an output of  
0x0E00.  
00 No effect.  
01 No effect.  
10 Second reset command.  
11 First reset command.  
Rev. A | Page 77 of 99  
 
 
AD7768/AD7768-4  
Data Sheet  
INTERFACE CONFIGURATION REGISTER  
Address: 0x07, Reset: 0x0, Name: Interface Configuration  
Table 45. Bit Descriptions for Interface Configuration  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[3:2]  
CRC_SELECT  
CRC select. These bits allow the user to implement a CRC on the data  
interface. When selected, the CRC replaces the header every fourth or 16th  
output sample depending on the CRC option chosen. There are two  
options for the CRC; both use the same polynomial: x8 + x2 + x + 1. The  
options offer the user the ability to reduce the duty cycle of the CRC  
calculation by performing it less often: in the case of having it every 16th  
sample or more often in the case of every fourth conversion. The CRC is  
calculated on a per channel basis and it includes conversion data only.  
0x0  
RW  
00 No CRC. Status bits with every conversion.  
01 Replace the header with CRC message every 4 samples.  
10 Replace the header with CRC message every 16 samples.  
11 Replace the header with CRC message every 16 samples.  
[1:0]  
DCLK_DIV  
DCLK divider. These bits control division of the DCLK clock used to clock  
out conversion data on the DOUTx pins. The DCLK signal is derived from  
the MCLK applied to the AD7768. The DCLK divide mode allows the user  
to optimize the DCLK output to fit the application. Optimizing the DCLK  
per application depends on the requirements of the user. When the  
AD7768 are using the highest capacity output on the fewest DOUTx pins,  
for example, running in decimate by 32 using the DOUT0 and DOUT1  
pins, the DCLK must equal the MCLK; thus, in this case, choosing the no  
division setting is the only way the user can output all the data within the  
conversion period. There are other cases, however, when the ADC may be  
running in fast mode with high decimation rates, or in median or eco  
mode where the DCLK does not need to run at the same speed as MCLK.  
In these cases, the DCLK divide allows the user to reduce the clock speed  
and makes routing and isolating such signals easier.  
0x0  
RW  
00 Divide by 8.  
01 Divide by 4.  
10 Divide by 2.  
11 No division.  
DIGITAL FILTER RAM BUILT IN SELF TEST (BIST) REGISTER  
Address: 0x08, Reset: 0x0, Name: BIST Control  
Table 46. Bit Descriptions for BIST Control  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
0
RAM_BIST_START  
RAM BIST. Filter RAM BIST is a built in self test of the internal RAM. Normal  
ADC conversion is disrupted when this test is run. A synchronization pulse  
is required after this test is complete to resume normal ADC operation.  
The test can be run at intervals depending on user preference. The status  
and result of the RAM BIST is available in the device status register; see the  
RAM_BIST_PASS and RAM_BIST_RUNNING bits in Table 47.  
0x0  
RW  
0
1
Off.  
Begin RAM BIST.  
Rev. A | Page 78 of 99  
 
 
 
Data Sheet  
AD7768/AD7768-4  
STATUS REGISTER  
Address: 0x09, Reset: 0x0, Name: Device Status  
Table 47. Bit Descriptions for Device Status  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
3
CHIP_ERROR  
Chip error. Chip error is a global error flag that is output within the  
status byte of each ADC conversion output. The following bits lead to  
the chip error bit being set to logic high: CRC check on internally hard  
coded settings after power-up does not pass; XOR check on the internal  
memory does not pass (this check runs continuously in the background);  
and clock error is detected on power-up.  
0x0  
R
0
1
No error present.  
Error has occurred.  
2
NO_CLOCK_ERROR  
External clock check. This bit indicates whether the externally applied  
MCLK is detected correctly. If the MCLK is not applied correctly to the  
ADC at power-up, this bit is set and the DCLK frequency is approximately  
16 MHz. If this bit is set, the chip error bit is set to logic high in the  
status bits of the data output headers, and the conversion results are  
output as all zeros regardless of the analog input voltages applied to  
the ADC channels.  
0x0  
R
0
1
MCLK detected.  
No MCLK detected.  
1
0
RAM_BIST_PASS  
BIST pass/fail. RAM BIST result status. This bit indicates the result of the  
most recent RAM BIST. The result is latched to this register and is only  
cleared by a device reset.  
BIST failed or not run.  
BIST passed.  
0x0  
0x0  
R
R
0
1
RAM_BIST_RUNNING  
BIST status. Reading back the value of this bit allows the user to poll  
when the BIST test has finished.  
0
1
BIST not running.  
BIST running.  
REVISION IDENTIFICATION REGISTER  
Address: 0x0A, Reset: 0x06, Name: Revision ID  
Table 48. Bit Descriptions for Revision ID  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:0]  
REVISION_ID  
ASIC revision. 8-bit ID for revision details.  
0x06  
R
GPIO CONTROL REGISTER  
Address: 0x0E, Reset: 0x00, Name: GPIO Control  
Table 49. Bit Descriptions for GPIO Control  
Bits  
Bit Name  
Setting  
Description  
Reset  
Access  
7
UGPIO_ENABLE  
User GPIO enable. The GPIOx pins are dual-purpose and can be operated only  
when the device is in SPI control mode. By default, when the AD7768 are powered  
up in SPI control mode, the GPIOx pins are disabled. This bit is a universal enable/  
disable for all GPIOx input/outputs. The direction of each general-purpose pin  
is determined by Bits[4:0] of this register.  
0x0  
RW  
0
1
GPIO Disabled.  
GPIO Enabled.  
4
GPIOE4_FILTER  
GPIO4 Direction. This bit assigns the direction of GPIO4 as either an input or an 0x0  
output. For SPI control, GPIO4 maps to Pin 11, which is the FILTER/GPIO4 pin.  
RW  
0
1
Input.  
Output.  
Rev. A | Page 79 of 99  
 
 
 
 
 
 
AD7768/AD7768-4  
Data Sheet  
Bits  
Bit Name  
Setting  
Description  
Reset  
Access  
3
GPIOE3_MODE3  
GPIO3 Direction. This bit assigns the direction of GPIO3 as either an input or  
an output. For SPI control, GPIO3 maps to Pin 15, which is the MODE3/GPIO3 pin.  
0x0  
RW  
0
1
Input.  
Output.  
2
1
0
GPIOE2_MODE2  
GPIOE1_MODE1  
GPIO0_MODE0  
GPIO2 Direction. This bit assigns the direction of GPIO2 as either an input or an 0x0  
output. For SPI control, GPIO2 maps to Pin 14, which is the MODE2/GPIO2 pin.  
Input.  
RW  
RW  
RW  
0
1
Output.  
GPIO1 Direction. This bit assigns the direction of GPIO1 as either an input or an 0x0  
output. For SPI control, GPIO1 maps to Pin 13, which is the MODE1/GPIO1 pin.  
Input.  
0
1
Output.  
GPIO0 Direction. This bit assigns the direction of GPIO0 as either an input or  
an output. For SPI control, GPIO0 maps to Pin 12, which is the MODE0/GPIO0 pin.  
0x0  
0
1
Input.  
Output.  
GPIO WRITE DATA REGISTER  
Address: 0x0F, Reset: 0x00, Name: GPIO Write Data  
This register writes the values to be set on each of the general-purpose pins when selected as general-purpose outputs. Each bit, from  
Bits[4:0], maps directly to the GPIOx pins.  
Table 50. Bit Descriptions for GPIO Write Data  
Bits  
4
3
2
1
0
Bit Name  
Description  
Reset  
0x0  
0x0  
0x0  
0x0  
Access  
RW  
RW  
RW  
RW  
GPIO4_WRITE  
GPIO3_WRITE  
GPIO2_WRITE  
GPIO1_WRITE  
GPIO0_WRITE  
GPIO4/FILTER  
GPIO3/MODE3  
GPIO2/MODE2  
GPIO1/MODE1  
GPIO0/MODE0  
0x0  
RW  
GPIO READ DATA REGISTER  
Address: 0x10, Reset: 0x00, Name: GPIO Read Data  
This register reads back the value of the logic input level at the general-purpose pins when selected to operate as general-purpose inputs.  
Each bit, from Bits[4:0], maps directly to the GPIO0 to GPIO4 pins.  
Table 51. Bit Descriptions for GPIO Read Data  
Bits  
4
3
2
1
0
Bit Name  
Description  
Reset  
0x0  
0x0  
0x0  
0x0  
Access  
GPIO4_READ  
GPIO3_READ  
GPIO2_READ  
GPIO1_READ  
GPIO0_READ  
GPIO4/FILTER  
GPIO3/MODE3  
GPIO2/MODE2  
GPIO1/MODE1  
GPIO0/MODE0  
R
R
R
R
R
0x00  
ANALOG INPUT PRECHARGE BUFFER ENABLE REGISTER CHANNEL 0 TO CHANNEL 3  
Address: 0x11, Reset: 0xFF, Name: Precharge Buffer 1  
This register turns on or off the precharge buffers on the analog inputs. When writing to these registers, the user must write the inverse of  
the required bit settings. For example, to clear Bit 7 of this register, the user must write 0x01 to the register. This clears Bit 7 and sets all  
other bits. If the user reads the register again after writing 0x01, the data read is 0xFE, as required.  
Table 52. Bit Descriptions for Precharge Buffer 1  
Bits  
Bit Name  
Settings  
Description  
Reset  
7
CH3_PREBUF_NEG_EN  
0
1
Off  
On  
0x1  
Rev. A | Page 80 of 99  
 
 
 
 
 
 
Data Sheet  
AD7768/AD7768-4  
Bits  
6
Bit Name  
Settings  
Description  
Off  
On  
Reset  
0x1  
CH3_PREBUF_POS_EN  
CH2_PREBUF_NEG_EN  
CH2_PREBUF_POS_EN  
CH1_PREBUF_NEG_EN  
CH1_PREBUF_POS_EN  
CH0_PREBUF_NEG_EN  
CH0_PREBUF_POS_EN  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
5
4
3
2
1
0
Off  
On  
Off  
On  
Off  
On  
Off  
On  
Off  
On  
Off  
On  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
ANALOG INPUT PRECHARGE BUFFER ENABLE REGISTER CHANNEL 4 TO CHANNEL 7  
Address: 0x12, Reset: 0xFF, Name: Precharge Buffer 2  
This register turns on or off the precharge buffers on the analog inputs. When writing to these registers, the user must write the inverse of  
the required bit settings. For example, to clear Bit 7 of this register, the user must write 0x01 to the register. This clears Bit 7 and sets all  
other bits. If the user reads the register again after writing 0x01, the data read is 0xFE, as required.  
Table 53. Bit Descriptions for Precharge Buffer 2  
Bits  
7
Bit Name  
CH7_PREBUF_NEG_EN  
Settings  
Description  
Off  
On  
Reset  
0x1  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
6
5
4
3
2
1
0
CH7_PREBUF_POS_EN  
CH6_PREBUF_NEG_EN  
CH6_PREBUF_POS_EN  
CH5_PREBUF_NEG_EN  
CH5_PREBUF_POS_EN  
CH4_PREBUF_NEG_EN  
CH4_PREBUF_POS_EN  
Off  
On  
Off  
On  
Off  
On  
Off  
On  
Off  
On  
Off  
On  
Off  
On  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
0x1  
POSITIVE REFERENCE PRECHARGE BUFFER ENABLE REGISTER  
Address: 0x13, Reset: 0x00, Name: Positive Reference Precharge Buffer  
This register turns on or off the precharge buffers on the reference positive input to each of the ADCs from Channel 0 to Channel 7.  
Table 54. Bit Descriptions for Positive Reference Precharge Buffer  
Bits  
Bit Name  
Settings  
Description  
Reset  
7
CH7_REFP_BUF  
0
1
0
1
0
1
Off  
On  
Off  
On  
Off  
On  
0x0  
6
5
CH6_REFP_BUF  
CH5_REFP_BUF  
0x0  
0x0  
Rev. A | Page 81 of 99  
 
 
 
 
AD7768/AD7768-4  
Data Sheet  
Bits  
Bit Name  
Settings  
Description  
Reset  
4
CH4_REFP_BUF  
0
1
0
1
0
1
0
1
0
1
Off  
On  
Off  
On  
Off  
On  
Off  
On  
Off  
On  
0x0  
3
2
1
0
CH3_REFP_BUF  
CH2_REFP_BUF  
CH1_REFP_BUF  
CH0_REFP_BUF  
0x0  
0x0  
0x0  
0x0  
NEGATIVE REFERENCE PRECHARGE BUFFER ENABLE REGISTER  
Address: 0x14, Reset: 0x00, Name: Negative Reference Precharge Buffer  
This register turns on or off the precharge buffers on the reference negative input to each of the ADCs from Channel 0 to Channel 7.  
Table 55. Bit Descriptions for Negative Reference Precharge Buffer  
Bits  
7
Bit Name  
CH7_REFN_BUF  
Settings  
Description  
Off  
On  
Off  
On  
Off  
On  
Off  
On  
Off  
On  
Off  
On  
Reset  
0x0  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
6
5
4
3
2
1
0
CH6_REFN_BUF  
CH5_REFN_BUF  
CH4_REFN_BUF  
CH3_REFN_BUF  
CH2_REFN_BUF  
CH1_REFN_BUF  
CH0_REFN_BUF  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
Off  
On  
Off  
On  
OFFSET REGISTERS  
The CHx_OFFSET_MSB, CHx_OFFSET_MID, and CHx_OFFSET_LSB registers are 24-bit, signed twos complement registers for channel  
offset adjustment. If the channel gain setting is at its ideal nominal value of 0x555555, an LSB of offset register adjustment changes the digital  
output by −4/3 LSBs. For example, changing the offset register from 0 to 100 changes the digital output by −133 LSBs. As offset adjustment  
occurs before gain adjustment, the ratio of 4/3 changes linearly with gain adjustment via the CHx_GAIN_x registers. After a reset or power  
cycle, the register values revert to the default factory setting.  
Table 56. Per Channel 24-Bit Offset Registers, Three 8-Bit Registers for Each Channel, Split Up as MSB, MID, and LSB  
Address  
Reset  
MSB Mid  
LSB  
Name  
Description  
MSB Mid  
LSB  
Access  
0x1E 0x1F 0x20 Channel 0 offset Channel 0 offset registers: upper, middle, and lower bytes (24 bits in total) 0x00 0x00 0x00 RW  
0x21 0x22 0x23 Channel 1 offset Channel 1 offset registers: upper, middle, and lower bytes (24 bits in total) 0x00 0x00 0x00 RW  
0x24 0x25 0x26 Channel 2 offset Channel 2 offset registers: upper, middle, and lower bytes (24 bits in total) 0x00 0x00 0x00 RW  
0x27 0x28 0x29 Channel 3 offset Channel 3 offset registers: upper, middle, and lower bytes (24 bits in total) 0x00 0x00 0x00 RW  
0x2A 0x2B 0x2C Channel 4 offset Channel 4 offset registers: upper, middle, and lower bytes (24 bits in total) 0x00 0x00 0x00 RW  
0x2D 0x2E 0x2F Channel 5 offset Channel 5 offset registers: upper, middle, and lower bytes (24 bits in total) 0x00 0x00 0x00 RW  
0x30 0x31 0x32 Channel 6 offset Channel 6 offset registers: upper, middle, and lower bytes (24 bits in total) 0x00 0x00 0x00 RW  
0x33 0x34 0x35 Channel 7 offset Channel 7 offset registers: upper, middle, and lower bytes (24 bits in total) 0x00 0x00 0x00 RW  
Rev. A | Page 82 of 99  
 
 
 
 
 
 
Data Sheet  
AD7768/AD7768-4  
GAIN REGISTERS  
Each ADC channel has an associated gain coefficient. The coefficient is stored in three single-byte registers split up as MSB, MID, and  
LSB. Each of the gain registers are factory programmed. Nominally, this gain is around the value 0x555555 (for an ADC channel). The  
user may overwrite the gain register setting however, after a reset or power cycle, the gain register values revert to the hard coded  
programmed factory setting.  
Table 57. Per Channel 24-Bit Gain Registers, 3 8-Bit Registers for Each Channel, Split Up as MSB, MID, and LSB  
Address  
MSB Mid  
0x36 0x37  
0x39 0x3A 0x3B Channel 1 gain  
0x3C 0x3D 0x3E Channel 2 gain  
Reset  
LSB  
Name  
Description  
MSB Mid  
LSB  
Access  
0x38 Channel 0 gain  
Channel 0 gain registers: upper, middle, and lower bytes (24 bits in total)  
Channel 1 gain registers: upper, middle, and lower bytes (24 bits in total)  
Channel 2 gain registers: upper, middle, and lower bytes (24 bits in total)  
Channel 3 gain registers: upper, middle, and lower bytes (24 bits in total)  
Channel 4 gain registers: upper, middle, and lower bytes (24 bits in total)  
Channel 5 gain registers: upper, middle, and lower bytes (24 bits in total)  
Channel 6 gain registers: upper, middle, and lower bytes (24 bits in total)  
Channel 7 gain registers: upper, middle, and lower bytes (24 bits in total)  
0xXX 0xXX 0xXX RW  
0xXX 0xXX 0xXX RW  
0xXX 0xXX 0xXX RW  
0xXX 0xXX 0xXX RW  
0xXX 0xXX 0xXX RW  
0xXX 0xXX 0xXX RW  
0xXX 0xXX 0xXX RW  
0xXX 0xXX 0xXX RW  
0x3F 0x40  
0x42 0x43  
0x45 0x46  
0x48 0x49  
0x41 Channel 3 gain  
0x44 Channel 4 gain  
0x47 Channel 5 gain  
0x4A Channel 6 gain  
0x4B 0x4C 0x4D Channel 7 gain  
SYNC PHASE OFFSET REGISTERS  
The AD7768 have one synchronization signal for all channels. The sync phase offset register allows the user to vary the phase delay on  
SYNC_IN  
each of the channels relative to the synchronization edge received on the  
details on the use of this function.  
pin. See the Sync Phase Offset Adjustment section for  
Table 58. Per Channel 8-Bit Sync Phase Offset Registers  
Address  
0x4E  
0x4F  
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
Name  
Description  
Reset  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
0x00  
Access  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
RW  
Channel 0 sync offset  
Channel 1 sync offset  
Channel 2 sync offset  
Channel 3 sync offset  
Channel 4 sync offset  
Channel 5 sync offset  
Channel 6 sync offset  
Channel 7 sync offset  
Channel 0 sync phase offset register  
Channel 1 sync phase offset register  
Channel 2 sync phase offset register  
Channel 3 sync phase offset register  
Channel 4 sync phase offset register  
Channel 5 sync phase offset register  
Channel 6 sync phase offset register  
Channel 7 sync phase offset register  
ADC DIAGNOSTIC RECEIVE SELECT REGISTER  
Address: 0x56, Reset: 0x00, Name: Diagnostic Rx  
The AD7768 ADC diagnostic allows the user to select a zero-scale, positive full-scale, or negative full-scale input to the ADC, which can  
be converted to verify the correct operation of the ADC channel. This register enables the diagnostic. Enable the receive (Rx) for each  
channel and set each bit in this register to 1.  
The ADC diagnostic feature depends on some features of the analog input precharge buffers. The user must ensure that the analog input  
precharge buffers are enabled on the channels that are selected to receive the diagnostic voltages internally.  
Table 59. Bit Descriptions for Diagnostic Rx  
Bits  
7
Bit Name  
CH7_RX  
Settings  
Description  
Channel 7  
Not in use  
Receive  
Reset  
0x0  
Access  
RW  
0
1
6
5
CH6_RX  
CH5_RX  
Channel 6  
Not in use  
Receive  
Channel 5  
Not in use  
Receive  
0x0  
0x0  
RW  
RW  
0
1
0
1
Rev. A | Page 83 of 99  
 
 
 
 
 
 
AD7768/AD7768-4  
Data Sheet  
Bits  
4
Bit Name  
CH4_RX  
Settings  
Description  
Channel 4  
Not in use  
Receive  
Reset  
0x0  
Access  
RW  
0
1
3
2
1
0
CH3_RX  
CH2_RX  
CH1_RX  
CH0_RX  
Channel 3  
Not in use  
Receive  
Channel 2  
Not in use  
Receive  
Channel 1  
Not in use  
Receive  
Channel 0  
Not in use  
Receive  
0x0  
0x0  
0x0  
0x0  
RW  
RW  
RW  
RW  
0
1
0
1
0
1
0
1
ADC DIAGNOSTIC CONTROL REGISTER  
Address: 0x57, Reset: 0x00, Name: Diagnostic Mux Control  
The AD7768 ADC diagnostic allows the user to select a zero-scale, positive full-scale, or negative full-scale input to the ADC, which can  
be converted to verify the correct operation of the ADC channel. This register controls the voltage that is applied to each of the ADC  
channels for the diagnostic. There are three input voltage options that the user can select. The voltage selected is mapped to the channels based  
on which mode (Mode A or Mode B) they belong to, which is set according to the channel mode select register (Register 0x03).  
Set Bits[7:0] to 1 in the ADC diagnostic receive select register, then select the voltage check desired for the channels on Mode A and the  
channels on Mode B through Bits[2:0] and Bits[6:4], respectively.  
Table 60. Bit Descriptions for Diagnostic Mux Control  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[6:4]  
GRPB_SEL  
Mux B.  
0x0  
RW  
000 Off.  
011 Positive full-scale ADC check. A voltage close to positive full scale is  
applied internally to the ADC channel.  
100 Negative full-scale ADC check. A voltage close to negative (or minus) full  
scale is applied internally to the ADC channel.  
101 Zero-scale ADC check. A voltage close to 0 V is applied internally to the  
ADC channel.  
[2:0]  
GRPA_SEL  
Mux A.  
0x0  
RW  
000 Off.  
011 Positive full-scale ADC check. A voltage close to positive full scale is  
applied internally to the ADC channel.  
100 Negative full-scale ADC check. A voltage close to negative (or minus) full  
scale is applied internally to the ADC channel.  
101 Zero-scale ADC check. A voltage close to 0 V is applied internally to the  
ADC channel.  
Rev. A | Page 84 of 99  
 
 
Data Sheet  
AD7768/AD7768-4  
MODULATOR DELAY CONTROL REGISTER  
Address: 0x58, Reset: 0x02, Name: Modulator Delay Control  
Table 61. Bit Descriptions for Modulator Delay Control  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[3:2]  
CLK_MOD_DEL_EN  
Enable delayed modulator clock.  
0x0  
RW  
00 Disabled delayed clock for all channels.  
01 Enable delayed clock for Channel 0 to Channel 3 only on the AD7768.  
10 Enable delayed clock for Channel 4 to Channel 7 only on AD7768.  
11 Enable delayed clock for all channels.  
10 Not a user option. Must be set to 0x2.  
[1:0]  
Reserved  
0x2  
RW  
CHOPPING CONTROL REGISTER  
Address: 0x59, Reset: 0x0A, Name: Chop Control  
Table 62. Bit Descriptions for Chop Control  
Bits  
[3:2]  
Bit Name  
GRPA_CHOP  
Settings  
Description  
Group A chopping  
01 Chop at fMOD/8  
10 Chop at fMOD/32  
Group B chopping  
01 Chop at fMOD/8  
10 Chop at fMOD/32  
Reset  
0x2  
Access  
RW  
[1:0]  
GRPB_CHOP  
0x2  
RW  
Rev. A | Page 85 of 99  
 
 
AD7768/AD7768-4  
Data Sheet  
AD7768-4 REGISTER MAP DETAILS (SPI CONTROL)  
AD7768-4 REGISTER MAP  
Table 63. Detailed AD7768-4 Register Map  
Reg. Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Reset RW  
0x00 RW  
0x0D RW  
0x0D RW  
0x00 Channel standby  
0x01 Channel Mode A  
0x02 Channel Mode B  
Unused  
CH_3  
CH_2  
CH_1  
CH_0  
Unused  
Unused  
FILTER_TYPE_A  
FILTER_TYPE_B  
DEC_RATE_A  
DEC_RATE_B  
CH_1_MODE  
0x03 Channel mode  
select  
Reserved  
CH_3_MODE CH_2_MODE  
Reserved  
CH_0_MODE 0x00 RW  
0x04 POWER_MODE  
SLEEP_MODE Unused  
POWER_MODE  
LVDS_ENABLE  
Reserved  
Unused  
Unused  
MCLK_DIV  
VCM_VSEL  
0x00 RW  
0x08 RW  
0x05 General  
configuration  
Unused  
Reserved  
RETIME_EN VCM_PD  
0x06 Data control  
SPI_SYNC  
Unused  
SINGLE_SHOT_EN  
Unused  
Unused  
CRC_SELECT  
SPI_RESET  
DCLK_DIV  
0x80 RW  
0x07 Interface  
configuration  
Unused  
0x0  
0x0  
0x0  
RW  
RW  
R
0x08 BIST control  
RAM_BIST_  
START  
0x09 Device status  
Unused  
CHIP_ERROR  
REVISION_ID  
NO_CLOCK_  
ERROR  
RAM_BIST_PASS RAM_BIST_  
RUNNING  
0x0A Revision ID  
0x0B Reserved  
0x0C Reserved  
0x0D Reserved  
0x0E GPIO control  
0x06  
0x00  
0x00  
0x00  
R
R
R
R
Reserved  
Reserved  
Reserved  
UGPIO_  
ENABLE  
Unused  
GPIOE4_FILTER GPIOE3_MODE3 GPIOE2_MODE2 GPIOE1_MODE1 GPIO0_MODE0 0x00 RW  
0x0F GPIO write data  
Unused  
Unused  
GPIO4_WRITE  
GPIO4_READ  
GPIO3_WRITE  
GPIO3_READ  
GPIO2_WRITE  
GPIO2_READ  
GPIO1_WRITE  
GPIO1_READ  
GPIO0_WRITE 0x00 RW  
GPIO0_READ 0x00  
0x10 GPIO read data  
R
0x11 Precharge Buffer 1  
Reserved  
Reserved  
CH1_PREBUF_  
NEG_EN  
CH1_PREBUF_  
POS_EN  
CH0_PREBUF_  
NEG_EN  
CH0_PREBUF_ 0xFF RW  
POS_EN  
0x12 Precharge Buffer 2  
CH3_PREBUF_  
NEG_EN  
CH3_PREBUF_  
POS_EN  
CH2_PREBUF_NE CH2_PREBUF_ 0xFF RW  
G_EN POS_EN  
0x13 Positive reference  
precharge buffer  
Reserved  
Reserved  
CH3_REFP_ CH2_REFP_BUF  
BUF  
Reserved  
CH1_REFP_BUF CH0_REFP_  
BUF  
0x00 RW  
0x00 RW  
0x00 RW  
0x14 Negative reference  
precharge buffer  
CH3_REFN_ CH2_REFN_BUF  
BUF  
Reserved  
CH1_REFN_BUF CH0_REFN_  
BUF  
0x1E Channel 0 offset  
CH0_OFFSET_MSB  
0x1F  
CH0_OFFSET_MID  
CH0_OFFSET_LSB  
CH1_OFFSET_MSB  
CH1_OFFSET_MID  
CH1_OFFSET_LSB  
Reserved  
0x20  
0x21 Channel 1 offset  
0x00 RW  
0x00 RW  
0x00 RW  
0x00 RW  
0x00 RW  
0x00 RW  
0x00 RW  
0xXX RW  
0x22  
0x23  
0x24 Reserved  
0x25  
Reserved  
0x26  
Reserved  
0x27 Reserved  
Reserved  
0x28  
Reserved  
0x29  
Reserved  
0x2A Channel 2 offset  
CH2_OFFSET_MSB  
CH2_OFFSET_MID  
CH2_OFFSET_LSB  
CH3_OFFSET_MSB  
CH3_OFFSET_MID  
CH3_OFFSET_LSB  
Reserved  
0x2B  
0x2C  
0x2D Channel 3 offset  
0x2E  
0x2F  
0x30 Reserved  
0x31  
Reserved  
0x32  
Reserved  
0x33 Reserved  
Reserved  
0x34  
Reserved  
0x35  
Reserved  
0x36 Channel 0 gain  
CH0_GAIN_MSB  
CH0_GAIN_MID  
CH0_GAIN_LSB  
0x37  
0x38  
Rev. A | Page 86 of 99  
 
 
 
Data Sheet  
AD7768/AD7768-4  
Reg. Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
CH1_GAIN_MSB  
CH1_GAIN_MID  
CH1_GAIN_LSB  
Reserved  
Bit 2  
Bit 1  
Bit 0  
Reset RW  
0x39 Channel 1 gain  
0xXX RW  
0x3A  
0x3B  
0x3C Reserved  
0xXX RW  
0xXX RW  
0xXX RW  
0xXX RW  
0xXX RW  
0xXX RW  
0x3D  
Reserved  
0x3E  
Reserved  
0x3F Reserved  
Reserved  
0x40  
Reserved  
0x41  
Reserved  
0x42 Channel 2 gain  
CH2_GAIN_MSB  
CH2_GAIN_MID  
CH2_GAIN_LSB  
CH3_GAIN_MSB  
CH3_GAIN_MID  
CH3_GAIN_LSB  
Reserved  
0x43  
0x44  
0x45 Channel 3 gain  
0x46  
0x47  
0x48 Reserved  
0x49  
Reserved  
0x4A  
Reserved  
0x4B Reserved  
0x4C  
Reserved  
Reserved  
0x4D  
Reserved  
0x4E Channel 0 sync  
offset  
CH0_SYNC_OFFSET  
0x00 RW  
0x00 RW  
0x4F Channel 1 sync  
offset  
CH1_SYNC_OFFSET  
0x50 Reserved  
0x51 Reserved  
Reserved  
Reserved  
0x00 RW  
0x00 RW  
0x00 RW  
0x52 Channel 2 sync  
offset  
CH2_SYNC_OFFSET  
0x53 Channel 3 sync  
offset  
CH3_SYNC_OFFSET  
0x00 RW  
0x54 Reserved  
0x55 Reserved  
0x56 Diagnostic Rx  
Reserved  
Reserved  
0x00 RW  
0x00 RW  
0x00 RW  
0x00 RW  
Reserved  
CH3_RX  
CH2_RX  
Reserved  
CH1_RX  
CH0_RX  
0x57 Diagnostic mux  
control  
Unused  
GRPB_SEL  
Unused  
Unused  
Unused  
GRPA_SEL  
Reserved  
GRPB_CHOP  
0x58 Modulator delay  
control  
CLK_MOD_DEL_EN  
GRPA_CHOP  
0x02 RW  
0x0A RW  
0x59 Chop control  
Rev. A | Page 87 of 99  
AD7768/AD7768-4  
Data Sheet  
CHANNEL STANDBY REGISTER  
Address: 0x00, Reset: 0x00, Name: Channel Standby  
Each of the ADC channels can be put into standby mode independently by setting the appropriate bit in the channel standby register.  
When a channel is in standby mode, its position in the data output stream is held. The 8-bit header is all zeros, as is the conversion result  
output of 24 zeros.  
The VCM voltage output is associated with the Channel 0 circuitry. If Channel 0 is put into standby mode, the VCM voltage output is also  
disabled for maximum power savings. Channel 0 must be enabled while VCM is being used externally to the AD7768-4.  
The crystal excitation circuitry is associated with the Channel 2 circuitry. If Channel 2 is put into standby mode, the crystal circuitry is  
also disabled for maximum power savings. Channel 2 must be enabled while the external crystal is used on the AD7768-4.  
Table 64. Bit Descriptions for Channel Standby  
Bits  
Bit Name  
Settings  
Description  
Channel 3  
Enabled  
Standby  
Channel 2  
Enabled  
Standby  
Channel 1  
Enabled  
Standby  
Channel 0  
Enabled  
Reset  
Access  
3
CH_3  
0x0  
RW  
0
1
2
1
0
CH_2  
CH_1  
CH_0  
0x0  
0x0  
0x0  
RW  
RW  
RW  
0
1
0
1
0
1
Standby  
CHANNEL MODE A REGISTER  
Address: 0x01, Reset: 0x0D, Name: Channel Mode A  
Two mode options are available on the AD7768-4 ADCs. The channel modes are defined by the contents of the Channel Mode A and  
Channel Mode B registers. Each mode is then mapped as desired to the required ADC channel. Mode A and Mode B allow different filter  
types and decimation rates to be selected and mapped to any of the ADC channels.  
When different decimation rates are selected, the AD7768-4 output a data ready signal at the fastest selected decimation rate. Any channel  
that runs at a lower output data rate is updated only at that slower rate. In between valid result data, the data for that channel is set to zero  
and the repeated data bit is set in the header status bits to distinguish it from a real conversion result (see the ADC Conversion Output:  
Header and Data section).  
Table 65. Bit Descriptions for Channel Mode A  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
3
FILTER_TYPE_A  
Filter selection  
Wideband filter  
Sinc5 filter  
0x1  
RW  
0
1
[2:0]  
DEC_RATE_A  
Decimation rate selection  
0x5  
RW  
000 ×32  
001 ×64  
010 ×128  
011 ×256  
100 ×512  
101 ×1024  
110 ×1024  
111 ×1024  
Rev. A | Page 88 of 99  
 
 
 
Data Sheet  
AD7768/AD7768-4  
CHANNEL MODE B REGISTER  
Address: 0x02, Reset: 0x0D, Name: Channel Mode B  
Table 66. Bit Descriptions for Channel Mode B  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
3
FILTER_TYPE_B  
Filter selection  
Wideband filter  
Sinc5 filter  
0x1  
RW  
0
1
[2:0]  
DEC_RATE_B  
Decimation rate selection  
0x5  
RW  
000 ×32  
001 ×64  
010 ×128  
011 ×256  
100 ×512  
101 ×1024  
110 ×1024  
111 ×1024  
CHANNEL MODE SELECT REGISTER  
Address: 0x03, Reset: 0x00, Name: Channel Mode Select  
This register selects the mapping of each ADC channel to either Channel Mode A or Channel Mode B.  
Table 67. Bit Descriptions for Channel Mode Select  
Bits  
5
Bit Name  
CH_3_MODE  
Settings  
Description  
Channel 3  
Mode A  
Reset  
0x0  
Access  
RW  
0
1
Mode B  
4
1
0
CH_2_MODE  
CH_1_MODE  
CH_0_MODE  
Channel 2  
Mode A  
Mode B  
Channel 1  
Mode A  
Mode B  
Channel 0  
Mode A  
Mode B  
0x0  
0x0  
0x0  
RW  
RW  
RW  
0
1
0
1
0
1
POWER MODE SELECT REGISTER  
Address: 0x04, Reset: 0x00, Name: POWER_MODE  
Table 68. Bit Descriptions for POWER_MODE  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
7
SLEEP_MODE  
In sleep mode, many of the digital clocks are disabled and all of the ADCs  
are disabled. The analog LDOs are not disabled.  
0x0  
RW  
The AD7768-4 SPI is live and is available to the user. Writing to this bit  
brings the AD7768-4 out of sleep mode again.  
0
1
Normal operation.  
Sleep mode.  
Rev. A | Page 89 of 99  
 
 
 
 
AD7768/AD7768-4  
Data Sheet  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[5:4]  
POWER_MODE  
Power mode. The power mode bits control the power mode setting for  
the bias currents used on all ADCs on the AD7768-4. The user can select  
the current consumption target to meet the application. The power  
modes of fast, median, and eco give optimum performance when  
mapped to the correct MCLK division setting. These power mode bits do  
not control the MCLK division of the ADCs. See the MCLK_DIV bits for  
control of the division of the MCLK input.  
0x0  
RW  
00 Eco.  
10 Median.  
11 Fast.  
3
LVDS_ENABLE  
MCLK_DIV  
LVDS clock.  
LVDS input clock disabled.  
LVDS input clock enabled.  
0x0  
0x0  
RW  
RW  
0
1
[1:0]  
MCLK division. The MCLK division bits control the divided ratio between  
the MCLK applied at the input to the AD7768-4 and the clock used by  
each of the ADC modulators. The appropriate division ratio depends on  
the following factors: power mode, decimation rate, and the base MCLK  
available in the system. See the Clocking, Sampling Tree, and Power Scaling  
section for more information on setting MCLK_DIV correctly.  
00 MCLK/32: with a base MCLK of 32.768 MHz, set to MCLK/32 for eco mode.  
10 MCLK/8: with a base MCLK of 32.768 MHz, set to MCLK/8 for median mode.  
11 MCLK/4: with a base MCLK of 32.768 MHz, set to MCLK/4 for fast mode.  
GENERAL DEVICE CONFIGURATION REGISTER  
Address: 0x05, Reset: 0x08, Name: General Configuration  
Table 69. Bit Descriptions for General Configuration  
Bits Bit Name  
Settings Description  
Reset Access  
5
RETIME_EN  
SYNC_OUTsignal retime enable bit.  
0x0  
RW  
0
1
Disabled: normal timing of SYNC_OUT.  
Enabled: SYNC_OUT signal derived from alternate MCLK edge.  
VCM buffer power-down.  
4
3
VCM_PD  
Reserved  
0x0  
RW  
0
1
1
Enabled: VCM buffer normal mode.  
Powered down: VCM buffer powered down.  
Not a user option. This bit must be set to 1.  
0x1  
0x0  
RW  
RW  
[1:0] VCM_VSEL  
VCM voltage. These bits select the output voltage of the VCM pin. This voltage is  
derived from the AVDD1 supply and can be output as half of that AVDD1 voltage, or  
other fixed voltages, with respect to AVSS. The VCM voltage output is associated  
with the Channel 0 circuitry. If Channel 0 is put into standby mode, the VCM voltage  
output is also disabled for maximum power savings. Channel 0 must be enabled  
while VCM is being used externally to the AD7768-4.  
00 (AVDD1 − AVSS)/2 V.  
01 1.65 V.  
10 2.5 V.  
11 2.14 V.  
Rev. A | Page 90 of 99  
 
Data Sheet  
AD7768/AD7768-4  
DATA CONTROL: SOFT RESET, SYNC, AND SINGLE-SHOT CONTROL REGISTER  
Address: 0x06, Reset: 0x80, Name: Data Control  
Table 70. Bit Descriptions for Data Control  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
7
SPI_SYNC  
Software synchronization of the AD7768-4. This command has the same  
0x1  
RW  
START  
effect as sending a signal pulse to the  
pin. To operate the SPI_SYNC,  
the user must write to this bit two separate times. First, write a zero,  
putting SPI_SYNC low, and then write a 1 to set SPI_SYNC logic high  
again. The SPI_SYNC command is recognized after the last rising edge of  
SCLK in the SPI instruction where the SPI_SYNC bit is changed from low to  
high. The SPI_SYNC command is then output synchronous to the AD7768-4  
SYNC_OUT  
SYNC_OUT  
MCLK on the  
to the  
pin. The user must connect the  
signal  
pin can also be routed to  
pins of other AD7768-4 devices, allowing larger channel  
count simultaneous sampling systems. As per any synchronization pulse  
SYNC_IN  
SYNC_IN  
SYNC_OUT  
pin on the PCB. The  
SYNC_IN  
the  
seen by the  
pin, the digital filters of the AD7768-4 are reset. The  
full settling time of the filters must elapse before data is output on the  
data interface. In a daisy-chained system of AD7768-4 devices, two  
successive synchronization pulses must be applied to guarantee that all  
ADCs are synchronized. Two synchronization pulses are also required in a  
system of more than one AD7768-4 device sharing a single MCLK signal,  
DRDY  
where the  
pin of only one device is used to detect new data.  
0
1
Change to SPI_SYNC low.  
Change to SPI_SYNC high.  
4
SINGLE_SHOT_EN  
SPI_RESET  
One-shot mode. Enables one-shot mode. In one-shot mode, the AD7768-4  
0x0  
0x0  
RW  
RW  
SYNC_IN  
output a conversion result in response to a  
rising edge.  
0
1
Disabled.  
Enabled.  
[1:0]  
Soft reset. These bits allow a full device reset over the SPI port. Two  
successive commands must be received in the correct order to generate a  
reset: first, write 0x03 to the soft reset register, and then write 0x02 to the  
soft reset register. This sequence causes the digital core to reset and all  
registers return to their default values. Following a soft reset, if the SPI  
master sends a command to the AD7768-4, the devices respond on the  
next frame to that command with an output of 0x0E00.  
00 No effect.  
01 No effect.  
10 Second reset command.  
11 First reset command.  
INTERFACE CONFIGURATION REGISTER  
Address: 0x07, Reset: 0x0, Name: Interface Configuration  
Table 71. Bit Descriptions for Interface Configuration  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[3:2]  
CRC_SELECT  
CRC select. These bits allow the user to implement a CRC on the data  
interface. When selected, the CRC replaces the header every fourth or 16th  
output sample depending on the CRC option chosen. There are two  
options for the CRC; both use the same polynomial: x8 + x2 + x + 1. The  
options offer the user the ability to reduce the duty cycle of the CRC  
calculation by performing it less often: in the case of having it every 16th  
sample or more often in the case of every fourth conversion. The CRC is  
calculated on a per channel basis and it includes conversion data only.  
0x0  
RW  
00 No CRC. Status bits with every conversion.  
01 Replace the header with CRC message every 4 samples.  
10 Replace the header with CRC message every 16 samples.  
11 Replace the header with CRC message every 16 samples.  
Rev. A | Page 91 of 99  
 
 
 
 
AD7768/AD7768-4  
Data Sheet  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[1:0]  
DCLK_DIV  
DCLK divider. These bits control division of the DCLK clock used to clock  
out conversion data on the DOUTx pins. The DCLK signal is derived from  
the MCLK applied to the AD7768-4. The DCLK divide mode allows the user  
to optimize the DCLK output to fit the application. Optimizing the DCLK  
per application depends on the requirements of the user. When the  
AD7768-4 are using the highest capacity output on the fewest DOUTx  
pins, for example, running in decimate by 32 using the DOUT0 and  
DOUT1 pins, the DCLK must equal the MCLK; thus, in this case, choosing  
the no division setting is the only way the user can output all the data  
within the conversion period. There are other cases, however, when the  
ADC may be running in fast mode with high decimation rates, or in  
median or eco mode where the DCLK does not need to run at the same  
speed as MCLK. In these cases, the DCLK divide allows the user to reduce  
the clock speed and makes routing and isolating such signals easier.  
0x0  
RW  
00 Divide by 8.  
01 Divide by 4.  
10 Divide by 2.  
11 No division.  
DIGITAL FILTER RAM BUILT IN SELF TEST (BIST) REGISTER  
Address: 0x08, Reset: 0x0, Name: BIST Control  
Table 72. Bit Descriptions for BIST Control  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
0
RAM_BIST_START  
RAM BIST. Filter RAM BIST is a built in self test of the RAM storage of the  
coefficients used by the digital filter. Normal ADC conversion is disrupted  
when this test is run. A synchronization pulse is required after this test is  
complete to resume normal ADC operation. The test can be run at  
intervals depending on user preference. The status and result of the RAM  
BIST is available in the device status register; see the RAM_BIST_PASS and  
RAM_BIST_RUNNING bits in Table 73.  
0x0  
RW  
0
1
Off.  
Begin RAM BIST.  
STATUS REGISTER  
Address: 0x09, Reset: 0x0, Name: Device Status  
Table 73. Bit Descriptions for Device Status  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
3
CHIP_ERROR  
Chip error. Chip error is a global error flag that is output within the  
status byte of each ADC conversion output. The following bits lead to  
the chip error bit being set to logic high: CRC check on internally hard  
coded settings after power-up does not pass; XOR check on the memory  
map does not pass (this check runs continuously in the background);  
and clock error is detected on power-up.  
0x0  
R
0
1
No error present.  
Error has occurred.  
2
NO_CLOCK_ERROR  
External clock check. This bit indicates whether the externally applied  
MCLK is detected correctly. If the MCLK is not applied correctly to the  
ADC at power-up, this bit is set and the DCLK frequency is approximately  
16 MHz. If this bit is set, the chip error bit is set to logic high in the  
status bits of the data output headers, and the conversion results are  
output as all zeros regardless of the analog input voltages applied to  
the ADC channels.  
0x0  
R
0
1
MCLK detected.  
No MCLK detected.  
Rev. A | Page 92 of 99  
 
 
 
Data Sheet  
AD7768/AD7768-4  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
1
RAM_BIST_PASS  
BIST pass/fail. RAM BIST result status. This bit indicates the result of the  
most recent RAM BIST. The result is latched to this register and is only  
cleared by a device reset.  
0x0  
R
0
1
BIST failed or not run.  
BIST passed.  
0
RAM_BIST_RUNNING  
BIST status. Reading back the value of this bit allows the user to poll  
when the BIST test has finished.  
0x0  
R
0
1
BIST not running.  
BIST running.  
REVISION IDENTIFICATION REGISTER  
Address: 0x0A, Reset: 0x06, Name: Revision ID  
Table 74. Bit Descriptions for Revision ID  
Bits  
Bit Name  
Description  
Reset  
Access  
[7:0]  
REVISION_ID  
ASIC revision. 8-bit ID for revision details.  
0x06  
R
GPIO CONTROL REGISTER  
Address: 0x0E, Reset: 0x00, Name: GPIO Control  
Table 75. Bit Descriptions for GPIO Control  
Bits  
Bit Name  
Setting  
Description  
Reset  
Access  
7
UGPIO_ENABLE  
User GPIO enable. The GPIOx pins are dual-purpose and can be operated only  
when the device is in SPI control mode. By default, when the AD7768-4 are  
powered up in SPI control mode, the GPIOx pins are disabled. This bit is a universal  
enable/ disable for all GPIOx input/outputs. The direction of each general-  
purpose pin is determined by Bits[4:0] of this register.  
0x0  
RW  
0
1
GPIO Disabled.  
GPIO Enabled.  
4
3
2
1
0
GPIOE4_FILTER  
GPIOE3_MODE3  
GPIOE2_MODE2  
GPIOE1_MODE1  
GPIO0_MODE0  
GPIO4 Direction. This bit assigns the direction of GPIO4 as either an input or an 0x0  
output. For SPI control, GPIO4 maps to Pin 11, which is the FILTER/GPIO4 pin.  
Input.  
RW  
RW  
RW  
RW  
RW  
0
1
Output.  
GPIO3 Direction. This bit assigns the direction of GPIO3 as either an input or  
an output. For SPI control, GPIO3 maps to Pin 15, which is the MODE3/GPIO3 pin.  
0x0  
0
1
Input.  
Output.  
GPIO2 Direction. This bit assigns the direction of GPIO2 as either an input or an 0x0  
output. For SPI control, GPIO2 maps to Pin 14, which is the MODE2/GPIO2 pin.  
Input.  
0
1
Output.  
GPIO1 Direction. This bit assigns the direction of GPIO1 as either an input or an 0x0  
output. For SPI control, GPIO1 maps to Pin 13, which is the MODE1/GPIO1 pin.  
Input.  
0
1
Output.  
GPIO0 Direction. This bit assigns the direction of GPIO0 as either an input or  
an output. For SPI control, GPIO0 maps to Pin 12, which is the MODE0/GPIO0 pin.  
0x0  
0
1
Input.  
Output.  
Rev. A | Page 93 of 99  
 
 
 
AD7768/AD7768-4  
Data Sheet  
GPIO WRITE DATA REGISTER  
Address: 0x0F, Reset: 0x00, Name: GPIO Write Data  
This register writes the values to be set on each of the general-purpose pins when selected as general-purpose outputs. Each bit, from  
Bits[4:0], maps directly to the GPIOx pins.  
Table 76. Bit Descriptions for GPIO Write Data  
Bits  
4
3
2
1
0
Bit Name  
Description  
Reset  
0x0  
0x0  
0x0  
0x0  
Access  
RW  
RW  
RW  
RW  
GPIO4_WRITE  
GPIO3_WRITE  
GPIO2_WRITE  
GPIO1_WRITE  
GPIO0_WRITE  
GPIO4/FILTER  
GPIO3/MODE3  
GPIO2/MODE2  
GPIO1/MODE1  
GPIO0/MODE0  
0x0  
RW  
GPIO READ DATA REGISTER  
Address: 0x10, Reset: 0x00, Name: GPIO Read Data  
This register reads back the value of the logic input level at the general-purpose pins when selected to operate as general-purpose inputs.  
Each bit, from Bits[4:0], maps directly to the GPIO0 to GPIO4 pins.  
Table 77. Bit Descriptions for GPIO Read Data  
Bits  
4
3
2
1
0
Bit Name  
Description  
Reset  
0x0  
0x0  
0x0  
0x0  
Access  
GPIO4_READ  
GPIO3_READ  
GPIO2_READ  
GPIO1_READ  
GPIO0_READ  
GPIO4/FILTER  
GPIO3/MODE3  
GPIO2/MODE2  
GPIO1/MODE1  
GPIO0/MODE0  
R
R
R
R
R
0x00  
ANALOG INPUT PRECHARGE BUFFER ENABLE REGISTER CHANNEL 0 AND CHANNEL 1  
Address: 0x11, Reset: 0xFF, Name: Precharge Buffer 1  
This register turns on or off the precharge buffers on the analog inputs. When writing to these registers, the user must write the inverse of  
the required bit settings. For example, to clear Bit 7 of this register, the user must write 0x01 to the register. This clears Bit 7 and sets all  
other bits. If the user reads the register again after writing 0x01, the data read is 0xFE, as required.  
Table 78. Bit Descriptions for Precharge Buffer 1  
Bits  
Bit Name  
Settings  
Description  
Reset  
3
CH1_PREBUF_NEG_EN  
0
1
0
1
0
1
0
1
Off  
On  
Off  
On  
Off  
On  
Off  
On  
0x1  
2
1
0
CH1_PREBUF_POS_EN  
CH0_PREBUF_NEG_EN  
CH0_PREBUF_POS_EN  
0x1  
0x1  
0x1  
Rev. A | Page 94 of 99  
 
 
 
 
 
 
Data Sheet  
AD7768/AD7768-4  
ANALOG INPUT PRECHARGE BUFFER ENABLE REGISTER CHANNEL 2 AND CHANNEL 3  
Address: 0x12, Reset: 0xFF, Name: Precharge Buffer 2  
This register turns on or off the precharge buffers on the analog inputs. When writing to these registers, the user must write the inverse of  
the required bit settings. For example, to clear Bit 7 of this register, the user must write 0x01 to the register. This clears Bit 7 and sets all  
other bits. If the user reads the register again after writing 0x01, the data read is 0xFE, as required.  
Table 79. Bit Descriptions for Precharge Buffer 2  
Bits  
Bit Name  
Settings  
Description  
Reset  
3
CH3_PREBUF_NEG_EN  
0
1
0
1
0
1
0
1
Off  
On  
Off  
On  
Off  
On  
Off  
On  
0x1  
2
1
0
CH3_PREBUF_POS_EN  
CH2_PREBUF_NEG_EN  
CH2_PREBUF_POS_EN  
0x1  
0x1  
0x1  
POSITIVE REFERENCE PRECHARGE BUFFER ENABLE REGISTER  
Address: 0x13, Reset: 0x00, Name: Positive Reference Precharge Buffer  
This register turns on or off the precharge buffers on the reference positive input to each of the ADCs from Channel 0 to Channel 3.  
Table 80. Bit Descriptions for Positive Reference Precharge Buffer  
Bits  
Bit Name  
Settings  
Description  
Reset  
5
CH3_REFP_BUF  
0
1
0
1
0
1
0
1
Off  
On  
Off  
On  
Off  
On  
Off  
On  
0x0  
4
1
0
CH2_REFP_BUF  
CH1_REFP_BUF  
CH0_REFP_BUF  
0x0  
0x0  
0x0  
NEGATIVE REFERENCE PRECHARGE BUFFER ENABLE REGISTER  
Address: 0x14, Reset: 0x00, Name: Negative Reference Precharge Buffer  
This register turns on or off the precharge buffers on the reference negative input to each of the ADCs from Channel 0 to Channel 3.  
Table 81. Bit Descriptions for Negative Reference Precharge Buffer  
Bits  
Bit Name  
Settings  
Description  
Reset  
5
CH3_REFN_BUF  
0
1
0
1
0
1
0
1
Off  
On  
Off  
On  
Off  
On  
Off  
On  
0x0  
4
1
0
CH2_REFN_BUF  
CH1_REFN_BUF  
CH0_REFN_BUF  
0x0  
0x0  
0x0  
Rev. A | Page 95 of 99  
 
 
 
 
 
 
AD7768/AD7768-4  
Data Sheet  
OFFSET REGISTERS  
The CHx_OFFSET_MSB, CHx_OFFSET_MID, and CHx_OFFSET_LSB registers are 24-bit, signed twos complement registers for channel  
offset adjustment. If the channel gain setting is at its ideal nominal value of 0x555555, an LSB of offset register adjustment changes the digital  
output by −4/3 LSBs. For example, changing the offset register from 0 to 100 changes the digital output by −133 LSBs. As offset adjustment  
occurs before gain adjustment, the ratio of 4/3 changes linearly with gain adjustment via the CHx_GAIN_x registers. After a reset or power  
cycle, the register values revert to the default factory setting.  
Table 82. Per Channel 24-Bit Offset Registers, Three 8-Bit Registers for Each Channel, Split Up as MSB, MID, and LSB  
Address  
Reset  
MSB Mid  
LSB  
Name  
Description  
MSB Mid  
LSB  
Access  
0x1E 0x1F 0x20 Channel 0 offset Channel 0 offset registers: upper, middle, and lower bytes (24 bits in total) 0x00 0x00 0x00 RW  
0x21 0x22 0x23 Channel 1 offset Channel 1 offset registers: upper, middle, and lower bytes (24 bits in total) 0x00 0x00 0x00 RW  
0x2A 0x2B 0x2C Channel 2 offset Channel 2 offset registers: upper, middle, and lower bytes (24 bits in total) 0x00 0x00 0x00 RW  
0x2D 0x2E 0x2F Channel 3 offset Channel 3 offset registers: upper, middle, and lower bytes (24 bits in total) 0x00 0x00 0x00 RW  
GAIN REGISTERS  
Each ADC channel has an associated gain coefficient. The coefficient is stored in three single-byte registers split up as MSB, MID, and  
LSB. Each of the gain registers are factory programmed. Nominally, this gain is around the value 0x555555 (for an ADC channel). The  
user may overwrite the gain register setting however, after a reset or power cycle, the gain register values revert to the hard coded  
programmed factory setting.  
Table 83. Per Channel 24-Bit Gain Registers, 3 8-Bit Registers for Each Channel, Split Up as MSB, MID, and LSB  
Address  
MSB Mid  
0x36 0x37  
0x39 0x3A 0x3B Channel 1 gain  
Reset  
LSB  
Name  
Description  
MSB Mid  
LSB  
Access  
0x38 Channel 0 gain  
Channel 0 gain registers: upper, middle, and lower bytes (24 bits in total)  
Channel 1 gain registers: upper, middle, and lower bytes (24 bits in total)  
Channel 2 gain registers: upper, middle, and lower bytes (24 bits in total)  
Channel 3 gain registers: upper, middle, and lower bytes (24 bits in total)  
0xXX 0xXX 0xXX RW  
0xXX 0xXX 0xXX RW  
0xXX 0xXX 0xXX RW  
0xXX 0xXX 0xXX RW  
0x42 0x43  
0x45 0x46  
0x44 Channel 2 gain  
0x47 Channel 3 gain  
SYNC PHASE OFFSET REGISTERS  
The AD7768-4 have one synchronization signal for all channels. The sync phase offset register allows the user to vary the phase delay on  
SYNC_IN  
each of the channels relative to the synchronization edge received on the  
details on the use of this function.  
pin. See the Sync Phase Offset Adjustment section for  
Table 84. Per Channel 8-Bit Sync Phase Offset Registers  
Address  
0x4E  
0x4F  
0x52  
Name  
Description  
Reset  
0x00  
0x00  
0x00  
0x00  
Access  
RW  
RW  
RW  
RW  
Channel 0 sync offset  
Channel 1 sync offset  
Channel 2 sync offset  
Channel 3 sync offset  
Channel 0 sync phase offset register  
Channel 1 sync phase offset register  
Channel 2 sync phase offset register  
Channel 3 sync phase offset register  
0x53  
ADC DIAGNOSTIC RECEIVE SELECT REGISTER  
Address: 0x56, Reset: 0x00, Name: Diagnostic Rx  
The AD7768-4 ADC diagnostic allows the user to select a zero-scale, positive full-scale, or negative full-scale input to the ADC, which  
can be converted to verify the correct operation of the ADC channel. This register enables the diagnostic. Enable the receive (Rx) for each  
channel and set each bit in this register to 1.  
The ADC diagnostic feature depends on some features of the analog input precharge buffers. The user must ensure that the analog input  
precharge buffers are enabled on the channels that are selected to receive the diagnostic voltages internally.  
Table 85. Bit Descriptions for Diagnostic Rx  
Bits  
5
Bit Name  
CH3_RX  
Settings  
Description  
Channel 3  
Not in use  
Receive  
Reset  
0x0  
Access  
RW  
0
1
Rev. A | Page 96 of 99  
 
 
 
 
 
 
Data Sheet  
AD7768/AD7768-4  
Bits  
4
Bit Name  
CH2_RX  
Settings  
Description  
Channel 2  
Not in use  
Receive  
Reset  
0x0  
Access  
RW  
0
1
1
0
CH1_RX  
CH0_RX  
Channel 1  
Not in use  
Receive  
Channel 0  
Not in use  
Receive  
0x0  
0x0  
RW  
RW  
0
1
0
1
ADC DIAGNOSTIC CONTROL REGISTER  
Address: 0x57, Reset: 0x00, Name: Diagnostic Mux Control  
The AD7768-4 ADC diagnostic allows the user to select a zero-scale, positive full-scale, or negative full-scale input to the ADC, which  
can be converted to verify the correct operation of the ADC channel. This register controls the voltage that is applied to each of the ADC  
channels for the diagnostic. There are three input voltage options that the user can select. The voltage selected is mapped to the channels based  
on which mode (Mode A or Mode B) they belong to, which is set according to the channel mode select register (Register 0x03).  
Set Bits[7:0] to 1 in the ADC diagnostic receive select register, then select the voltage check desired for the channels on Mode A and the  
channels on Mode B through Bits[2:0] and Bits[6:4], respectively.  
Table 86. Bit Descriptions for Diagnostic Mux Control  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[6:4]  
GRPB_SEL  
Mux B.  
0x0  
RW  
000 Off.  
011 Positive full-scale ADC check. A voltage close to positive full scale is  
applied internally to the ADC channel.  
100 Negative full-scale ADC check. A voltage close to negative (or minus) full  
scale is applied internally to the ADC channel.  
101 Zero-scale ADC check. A voltage close to 0 V is applied internally to the  
ADC channel.  
[2:0]  
GRPA_SEL  
Mux A.  
0x0  
RW  
000 Off.  
011 Positive full-scale ADC check. A voltage close to positive full scale is  
applied internally to the ADC channel.  
100 Negative full-scale ADC check. A voltage close to negative (or minus) full  
scale is applied internally to the ADC channel.  
101 Zero-scale ADC check. A voltage close to 0 V is applied internally to the  
ADC channel.  
MODULATOR DELAY CONTROL REGISTER  
Address: 0x58, Reset: 0x02, Name: Modulator Delay Control  
Table 87. Bit Descriptions for Modulator Delay Control  
Bits  
Bit Name  
Settings  
Description  
Reset  
Access  
[3:2]  
CLK_MOD_DEL_EN  
Enable delayed modulator clock.  
0x0  
RW  
00 Disabled delayed clock for all channels.  
01 Enable delayed clock for Channel 0 and Channel 1 only on the AD7768-4.  
10 Enable delayed clock for Channel 2 and Channel 3 only on the AD7768-4.  
11 Enable delayed clock for all channels.  
[1:0]  
Reserved  
10 Not a user option. Must be set to 0x2.  
0x2  
RW  
Rev. A | Page 97 of 99  
 
 
AD7768/AD7768-4  
Data Sheet  
CHOPPING CONTROL REGISTER  
Address: 0x59, Reset: 0x0A, Name: Chop Control  
Table 88. Bit Descriptions for Chop Control  
Bits  
[3:2]  
Bit Name  
GRPA_CHOP  
Settings  
Description  
Group A chopping  
01 Chop at fMOD/8  
10 Chop at fMOD/32  
Group B chopping  
01 Chop at fMOD/8  
10 Chop at fMOD/32  
Reset  
0x2  
Access  
RW  
[1:0]  
GRPB_CHOP  
0x2  
RW  
Rev. A | Page 98 of 99  
 
Data Sheet  
AD7768/AD7768-4  
OUTLINE DIMENSIONS  
12.20  
12.00 SQ  
11.80  
0.75  
0.60  
0.45  
1.60  
MAX  
64  
49  
1
48  
PIN 1  
10.20  
10.00 SQ  
9.80  
TOP VIEW  
(PINS DOWN)  
1.45  
1.40  
1.35  
0.20  
0.09  
7°  
3.5°  
0°  
0.08  
COPLANARITY  
16  
33  
0.15  
0.05  
SEATING  
17  
32  
PLANE  
VIEW A  
0.27  
0.22  
0.17  
0.50  
BSC  
LEAD PITCH  
VIEW A  
ROTATED 90° CCW  
COMPLIANT TO JEDEC STANDARDS MS-026-BCD  
Figure 110. 64-Lead Low Profile Quad Flat Package [LQFP]  
(ST-64-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
AD7768BSTZ  
Temperature Range  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
−40°C to +105°C  
Package Description  
Package Option  
ST-64-2  
ST-64-2  
64-Lead Low Profile Quad Flat Package [LQFP]  
64-Lead Low Profile Quad Flat Package [LQFP]  
64-Lead Low Profile Quad Flat Package [LQFP]  
64-Lead Low Profile Quad Flat Package [LQFP]  
64-Lead Low Profile Quad Flat Package [LQFP]  
64-Lead Low Profile Quad Flat Package [LQFP]  
Evaluation Board  
AD7768BSTZ-RL7  
AD7768BSTZ-RL  
AD7768-4BSTZ  
AD7768-4BSTZ-RL7  
AD7768-4BSTZ-RL  
EVAL-AD7768FMCZ  
EVAL-AD7768-4FMCZ  
EVAL-SDP-CH1Z  
ST-64-2  
ST-64-2  
ST-64-2  
ST-64-2  
AD7768-4 Evaluation Board  
Controller Board  
1 Z = RoHS Compliant Part.  
©2016 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D14001-0-3/16(A)  
Rev. A | Page 99 of 99  
 
 

相关型号:

EVAL-AD7783EB

Read-Only, Pin Configured 24-Bit ADC with Excitation Current Sources
ADI

EVAL-AD7785EBZ

3-Channel, Low Noise, Low Power, 20-Bit ⒉-ツ ADC with On-Chip In-Amp and Reference
ADI

EVAL-AD7787EB

Low Power, 2-Channel 24-Bit Sigma-Delta ADC
ADI

EVAL-AD7788EB

Low Power, 16-/24-Bit, Sigma-Delta ADCs
ADI

EVAL-AD7789EB

Low Power, 16-/24-Bit, Sigma-Delta ADCs
ADI

EVAL-AD7792EBZ1

3-Channel, Low Noise, Low Power, 16-/24-Bit Σ-Δ ADC with On-Chip In-Amp and Reference
ADI

EVAL-AD7793EBZ1

3-Channel, Low Noise, Low Power, 16-/24-Bit Σ-Δ ADC with On-Chip In-Amp and Reference
ADI

EVAL-AD7794EB

6-Channel, Low Noise, Low Power, 24-/16-Bit Σ-Δ ADC with On-Chip In-Amp and Reference
ADI

EVAL-AD7795

Evaluation Board for the AD7795 16-Bit, Low Power Sigma-Delta ADC (6 Channels)
ADI

EVAL-AD7795EB

6-Channel, Low Noise, Low Power, 24-/16-Bit Σ-Δ ADC with On-Chip In-Amp and Reference
ADI

EVAL-AD7796EB

Low Power, 16-/24-Bit Sigma-Delta ADC for Bridge Sensors
ADI

EVAL-AD7797EB

Low Power, 16-/24-Bit Sigma-Delta ADC for Bridge Sensors
ADI