ADSP-21369 [ADI]

SHARC Processors; SHARC处理器
ADSP-21369
型号: ADSP-21369
厂家: ADI    ADI
描述:

SHARC Processors
SHARC处理器

文件: 总56页 (文件大小:1696K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SHARC® Processors  
a
ADSP-21367/ADSP-21368/ADSP-21369  
Code compatible with all other members of the SHARC family  
The ADSP-21367/ADSP-21368/ADSP-21369 are available  
with a 333 MHz core instruction rate with unique audiocen-  
tric peripherals such as the digital audio interface, S/PDIF  
transceiver, serial ports, 8-channel asynchronous sample  
rate converter, precision clock generators, and more. For  
SUMMARY  
High performance 32-bit/40-bit floating point processor  
optimized for high performance audio processing  
Single-instruction, multiple-data (SIMD) computational  
architecture  
On-chip memory—2M bit of on-chip SRAM and 6M bit of on-  
chip mask programmable ROM  
complete ordering information, see Ordering Guide on  
Page 56.  
JTAG TEST & EMULATION  
CORE PROCESSOR  
INSTRUCTION  
4 BLOCK OF  
ON-CHIP MEMORY  
CACHE  
TIMER  
FLAGS4-15  
PWM  
32 × 48-BIT  
2M BIT RAM  
6M BIT ROM  
32  
DAG2  
8 × 4 × 32  
DAG1  
8 × 4 × 32  
PROGRAM  
SEQUENCER  
ADDR  
DATA  
EXTERNAL PORT  
DATA  
7
SDRAM  
CONTROLLER  
18  
3
PM ADDRESS BUS  
DM ADDRESS BUS  
32  
32  
ASYNCHRONOUS  
MEMORY INTERFACE  
CONTROL  
8
64  
64  
PM DATA BUS  
SHARED MEMORY  
24  
INTERFACE  
ADDRESS  
DM DATA BUS  
IOA(24)  
IOD(32)  
DMA  
CONTROLLER  
PX REGISTER  
IOP REGISTER (MEMORY MAPPED)  
CONTROL, STATUS, & DATA BUFFERS  
PROCESSING  
ELEMENT  
(PEY)  
PROCESSING  
ELEMENT  
(PEX)  
34 CHANNELS  
MEMORY-TO-  
MEMORY DMA (2)  
PRECISION CLOCK  
GENERATORS (4)  
SERIAL PORTS (8)  
SPI PORT (2)  
4
UART (2)  
GPIO FLAGS/  
IRQ/TIMEXP  
INPUT DATA PORT/  
PDAP  
TWO WIRE  
INTERFACE  
SRC (8 CHANNELS)  
SPDIF (Rx/Tx)  
TIMERS (3)  
DAI PINS  
DPI PINS  
S
DIGITAL PERIPHERAL INTERFACE  
I/O PROCESSOR  
DIGITAL AUDIO INTERFACE  
20  
14  
Figure 1. Functional Block Diagram  
SHARC and the SHARC logo are registered trademarks of Analog Devices, Inc.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
ADSP-21367/ADSP-21368/ADSP-21369  
Digital audio interface (DAI) includes eight serial ports, four  
precision clock generators, an input data port, an S/PDIF  
transceiver, an 8-channel asynchronous sample rate con-  
verter, and a signal routing unit  
Digital peripheral interface (DPI) includes three timers, two  
UARTs, two SPI ports, and a two wire interface port  
Outputs of PCG's C and D can be driven on to DPI pins  
Eight dual data line serial ports that operate at up to  
50M bits/s on each data line—each has a clock, frame sync,  
and two data lines that can be configured as either a  
receiver or transmitter pair  
TDM support for telecommunications interfaces including  
128 TDM channel support for newer telephony interfaces  
such as H.100/H.110  
Up to 16 TDM stream support, each with 128 channels per  
frame  
Companding selection on a per channel basis in TDM mode  
Input data port, configurable as eight channels of serial data  
or seven channels of serial data and up to a 20-bit wide  
parallel data channel  
Signal routing unit provides configurable and flexible con-  
nections between all DAI/DPI components  
2 muxed flag/IRQ lines  
KEY FEATURES—PROCESSOR CORE  
At 333 MHz (3 ns) core instruction rate, the processors per-  
form 2 GFLOPS/666 MMACS  
2M bit on-chip, SRAM (0.75M bit in blocks 0 and 1, and  
0.25M bit in blocks 2 and 3) for simultaneous access by the  
core processor and DMA  
6M bit on-chip, mask-programmable ROM (3M bit in block 0  
and 3M bit in block 1)  
Dual data address generators (DAGs) with modulo and bit-  
reverse addressing  
Zero-overhead looping with single-cycle loop setup, provid-  
ing efficient program sequencing  
Single-instruction, multiple-data (SIMD) architecture  
provides:  
Two computational processing elements  
Concurrent execution  
Code compatibility with other SHARC family members at  
the assembly level  
Parallelism in buses and computational units allows: single  
cycle executions (with or without SIMD) of a multiply  
operation, an ALU operation, a dual memory read or  
write, and an instruction fetch  
Transfers between memory and core at a sustained  
6.4G bytes/s bandwidth at 333 MHz core instruction rate  
1 muxed flag/timer expired line /MS pin  
1 muxed flag/IRQ /MS pin  
INPUT/OUTPUT FEATURES  
DEDICATED AUDIO COMPONENTS  
DMA controller supports:  
S/PDIF-compatible digital audio receiver/transmitter sup-  
ports EIAJ CP-340 (CP-1201), IEC-958, AES/EBU standards  
Left-justified, I2S, or right-justified serial data input with  
16-, 18-, 20- or 24-bit word widths (transmitter)  
Four independent asynchronous sample rate converters  
(SRC). Each converter has separate serial input and output  
ports, a de-emphasis filter providing up to –140 dB SNR  
performance, stereo sample rate converter (SRC) and sup-  
ports left-justified, I2S, TDM, and right-justified modes and  
24, 20, 18, and 16 audio data word lengths  
34 zero-overhead DMA channels for transfers between  
internal memory and a variety of peripherals  
32-bit DMA transfers at peripheral clock speed, in parallel  
with full-speed processor execution  
32-bit wide external port provides glueless connection to  
both synchronous (SDRAM) and asynchronous memory  
devices  
Programmable wait state options: 2 SCLK to 31 SCLK cycles  
Delay-line DMA engine maintains circular buffers in exter-  
nal memory with tap/offset-based reads  
SDRAM accesses at 133 MHz and asynchronous accesses at  
66 MHz  
Shared-memory support allows multiple DSPs to automat-  
ically arbitrate for the bus and gluelessly access a  
common memory device  
Shared memory interface (ADSP-21368 only) support  
provides:  
Glueless connection for scalable DSP multiprocessing  
architecture  
Distributed on-chip bus arbitration for parallel bus  
Connect of up to four ADSP-21368 processors and global  
memory  
Pulse-width modulation provides:  
16 PWM outputs configured as four groups of four outputs  
supports center-aligned or edge-aligned PWM waveforms  
ROM-based security features include:  
JTAG access to memory permitted with a 64-bit key  
Protected memory regions that can be assigned to limit  
access under program control to sensitive code  
PLL has a wide variety of software and hardware multi-  
plier/divider ratios  
Dual voltage: 3.3 V I/O, 1.2 V or 1.3 V core  
Available in 256-ball SBGA and 208-lead MQFP packages (see  
Ordering Guide on Page 56)  
Four memory select lines allow multiple external memory  
devices  
Rev. A  
|
Page 2 of 56  
|
August 2006  
ADSP-21367/ADSP-21368/ADSP-21369  
TABLE OF CONTENTS  
Summary ................................................................1  
Key Features—Processor Core ..................................2  
Input/Output Features ............................................2  
Dedicated Audio Components ..................................2  
General Description ..................................................4  
Core Architecture ..................................................4  
Memory Architecture .............................................5  
External Memory ...................................................5  
Input/Output Features ............................................7  
System Design .......................................................9  
Development Tools .............................................. 10  
Additional Information ......................................... 11  
Pin Function Descriptions ........................................ 12  
Data Modes ........................................................ 15  
Boot Modes ........................................................ 15  
Core Instruction Rate to CLKIN Ratio Modes ............. 15  
Specifications ......................................................... 16  
Operating Conditions ........................................... 16  
Electrical Characteristics ........................................ 17  
Package Information ............................................ 18  
Maximum Power Dissipation ................................. 18  
Absolute Maximum Ratings ................................... 18  
ESD Sensitivity .................................................... 18  
Timing Specifications ........................................... 19  
Output Drive Currents .......................................... 47  
Test Conditions ................................................... 47  
Capacitive Loading ............................................... 47  
Thermal Characteristics ........................................ 48  
256-Ball SBGA Pinout .............................................. 49  
208-Lead MQFP Pinout ............................................ 52  
Package Dimensions ................................................ 54  
Surface-Mount Design .......................................... 55  
Ordering Guide ...................................................... 56  
Rev. A  
|
Page 3 of 56  
|
August 2006  
ADSP-21367/ADSP-21368/ADSP-21369  
GENERAL DESCRIPTION  
The ADSP-21367/ADSP-21368/ADSP-21369 SHARC proces-  
sors are members of the SIMD SHARC family of DSPs that  
feature Analog Devices’ Super Harvard Architecture. These pro-  
cessors are source code-compatible with the ADSP-2126x and  
ADSP-2116x DSPs as well as with first generation ADSP-2106x  
SHARC processors in SISD (single-instruction, single-data)  
mode. The processors are 32-bit/40-bit floating point processors  
optimized for high performance automotive audio applications  
with its large on-chip SRAM, and mask-programmable ROM,  
multiple internal buses to eliminate I/O bottlenecks, and an  
innovative digital audio interface (DAI).  
• On-chip mask-programmable ROM (6M bit)  
• JTAG test access port  
The block diagram of the ADSP-21368 on Page 1 also illustrates  
the following architectural features:  
• DMA controller  
• Eight full-duplex serial ports  
• Digital audio interface that includes four precision clock  
generators (PCG), an input data port (IDP), an S/PDIF  
receiver/transmitter, eight channels asynchronous sample  
rate converters, eight serial ports, eight serial interfaces, a  
16-bit parallel input port (PDAP), a flexible signal routing  
unit (DAI SRU).  
As shown in the functional block diagram on Page 1, the  
processors use two computational units to deliver a significant  
performance increase over the previous SHARC processors on a  
range of DSP algorithms. Fabricated in a state-of-the-art, high  
speed, CMOS process, the ADSP-21367/ADSP-21368/  
ADSP-21369 processors achieve an instruction cycle time of up  
to 3.0 ns at 333 MHz. With its SIMD computational hardware,  
the processors can perform two GFLOPS running at 333 MHz.  
• Digital peripheral interface that includes three timers, an  
I2C® interface, two UARTs, two serial peripheral interfaces  
(SPI), and a flexible signal routing unit (DPI SRU).  
CORE ARCHITECTURE  
The ADSP-21367/ADSP-21368/ADSP-21369 are code compati-  
ble at the assembly level with the ADSP-2126x, ADSP-21160,  
and ADSP-21161, and with the first generation ADSP-2106x  
SHARC processors. The ADSP-21367/ADSP-21368/  
ADSP-21369 share architectural features with the ADSP-2126x  
and ADSP-2116x SIMD SHARC processors, as detailed in the  
following sections.  
Table 1 shows performance benchmarks for these devices.  
Table 1. Processor Benchmarks (at 333 MHz)  
Speed  
Benchmark Algorithm  
(at 333 MHz)  
1024 Point Complex FFT (Radix 4, with reversal) 27.9 μs  
FIR Filter (per tap)1  
IIR Filter (per biquad)1  
1.5 ns  
6.0 ns  
SIMD Computational Engine  
The processors contain two computational processing elements  
that operate as a single-instruction, multiple-data (SIMD)  
engine. The processing elements are referred to as PEX and PEY  
and each contains an ALU, multiplier, shifter, and register file.  
PEX is always active, and PEY may be enabled by setting the  
PEYEN mode bit in the MODE1 register. When this mode is  
enabled, the same instruction is executed in both processing ele-  
ments, but each processing element operates on different data.  
This architecture is efficient at executing math intensive DSP  
algorithms.  
Matrix Multiply (pipelined)  
[3×3] × [3×1]  
[4×4] × [4×1]  
13.5 ns  
23.9 ns  
Divide (y/×)  
10.5 ns  
16.3 ns  
Inverse Square Root  
1 Assumes two files in multichannel SIMD mode.  
The ADSP-21367/ADSP-21368/ADSP-21369 continues  
SHARC’s industry-leading standards of integration for DSPs,  
combining a high performance 32-bit DSP core with integrated,  
on-chip system features.  
Entering SIMD mode also has an effect on the way data is trans-  
ferred between memory and the processing elements. When in  
SIMD mode, twice the data bandwidth is required to sustain  
computational operation in the processing elements. Because of  
this requirement, entering SIMD mode also doubles the band-  
width between memory and the processing elements. When  
using the DAGs to transfer data in SIMD mode, two data values  
are transferred with each access of memory or the register file.  
The block diagram of the ADSP-21368 on Page 1, illustrates the  
following architectural features:  
• Two processing elements, each of which comprises an  
ALU, multiplier, shifter, and data register file  
• Data address generators (DAG1, DAG2)  
• Program sequencer with instruction cache  
Independent, Parallel Computation Units  
Within each processing element is a set of computational units.  
The computational units consist of an arithmetic/logic unit  
(ALU), multiplier, and shifter. These units perform all opera-  
tions in a single cycle. The three units within each processing  
element are arranged in parallel, maximizing computational  
throughput. Single multifunction instructions execute parallel  
ALU and multiplier operations. In SIMD mode, the parallel  
• PM and DM buses capable of supporting four 32-bit data  
transfers between memory and the core at every core pro-  
cessor cycle  
• Three programmable interval timers with PWM genera-  
tion, PWM capture/pulse width measurement, and  
external event counter capabilities  
• On-chip SRAM (2M bit)  
Rev. A  
|
Page 4 of 56  
|
August 2006  
ADSP-21367/ADSP-21368/ADSP-21369  
ALU and multiplier operations occur in both processing ele-  
ments. These computation units support IEEE 32-bit single-  
precision floating-point, 40-bit extended precision floating-  
point, and 32-bit fixed-point data formats.  
MEMORY ARCHITECTURE  
The ADSP-21367/ADSP-21368/ADSP-21369 processors add  
the following architectural features to the SIMD SHARC  
family core.  
Data Register File  
On-Chip Memory  
A general-purpose data register file is contained in each pro-  
cessing element. The register files transfer data between the  
computation units and the data buses, and store intermediate  
results. These 10-port, 32-register (16 primary, 16 secondary)  
register files, combined with the ADSP-2136x enhanced Har-  
vard architecture, allow unconstrained data flow between  
computation units and internal memory. The registers in PEX  
are referred to as R0–R15 and in PEY as S0–S15.  
The processors contain two megabits of internal RAM and six  
megabits of internal mask-programmable ROM. Each block can  
be configured for different combinations of code and data stor-  
age (see Table 2 on Page 6). Each memory block supports  
single-cycle, independent accesses by the core processor and I/O  
processor. The memory architecture, in combination with its  
separate on-chip buses, allow two data transfers from the core  
and one from the I/O processor, in a single cycle.  
Single-Cycle Fetch of Instruction and Four Operands  
The SRAM can be configured as a maximum of 64K words of  
32-bit data, 128K words of 16-bit data, 42K words of 48-bit  
instructions (or 40-bit data), or combinations of different word  
sizes up to two megabits. All of the memory can be accessed as  
16-bit, 32-bit, 48-bit, or 64-bit words. A 16-bit floating-point  
storage format is supported that effectively doubles the amount  
of data that may be stored on-chip. Conversion between the  
32-bit floating-point and 16-bit floating-point formats is per-  
formed in a single instruction. While each memory block can  
store combinations of code and data, accesses are most efficient  
when one block stores data using the DM bus for transfers, and  
the other block stores instructions and data using the PM bus  
for transfers.  
The ADSP-21367/ADSP-21368/ADSP-21369 feature an  
enhanced Harvard architecture in which the data memory  
(DM) bus transfers data and the program memory (PM) bus  
transfers both instructions and data (see Figure 1 on Page 1).  
With separate program and data memory buses and on-chip  
instruction cache, the processors can simultaneously fetch four  
operands (two over each data bus) and one instruction (from  
the cache), all in a single cycle.  
Instruction Cache  
The processors include an on-chip instruction cache that  
enables three-bus operation for fetching an instruction and four  
data values. The cache is selective—only the instructions whose  
fetches conflict with PM bus data accesses are cached. This  
cache allows full-speed execution of core, looped operations  
such as digital filter multiply-accumulates, and FFT butterfly  
processing.  
Using the DM bus and PM buses, with one bus dedicated to  
each memory block, assures single-cycle execution with two  
data transfers. In this case, the instruction must be available in  
the cache.  
EXTERNAL MEMORY  
Data Address Generators with Zero-Overhead Hardware  
Circular Buffer Support  
The external port provides a high performance, glueless inter-  
face to a wide variety of industry-standard memory devices. The  
32-bit wide bus may be used to interface to synchronous and/or  
asynchronous memory devices through the use of its separate  
internal memory controllers. The first is an SDRAM controller  
for connection of industry-standard synchronous DRAM  
devices and DIMMs (Dual Inline Memory Module), while the  
second is an asynchronous memory controller intended to  
interface to a variety of memory devices. Four memory select  
pins enable up to four separate devices to coexist, supporting  
any desired combination of synchronous and asynchronous  
device types. NonSDRAM external memory address space is  
shown in Table 3.  
The ADSP-21367/ADSP-21368/ADSP-21369 have two data  
address generators (DAGs). The DAGs are used for indirect  
addressing and implementing circular data buffers in hardware.  
Circular buffers allow efficient programming of delay lines and  
other data structures required in digital signal processing, and  
are commonly used in digital filters and Fourier transforms.  
The two DAGs contain sufficient registers to allow the creation  
of up to 32 circular buffers (16 primary register sets, 16 second-  
ary). The DAGs automatically handle address pointer  
wraparound, reduce overhead, increase performance, and sim-  
plify implementation. Circular buffers can start and end at any  
memory location.  
SDRAM Controller  
Flexible Instruction Set  
The SDRAM controller provides an interface of up to four sepa-  
rate banks of industry-standard SDRAM devices or DIMMs, at  
speeds up to fSCLK. Fully compliant with the SDRAM standard,  
each bank has its own memory select line (MS0–MS3), and can  
be configured to contain between 16M bytes and 128M bytes of  
memory. SDRAM external memory address space is shown in  
Table 4.  
The 48-bit instruction word accommodates a variety of parallel  
operations, for concise programming. For example, the  
ADSP-21367/ADSP-21368/ADSP-21369 can conditionally exe-  
cute a multiply, an add, and a subtract in both processing  
elements while branching and fetching up to four 32-bit values  
from memory—all in a single instruction.  
Rev. A  
|
Page 5 of 56  
|
August 2006  
ADSP-21367/ADSP-21368/ADSP-21369  
Table 2. Internal Memory Space 1  
IOP Registers 0x0000 0000–0x0003 FFFF  
Extended Precision Normal or  
Long Word (64 Bits)  
Instruction Word (48 Bits)  
Normal Word (32 Bits)  
Short Word (16 Bits)  
BLOCK 0 ROM (Reserved)  
0x0004 0000–0x0004 BFFF  
BLOCK 0 ROM (Reserved)  
0x0008 0000–0x0008 FFFF  
BLOCK 0 ROM (Reserved)  
0x0008 0000–0x0009 7FFF  
BLOCK 0 ROM (Reserved)  
0x0010 0000–0x0012 FFFF  
Reserved  
Reserved  
Reserved  
Reserved  
0x0004 F000–0x0004 FFFF  
0x0009 4000–0x0009 FFFF  
0x0009 E000–0x0009 FFFF  
0x0013 C000–0x0013 FFFF  
BLOCK 0 SRAM  
BLOCK 0 SRAM  
BLOCK 0 SRAM  
BLOCK 0 SRAM  
0x0004 C000–0x0004 EFFF  
0x0009 0000–0x0009 3FFF  
0x0009 8000–0x0009 DFFF  
0x0013 0000–0x0013 BFFF  
BLOCK 1 ROM (Reserved)  
0x0005 0000–0x0005 BFFF  
BLOCK 1 ROM (Reserved)  
0x000A 0000–0x000A FFFF  
BLOCK 1 ROM (Reserved)  
0x000A 0000–0x000B 7FFF  
BLOCK 1 ROM (Reserved)  
0x0014 0000–0x0016 FFFF  
Reserved  
Reserved  
Reserved  
Reserved  
0x0005 F000–0x0005 FFFF  
0x000B 4000–0x000B FFFF  
0x000B E000–0x000B FFFF  
0x0017 C000–0x0017 FFFF  
BLOCK 1 SRAM  
BLOCK 1 SRAM  
BLOCK 1 SRAM  
BLOCK 1 SRAM  
0x0005 C000–0x0005 EFFF  
0x000B 0000–0x000B 3FFF  
0x000B 8000–0x000B DFFF  
0x0017 0000–0x0017 BFFF  
BLOCK 2 SRAM  
BLOCK 2 SRAM  
BLOCK 2 SRAM  
BLOCK 2 SRAM  
0x0006 0000–0x0006 0FFF  
0x000C 0000–0x000C 1554  
0x000C 0000–0x000C 1FFF  
0x0018 0000–0x0018 3FFF  
Reserved  
Reserved  
Reserved  
Reserved  
0x0006 1000– 0x0006 FFFF  
0x000C 1555–0x000C 3FFF  
0x000C 2000–0x000D FFFF  
0x0018 4000–0x001B FFFF  
BLOCK 3 SRAM  
BLOCK 3 SRAM  
BLOCK 3 SRAM  
BLOCK 3 SRAM  
0x0007 0000–0x0007 0FFF  
0x000E 0000–0x000E 1554  
0x000E 0000–0x000E 1FFF  
0x001C 0000–0x001C 3FFF  
Reserved  
Reserved  
Reserved  
Reserved  
0x0007 1000–0x0007 FFFF  
0x000E 1555–0x000F FFFF  
0x000E 2000–0x000F FFFF  
0x001C 4000–0x001F FFFF  
1 The ADSP-21368 and ADSP-21369 processors include a customer-definable ROM block. Please contact your Analog Devices sales representative for additional details.  
The controller maintains all of the memory banks as a contigu-  
ous address space so that the processor sees this as a single  
address space, even if different size devices are used in the  
different banks.  
Table 4. External Memory for SDRAM Addresses  
Size in  
Bank  
Words  
Address Range  
A set of programmable timing parameters is available to config-  
ure the SDRAM banks to support slower memory devices. The  
memory banks can be configured as either 32 bits wide for max-  
imum performance and bandwidth or 16 bits wide for  
minimum device count and lower system cost.  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
62M  
0x0020 0000 – 0x03FF FFFF  
0x0400 0000 – 0x07FF FFFF  
0x0800 0000 – 0x0BFF FFFF  
0x0C00 0000 – 0x0FFF FFFF  
64M  
64M  
64M  
The SDRAM controller address, data, clock, and control pins  
can drive loads up to 30 pF. For larger memory systems, the  
SDRAM controller external buffer timing should be selected  
and external buffering should be provided so that the load on  
the SDRAM controller pins does not exceed 30 pF.  
Asynchronous Controller  
The asynchronous memory controller provides a configurable  
interface for up to four separate banks of memory or I/O  
devices. Each bank can be independently programmed with dif-  
ferent timing parameters, enabling connection to a wide variety  
of memory devices including SRAM, ROM, flash, and EPROM,  
as well as I/O devices that interface with standard memory con-  
trol lines. Bank 0 occupies a 14M word window and banks 1, 2,  
and 3 occupy a 16M word window in the processor’s address  
space but, if not fully populated, these windows are not made  
contiguous by the memory controller logic. The banks can also  
be configured as 8-bit, 16-bit, or 32-bit wide buses for ease of  
interfacing to a range of memories and I/O devices tailored  
either to high performance or to low cost and power.  
Table 3. External Memory for NonSDRAM Addresses  
Size in  
Bank  
Words  
Address Range  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
14M  
0x0020 0000 – 0x00FF FFFF  
0x0400 0000 – 0x04FF FFFF  
0x0800 0000 – 0x08FF FFFF  
0x0C00 0000 – 0x0CFF FFFF  
16M  
16M  
16M  
Rev. A  
|
Page 6 of 56  
|
August 2006  
ADSP-21367/ADSP-21368/ADSP-21369  
The asynchronous memory controller is capable of a maximum  
throughput of 264M bytes/s using a 66 MHz external bus speed.  
Other features include 8-bit to 32-bit and 16-bit to 32-bit pack-  
ing and unpacking, booting from bank select 1, and support for  
delay line DMA.  
the SPI interface, two for the external port, and two for  
memory-to-memory transfers. Programs can be downloaded to  
the processors using DMA transfers. Other DMA features  
include interrupt generation upon completion of DMA trans-  
fers, and DMA chaining for automatic linked DMA transfers.  
Delay Line DMA  
Shared External Memory  
The ADSP-21367/ADSP-21368/ADSP-21369 processors pro-  
vide delay line DMA functionality. This allows processor reads  
and writes to external delay line buffers (in external memory,  
SRAM, or SDRAM) with limited core interaction.  
The ADSP-21368 processor supports connecting to common  
shared external memory with other ADSP-21368 processors to  
create shared external bus processor systems. This support  
includes:  
• Distributed, on-chip arbitration for the shared external bus  
• Fixed and rotating priority bus arbitration  
• Bus time-out logic  
Digital Audio and Digital Peripheral Interfaces (DAI/DPI)  
The digital audio and digital periphal interfaces (DAI and DPI)  
provide the ability to connect various peripherals to any of the  
DSP’s DAI or DPI pins (DAI_P20–1 and DPI_P14–1).  
• Bus lock  
Programs make these connections using the signal routing units  
(SRU1 and SRU2), shown in Figure 1.  
Multiple processors can share the external bus with no addi-  
tional arbitration logic. Arbitration logic is included on-chip to  
allow the connection of up to four processors.  
The SRUs are matrix routing units (or group of multiplexers)  
that enable the peripherals provided by the DAI and DPI to be  
interconnected under software control. This allows easy use of  
the associated peripherals for a much wider variety of applica-  
tions by using a larger set of algorithms than is possible with  
nonconfigurable signal paths.  
Bus arbitration is accomplished through the BR1-4 signals and  
the priority scheme for bus arbitration is determined by the set-  
ting of the RPBA pin. Table 5 on Page 12 provides descriptions  
of the pins used in multiprocessor systems.  
INPUT/OUTPUT FEATURES  
The DAI and DPI also include eight serial ports, an S/PDIF  
receiver/transmitter, four precision clock generators (PCG),  
eight channels of synchronous sample rate converters, and an  
input data port (IDP). The IDP provides an additional input  
path to the processor core, configurable as either eight channels  
of I2S serial data or as seven channels plus a single 20-bit wide  
synchronous parallel data acquisition port. Each data channel  
has its own DMA channel that is independent from the proces-  
sor’s serial ports.  
The I/O processor provides 34 channels of DMA, as well as an  
extensive set of peripherals. These include a 20-pin digital audio  
interface which controls:  
• Eight serial ports  
• S/PDIF receiver/transmitter  
• Four precision clock generators  
• Four stereo sample rate converters  
• Internal data port/parallel data acquisition port  
For complete information on using the DAI and DPI, see the  
ADSP-21368 SHARC Processor Hardware Reference.  
The processors also contain a 14-pin digital peripheral interface  
which controls:  
Serial Ports  
The processors feature eight synchronous serial ports (SPORTs)  
that provide an inexpensive interface to a wide variety of digital  
and mixed-signal peripheral devices such as Analog Devices’  
AD183x family of audio codecs, ADCs, and DACs. The serial  
ports are made up of two data lines, a clock, and frame sync. The  
data lines can be programmed to either transmit or receive and  
each data line has a dedicated DMA channel.  
• Three general-purpose timers  
• Two serial peripheral interfaces  
• Two universal asynchronous receiver/transmitters  
(UARTs)  
• A two-wire interface (I2C-compatible)  
DMA Controller  
Serial ports are enabled via 16 programmable and simultaneous  
receive or transmit pins that support up to 32 transmit or 32  
receive channels of audio data when all eight SPORTS are  
enabled, or eight full duplex TDM streams of 128 channels  
per frame.  
The processor’s on-chip DMA controller allows data transfers  
without processor intervention. The DMA controller operates  
independently and invisibly to the processor core, allowing  
DMA operations to occur while the core is simultaneously exe-  
cuting its program instructions. DMA transfers can occur  
between the processor’s internal memory and its serial ports, the  
SPI-compatible (serial peripheral interface) ports, the IDP  
(input data port), the parallel data acquisition port (PDAP), or  
the UART. Thirty-four channels of DMA are available on the  
ADSP-21367/ADSP-21368/ADSP-21369—16 via the serial  
ports, eight via the input data port, four for the UARTs, two for  
The serial ports operate at a maximum data rate of 50M bits/s.  
Serial port data can be automatically transferred to and from  
on-chip memory via dedicated DMA channels. Each of the  
serial ports can work in conjunction with another serial port to  
provide TDM support. One SPORT provides two transmit sig-  
nals while the other SPORT provides the two receive signals.  
The frame sync and clock are shared.  
Rev. A  
|
Page 7 of 56  
|
August 2006  
ADSP-21367/ADSP-21368/ADSP-21369  
Serial ports operate in five modes:  
• Standard DSP serial mode  
• Multichannel (TDM) mode with support for packed I2S  
mode  
• I2S mode  
• Packed I2S mode  
Digital Peripheral Interface (DPI)  
The digital peripheral interface provides connections to two  
serial peripheral interface ports (SPI), two universal asynchro-  
nous receiver-transmitters (UARTs), a two-wire interface  
(TWI), 12 flags, and three general-purpose timers.  
Serial Peripheral (Compatible) Interface  
The processors contain two serial peripheral interface ports  
(SPIs). The SPI is an industry-standard synchronous serial link,  
enabling the SPI-compatible port to communicate with other  
SPI-compatible devices. The SPI consists of two data pins, one  
device select pin, and one clock pin. It is a full-duplex synchro-  
nous serial interface, supporting both master and slave modes.  
The SPI port can operate in a multimaster environment by  
interfacing with up to four other SPI-compatible devices, either  
acting as a master or slave device. The ADSP-21367/  
ADSP-21368/ADSP-21369 SPI-compatible peripheral imple-  
mentation also features programmable baud rate and clock  
phase and polarities. The SPI-compatible port uses open drain  
drivers to support a multimaster configuration and to avoid  
data contention.  
• Left-justified sample pair mode  
Left-justified sample pair mode is a mode where in each frame  
sync cycle two samples of data are transmitted/received—one  
sample on the high segment of the frame sync, the other on the  
low segment of the frame sync. Programs have control over var-  
ious attributes of this mode.  
Each of the serial ports supports the left-justified sample pair  
and I2S protocols (I2S is an industry-standard interface com-  
monly used by audio codecs, ADCs, and DACs such as the  
Analog Devices AD183x family), with two data pins, allowing  
four left-justified sample pair or I2S channels (using two stereo  
devices) per serial port, with a maximum of up to 32 I2S chan-  
nels. The serial ports permit little-endian or big-endian  
transmission formats and word lengths selectable from 3 bits to  
32 bits. For the left-justified sample pair and I2S modes, data-  
word lengths are selectable between 8 bits and 32 bits. Serial  
ports offer selectable synchronization and transmit modes as  
well as optional μ-law or A-law companding selection on a per  
channel basis. Serial port clocks and frame syncs can be inter-  
nally or externally generated.  
UART Port  
The processors provide a full-duplex universal asynchronous  
receiver/transmitter (UART) port, which is fully compatible  
with PC-standard UARTs. The UART port provides a simpli-  
fied UART interface to other peripherals or hosts, supporting  
full-duplex, DMA-supported, asynchronous transfers of serial  
data. The UART also has multiprocessor communication capa-  
bility using 9-bit address detection. This allows it to be used in  
multidrop networks through the RS-485 data interface stan-  
dard. The UART port also includes support for five data bits to  
eight data bits, one stop bit or two stop bits, and none, even, or  
odd parity. The UART port supports two modes of operation:  
The serial ports also contain frame sync error detection logic  
where the serial ports detect frame syncs that arrive early (for  
example, frame syncs that arrive while the transmission/recep-  
tion of the previous word is occurring). All the serial ports also  
share one dedicated error interrupt.  
S/PDIF-Compatible Digital Audio Receiver/Transmitter  
and Synchronous/Asynchronous Sample Rate Converter  
• PIO (programmed I/O) – The processor sends or receives  
data by writing or reading I/O-mapped UART registers.  
The data is double-buffered on both transmit and receive.  
The S/PDIF receiver/transmitter has no separate DMA chan-  
nels. It receives audio data in serial format and converts it into a  
biphase encoded signal. The serial data input to the  
• DMA (direct memory access) – The DMA controller trans-  
fers both transmit and receive data. This reduces the  
number and frequency of interrupts required to transfer  
data to and from memory. The UART has two dedicated  
DMA channels, one for transmit and one for receive. These  
DMA channels have lower default priority than most DMA  
channels because of their relatively low service rates.  
receiver/transmitter can be formatted as left-justified, I2S, or  
right-justified with word widths of 16, 18, 20, or 24 bits.  
The serial data, clock, and frame sync inputs to the S/PDIF  
receiver/transmitter are routed through the signal routing unit  
(SRU). They can come from a variety of sources such as the  
SPORTs, external pins, the precision clock generators (PCGs),  
or the sample rate converters (SRC) and are controlled by the  
SRU control registers.  
The UART port’s baud rate, serial data format, error code gen-  
eration and status, and interrupts are programmable:  
• Supporting bit rates ranging from (fSCLK/ 1,048,576) to  
(fSCLK/16) bits per second.  
The sample rate converter (SRC) contains four SRC blocks and  
is the same core as that used in the AD1896 192 kHz stereo  
asynchronous sample rate converter and provides up to 128 dB  
SNR. The SRC block is used to perform synchronous or asyn-  
chronous sample rate conversion across independent stereo  
channels, without using internal processor resources. The four  
SRC blocks can also be configured to operate together to con-  
vert multichannel audio data without phase mismatches.  
Finally, the SRC can be used to clean up audio data from jittery  
clock sources such as the S/PDIF receiver.  
• Supporting data formats from 7 bits to 12 bits per frame.  
• Both transmit and receive operations can be configured to  
generate maskable interrupts to the processor.  
Where the 16-bit UART_Divisor comes from the DLH register  
(most significant eight bits) and DLL register (least significant  
eight bits).  
Rev. A  
|
Page 8 of 56  
|
August 2006  
ADSP-21367/ADSP-21368/ADSP-21369  
In conjunction with the general-purpose timer functions, auto-  
baud detection is supported.  
midpoint of the PWM period. In this mode, it is possible to pro-  
duce asymmetrical PWM patterns that produce lower harmonic  
distortion in three-phase PWM inverters.  
Timers  
ROM-Based Security  
The ADSP-21367/ADSP-21368/ADSP-21369 have a total of  
four timers: a core timer that can generate periodic software  
interrupts and three general-purpose timers that can generate  
periodic interrupts and be independently set to operate in one  
of three modes:  
The ADSP-21367/ADSP-21368/ADSP-21369 have a ROM secu-  
rity feature that provides hardware support for securing user  
software code by preventing unauthorized reading from the  
internal code when enabled. When using this feature, the pro-  
cessor does not boot-load any external code, executing  
exclusively from internal SRAM/ROM. Additionally, the pro-  
cessor is not freely accessible via the JTAG port. Instead, a  
unique 64-bit key, which must be scanned in through the JTAG  
or test access port will be assigned to each customer. The device  
will ignore a wrong key. Emulation features and external boot  
modes are only available after the correct key is scanned.  
• Pulse waveform generation mode  
• Pulse width count/capture mode  
• External event watchdog mode  
The core timer can be configured to use FLAG3 as a timer  
expired signal, and each general purpose timer has one bidirec-  
tional pin and four registers that implement its mode of  
operation: a 6-bit configuration register, a 32-bit count register,  
a 32-bit period register, and a 32-bit pulse width register. A sin-  
gle control and status register enables or disables all three  
general-purpose timers independently.  
SYSTEM DESIGN  
The following sections provide an introduction to system design  
options and power supply issues.  
Program Booting  
Two-Wire Interface Port (TWI)  
The internal memory of the processors can be booted up at sys-  
tem power-up from an 8-bit EPROM via the external port, an  
SPI master or slave, or an internal boot. Booting is determined  
by the boot configuration (BOOT_CFG1–0) pins (see Table 7  
on Page 15). Selection of the boot source is controlled via the  
SPI as either a master or slave device, or it can immediately  
begin executing from ROM.  
The TWI is a bidirectional 2-wire, serial bus used to move 8-bit  
data while maintaining compliance with the I2C bus protocol.  
The TWI master incorporates the following features:  
• Simultaneous master and slave operation on multiple  
device systems with support for multimaster data  
arbitration  
• Digital filtering and timed event processing  
• 7-bit and 10-bit addressing  
Power Supplies  
The processors have separate power supply connections for the  
• 100K bits/s and 400K bits/s data rates  
• Low interrupt rate  
internal (VDDINT), external (VDDEXT), and analog (AVDD/AVSS  
)
power supplies. The internal and analog supplies must meet the  
1.3 V requirement for the 333 MHz device and 1.2 V for the  
266 MHz device. The external supply must meet the 3.3 V  
requirement. All external supply pins must be connected to the  
same power supply.  
Pulse-Width Modulation  
The PWM module is a flexible, programmable, PWM waveform  
generator that can be programmed to generate the required  
switching patterns for various applications related to motor and  
engine control or audio power control. The PWM generator can  
generate either center-aligned or edge-aligned PWM wave-  
forms. In addition, it can generate complementary signals on  
two outputs in paired mode or independent signals in non-  
paired mode (applicable to a single group of four PWM  
waveforms).  
Note that the analog supply pin (AVDD) powers the processor’s  
internal clock generator PLL. To produce a stable clock, it is rec-  
ommended that PCB designs use an external filter circuit for the  
AVDD pin. Place the filter components as close as possible to the  
AVDD/AVSS pins. For an example circuit, see Figure 2. (A recom-  
mended ferrite chip is the muRata BLM18AG102SN1D). To  
reduce noise coupling, the PCB should use a parallel pair of  
power and ground planes for VDDINT and GND. Use wide traces  
to connect the bypass capacitors to the analog power (AVDD) and  
ground (AVSS) pins. Note that the AVDD and AVSS pins specified in  
Figure 2 are inputs to the processor and not the analog ground  
plane on the board—the AVSS pin should connect directly to dig-  
ital ground (GND) at the chip.  
The entire PWM module has four groups of four PWM outputs  
each. Therefore, this module generates 16 PWM outputs in  
total. Each PWM group produces two pairs of PWM signals on  
the four PWM outputs.  
The PWM generator is capable of operating in two distinct  
modes while generating center-aligned PWM waveforms: single  
update mode or double update mode. In single update mode the  
duty cycle values are programmable only once per PWM period.  
This results in PWM patterns that are symmetrical about the  
midpoint of the PWM period. In double update mode, a second  
updating of the PWM registers is implemented at the  
Rev. A  
|
Page 9 of 56  
|
August 2006  
ADSP-21367/ADSP-21368/ADSP-21369  
developer can identify bottlenecks in software quickly and effi-  
ciently. By using the profiler, the programmer can focus on  
those areas in the program that impact performance and take  
corrective action.  
ADSP-213xx  
100nF  
10nF  
1nF  
A
V
VDD  
DDINT  
Debugging both C/C++ and assembly programs with the  
VisualDSP++ debugger, programmers can:  
HI-Z FERRITE  
BEAD CHIP  
A
VSS  
• View mixed C/C++ and assembly code (interleaved source  
and object information)  
LOCATE ALL COMPONENTS  
CLOSE TO A AND A PINS  
VDD  
VSS  
• Insert breakpoints  
• Set conditional breakpoints on registers, memory,  
and stacks  
Figure 2. Analog Power (AVDD) Filter Circuit  
• Trace instruction execution  
Target Board JTAG Emulator Connector  
• Perform linear or statistical profiling of program execution  
• Fill, dump, and graphically plot the contents of memory  
• Perform source level debugging  
Analog Devices DSP Tools product line of JTAG emulators uses  
the IEEE 1149.1 JTAG test access port of the ADSP-21367/  
ADSP-21368/ADSP-21369 processors to monitor and control  
the target board processor during emulation. Analog Devices  
DSP Tools product line of JTAG emulators provides emulation  
at full processor speed, allowing inspection and modification of  
memory, registers, and processor stacks. The processor’s JTAG  
interface ensures that the emulator will not affect target system  
loading or timing.  
• Create custom debugger windows  
The VisualDSP++ IDDE lets programmers define and manage  
DSP software development. Its dialog boxes and property pages  
let programmers configure and manage all of the SHARC devel-  
opment tools, including the color syntax highlighting in the  
VisualDSP++ editor. This capability permits programmers to:  
For complete information on Analog Devices’ SHARC DSP  
Tools product line of JTAG emulator operation, see the appro-  
priate “Emulator Hardware User’s Guide.”  
• Control how the development tools process inputs and  
generate outputs  
• Maintain a one-to-one correspondence with the tool’s  
command line switches  
DEVELOPMENT TOOLS  
The processors are supported with a complete set of CROSS-  
®
The VisualDSP++ Kernel (VDK) incorporates scheduling and  
resource management tailored specifically to address the mem-  
ory and timing constraints of DSP programming. These  
capabilities enable engineers to develop code more effectively,  
eliminating the need to start from the very beginning, when  
developing new application code. The VDK features include  
threads, critical and unscheduled regions, semaphores, events,  
and device flags. The VDK also supports priority-based, pre-  
emptive, cooperative, and time-sliced scheduling approaches. In  
addition, the VDK was designed to be scalable. If the application  
does not use a specific feature, the support code for that feature  
is excluded from the target system.  
CORE software and hardware development tools, including  
®
Analog Devices emulators and VisualDSP++ development  
environment. The same emulator hardware that supports other  
SHARC processors also fully emulates the ADSP-21367/ADSP-  
21368/ADSP-21369.  
The VisualDSP++ project management environment lets pro-  
grammers develop and debug an application. This environment  
includes an easy to use assembler (which is based on an alge-  
braic syntax), an archiver (librarian/library builder), a linker, a  
loader, a cycle-accurate instruction-level simulator, a C/C++  
compiler, and a C/C++ runtime library that includes DSP and  
mathematical functions. A key point for these tools is C/C++  
code efficiency. The compiler has been developed for efficient  
translation of C/C++ code to DSP assembly. The SHARC has  
architectural features that improve the efficiency of compiled  
C/C++ code.  
Because the VDK is a library, a developer can decide whether to  
use it or not. The VDK is integrated into the VisualDSP++  
development environment, but can also be used via standard  
command line tools. When the VDK is used, the development  
environment assists the developer with many error-prone tasks  
and assists in managing system resources, automating the gen-  
eration of various VDK-based objects, and visualizing the  
system state, when debugging an application that uses the VDK.  
The VisualDSP++ debugger has a number of important fea-  
tures. Data visualization is enhanced by a plotting package that  
offers a significant level of flexibility. This graphical representa-  
tion of user data enables the programmer to quickly determine  
the performance of an algorithm. As algorithms grow in com-  
plexity, this capability can have increasing significance on the  
designer’s development schedule, increasing productivity. Sta-  
tistical profiling enables the programmer to nonintrusively poll  
the processor as it is running the program. This feature, unique  
to VisualDSP++, enables the software developer to passively  
gather important code execution metrics without interrupting  
the real-time characteristics of the program. Essentially, the  
VisualDSP++ Component Software Engineering (VCSE) is  
Analog Devices’ technology for creating, using, and reusing  
software components (independent modules of substantial  
functionality) to quickly and reliably assemble software  
applications. The user can download components from the  
Web, drop them into the application, and publish component  
archives from within VisualDSP++. VCSE supports component  
implementation in C/C++ or assembly language.  
Rev. A  
|
Page 10 of 56  
|
August 2006  
ADSP-21367/ADSP-21368/ADSP-21369  
Use the Expert Linker to visually manipulate the placement of  
code and data on the embedded system. View memory utiliza-  
tion in a color-coded graphical form, easily move code and data  
to different areas of the processor or external memory with a  
drag of the mouse and examine runtime stack and heap usage.  
The expert linker is fully compatible with the existing linker def-  
inition file (LDF), allowing the developer to move between the  
graphical and textual environments.  
in-circuit programming of the on-board flash device to store  
user-specific boot code, enabling the board to run as a stand-  
alone unit without being connected to the PC.  
With a full version of VisualDSP++ installed (sold separately),  
engineers can develop software for the EZ-KIT Lite or any  
custom-defined system. Connecting one of Analog Devices  
JTAG emulators to the EZ-KIT Lite board enables high speed,  
non-intrusive emulation.  
In addition to the software and hardware development tools  
available from Analog Devices, third parties provide a wide  
range of tools supporting the SHARC processor family. Hard-  
ware tools include SHARC processor PC plug-in cards. Third-  
party software tools include DSP libraries, real-time operating  
systems, and block diagram design tools.  
ADDITIONAL INFORMATION  
This data sheet provides a general overview of the  
ADSP-21367/ADSP-21368/ADSP-21369 architecture and func-  
tionality. For detailed information on the ADSP-2136x family  
core architecture and instruction set, refer to the ADSP-21368  
SHARC Processor Hardware Reference and the ADSP-  
2136x/ADSP-2137x SHARC Processor Programming Reference.  
Designing an Emulator-Compatible DSP Board (Target)  
The Analog Devices family of emulators are tools that every  
DSP developer needs to test and debug hardware and software  
systems. Analog Devices has supplied an IEEE 1149.1 JTAG test  
access port (TAP) on each JTAG DSP. Nonintrusive in-circuit  
emulation is assured by the use of the processor’s JTAG inter-  
face—the emulator does not affect target system loading or  
timing. The emulator uses the TAP to access the internal fea-  
tures of the processor, allowing the developer to load code, set  
breakpoints, observe variables, observe memory, and examine  
registers. The processor must be halted to send data and com-  
mands, but once an operation has been completed by the  
emulator, the DSP system is set running at full speed with no  
impact on system timing.  
To use these emulators, the target board must include a header  
that connects the DSP’s JTAG port to the emulator.  
For details on target board design issues including mechanical  
layout, single processor connections, signal buffering, signal ter-  
mination, and emulator pod logic, see the EE-68: Analog Devices  
JTAG Emulation Technical Reference on the Analog Devices  
website (www.analog.com)—use site search on “EE-68.” This  
document is updated regularly to keep pace with improvements  
to emulator support.  
Evaluation Kit  
®
Analog Devices offers a range of EZ-KIT Lite evaluation plat-  
forms to use as a cost effective method to learn more about  
developing or prototyping applications with Analog Devices  
processors, platforms, and software tools. Each EZ-KIT Lite  
includes an evaluation board along with an evaluation suite of  
the VisualDSP++ development and debugging environment  
with the C/C++ compiler, assembler, and linker. Also included  
are sample application programs, power supply, and a USB  
cable. All evaluation versions of the software tools are limited  
for use only with the EZ-KIT Lite product.  
The USB controller on the EZ-KIT Lite board connects the  
board to the USB port of the user’s PC, enabling the  
VisualDSP++ evaluation suite to emulate the on-board proces-  
sor in-circuit. This permits the customer to download, execute,  
and debug programs for the EZ-KIT Lite system. It also allows  
Rev. A  
|
Page 11 of 56  
|
August 2006  
ADSP-21367/ADSP-21368/ADSP-21369  
PIN FUNCTION DESCRIPTIONS  
The following symbols appear in the Type column of Table 5:  
A = asynchronous, G = ground, I = input, O = output,  
O/T = output three-state, P = power supply, S = synchronous,  
(A/D) = active drive, (O/D) = open drain, (pd) = pull-down  
resistor, (pu) = pull-up resistor.  
Table 5. Pin List  
State During/  
After Reset  
Name  
Type  
(ID = 00x)  
Description  
ADDR23–0  
O/T (pu)1  
Pulled high/  
driven low  
External Address. The processors output addresses for external memory and periph-  
erals on these pins.  
DATA31–0  
I/O (pu)1  
Pulled high/  
pulled high  
External Data. Data pins can be multiplexed to support external memory interface  
data (I/O), the PDAP (I), FLAGS (I/O), and PWM (O). After reset, all DATA pins are in EMIF  
mode and FLAG(0-3) pins are in FLAGS mode (default). When configured using the  
IDP_PDAP_CTL register, IDP Channel 0 scans the DATA31–8 pins for parallel input data.  
DAI _P20–1  
I/O with pro-  
Pulled high/  
pulled high  
Digital Audio Interface. These pins provide the physical interface to the DAI SRU. The  
DAI SRU configuration registers define the combination of on-chip audiocentric periph-  
eral inputs or outputs connected to the pin, and to the pin’s output enable. The  
configuration registers then determines the exact behavior of the pin. Any input or  
output signal present in the DAI SRU may be routed to any of these pins. The DAI SRU  
provides the connection from the serial ports (8), the SRC module, the S/PDIF module,  
input data ports (2), and the precision clock generators (4), to the DAI_P20–1 pins. Pull-  
ups can be disabled via the DAI_PIN_PULLUP register.  
grammable pu2  
DPI _P14–1  
I/O with pro-  
Pulled high/  
pulled high  
Digital Peripheral Interface. These pins provide the physical interface to the DPI SRU.  
The DPI SRU configuration registers define the combination of on-chip peripheral  
inputsoroutputsconnectedtothepinandtothepin’soutputenable.Theconfiguration  
registers of these peripherals then determines the exact behavior of the pin. Any input  
or output signal present in the DPI SRU may be routed to any of these pins. The DPI SRU  
provides the connection from the timers (3), SPIs (2), UARTs (2), flags (12) TWI (1), and  
general-purpose I/O (9) to the DPI_P14–1 pins. The TWI output is an open-drain  
output—so the pins used for I2C data and clock should be connected to logic level 0.  
Pull-ups can be disabled via the DPI_PIN_PULLUP register.  
grammable pu2  
ACK  
I (pu)1  
Memory Acknowledge. External devices can deassert ACK (low) to add wait states to  
an external memory access. ACK is used by I/O devices, memory controllers, or other  
peripherals to hold off completion of an external memory access.  
RD  
O/T (pu)1  
O/T (pu)1  
O/T (pu)1  
O/T (pu)1  
O/T (pu)1  
Pulled high/  
driven high  
External Port Read Enable. RD is asserted whenever the processors read a word from  
external memory.  
WR  
Pulled high/  
driven high  
External Port Write Enable. WR is asserted when the processors write a word to  
external memory.  
SDRAS  
SDCAS  
SDWE  
Pulled high/  
driven high  
SDRAM Row Address Strobe. Connect to SDRAM’s RAS pin. In conjunction with other  
SDRAM command pins, defines the operation for the SDRAM to perform.  
Pulled high/  
driven high  
SDRAM Column Address Select. Connect to SDRAM’s CAS pin. In conjunction with  
other SDRAM command pins, defines the operation for the SDRAM to perform.  
Pulled high/  
driven high  
SDRAM Write Enable. Connect to SDRAM’s WE or W buffer pin.  
Rev. A  
|
Page 12 of 56  
|
August 2006  
ADSP-21367/ADSP-21368/ADSP-21369  
Table 5. Pin List  
State During/  
After Reset  
(ID = 00x)  
Name  
Type  
Description  
SDCKE  
O/T (pu)1  
Pulled high/  
driven high  
SDRAM Clock Enable. Connect to SDRAM’s CKE pin. Enables and disables the CLK  
signal. For details, see the data sheet supplied with the SDRAM device.  
SDA10  
O/T (pu)1  
Pulled high/  
driven low  
SDRAM A10 Pin. Enables applications to refresh an SDRAM in parallel with non-  
SDRAM accesses. This pin replaces the DSP’s A10 pin only during SDRAM accesses.  
SDCLK0  
SDCLK1  
O/T  
O/T  
High-Z/driving  
SDRAM Clock Output 0.  
SDRAMClockOutput1. Additional clock for SDRAM devices. For systems with multiple  
SDRAM devices, handles the increased clock load requirements, eliminating need of  
off-chip clock buffers. Either SDCLK1 or both SDCLKx pins can be three-stated.  
MS0–1  
O/T (pu)1  
Pulled high/  
driven high  
Memory Select Lines 0–1. These lines are asserted (low) as chip selects for the corre-  
spondingbanksofexternalmemory.TheMS3-0 linesaredecodedmemoryaddresslines  
that change at the same time as the other address lines. When no external memory  
access is occurring, the MS3-0 lines are inactive; they are active, however, when a condi-  
tional memory access instruction is executed, whether or not the condition is true.  
The MS1 pin can be used in EPORT/FLASH boot mode. See the hardware reference for  
more information.  
FLAG[0]/IRQ0  
FLAG[1]/IRQ1  
I/O  
I/O  
High-Z/high-Z  
High-Z/high-Z  
High-Z/high-Z  
FLAG0/Interrupt Request 0.  
FLAG1/Interrupt Request 1.  
FLAG[2]/IRQ2/  
MS2  
I/O with pro-  
grammable pu  
(for MS mode)  
FLAG2/Interrupt Request 2/Memory Select 2.  
FLAG[3]/TIMEXP/  
MS3  
I/O with pro-  
grammable pu  
(for MS mode)  
High-Z/high-Z  
FLAG3/Timer Expired/Memory Select 3.  
TDI  
I (pu)  
O/T  
I (pu)  
I
Test Data Input (JTAG). Provides serial data for the boundary scan logic.  
Test Data Output (JTAG). Serial scan output of the boundary scan path.  
Test Mode Select (JTAG). Used to control the test state machine.  
TDO  
TMS  
TCK  
Test Clock (JTAG). Provides a clock for JTAG boundary scan. TCK must be asserted  
(pulsed low) after power-up, or held low for proper operation of the processor  
TRST  
I (pu)  
Test Reset (JTAG). Resets the test state machine. TRST must be asserted (pulsed low)  
after power-up or held low for proper operation of the processor.  
EMU  
O/T (pu)  
I
Emulation Status. Must be connected to the ADSP-21367/ADSP-21368/ADSP-21369  
Analog Devices DSP Tools product line of JTAG emulator target board connectors only.  
CLK_CFG1–0  
Core/CLKIN Ratio Control. These pins set the start-up clock frequency. See Table 8 for  
a description of the clock configuration modes.  
Note that the operating frequency can be changed by programming the PLL multiplier  
and divider in the PMCTL register at any time after the core comes out of reset.  
BOOT_CFG1–0  
I
Boot Configuration Select. These pins select the boot mode for the processor. The  
BOOT_CFG pins must be valid before reset is asserted. See Table 7 for a description of  
the boot modes.  
Rev. A  
|
Page 13 of 56  
|
August 2006  
ADSP-21367/ADSP-21368/ADSP-21369  
Table 5. Pin List  
State During/  
After Reset  
Name  
Type  
(ID = 00x)  
Description  
RESET  
I
Processor Reset. Resets the processor to a known state. Upon deassertion, there is a  
4096 CLKIN cycle latency for the PLL to lock. After this time, the core begins program  
execution from the hardware reset vector address. The RESET input must be asserted  
(low) at power-up.  
XTAL  
O
I
Crystal Oscillator Terminal. Used in conjunction with CLKIN to drive an external  
crystal.  
CLKIN  
Local Clock In. Used with XTAL. CLKIN is the processor’s clock input. It configures the  
processors to use either its internal clock generator or an external clock source. Con-  
necting the necessary components to CLKIN and XTAL enables the internal clock  
generator. Connecting the external clock to CLKIN while leaving XTAL unconnected  
configures the processor to use an external clock such as an external clock oscillator.  
CLKIN may not be halted, changed, or operated below the specified frequency.  
RESETOUT/  
CLKOUT  
O/T  
Driven low/  
driven high  
Reset Out/Local Clock Out. Reset out provide a 4096 cycle delay that allows the PLL  
to lock. This pin can also be configured as a CLKOUT signal to clock synchronous periph-  
erals and memory. Thefunctionality can be switchedbetween the PLLoutput clock and  
reset out by setting Bit 12 of the PMCTL register. The default is reset out.  
BR4–1  
ID2–0  
RPBA  
I/O (pu)1  
Pulled high/  
pulled high  
External Bus Request. Used by the ADSP-21368 processor to arbitrate for bus master-  
ship. A processor only drives its own BRx line (corresponding to the value of its ID2-0  
inputs) and monitors all others. In a system with less than four processors, the unused  
BRx pins should be tied high; the processor’s own BRx line must not be tied high or low  
because it is an output.  
I (pd)  
Processor ID. Determines which bus request (BR4–1) is used by the ADSP-21368 pro-  
cessor. ID = 001 corresponds to BR1, ID = 010 corresponds to BR2, and so on. Use  
ID = 000 or 001 in single-processor systems. These lines are a system configuration  
selection that should be hardwired or only changed at reset. ID = 101,110, and 111 are  
reserved.  
I (pu)1  
Rotating Priority Bus Arbitration Select. When RPBA is high, rotating priority for the  
ADSP-21368 external bus arbitration is selected. When RPBA is low, fixed priority is  
selected. This signal is a system configuration selection which must be set to the same  
value on every processor in the system.  
1 The pull-up is always enabled on the ADSP-21367 and ADSP-21369 processors. The pull-up on the ADSP-21368 processor is only enabled on the processor with ID2–0 = 00x  
2 Pull-up can be enabled/disabled, value of pull-up cannot be programmed.  
Rev. A  
|
Page 14 of 56  
|
August 2006  
ADSP-21367/ADSP-21368/ADSP-21369  
DATA MODES  
The upper 32 data pins of the external memory interface are  
muxed (using bits in the SYSCTL register) to support the exter-  
nal memory interface data (input/output), the PDAP (input  
only), the FLAGS (input/output), and the PWM channels (out-  
put). Table 6 provides the pin settings.  
Table 6. Function of Data Pins  
DATA PIN MODE  
DATA31–16  
DATA15–8  
DATA7–0  
000  
001  
010  
011  
100  
101  
110  
111  
EPDATA32–0  
FLAGS/PWM15–01  
FLAGS/PWM15–01  
FLAGS/PWM15–01  
EPDATA15–0  
FLAGS15–0  
FLAGS15–8  
EPDATA7–0  
PDAP (DATA + CTRL)  
PDAP (DATA + CTRL)  
EPDATA7–0  
FLAGS7–0  
Reserved  
Three-state all pins  
1 These signals can be FLAGS or PWM or a mix of both. However, they can be selected only in groups of four. Their function is determined by the control signals  
FLAGS/PWM_SEL. For more information, see the ADSP-21368 SHARC Processor Hardware Reference.  
BOOT MODES  
Table 7. Boot Mode Selection  
BOOT_CFG1–0  
Booting Mode  
SPI Slave Boot  
00  
01  
10  
SPI Master Boot  
EPROM/FLASH Boot  
CORE INSTRUCTION RATE TO CLKIN RATIO MODES  
For details on processor timing, see Timing Specifications and  
Figure 4 on Page 19.  
Table 8. Core Instruction Rate/CLKIN Ratio Selection  
CLK_CFG1–0  
Core to CLKIN Ratio  
00  
01  
10  
6:1  
32:1  
16:1  
Rev. A  
|
Page 15 of 56  
|
August 2006  
ADSP-21367/ADSP-21368/ADSP-21369  
SPECIFICATIONS  
OPERATING CONDITIONS  
333 MHz  
Min  
266 MHz  
Min  
Parameter1 Description  
Max  
Max  
Unit  
VDDINT  
AVDD  
Internal (Core) Supply Voltage  
1.235  
1.235  
3.13  
2.0  
1.365  
1.14  
1.14  
3.13  
2.0  
1.26  
V
V
V
V
V
V
V
Analog (PLL) Supply Voltage  
1.365  
1.26  
VDDEXT  
External (I/O) Supply Voltage  
3.47  
3.47  
2
VIH  
High Level Input Voltage @ VDDEXT = max  
Low Level Input Voltage @ VDDEXT = min  
High Level Input Voltage @ VDDEXT = max  
Low Level Input Voltage @ VDDEXT = min  
VDDEXT + 0.5  
+0.8  
VDDEXT + 0.5  
+0.8  
2
VIL  
–0.5  
1.74  
–0.5  
–0.5  
1.74  
–0.5  
3
VIH  
_
VDDEXT + 0.5  
+1.19  
VDDEXT + 0.5  
+1.19  
CLKIN  
3
VIL  
TJ  
_CLKIN  
Junction Temperature  
208-Lead MQFP @ TAMBIENT 0°C to +70°C  
256-Ball SBGA @ TAMBIENT 0°C to +70°C  
256-Ball SBGA @ TAMBIENT –40°C to +85°C  
0
+120  
°C  
°C  
°C  
0
–40  
+110  
+125  
1 Specifications subject to change without notice.  
2 Applies to input and bidirectional pins: DATAx, ACK, RPBA, BRx, IDx, FLAGx, DAI_Px, DPI_Px, BOOT_CFGx, CLK_CFGx, RESET, TCK, TMS, TDI, TRST.  
3 Applies to input pin CLKIN.  
Rev. A  
|
Page 16 of 56  
|
August 2006  
ADSP-21367/ADSP-21368/ADSP-21369  
ELECTRICAL CHARACTERISTICS  
Parameter1  
Description  
Test Conditions  
Min  
Typ  
Max  
Unit  
2
VOH  
High Level Output Voltage  
Low Level Output Voltage  
@ VDDEXT = min, IOH = –1.0 mA3  
@ VDDEXT = min, IOL = 1.0 mA3  
@ VDDEXT = max, VIN = VDDEXT max  
@ VDDEXT = max, VIN = 0 V  
2.4  
V
2
VOL  
0.4  
10  
V
4, 5  
IIH  
High Level Input Current  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
4, 6, 7  
IIL  
Low Level Input Current  
10  
6
IIHPD  
High Level Input Current Pull-down  
Low Level Input Current Pull-up  
Three-State Leakage Current  
Three-State Leakage Current  
Three-State Leakage Current Pull-up  
Supply Current (Internal)  
@ VDDEXT = max, VIN = 0 V  
250  
200  
10  
5
IILPU  
@ VDDEXT = max, VIN = 0 V  
8, 9  
IOZH  
@ VDDEXT = max, VIN = VDDEXT max  
@ VDDEXT = max, VIN = 0 V  
8, 10  
IOZL  
10  
9
IOZLPU  
@ VDDEXT = max, VIN = 0 V  
200  
11  
IDD  
-
tCCLK = 3.75 ns, VDDINT = 1.2 V, 25°C  
tCCLK = 3.00 ns, VDDINT = 1.3 V, 25°C  
700  
900  
mA  
mA  
INTYP  
12  
AIDD  
Supply Current (Analog)  
Input Capacitance  
AVDD = max  
10  
mA  
pF  
13, 14  
CIN  
fIN = 1 MHz, TCASE = 25°C, VIN = 1.3 V  
4.7  
1
Specifications subject to change without notice.  
2 Applies to output and bidirectional pins: ADDRx, DATAx, RD, WR, MSx, BRx, FLAGx, DAI_Px, DPI_Px, SDRAS, SDCAS, SDWE, SDCKE, SDA10, SDCLKx, EMU, TDO,  
CLKOUT.  
3 See Output Drive Currents on Page 47 for typical drive current capabilities.  
4 Applies to input pins without internal pull-ups: BOOT_CFGx, CLK_CFGx, CLKIN, RESET, TCK.  
5 Applies to input pins with internal pull-ups: ACK, RPBA, TMS, TDI, TRST.  
6 Applies to input pins with internal pull-downs: IDx.  
7 Applies to input pins with internal pull-ups disabled: ACK, RPBA.  
8 Applies to three-statable pins without internal pull-ups: FLAGx, SDCLKx, TDO.  
9 Applies to three-statable pins with internal pull-ups: ADDRx, DATAx, RD, WR, MSx, BRx, DAI_Px, DPI_Px, SDRAS, SDCAS, SDWE, SDCKE, SDA10, EMU.  
10Applies to three-statable pins with internal pull-ups disabled: ADDRx, DATAx, RD, WR, MSx, BRx, DAI_Px, DPI_Px, SDRAS, SDCAS, SDWE, SDCKE, SDA10  
11See Engineer-to-Engineer Note 299 for further information.  
12Characterized, but not tested.  
13Applies to all signal pins.  
14Guaranteed, but not tested.  
Rev. A  
|
Page 17 of 56  
|
August 2006  
ADSP-21367/ADSP-21368/ADSP-21369  
PACKAGE INFORMATION  
MAXIMUM POWER DISSIPATION  
The information presented in Figure 3 provides details about  
the package branding for the ADSP-21367/ADSP-21368/  
ADSP-21369 processors. For a complete listing of product avail-  
ability, see Ordering Guide on Page 56.  
See Engineer-to-Engineer Note (EE-299) for detailed thermal  
and power information regarding maximum power dissipation.  
For information on package thermal specifications, see Thermal  
Characteristics on Page 48.  
ABSOLUTE MAXIMUM RATINGS  
Stresses greater than those listed in Table 10 may cause perma-  
nent damage to the device. These are stress ratings only;  
functional operation of the device at these or any other condi-  
tions greater than those indicated in the operational sections of  
this specification is not implied. Exposure to absolute maximum  
rating conditions for extended periods may affect device  
reliability.  
a
ADSP-2136x  
tppZ-cc  
vvvvvv.x n.n  
yyww country_of_origin  
S
Table 10. Absolute Maximum Ratings  
Figure 3. Typical Package Brand  
Parameter  
Rating  
Internal (Core) Supply Voltage (VDDINT  
)
–0.3 V to +1.5 V  
–0.3 V to +1.5 V  
–0.3 V to +4.6 V  
–0.5 V to +3.8 V  
–0.5 V to VDDEXT + 0.5 V  
200 pF  
Table 9. Package Brand Information  
Analog (PLL) Supply Voltage (AVDD  
)
Brand Key  
Field Description  
Temperature Range  
Package Type  
External (I/O) Supply Voltage (VDDEXT  
Input Voltage  
)
t
pp  
Output Voltage Swing  
Z
Lead Free Option (optional)  
See Ordering Guide  
Assembly Lot Code  
Silicon Revision  
Load Capacitance  
cc  
Storage Temperature Range  
Junction Temperature Under Bias  
–65°C to +150°C  
125°C  
vvvvvv.x  
n.n  
yyww  
Date Code  
ESD SENSITIVITY  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although  
the ADSP-21367/ADSP-21368/ADSP-21369 feature proprietary ESD protection circuitry, permanent  
damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper  
ESD precautions are recommended to avoid performance degradation or loss of functionality.  
Rev. A  
|
Page 18 of 56  
|
August 2006  
ADSP-21367/ADSP-21368/ADSP-21369  
Table 11. ADSP-21367/ADSP-21368/ADSP-21369  
CLKOUT and CCLK Clock Generation Operation  
TIMING SPECIFICATIONS  
The processor’s internal clock (a multiple of CLKIN) provides  
the clock signal for timing internal memory, processor core, and  
serial ports. During reset, program the ratio between the proces-  
sor’s internal clock frequency and external (CLKIN) clock  
frequency with the CLK_CFG1–0 pins (see Table 8 on Page 15).  
To determine switching frequencies for the serial ports, divide  
down the internal clock, using the programmable divider con-  
trol of each port (DIVx for the serial ports).  
Timing  
Requirements  
Description  
Input Clock  
Core Clock  
Calculation  
1/tCK  
CLKIN  
CCLK  
1/tCCLK  
Table 12. Clock Periods  
Timing  
Requirements  
The processor’s internal clock switches at higher frequencies  
than the system input clock (CLKIN). To generate the internal  
clock, the processor uses an internal phase-locked loop (PLL).  
This PLL-based clocking minimizes the skew between the sys-  
tem clock (CLKIN) signal and the processor’s internal clock.  
Description1  
CLKIN Clock Period  
tCK  
tCCLK  
(Processor) Core Clock Period  
tPCLK  
(Peripheral) Clock Period = 2 × tCCLK  
Serial Port Clock Period = (tPCLK) × SR  
SDRAM Clock Period = (tCCLK) × SDR  
SPI Clock Period = (tPCLK) × SPIR  
Figure 4 shows core to CLKIN ratios of 6:1, 16:1, and 32:1 with  
external oscillator or crystal. Note that more ratios are possible  
and can be set through software using the power management  
control register (PMCTL). For more information, see the  
ADSP-2136x/ADSP-2137x SHARC Processor Programming  
Reference.  
tSCLK  
tSDCLK  
tSPICLK  
1 where:  
SR = serial port-to-core clock ratio (wide range, determined by SPORT CLKDIV  
bits in DIVx register)  
Note the definitions of various clock periods shown in Table 12  
which are a function of CLKIN and the appropriate ratio con-  
trol shown in Table 11.  
SPIR = SPI-to-Core Clock Ratio (wide range, determined by SPIBAUD register  
setting)  
SPICLK = SPI Clock  
SDR = SDRAM-to-Core Clock Ratio (values determined by bits 20–18 of the  
PMCTL register)  
CCLK  
PLLICLK  
(CORE CLOCK)  
CLKIN  
XTAL  
OSC  
INDIV  
÷1, 2  
DIVEN  
÷2, 4, 8, 16  
PCLK  
PLLM  
÷ 2  
XTAL  
(PERIPHERAL CLOCK)  
SDCLK  
(SDRAM CLOCK)  
÷ 2, 2.5,  
3, 3.5, 4  
CLK_CFG [1:0]  
(6:1, 16:1, 32:1)  
CLKOUT  
OR  
RSTOUT  
RESET  
DELAY  
Figure 4. Core Clock and System Clock Relationship to CLKIN  
Rev. A  
|
Page 19 of 56  
|
August 2006  
ADSP-21367/ADSP-21368/ADSP-21369  
Use the exact timing information given. Do not attempt to  
derive parameters from the addition or subtraction of others.  
While addition or subtraction would yield meaningful results  
for an individual device, the values given in this data sheet  
reflect statistical variations and worst cases. Consequently, it is  
not meaningful to add parameters to derive longer times. See  
Figure 39 on Page 47 under Test Conditions for voltage refer-  
ence levels.  
Switching Characteristics specify how the processor changes its  
signals. Circuitry external to the processor must be designed for  
compatibility with these signal characteristics. Switching char-  
acteristics describe what the processor will do in a given  
circumstance. Use switching characteristics to ensure that any  
timing requirement of a device connected to the processor (such  
as memory) is satisfied.  
Timing Requirements apply to signals that are controlled by cir-  
cuitry external to the processor, such as the data input for a read  
operation. Timing requirements guarantee that the processor  
operates correctly with other devices.  
Rev. A  
|
Page 20 of 56  
|
August 2006  
ADSP-21367/ADSP-21368/ADSP-21369  
Power-Up Sequencing  
The timing requirements for processor startup are given in  
Table 13.  
Table 13. Power-Up Sequencing Timing Requirements (Processor Startup)  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tRSTVDD  
RESET Low Before VDDINT/VDDEXT On  
VDDINT On Before VDDEXT  
0
ns  
tIVDDEVDD  
–50  
0
102  
+200  
+200  
ms  
ms  
μs  
1
tCLKVDD  
CLKIN Valid After VDDINT/VDDEXT Valid  
CLKIN Valid Before RESET Deasserted  
PLL Control Setup Before RESET Deasserted  
tCLKRST  
tPLLRST  
20  
μs  
Switching Characteristic  
3, 4  
tCORERST  
Core Reset Deasserted After RESET Deasserted  
4096tCK + 2 tCCLK  
1 Valid VDDINT/VDDEXT assumes that the supplies are fully ramped to their 1.2 volt rails and 3.3 volt rails. Voltage ramp rates can vary from microseconds to hundreds of milliseconds  
depending on the design of the power supply subsystem.  
2 Assumes a stable CLKIN signal, after meeting worst-case startup timing of crystal oscillators. Refer to your crystal oscillator manufacturer’s data sheet for start-up time. Assume  
a 25 ms maximum oscillator start-up time if using the XTAL pin and internal oscillator circuit in conjunction with an external crystal.  
3 Applies after the power-up sequence is complete. Subsequent resets require RESET to be held low a minimum of four CLKIN cycles in order to properly initialize and propagate  
default states at all I/O pins.  
4 The 4096 cycle count depends on tsrst specification in Table 15. If setup time is not met, 1 additional CLKIN cycle may be added to the core reset time, resulting in 4097 cycles  
maximum.  
RESET  
tRSTVDD  
V
DDINT  
tIVDDEVDD  
V
tCLKVDD  
DDEXT  
CLKIN  
tCLKRST  
CLK_CFG1-0  
tCORERST  
tPLLRST  
RSTOUT  
Figure 5. Power-Up Sequencing  
Rev. A  
|
Page 21 of 56  
|
August 2006  
ADSP-21367/ADSP-21368/ADSP-21369  
Clock Input  
Table 14. Clock Input  
333 MHz  
Max  
Parameter  
Min  
Unit  
Timing Requirements  
tCK  
CLKIN Period  
181  
81  
81  
1002  
452  
452  
3
ns  
ns  
ns  
ns  
ns  
ps  
tCKL  
tCKH  
tCKRF  
CLKIN Width Low  
CLKIN Width High  
CLKIN Rise/Fall (0.4 V to 2.0 V)  
CCLK Period  
3
tCCLK  
3.01  
10  
4, 5  
tCKJ  
CLKIN Jitter Tolerance  
–250  
+250  
1 Applies only for CLK_CFG1–0 = 00 and default values for PLL control bits in PMCTL.  
2 Applies only for CLK_CFG1–0 = 10 and default values for PLL control bits in PMCTL.  
3 Any changes to PLL control bits in the PMCTL register must meet core clock timing specification tCCLK  
4 Actual input jitter should be combined with ac specifications for accurate timing analysis.  
5 Jitter specification is maximum peak-to-peak time interval error (TIE) jitter.  
.
tCK  
CLKIN  
tCKH  
tCKL  
Figure 6. Clock Input  
Clock Signals  
The processors can use an external clock or a crystal. See the  
CLKIN pin description in Table 5. Programs can configure the  
processor to use its internal clock generator by connecting the  
necessary components to CLKIN and XTAL. Figure 7 shows the  
component connections used for a crystal operating in funda-  
mental mode. Note that the clock rate is achieved using a  
20.81 MHz crystal and a PLL multiplier ratio 16:1  
(CCLK:CLKIN achieves a clock speed of 333 MHz). To achieve  
the full core clock rate, programs need to configure the multi-  
plier bits in the PMCTL register.  
ADSP-2136x  
R1  
XTAL  
CLKIN  
1M(TYPICAL)  
R2  
47(TYPICAL)  
C1  
22pF  
C2  
22pF  
Y1  
24.576MHz  
R2 SHOULD BE CHOSEN TO LIMIT CRYSTAL DRIVE POWER.  
REFER TO CRYSTAL MANUFACTURER’S SPECIFICATIONS  
Figure 7. 333 MHz Operation (Fundamental Mode Crystal)  
Rev. A  
|
Page 22 of 56  
|
August 2006  
ADSP-21367/ADSP-21368/ADSP-21369  
Reset  
Table 15. Reset  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
1
tWRST  
tSRST  
RESET Pulse Width Low  
RESET Setup Before CLKIN Low  
4tCK  
8
ns  
ns  
1 Applies after the power-up sequence is complete. At power-up, the processor’s internal phase-locked loop requires no more than 100 μs while RESET is low, assuming stable  
VDD and CLKIN (not including startup time of external clock oscillator).  
CLKIN  
tSRST  
tWRST  
RESET  
Figure 8. Reset  
Interrupts  
The following timing specification applies to the FLAG0,  
FLAG1, and FLAG2 pins when they are configured as IRQ0,  
IRQ1, and IRQ2 interrupts.  
Table 16. Interrupts  
Parameter  
Min  
2 × tPCLK +2  
Max  
Unit  
Timing Requirement  
tIPW  
IRQx Pulse Width  
ns  
DAI_P20-1  
DPI_14  
FLAG2  
(IRQ2-0)  
-1  
-0  
tIPW  
Figure 9. Interrupts  
Rev. A  
|
Page 23 of 56  
|
August 2006  
ADSP-21367/ADSP-21368/ADSP-21369  
Core Timer  
The following timing specification applies to FLAG3 when it is  
configured as the core timer (CTIMER).  
Table 17. Core Timer  
Parameter  
Min  
Max  
Unit  
Switching Characteristic  
tWCTIM  
CTIMER Pulse Width  
4 × tPCLK – 1  
ns  
tWCTIM  
FLAG3  
(CTIMER)  
Figure 10. Core Timer  
Timer PWM_OUT Cycle Timing  
The following timing specification applies to Timer0, Timer1,  
and Timer2 in PWM_OUT (pulse-width modulation) mode.  
Timer signals are routed to the DPI_P14–1 pins through the  
DPI SRU. Therefore, the timing specifications provided below  
are valid at the DPI_P14–1 pins.  
Table 18. Timer PWM_OUT Timing  
Parameter  
Min  
2 × tPCLK – 2  
Max  
2 × (231 – 1) × tPCLK  
Unit  
Switching Characteristic  
tPWMO  
Timer Pulse Width Output  
ns  
tPWMO  
DPI_P14  
(TIMER2  
-
1
-0)  
Figure 11. Timer PWM_OUT Timing  
Rev. A  
|
Page 24 of 56  
|
August 2006  
ADSP-21367/ADSP-21368/ADSP-21369  
Timer WDTH_CAP Timing  
The following timing specification applies to Timer0, Timer1,  
and Timer2 in WDTH_CAP (pulse width count and capture)  
mode. Timer signals are routed to the DPI_P14–1 pins through  
the DPI SRU. Therefore, the timing specification provided  
below are valid at the DPI_P14–1 pins.  
Table 19. Timer Width Capture Timing  
Parameter  
Min  
Max  
Unit  
Switching Characteristic  
tPW  
Timer Pulse Width  
2 × tPCLK  
2 × (231 – 1) × tPCLK  
ns  
I
tPWI  
DPI_P14  
(TIMER2  
-1  
-0)  
Figure 12. Timer Width Capture Timing  
Pin to Pin Direct Routing (DAI and DPI)  
For direct pin connections only (for example, DAI_PB01_I to  
DAI_PB02_O).  
Table 20. DAI Pin to Pin Routing  
Parameter  
Min  
Max  
10  
Unit  
Timing Requirement  
tDPIO  
Delay DAI Pin Input Valid to DAI Output Valid  
1.5  
ns  
DAI_Pn  
DPI_Pn  
DAI_pm  
DPI_Pm  
tDPIO  
Figure 13. DAI Pin to Pin Direct Routing  
Rev. A  
|
Page 25 of 56  
|
August 2006  
ADSP-21367/ADSP-21368/ADSP-21369  
inputs and outputs are not directly routed to/from DAI pins (via  
pin buffers) there is no timing data available. All timing param-  
eters and switching characteristics apply to external DAI pins  
(DAI_P01 – DAI_P20).  
Precision Clock Generator (Direct Pin Routing)  
This timing is only valid when the SRU is configured such that  
the precision clock generator (PCG) takes its inputs directly  
from the DAI pins (via pin buffers) and sends its outputs  
directly to the DAI pins. For the other cases, where the PCG’s  
Table 21. Precision Clock Generator (Direct Pin Routing)  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tPCGIP  
tSTRIG  
Input Clock Period  
24  
ns  
ns  
PCG Trigger Setup Before Falling  
Edge of PCG Input Clock  
4.5  
tHTRIG  
PCG Trigger Hold After Falling  
Edge of PCG Input Clock  
3
ns  
Switching Characteristics  
tDPCGIO  
PCG Output Clock and Frame Sync Active Edge  
Delay After PCG Input Clock  
2.5  
10  
ns  
ns  
ns  
ns  
tDTRIGCLK  
PCG Output Clock Delay After PCG Trigger  
PCG Frame Sync Delay After PCG Trigger  
Output Clock Period  
2.5 + ((2.5 + D) × tPCGIP  
)
10 + ((2.5 + D) × tPCGIP)  
tDTRIGFS  
2.5 + ((2.5 + D – PH) × tPCGIP  
2 × tPCGIP – 1  
)
10 + ((2.5 + D – PH) × tPCGIP)  
1
tPCGOW  
D = FSxDIV, PH = FSxPHASE. For more information, see the ADSP-2136x SHARC Processor Hardware Reference for the ADSP-21368 Processor,  
“Precision Clock Generators” chapter.  
1 In normal mode.  
tSTRIG  
tHTRIG  
DAI_Pn  
DPI_Pn  
PCG_TRIGx_I  
tPCGIP  
DAI_Pm  
DPI_Pm  
PCG_EXTx_I  
(CLKIN)  
tDPCGIO  
DAI_Py  
DPI_Py  
PCG_CLKx_O  
tDTRIGCLK  
tDPCGIO  
tPCGOW  
DAI_Pz  
DPI_Pz  
PCG_FSx_O  
tDTRIGFS  
Figure 14. Precision Clock Generator (Direct Pin Routing)  
Rev. A  
|
Page 26 of 56  
|
August 2006  
ADSP-21367/ADSP-21368/ADSP-21369  
Flags  
The timing specifications provided below apply to the FLAG3–0  
and DPI_P14–1 pins, and the serial peripheral interface (SPI).  
See Table 5 on Page 12 for more information on flag use.  
Table 22. Flags  
Parameter  
Min  
Max  
Unit  
ns  
Timing Requirement  
tFIPW  
Switching Characteristic  
tFOPW FLAG3–0 OUT Pulse Width  
FLAG3–0 IN Pulse Width  
2 × tPCLK + 3  
2 × tPCLK – 1.5  
ns  
DPI_P14  
(FLAG3  
(DATA31  
-1  
-0IN  
)
-0)  
tFIPW  
DPI_P14  
(FLAG3  
(DATA31  
-
0OUT  
1
-
)
-
0)  
tFOPW  
Figure 15. Flags  
Rev. A  
|
Page 27 of 56  
|
August 2006  
ADSP-21367/ADSP-21368/ADSP-21369  
SDRAM Interface Timing (133 MHz SDCLK)  
The 133 MHz access speed is for a single processor. When mul-  
tiple ADSP-21368 processors are connected in a shared memory  
system, the access speed is 100 MHz.  
Table 23. SDRAM Interface Timing1  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tSSDAT  
tHSDAT  
DATA Setup Before SDCLK  
DATA Hold After SDCLK  
0.58  
1.23  
ns  
ns  
Switching Characteristics  
tSDCLK  
tSDCLKH  
tSDCLKL  
tDCAD  
SDCLK Period  
7.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SDCLK Width High  
3.65  
3.65  
SDCLK Width Low  
Command, ADDR, Data Delay After SDCLK2  
Command, ADDR, Data Hold After SDCLK2  
Data Disable After SDCLK  
4.8  
5.3  
tHCAD  
1.5  
1.6  
tDSDAT  
tENSDAT  
Data Enable After SDCLK  
1 For FCCLK = 333 MHz (SDCLK ratio = 1:2.5).  
2 Command pins include: SDCAS, SDRAS, SDWE, MSx, SDA10, SDCKE.  
tSDCLK  
tSDCLKH  
SDCLK  
tSSDAT  
tSDCLKL  
tHSDAT  
DATA (IN)  
tDCAD  
tDSDAT  
tHCAD  
tENSDAT  
DATA(OUT)  
tDCAD  
CMND ADDR  
(OUT)  
tHCAD  
Figure 16. SDRAM Interface Timing  
Rev. A  
|
Page 28 of 56  
|
August 2006  
ADSP-21367/ADSP-21368/ADSP-21369  
SDRAM Interface Enable/Disable Timing (133 MHz SDCLK)  
Table 24. SDRAM Interface Enable/Disable Timing1  
Parameter  
Min  
Max  
Unit  
Switching Characteristics  
tDSDC  
Command Disable After CLKIN Rise  
Command Enable After CLKIN Rise  
SDCLK Disable After CLKIN Rise  
SDCLK Enable After CLKIN Rise  
Address Disable After CLKIN Rise  
Address Enable After CLKIN Rise  
2 × tPCLK + 1  
8.5  
ns  
ns  
ns  
ns  
ns  
ns  
tENSDC  
tDSDCC  
tENSDCC  
tDSDCA  
tENSDCA  
4.0  
3.8  
9.2  
2 × tPCLK – 4  
4 × tPCLK  
1 For FCCLK = 333 MHz (SDCLK ratio = 1:2.5).  
CLKIN  
tDSDC  
tDSDCC  
tDSDCA  
COMMAND  
SDCLK  
ADDR  
tENSDC  
tENSDCC  
tENSDCA  
COMMAND  
SDCLK  
ADDR  
Figure 17. SDRAM Interface Enable/Disable Timing  
Rev. A  
|
Page 29 of 56  
|
August 2006  
ADSP-21367/ADSP-21368/ADSP-21369  
Memory Read—Bus Master  
Use these specifications for asynchronous interfacing to memo-  
ries. These specifications apply when the processors are the bus  
master accessing external memory space in asynchronous access  
mode. Note that timing for ACK, DATA, RD, WR, and strobe  
timing parameters only apply to asynchronous access mode.  
Table 25. Memory Read—Bus Master  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tDAD  
Address, Selects Delay to Data Valid1, 2  
RD Low to Data Valid1  
W+tSDCLK 5.12  
W– 2.9  
ns  
ns  
ns  
ns  
ns  
ns  
tDRLD  
tSDS  
Data Setup to RD High  
2.2  
0
tHDRH  
tDAAK  
tDSAK  
Data Hold from RD High3, 4  
ACK Delay from Address, Selects2, 5  
ACK Delay from RD Low4  
tSDCLK 9.5+ W  
W – 7.0  
Switching Characteristics  
tDRHA  
tDARL  
tRW  
Address Selects Hold After RD High  
Address Selects to RD Low2  
RH + 0.38  
tSDCLK 3.3  
W – 1.2  
ns  
ns  
ns  
ns  
RD Pulse Width  
tRWR  
RD High to WR, RD Low  
HI +tSDCLK – 0.8  
W = (number of wait states specified in AMICTLx register) × tSDCLK  
HI =RHC + IC (RHC = number of read hold cycles specified in AMICTLx register) × tSDCLK  
IC = (number of idle cycles specified in AMICTLx register) × tSDCLK  
.
.
H = (number of hold cycles specified in AMICTLx register) × tSDCLK  
.
1 Data delay/setup: system must meet tDAD, tDRLD, or tSDS.  
2 The falling edge of MSx is referenced.  
3 Note that timing for ACK, DATA, RD, WR, and strobe timing parameters only apply to asynchronous access mode.  
4 Data hold: User must meet tHDA or tHDRH in asynchronous access mode. See Test Conditions on Page 47 for the calculation of hold times given capacitive and dc loads.  
5 ACK Delay/Setup: User must meet tDAAK, or tDSAK, for deassertion of ACK (low). For asynchronous assertion of ACK (high) user must meet tDAAK or tDSAK  
.
ADDRESS  
MSx  
tDRHA  
tDARL  
tRW  
RD  
tDRLD  
tSDS  
tDAD  
tHDRH  
DATA  
tDSAK  
tDAAK  
tRWR  
ACK  
WR  
Figure 18. Memory Read—Bus Master  
Rev. A  
|
Page 30 of 56  
|
August 2006  
ADSP-21367/ADSP-21368/ADSP-21369  
Memory Write—Bus Master  
Use these specifications for asynchronous interfacing to memo-  
ries. These specifications apply when the processors are the bus  
master accessing external memory space in asynchronous access  
mode. Note that timing for ACK, DATA, RD, WR, and strobe  
timing parameters only apply to asynchronous access mode.  
Table 26. Memory Write—Bus Master  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tDAAK  
tDSAK  
ACK Delay from Address, Selects1, 2  
ACK Delay from WR Low 1, 3  
tSDCLK – 9.7 + W  
W – 4.9  
ns  
ns  
Switching Characteristics  
tDAWH  
tDAWL  
tWW  
Address, Selects to WR Deasserted2  
Address, Selects to WR Low2  
tSDCLK – 3.1+ W  
tSDCLK – 2.7  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
WR Pulse Width  
W – 1.3  
tDDWH  
tDWHA  
tDWHD  
tWWR  
tDDWR  
tWDE  
Data Setup Before WR High  
Address Hold After WR Deasserted  
Data Hold After WR Deasserted  
WR High to WR, RD Low  
tSDCLK – 3.0+ W  
H + 0.15  
H + 0.02  
tSDCLK – 1.5+ H  
2tSDCLK – 4.11  
tSDCLK – 3.5  
Data Disable Before RD Low  
WR Low to Data Enabled  
W = (number of wait states specified in AMICTLx register) × tSDCLK  
H = (number of hold cycles specified in AMICTLx register) x tSDCLK  
.
.
1 ACK Delay/Setup: System must meet tDAAK, or tDSAK, for deassertion of ACK (low). For asynchronous assertion of ACK (high) user must meet tDAAK or tDSAK  
2 The falling edge of MSx is referenced.  
.
3 Note that timing for ACK, DATA, RD, WR, and strobe timing parameters only applies to asynchronous access mode.  
ADDRESS  
MSx  
tDAWH  
tDWHA  
tDAWL  
tWW  
WR  
tWWR  
tWDE  
tDDWR  
tDDWH  
DATA  
tDSAK  
tDWHD  
tDAAK  
ACK  
RD  
Figure 19. Memory Write—Bus Master  
Rev. A  
|
Page 31 of 56  
|
August 2006  
ADSP-21367/ADSP-21368/ADSP-21369  
Asynchronous Memory Interface (AMI) Enable/Disable  
Use these specifications for passing bus mastership between  
ADSP-21368 processors (BRx).  
Table 27. AMI Enable/Disable  
Parameter  
Min  
Max  
Unit  
Switching Characteristics  
tENAMIAC  
tENAMID  
tDISAMIAC  
tDISAMID  
Address/Control Enable After Clock Rise  
Data Enable After Clock Rise  
4
ns  
ns  
ns  
ns  
tSCLK + 4  
Address/Control Disable After Clock Rise  
Data Disable After Clock Rise  
8.7  
0
tDISAMIAC  
tDISAMID  
CLKIN  
ADDR, WR, RD,  
MS1-0, DATA  
tENAMIAC  
tENAMID  
ADDR, WR, RD,  
MS1 0, DATA  
-
Figure 20. AMI Enable/Disable  
Rev. A  
|
Page 32 of 56  
|
August 2006  
ADSP-21367/ADSP-21368/ADSP-21369  
Shared Memory Bus Request  
Use these specifications for passing bus mastership between  
ADSP-21368 processors (BRx).  
Table 28. Multiprocessor Bus Request  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tSBRI  
tHBRI  
BRx, Setup Before CLKIN High  
BRx, Hold After CLKIN High  
9
ns  
ns  
0.5  
Switching Characteristics  
tDBRO BRx Delay After CLKIN High  
tHBRO BRx Hold After CLKIN High  
9
ns  
ns  
1.0  
CLKIN  
tDBRO  
tHBRO  
BRX (OUT)  
tSBRI  
tHBRI  
BRX (IN)  
Figure 21. Shared Memory Bus Request  
Rev. A  
|
Page 33 of 56  
|
August 2006  
ADSP-21367/ADSP-21368/ADSP-21369  
Serial Ports  
To determine whether communication is possible between two  
devices at clock speed n, the following specifications must be  
confirmed: 1) frame sync delay and frame sync setup and hold,  
2) data delay and data setup and hold, and 3) SCLK width.  
Serial port signals (SCLK, FS, data channel A, data channel B)  
are routed to the DAI_P20–1 pins using the SRU. Therefore, the  
timing specifications provided below are valid at the  
DAI_P20–1 pins.  
Table 29. Serial Ports—External Clock  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
1
tSFSE  
FS Setup Before SCLK  
(Externally Generated FS in Either Transmit or Receive Mode)  
2.5  
ns  
1
tHFSE  
FS Hold After SCLK  
(Externally Generated FS in Either Transmit or Receive Mode)  
2.5  
2.5  
2.5  
10  
ns  
ns  
ns  
ns  
ns  
1
tSDRE  
Receive Data Setup Before Receive SCLK  
Receive Data Hold After SCLK  
SCLK Width  
1
tHDRE  
tSCLKW  
tSCLK  
SCLK Period  
20  
Switching Characteristics  
2
tDFSE  
FS Delay After SCLK  
(Internally Generated FS in Either Transmit or Receive Mode)  
9.5  
9.6  
ns  
2
tHOFSE  
FS Hold After SCLK  
(Internally Generated FS in Either Transmit or Receive Mode)  
2
2
ns  
ns  
ns  
2
2
tDDTE  
tHDTE  
Transmit Data Delay After Transmit SCLK  
Transmit Data Hold After Transmit SCLK  
1 Referenced to sample edge.  
2 Referenced to drive edge.  
Table 30. Serial Ports—Internal Clock  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
1
tSFSI  
FS Setup Before SCLK  
(Externally Generated FS in Either Transmit or Receive Mode)  
7
ns  
1
tHFSI  
FS Hold After SCLK  
(Externally Generated FS in Either Transmit or Receive Mode)  
2.5  
7
ns  
ns  
ns  
1
tSDRI  
Receive Data Setup Before SCLK  
Receive Data Hold After SCLK  
1
tHDRI  
2.5  
Switching Characteristics  
2
tDFSI  
FS Delay After SCLK (Internally Generated FS in Transmit Mode)  
4
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
tHOFSI  
FS Hold After SCLK (Internally Generated FS in Transmit Mode)  
FS Delay After SCLK (Internally Generated FS in Receive Mode)  
FS Hold After SCLK (Internally Generated FS in Receive Mode)  
Transmit Data Delay After SCLK  
–1.0  
–1.0  
2
tDFSIR  
9
2
tHOFSIR  
2
tDDTI  
3
2
tHDTI  
Transmit Data Hold After SCLK  
–1.0  
3
tSCLKIW  
Transmit or Receive SCLK Width  
2 × tPCLK – 1.5  
2 × tPCLK  
1 Referenced to the sample edge.  
2 Referenced to drive edge.  
3 Minimum SPORT divisor register value.  
Rev. A  
|
Page 34 of 56  
|
August 2006  
ADSP-21367/ADSP-21368/ADSP-21369  
Table 31. Serial Ports—Enable and Three-State  
Parameter  
Min  
2
Max  
Unit  
Switching Characteristics  
1
tDDTEN  
Data Enable from External Transmit SCLK  
Data Disable from External Transmit SCLK  
Data Enable from Internal Transmit SCLK  
ns  
ns  
ns  
1
tDDTTE  
10  
1
tDDTIN  
–1  
1 Referenced to drive edge.  
Table 32. Serial Ports—External Late Frame Sync  
Parameter  
Min  
Max  
Unit  
Switching Characteristics  
1
tDDTLFSE  
Data Delay from Late External Transmit FS or External Receive  
FS with MCE = 1, MFD = 0  
7.75  
ns  
ns  
1
tDDTENFS  
Data Enable for MCE = 1, MFD = 0  
0.5  
1 The tDDTLFSE and tDDTENFS parameters apply to left-justified sample pair as well as DSP serial mode, and MCE = 1, MFD = 0.  
EXTERNAL RECEIVE FS WITH MCE = 1, MFD = 0  
DRIVE  
SAMPLE  
DRIVE  
DAI_P20-1  
(SCLK)  
tSFSE/I  
tHFSE/I  
DAI_P20  
-
1
(FS)  
tDDTE/I  
tDDTENFS  
tHDTE/I  
1ST BIT  
DAI_P20-1  
(DATA CHANNEL A/B)  
2ND BIT  
tDDTLFSE  
LATE EXTERNAL TRANSMIT FS  
DRIVE  
SAMPLE  
DRIVE  
tHFSE/I  
DAI_P20  
(SCLK)  
-1  
tSFSE/I  
DAI_P20  
(FS)  
-1  
tDDTE/I  
tDDTENFS  
tHDTE/I  
1ST BIT  
DAI_P20  
(DATA CHANNEL A/B)  
-1  
2ND BIT  
tDDTLFSE  
NOTE: SERIAL PORT SIGNALS (SCLK, FS, DATA CHANNEL A/B) ARE ROUTED TO THE DAI_P20  
-
1 PINS  
USING THE SRU. THE TIMING SPECIFICATIONS PROVIDED HERE ARE VALID AT THE DAI_P20  
-1 PINS.  
Figure 22. External Late Frame Sync1  
1 This figure reflects changes made to support left-justified sample pair mode.  
Rev. A  
|
Page 35 of 56  
|
August 2006  
ADSP-21367/ADSP-21368/ADSP-21369  
DATA RECEIVE—INTERNAL CLOCK  
DATA RECEIVE—EXTERNAL CLOCK  
DRIVE EDGE SAMPLE EDGE  
DRIVE EDGE  
SAMPLE EDGE  
tSCLKIW  
tSCLKW  
DAI_P20  
-
1
DAI_P20-1  
(SCLK)  
(SCLK)  
tDFSIR  
tDFSE  
tHFSE  
tHFSI  
tSFSI  
tSFSE  
tHOFSIR  
tHOFSE  
DAI_P20  
-
1
DAI_P20-1  
(FS)  
(FS)  
tHDRE  
tSDRI  
tHDRI  
tSDRE  
DAI_P20  
(DATA CHANNEL A/B)  
-
1
DAI_P20  
(DATA CHANNEL A/B)  
-1  
NOTE: EITHER THE RISING EDGE OR FALLING EDGE OF SCLK (EXTERNAL), SCLK (INTERNAL) CAN BE USED AS THE ACTIVE SAMPLING EDGE.  
DATA TRANSMIT—INTERNAL CLOCK  
DRIVE EDGE SAMPLE EDGE  
DATA TRANSMIT—EXTERNAL CLOCK  
DRIVE EDGE SAMPLE EDGE  
tSCLKIW  
tSCLKW  
DAI_P20  
-
1
DAI_P20-1  
(SCLK)  
(SCLK)  
tDFSI  
tDFSE  
tHFSI  
tHOFSI  
tSFSI  
tHOFSE  
tSFSE  
tHFSE  
DAI_P20  
-
1
DAI_P20-1  
(FS)  
(FS)  
tDDTE  
tDDTI  
tHDTE  
tHDTI  
DAI_P20-1  
DAI_P20-1  
(DATA CHANNEL A/B)  
(DATA CHANNEL A/B)  
NOTE: EITHER THE RISING EDGE OR FALLING EDGE OF SCLK (EXTERNAL), SCLK (INTERNAL) CAN BE USED AS THE ACTIVE SAMPLING EDGE.  
DRIVE EDGE  
DRIVE EDGE  
SCLK  
DAI_P20-1  
SCLK (EXT)  
tDDTEN  
tDDTTE  
DAI_P20-1  
(DATA CHANNEL A/B)  
DRIVE EDGE  
DAI_P20-1  
SCLK (INT)  
tDDTIN  
DAI_P20-1  
(DATA CHANNEL A/B)  
Figure 23. Serial Ports  
Rev. A  
|
Page 36 of 56  
|
August 2006  
ADSP-21367/ADSP-21368/ADSP-21369  
Input Data Port  
The timing requirements for the IDP are given in Table 33. IDP  
signals (SCLK, FS, SDATA) are routed to the DAI_P20–1 pins  
using the SRU. Therefore, the timing specifications provided  
below are valid at the DAI_P20–1 pins.  
Table 33. IDP  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
1
tSISFS  
FS Setup Before SCLK Rising Edge  
FS Hold After SCLK Rising Edge  
SDATA Setup Before SCLK Rising Edge  
SDATA Hold After SCLK Rising Edge  
Clock Width  
3.8  
2.5  
2.5  
2.5  
9
ns  
ns  
ns  
ns  
ns  
ns  
1
tSIHFS  
1
tSISD  
1
tSIHD  
tIDPCLKW  
tIDPCLK  
Clock Period  
24  
1
DATA, SCLK, FS can come from any of the DAI pins. SCLK and FS can also come via PCG or SPORTs. PCG’s input can be either CLKIN or any of the DAI pins.  
SAMPLE EDGE  
t
IDPCLK  
tIDPCLKW  
DAI_P20-1  
(SCLK)  
tSISFS  
tSIHFS  
DAI_P20-1  
(FS)  
tSISD  
tSIHD  
DAI_P20  
-
1
(SDATA)  
Figure 24. IDP Master Timing  
Rev. A  
|
Page 37 of 56  
|
August 2006  
ADSP-21367/ADSP-21368/ADSP-21369  
Reference. Note that the most significant 16 bits of external  
PDAP data can be provided through the DATA31–16 pins. The  
remaining four bits can only be sourced through DAI_P4–1.  
The timing below is valid at the DATA31–16 pins.  
Parallel Data Acquisition Port (PDAP)  
The timing requirements for the PDAP are provided in  
Table 34. PDAP is the parallel mode operation of Channel 0 of  
the IDP. For details on the operation of the IDP, see the IDP  
chapter of the ADSP-21368 SHARC Processor Hardware  
Table 34. Parallel Data Acquisition Port (PDAP)  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
1
tSPCLKEN  
PDAP_CLKEN Setup Before PDAP_CLK Sample Edge  
PDAP_CLKEN Hold After PDAP_CLK Sample Edge  
PDAP_DAT Setup Before SCLK PDAP_CLK Sample Edge  
PDAP_DAT Hold After SCLK PDAP_CLK Sample Edge  
Clock Width  
2.5  
2.5  
3.85  
2.5  
7.0  
24  
ns  
ns  
ns  
ns  
ns  
ns  
1
tHPCLKEN  
1
tPDSD  
1
tPDHD  
tPDCLKW  
tPDCLK  
Clock Period  
Switching Characteristics  
tPDHLDD Delay of PDAP Strobe After Last PDAP_CLK Capture Edge for a Word  
tPDSTRB PDAP Strobe Pulse Width  
2 × tPCLK + 3  
2 × tPCLK – 1  
ns  
ns  
1
Source pins of DATA are ADDR7–0, DATA7–0, or DAI pins. Source pins for SCLK and FS are: 1) DAI pins, 2) CLKIN through PCG, or 3) DAI pins through PCG.  
SAMPLE EDGE  
tPDCLK  
tPDCLKW  
DAI_P20  
-1  
(PDAP_CLK)  
tSPCLKEN  
tHPCLKEN  
DAI_P20-1  
(PDAP_CLKEN)  
tPDSD  
tPDHD  
DATA  
DAI_P20  
(PDAP_STROBE)  
-1  
tPDSTRB  
tPDHLDD  
Figure 25. PDAP Timing  
Rev. A  
|
Page 38 of 56  
|
August 2006  
ADSP-21367/ADSP-21368/ADSP-21369  
Pulse-Width Modulation Generators  
Table 35. PWM Timing  
Parameter  
Min  
Max  
Unit  
Switching Characteristics  
tPWMW  
tPWMP  
PWM Output Pulse Width  
PWM Output Period  
tPCLK – 2  
(216 – 2) × tPCLK – 2  
(216 – 1) × tPCLK – 1.5  
ns  
ns  
2 × tPCLK – 1.5  
tPWMW  
PWM  
OUTPUTS  
tPWMP  
Figure 26. PWM Timing  
Sample Rate Converter—Serial Input Port  
The SRC input signals (SCLK, FS, and SDATA) are routed from  
the DAI_P20–1 pins using the SRU. Therefore, the timing spec-  
ifications provided in Table 36 are valid at the DAI_P20–1 pins.  
Table 36. SRC, Serial Input Port  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
1
tSRCSFS  
FS Setup Before SCLK Rising Edge  
FS Hold After SCLK Rising Edge  
SDATA Setup Before SCLK Rising Edge  
SDATA Hold After SCLK Rising Edge  
Clock Width  
4
ns  
ns  
ns  
ns  
ns  
ns  
1
tSRCHFS  
5.5  
4
1
tSRCSD  
1
tSRCHD  
tSRCCLKW  
tSRCCLK  
5.5  
9
Clock Period  
24  
1
DATA, SCLK, FS can come from any of the DAI pins. SCLK and FS can also come via PCG or SPORTs. PCG’s input can be either CLKIN or any of the DAI pins.  
SAMPLE EDGE  
tSRCCLK  
tSRCCLKW  
DAI_P20-1  
(SCLK)  
tSRCSFS  
tSRCHFS  
DAI_P20-1  
(FS)  
tSRCSD  
tSRCHD  
DAI_P20  
-
1
(SDATA)  
Figure 27. SRC Serial Input Port Timing  
Rev. A  
|
Page 39 of 56  
|
August 2006  
ADSP-21367/ADSP-21368/ADSP-21369  
and delay specification with regard to SCLK. Note that SCLK  
rising edge is the sampling edge and the falling edge is the  
drive edge.  
Sample Rate Converter—Serial Output Port  
For the serial output port, the frame-sync is an input and it  
should meet setup and hold times with regard to SCLK on the  
output port. The serial data output, SDATA, has a hold time  
Table 37. SRC, Serial Output Port  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
1
tSRCSFS  
FS Setup Before SCLK Rising Edge  
FS Hold After SCLK Rising Edge  
Clock Width  
4
ns  
ns  
ns  
ns  
1
tSRCHFS  
tSRCCLKW  
tSRCCLK  
5.5  
9
Clock Period  
24  
Switching Characteristics  
1
tSRCTDD  
Transmit Data Delay After SCLK Falling Edge  
Transmit Data Hold After SCLK Falling Edge  
8.9  
ns  
ns  
1
tSRCTDH  
1
1
DATA, SCLK, and FS can come from any of the DAI pins. SCLK and FS can also come via PCG or SPORTs. PCG’s input can be either CLKIN or any of the DAI pins.  
SAMPLE EDGE  
tSRCCLK  
tSRCCLKW  
DAI_P20  
(SCLK)  
-
1
1
tSRCSFS  
tSRCHFS  
DAI_P20  
-
(FS)  
tSRCTDD  
DAI_P20  
(SDATA)  
-
1
tSRCTDH  
Figure 28. SRC Serial Output Port Timing  
Rev. A  
|
Page 40 of 56  
|
August 2006  
ADSP-21367/ADSP-21368/ADSP-21369  
SPDIF Transmitter—Serial Input Waveforms  
SPDIF Transmitter  
Figure 29 shows the right-justified mode. LRCLK is HI for the  
left channel and LO for the right channel. Data is valid on the  
rising edge of SCLK. The MSB is delayed 12-bit clock periods  
(in 20-bit output mode) or 16-bit clock periods (in 16-bit output  
mode) from an LRCLK transition, so that when there are 64  
SCLK periods per LRCLK period, the LSB of the data is right-  
justified to the next LRCLK transition.  
Serial data input to the SPDIF transmitter can be formatted as  
left justified, I2S, or right justified with word widths of 16, 18, 20,  
or 24 bits. The following sections provide timing for the  
transmitter.  
DAI_P20  
LRCLK  
-
1
1
1
RIGHT CHANNEL  
LEFT CHANNEL  
DAI_P20  
SCLK  
-
LSB  
MSB-1 MSB-2  
LSB+2 LSB+1  
LSB  
MSB MSB-1 MSB-2  
LSB+2 LSB+1  
LSB  
MSB  
DAI_P20  
SDATA  
-
Figure 29. Right-Justified Mode  
Figure 30 shows the default I2S-justified mode. LRCLK is LO for  
the left channel and HI for the right channel. Data is valid on the  
rising edge of SCLK. The MSB is left-justified to an LRCLK  
transition but with a single SCLK period delay.  
RIGHT CHANNEL  
DAI_P20  
LRCLK  
-
1
1
1
LEFT CHANNEL  
DAI_P20  
SCLK  
-
DAI_P20  
SDATA  
-
MSB  
MSB-1 MSB-2  
LSB+2 LSB+1 LSB  
MSB  
MSB-1 MSB-2  
LSB+2 LSB+1  
LSB  
MSB  
Figure 30. I2S-Justified Mode  
Figure 31 shows the left-justified mode. LRCLK is HI for the left  
channel and LO for the right channel. Data is valid on the rising  
edge of SCLK. The MSB is left-justified to an LRCLK transition  
with no MSB delay.  
DAI_P20  
LRCLK  
-
1
1
1
RIGHT CHANNEL  
LEFT CHANNEL  
DAI_P20  
SCLK  
-
LSB+2 LSB+1 LSB  
MSB  
MSB-1 MSB-2  
LSB+2  
LSB+1  
LSB  
MSB  
MSB-1 MSB-2  
MSB MSB+1  
DAI_P20  
-
SDATA  
Figure 31. Left-Justified Mode  
Rev. A  
|
Page 41 of 56  
|
August 2006  
ADSP-21367/ADSP-21368/ADSP-21369  
SPDIF Transmitter Input Data Timing  
The timing requirements for the input port are given in  
Table 38. Input signals (SCLK, FS, SDATA) are routed to the  
DAI_P20–1 pins using the SRU. Therefore, the timing specifica-  
tions provided below are valid at the DAI_P20–1 pins.  
Table 38. SPDIF Transmitter Input Data Timing  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
1
tSISFS  
FS Setup Before SCLK Rising Edge  
FS Hold After SCLK Rising Edge  
SData Setup Before SCLK Rising Edge  
SData Hold After SCLK Rising Edge  
Clock Width  
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
tSIHFS  
3
1
tSISD  
3
1
tSIHD  
tSISCLKW  
tSISCLK  
tSITXCLKW  
tSITXCLK  
3
36  
80  
9
Clock Period  
Transmit Clock Width  
Transmit Clock Period  
20  
1
DATA, SCLK, and FS can come from any of the DAI pins. SCLK and FS can also come via PCG or SPORTs. PCG’s input can be either CLKIN or any of the DAI pins.  
SAMPLE EDGE  
tSITXCLKW  
tSITXCLK  
DAI_P20  
-1  
(TXCLK)  
tSISCLKW  
DAI_P20  
-1  
(SCLK)  
tSIHFS  
tSISFS  
DAI_P20  
(FS)  
-
1
1
tSISD  
tSIHD  
DAI_P20  
-
(SDATA)  
Figure 32. SPDIF Transmitter Input Timing  
Oversampling Clock (TxCLK) Switching Characteristics  
The SPDIF transmitter has an oversampling clock. This TxCLK  
input is divided down to generate the biphase clock.  
Table 39. Oversampling Clock (TxCLK) Switching Characteristics  
Parameter  
Min  
Max  
147.5  
98.4  
Unit  
MHz  
MHz  
MHz  
MHz  
kHz  
TxCLK Frequency for TxCLK = 768 × FS  
TxCLK Frequency for TxCLK = 512 × FS  
TxCLK Frequency for TxCLK = 384 × FS  
TxCLK Frequency for TxCLK = 256 × FS  
Frame Rate  
73.8  
49.2  
192.0  
Rev. A  
|
Page 42 of 56  
|
August 2006  
ADSP-21367/ADSP-21368/ADSP-21369  
SPDIF Receiver  
The following section describes timing as it relates to the SPDIF  
receiver.  
Internal Digital PLL Mode  
In the internal digital phase-locked loop mode the internal PLL  
(digital PLL) generates the 512 × FS clock.  
Table 40. SPDIF Receiver Internal Digital PLL Mode Timing  
Parameter  
Min  
Max  
Unit  
Switching Characteristics  
tDFSI  
LRCLK Delay After SCLK  
LRCLK Hold After SCLK  
5
5
ns  
ns  
ns  
ns  
ns  
tHOFSI  
tDDTI  
–2  
Transmit Data Delay After SCLK  
Transmit Data Hold After SCLK  
Transmit SCLK Width  
tHDTI  
–2  
40  
1
tSCLKIW  
1 SCLK frequency is 64 × FS where FS = the frequency of LRCLK.  
DRIVE EDGE  
SAMPLE EDGE  
tSCLKIW  
DAI_P20-1  
(SCLK)  
tDFSI  
tHOFSI  
DAI_P20-1  
(FS)  
tDDTI  
tHDTI  
DAI_P20-1  
(DATA CHANNEL A/B)  
Figure 33. SPDIF Receiver Internal Digital PLL Mode Timing  
Rev. A  
|
Page 43 of 56  
|
August 2006  
ADSP-21367/ADSP-21368/ADSP-21369  
SPI Interface—Master  
The processors contain two SPI ports. The primary has dedi-  
cated pins and the secondary is available through the DPI. The  
timing provided in Table 41 and Table 42 on Page 45 applies  
to both.  
Table 41. SPI Interface Protocol—Master Switching and Timing Specifications  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tSSPIDM  
tHSPIDM  
Switching Characteristics  
Data Input Valid to SPICLK Edge (Data Input Setup Time)  
8.2  
2
ns  
ns  
SPICLK Last Sampling Edge to Data Input Not Valid  
tSPICLKM  
tSPICHM  
tSPICLM  
tDDSPIDM  
tHDSPIDM  
tSDSCIM  
tHDSM  
Serial Clock Cycle  
8 × TPCLK – 2  
4 × tPCLK – 2  
4 × tPCLK – 2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Serial Clock High Period  
Serial Clock Low Period  
SPICLK Edge to Data Out Valid (Data Out Delay Time)  
SPICLK Edge to Data Out Not Valid (Data Out Hold Time)  
FLAG3–0IN (SPI Device Select) Low to First SPICLK Edge  
Last SPICLK Edge to FLAG3–0IN High  
Sequential Transfer Delay  
2.5  
2
4 × tPCLK – 2  
4 × tPCLK – 2  
4 × tPCLK – 1  
tSPITDM  
FLAG3-0  
(OUTPUT)  
tSDSCIM  
tSPICHM  
tSPICLM  
tSPICHM  
tDDSPIDM  
tSPICLKM  
tHDSM  
tSPITDM  
SPICLK  
(CP = 0)  
(OUTPUT)  
tSPICLM  
SPICLK  
(CP = 1)  
(OUTPUT)  
tHDSPIDM  
MOSI  
(OUTPUT)  
MSB  
LSB  
tSSPIDM  
tSSPIDM  
CPHASE = 1  
tHSPIDM  
tHSPIDM  
MISO  
MSB  
LSB  
(INPUT)  
VALID  
VALID  
tHDSPIDM  
tDDSPIDM  
MOSI  
(OUTPUT)  
MSB  
LSB  
tSSPIDM  
tHSPIDM  
CPHASE = 0  
MSB  
VALID  
LSB  
VALID  
MISO  
(INPUT)  
Figure 34. SPI Master Timing  
Rev. A  
|
Page 44 of 56  
|
August 2006  
ADSP-21367/ADSP-21368/ADSP-21369  
SPI Interface—Slave  
Table 42. SPI Interface Protocol—Slave Switching and Timing Specifications  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tSPICLKS  
tSPICHS  
tSPICLS  
tSDSCO  
Serial Clock Cycle  
4 × tPCLK – 2  
2 × tPCLK – 2  
2 × tPCLK – 2  
ns  
ns  
ns  
Serial Clock High Period  
Serial Clock Low Period  
SPIDS Assertion to First SPICLK Edge  
CPHASE = 0  
CPHASE = 1  
2 × tPCLK  
2 × tPCLK  
ns  
ns  
tHDS  
Last SPICLK Edge to SPIDS Not Asserted, CPHASE = 0  
Data Input Valid to SPICLK Edge (Data Input Setup Time)  
SPICLK Last Sampling Edge to Data Input Not Valid  
SPIDS Deassertion Pulse Width (CPHASE = 0)  
2 × tPCLK  
ns  
ns  
ns  
ns  
tSSPIDS  
tHSPIDS  
tSDPPW  
2
2
2 × tPCLK  
Switching Characteristics  
tDSOE  
SPIDS Assertion to Data Out Active  
0
0
6.8  
6.8  
9.5  
ns  
ns  
ns  
ns  
ns  
tDSDHI  
tDDSPIDS  
tHDSPIDS  
tDSOV  
SPIDS Deassertion to Data High Impedance  
SPICLK Edge to Data Out Valid (Data Out Delay Time)  
SPICLK Edge to Data Out Not Valid (Data Out Hold Time)  
SPIDS Assertion to Data Out Valid (CPHASE = 0)  
2 × tPCLK  
5 × tPCLK  
SPIDS  
(INPUT)  
tSPICHS  
tSPICLS  
tSPICLKS  
tHDS  
tSDPPW  
SPICLK  
(CP = 0)  
(INPUT)  
tSPICLS  
tSDSC O  
tSPICHS  
SPICLK  
(CP = 1)  
(INPUT)  
tDSD HI  
tHD SPID S  
tDDSPIDS  
tDSOE  
tD DSPIDS  
MISO  
(OUTPUT)  
MSB  
LSB  
tHSPID S  
CPHASE = 1  
tSSPIDS  
tSSPIDS  
MOSI  
(INPUT)  
MSB VALID  
LSB VALID  
tDSOV  
tDSOE  
tHD SPID S  
tDDSPIDS  
tDSDHI  
MISO  
(OUTPUT)  
LSB  
MSB  
tH SPID S  
CPHASE = 0  
tSSPIDS  
MOSI  
MSB VALID  
LSB VALID  
(INPUT)  
Figure 35. SPI Slave Timing  
Rev. A  
|
Page 45 of 56  
|
August 2006  
ADSP-21367/ADSP-21368/ADSP-21369  
JTAG Test Access Port and Emulation  
Table 43. JTAG Test Access Port and Emulation  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tTCK  
TCK Period  
tCK  
5
ns  
ns  
ns  
ns  
ns  
ns  
tSTAP  
tHTAP  
TDI, TMS Setup Before TCK High  
TDI, TMS Hold After TCK High  
System Inputs Setup Before TCK High  
System Inputs Hold After TCK High  
TRST Pulse Width  
6
1
tSSYS  
7
1
tHSYS  
tTRSTW  
Switching Characteristics  
tDTDO TDO Delay from TCK Low  
System Outputs Delay After TCK Low  
18  
4tCK  
7
ns  
ns  
2
tDSYS  
tCK ÷ 2 + 7  
1 System Inputs = AD15–0, SPIDS, CLK_CFG1–0, RESET, BOOT_CFG1–0, MISO, MOSI, SPICLK, DAI_Px, FLAG3–0.  
2 System Outputs = MISO, MOSI, SPICLK, DAI_Px, AD15–0, RD, WR, FLAG3–0, CLKOUT, EMU.  
tTCK  
TCK  
tSTAP  
tHTAP  
TMS  
TDI  
tDTDO  
TDO  
tSSYS  
tHSYS  
SYSTEM  
INPUTS  
tDSYS  
SYSTEM  
OUTPUTS  
Figure 36. IEEE 1149.1 JTAG Test Access Port  
Rev. A  
|
Page 46 of 56  
|
August 2006  
ADSP-21367/ADSP-21368/ADSP-21369  
OUTPUT DRIVE CURRENTS  
Figure 37 shows typical I-V characteristics for the output driv-  
ers of the ADSP-21367/ADSP-21368/ADSP-21369. The curves  
represent the current drive capability of the output drivers as a  
function of output voltage.  
INPUT  
OR  
OUTPUT  
1.5V  
1.5V  
Figure 39. Voltage Reference Levels for AC Measurements  
40  
CAPACITIVE LOADING  
VOH  
30  
3.3V, 25°C  
Output delays and holds are based on standard capacitive loads:  
30 pF on all pins (see Figure 38). Figure 42 shows graphically  
how output delays and holds vary with load capacitance. The  
graphs of Figure 40, Figure 41, and Figure 42 may not be linear  
outside the ranges shown for Typical Output Delay vs. Load  
Capacitance and Typical Output Rise Time (20% to 80%,  
V = Min) vs. Load Capacitance.  
20  
3.47V, -45°C  
10  
3.11V, 125°C  
0
-
10  
20  
30  
40  
3.11V, 125°C  
-
3.3V, 25°C  
12  
10  
VOL  
-
3.47V,  
1.0  
-
45°C  
-
0
0.5  
1.5  
2.0  
2.5  
3.0  
3.5  
RISE  
y = 0.0467x + 1.6323  
SWEEP (VDDEXT) VOLTAGE (V)  
FALL  
8
Figure 37. Typical Drive at Junction temperature  
6
TEST CONDITIONS  
4
y = 0.045x + 1.524  
The ac signal specifications (timing parameters) appear in  
Table 15 on Page 23 through Table 43 on Page 46. These include  
output disable time, output enable time, and capacitive loading.  
The timing specifications for the SHARC apply for the voltage  
reference levels in Figure 39.  
2
0
50  
100  
150  
200  
250  
0
Timing is measured on signals when they cross the 1.5 V level as  
described in Figure 39. All delays (in nanoseconds) are mea-  
sured between the point that the first signal reaches 1.5 V and  
the point that the second signal reaches 1.5 V.  
LOAD CAPACITANCE (pF)  
Figure 40. Typical Output Rise/Fall Time (20% to 80%,  
DDEXT = Max)  
V
12  
10  
IOL  
RISE  
y = 0.049x + 1.5105  
FALL  
8
6
50  
TO  
OUTPUT  
PIN  
1.5V  
+
y = 0.0482x + 1.4604  
30pF  
4
IOH  
2
0
0
50  
100  
150  
200  
250  
Figure 38. Equivalent Device Loading for AC Measurements  
(Includes All Fixtures)  
LOAD CAPACITANCE (pF)  
Figure 41. Typical Output Rise/Fall Time (20% to 80%,  
VDDEXT = Min)  
Rev. A  
|
Page 47 of 56  
|
August 2006  
ADSP-21367/ADSP-21368/ADSP-21369  
Values of θJB are provided for package comparison and PCB  
design considerations. Note that the thermal characteristics val-  
ues provided in Table 44 and Table 45 are modeled values.  
10  
8
Table 44. Thermal Characteristics for 256-Ball SBGA  
Y = 0.0488x  
-1.5923  
6
4
Parameter  
θJA  
Condition  
Typical  
12.5  
10.6  
9.9  
Unit  
Airflow = 0 m/s  
Airflow = 1 m/s  
Airflow = 2 m/s  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
θJMA  
θJMA  
θJC  
2
0
0.7  
θJB  
5.3  
-
2
4
ΨJT  
Airflow = 0 m/s  
Airflow = 1 m/s  
Airflow = 2 m/s  
0.3  
-
ΨJMT  
ΨJMT  
0.3  
0
50  
100  
150  
200  
0.3  
LOAD CAPACITANCE (pF)  
Table 45. Thermal Characteristics for 208-Lead MQFP  
Figure 42. Typical Output Delay or Hold vs. Load Capacitance  
(at Junction Temperature)  
Parameter  
θJA  
Condition  
Typical  
25.0  
22.5  
21.6  
9.6  
Unit  
Airflow = 0 m/s  
Airflow = 1 m/s  
Airflow = 2 m/s  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
THERMAL CHARACTERISTICS  
θJMA  
The ADSP-21367/ADSP-21368/ADSP-21369 processors are  
rated for performance over the temperature range specified in  
Operating Conditions on Page 16.  
θJMA  
θJC  
ΨJT  
Airflow = 0 m/s  
Airflow = 1 m/s  
Airflow = 2 m/s  
0.7  
Table 44 and Table 45 airflow measurements comply with  
JEDEC standards JESD51-2 and JESD51-6 and the junction-to-  
board measurement complies with JESD51-8. Test board design  
complies with JEDEC standard JESD51-9 (SBGA) and  
JESD51-7 (MQFP). The junction-to-case measurement com-  
plies with MIL-STD-883. All measurements use a 2S2P JEDEC  
test board.  
ΨJMT  
ΨJMT  
0.8  
0.9  
To determine the junction temperature of the device while on  
the application PCB, use:  
TJ = TTOP + (ΨJT × PD)  
where:  
TJ = junction temperature (°C)  
T
TOP = case temperature (°C) measured at the top center of the  
package  
ΨJT = junction-to-top (of package) characterization parameter  
is the typical value from Table 44 and Table 45.  
PD = power dissipation (see EE Note EE-299)  
Values of θJA are provided for package comparison and PCB  
design considerations. θJA can be used for a first-order approxi-  
mation of TJ by the equation:  
TJ = TA + (θJA × PD)  
where:  
TA = ambient temperature (°C)  
Values of θJC are provided for package comparison and PCB  
design considerations when an external heat sink is required.  
This is only applicable when a heat sink is used.  
Rev. A  
|
Page 48 of 56  
|
August 2006  
ADSP-21367/ADSP-21368/ADSP-21369  
256-BALL SBGA PINOUT  
Table 46. 256-Ball SBGA Pin Assignment (Numerically by Ball Number)  
Ball No. Signal  
Ball No.  
B01  
B02  
B03  
B04  
B05  
B06  
B07  
B08  
B09  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
F01  
F02  
F03  
F04  
F17  
F18  
F19  
F20  
K01  
K02  
K03  
K04  
Signal  
DAI5  
Ball No.  
C01  
C02  
C03  
C04  
C05  
C06  
C07  
C08  
C09  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
G01  
G02  
G03  
G04  
G17  
G18  
G19  
G20  
L01  
Signal  
DAI9  
Ball No.  
D01  
D02  
D03  
D04  
D05  
D06  
D07  
D08  
D09  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
H01  
H02  
H03  
H04  
H17  
H18  
H19  
H20  
M01  
M02  
M03  
M04  
Signal  
DAI10  
DAI6  
A01  
A02  
A03  
A04  
A05  
A06  
A07  
A08  
A09  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
E01  
E02  
E03  
E04  
E17  
E18  
E19  
E20  
J01  
NC  
TDI  
SDCLK1  
TRST  
DAI7  
TMS  
GND  
GND  
CLK_CFG0  
CLK_CFG1  
EMU  
TCK  
VDDEXT  
GND  
VDDEXT  
GND  
BOOT_CFG_0  
BOOT_CFG_1  
TDO  
GND  
VDDEXT  
VDDINT  
GND  
DAI4  
VDDINT  
DAI1  
DAI3  
GND  
DPI14  
DPI12  
DPI10  
DPI9  
DAI2  
GND  
VDDEXT  
VDDINT  
GND  
DPI13  
DPI11  
DPI8  
VDDINT  
GND  
GND  
VDDEXT  
VDDINT  
GND  
DPI7  
DPI5  
VDDINT  
DPI6  
DPI4  
GND  
DPI3  
DPI1  
GND  
VDDEXT  
GND  
DPI2  
RESET  
DATA30  
DATA29  
DATA28  
NC  
VDDINT  
CLKOUT  
DATA31  
NC  
VDDINT  
VDDEXT  
GND  
VDDINT  
DATA27  
NC/RPBA1  
DAI15  
DAI13  
GND  
DATA26  
DATA24  
DAI17  
DAI16  
VDDINT  
VDDINT  
NC  
DAI11  
DAI8  
DAI14  
DAI12  
GND  
VDDINT  
VDDINT  
GND  
VDDEXT  
VDDINT  
GND  
VDDEXT  
VDDEXT  
GND  
GND  
GND  
VDDINT  
DATA25  
DATA23  
DAI19  
DAI18  
GND  
GND/ID21  
DATA21  
FLAG0  
DAI20  
GND  
DATA22  
DATA20  
FLAG2  
FLAG1  
VDDINT  
DATA19  
DATA18  
ACK  
J02  
L02  
FLAG3  
GND  
J03  
L03  
J04  
GND  
VDDEXT  
L04  
VDDINT  
GND  
Rev. A  
|
Page 49 of 56  
|
August 2006  
ADSP-21367/ADSP-21368/ADSP-21369  
Table 46. 256-Ball SBGA Pin Assignment (Numerically by Ball Number) (Continued)  
Ball No. Signal  
Ball No.  
K17  
K18  
K19  
K20  
P01  
P02  
P03  
P04  
P17  
P18  
P19  
P20  
V01  
V02  
V03  
V04  
V05  
V06  
V07  
V08  
V09  
V10  
V11  
V12  
V13  
V14  
V15  
V16  
V17  
V18  
V19  
V20  
Signal  
VDDINT  
Ball No.  
L17  
Signal  
VDDINT  
Ball No.  
M17  
M18  
M19  
M20  
T01  
T02  
T03  
T04  
T17  
T18  
T19  
T20  
Y01  
Y02  
Y03  
Y04  
Y05  
Y06  
Y07  
Y08  
Y09  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
Signal  
VDDEXT  
J17  
GND  
J18  
GND  
VDDINT  
L18  
VDDINT  
GND  
J19  
GND/ID11  
DATA17  
RD  
GND/ID01  
DATA16  
SDA10  
WR  
L19  
DATA15  
DATA14  
SDWE  
DATA12  
DATA13  
SDCKE  
SDCAS  
GND  
J20  
L20  
N01  
N02  
N03  
N04  
N17  
N18  
N19  
N20  
U01  
U02  
U03  
U04  
U05  
U06  
U07  
U08  
U09  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
U18  
U19  
U20  
R01  
SDCLK0  
GND  
R02  
SDRAS  
GND  
VDDINT  
R03  
VDDEXT  
GND  
VDDINT  
R04  
GND  
VDDEXT  
VDDINT  
R17  
VDDEXT  
GND  
GND  
VDDINT  
R18  
GND  
GND  
DATA11  
DATA10  
MS0  
DATA8  
DATA9  
ADDR22  
ADDR23  
VDDINT  
R19  
DATA6  
DATA7  
GND  
DATA5  
DATA4  
GND  
R20  
W01  
W02  
W03  
W04  
W05  
W06  
W07  
W08  
W09  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
W17  
W18  
W19  
W20  
MS1  
ADDR21  
ADDR19  
ADDR20  
ADDR17  
ADDR16  
ADDR15  
ADDR14  
AVDD  
NC  
VDDINT  
NC  
GND  
GND  
ADDR18  
NC/BR11  
NC/BR21  
XTAL2  
CLKIN  
NC  
VDDEXT  
GND  
GND  
GND  
VDDEXT  
VDDINT  
GND  
VDDINT  
VDDEXT  
GND  
GND  
GND  
AVSS  
NC  
VDDEXT  
VDDINT  
GND  
ADDR13  
ADDR12  
ADDR10  
ADDR8  
ADDR5  
ADDR4  
ADDR1  
ADDR2  
ADDR0  
NC  
NC/BR31  
NC/BR41  
ADDR11  
ADDR9  
ADDR7  
ADDR6  
ADDR3  
GND  
VDDINT  
VDDEXT  
VDDEXT  
VDDINT  
VDDEXT  
GND  
VDDINT  
VDDEXT  
VDDINT  
GND  
GND  
VDDINT  
GND  
DATA0  
DATA2  
DATA1  
DATA3  
GND  
NC  
1 Applies to ADSP-21368 models only.  
Rev. A  
|
Page 50 of 56  
|
August 2006  
ADSP-21367/ADSP-21368/ADSP-21369  
Figure 43 shows the bottom view of the SBGA ball configura-  
tion. Figure 44 shows the top view of the SBGA ball  
configuration.  
2
4
6
8
10  
12  
14  
16  
18  
20  
1
3
5
7
9
11  
13  
15  
17  
19  
A
B
C
D
E
F
20  
18  
16  
14  
12  
10  
8
6
4
2
5
3
1
19  
17  
15  
13  
11  
9
7
A
B
C
D
E
F
G
H
J
TOP  
VIEW  
K
L
M
N
P
R
T
G
H
J
BOTTOM  
VIEW  
K
L
U
V
W
Y
M
N
P
R
T
U
V
W
Y
KEY  
A
A
VSS  
V
V
VDD  
DDINT  
DDEXT  
GND  
I/O SIGNALS  
NO CONNECT  
KEY  
AVDD  
AVSS  
VDDINT  
I/O SIGNALS  
VDDEXT  
GND  
Figure 44. 256-Ball SBGA Ball Configuration (Top View)  
NO CONNECT  
Figure 43. 256-Ball SBGA Ball Configuration (Bottom View)  
Rev. A  
|
Page 51 of 56  
|
August 2006  
ADSP-21367/ADSP-21368/ADSP-21369  
208-LEAD MQFP PINOUT  
Table 47. 208-Lead MQFP Pin Assignment (Numerically by Lead Number)  
Pin No.  
1
Signal  
VDD  
Pin No.  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
Signal  
VDD  
Pin No.  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
Signal  
VDD  
Pin No.  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
Signal  
VDD  
2
DATA28  
DATA27  
GND  
GND  
GND  
VDD  
3
VDDEXT  
VDDEXT  
SDCAS  
SDRAS  
SDCKE  
SDWE  
WR  
GND  
VDD  
4
ADDR0  
ADDR2  
ADDR1  
ADDR4  
ADDR3  
ADDR5  
GND  
5
VDDEXT  
VDD  
6
DATA26  
DATA25  
DATA24  
DATA23  
GND  
VDD  
7
TDI  
8
TRST  
TCK  
9
SDA10  
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
GND  
VDD  
VDD  
VDD  
VDDEXT  
SDCLK0  
GND  
DATA22  
DATA21  
DATA20  
VDDEXT  
GND  
TMS  
VDDEXT  
CLK_CFG0  
BOOT_CFG0  
CLK_CFG1  
EMU  
ADDR6  
ADDR7  
ADDR8  
ADDR9  
ADDR10  
GND  
VDD  
RD  
GND  
ACK  
DATA19  
DATA18  
VDD  
FLAG3  
FLAG2  
FLAG1  
FLAG0  
DAI20  
GND  
BOOT_CFG1  
TDO  
DAI4  
DAI2  
DAI3  
DAI1  
VDDEXT  
GND  
VDD  
GND  
VDD  
DATA17  
VDD  
GND  
VDDEXT  
GND  
ADDR11  
ADDR12  
ADDR13  
GND  
VDD  
VDD  
GND  
GND  
VDDEXT  
DAI19  
DAI18  
DAI17  
DAI16  
DAI15  
DAI14  
DAI13  
DAI12  
VDD  
DATA16  
DATA15  
DATA14  
DATA13  
DATA12  
VDDEXT  
GND  
DPI14  
DPI13  
DPI12  
DPI11  
DPI10  
DPI9  
VDD  
AVSS  
AVDD  
GND  
CLKIN  
XTAL2  
VDDEXT  
GND  
VDD  
DPI8  
GND  
GND  
DPI7  
DATA11  
DATA10  
DATA9  
DATA8  
DATA7  
DATA6  
VDDEXT  
VDD  
VDDEXT  
GND  
VDDEXT  
GND  
VDD  
ADDR14  
GND  
VDD  
VDDEXT  
GND  
GND  
DPI6  
ADDR15  
ADDR16  
ADDR17  
ADDR18  
GND  
DAI11  
DAI10  
DAI8  
DPI5  
DPI4  
GND  
DAI9  
DPI3  
VDD  
DAI6  
DPI1  
DATA4  
VDDEXT  
DAI7  
DPI2  
Rev. A  
|
Page 52 of 56  
|
August 2006  
ADSP-21367/ADSP-21368/ADSP-21369  
Table 47. 208-Lead MQFP Pin Assignment (Numerically by Lead Number) (Continued)  
Pin No.  
45  
Signal  
DATA5  
DATA2  
DATA3  
DATA0  
DATA1  
VDDEXT  
Pin No.  
97  
Signal  
ADDR19  
ADDR20  
ADDR21  
ADDR23  
ADDR22  
MS1  
Pin No.  
149  
Signal  
DAI5  
VDDEXT  
GND  
VDD  
Pin No.  
201  
Signal  
CLKOUT  
RESET  
VDDEXT  
46  
98  
150  
202  
47  
99  
151  
203  
48  
100  
101  
102  
103  
104  
152  
204  
GND  
49  
153  
GND  
VDD  
205  
DATA30  
DATA31  
DATA29  
VDD  
50  
154  
206  
51  
GND  
MS0  
155  
GND  
VDD  
207  
52  
VDD  
VDD  
156  
208  
Rev. A  
|
Page 53 of 56  
|
August 2006  
ADSP-21367/ADSP-21368/ADSP-21369  
PACKAGE DIMENSIONS  
The ADSP-21367/ADSP-21368/ADSP-21369 processors are  
available in 256-ball lead-free and leaded SBGA, and 208-lead  
lead-free MQFP packages.  
30.85  
30.60 SQ  
30.35  
0.75  
4.10  
0.60  
MAX  
0.45  
208  
157  
156  
1
SEATING  
PLANE  
PIN 1 INDICATOR  
28.20  
28.00 SQ  
27.80  
TOP VIEW  
(PINS DOWN)  
3.60  
3.40  
3.20  
VIEW A  
105  
104  
52  
0.20  
0.09  
53  
0.50  
BSC  
(LEAD PITCH)  
0.27  
0.17  
0.50  
0.25  
0.08 MAX (LEAD  
COPLANARITY)  
(LEAD WIDTH)  
VIEW A  
ROTATED 90° CCW  
NOTES:  
1. THE ACTUAL POSITION OF EACH LEAD IS WITHIN 0.08 FROM ITS IDEAL  
POSITION WHEN MEASURED IN THE LATERAL DIRECTION.  
2. CENTER DIMENSIONS ARE NOMINAL.  
3. DIMENSIONS ARE IN MILLIMETERS AND COMPLY WITH JEDEC STANDARD  
MS-029, FA-1.  
Figure 45. 208-Lead MQFP (S-208-2)  
Rev. A  
|
Page 54 of 56  
|
August 2006  
ADSP-21367/ADSP-21368/ADSP-21369  
A1 CORNER  
INDEX AREA  
20 18 16 14 12 10  
19 17 15 13 11  
8
6
4
2
9
7
5
3
1
A
B
C
D
E
F
A1 BALL  
INDICATOR  
G
H
J
K
L
BOTTOM  
VIEW  
27.00  
BSC SQ  
TOP VIEW  
M
N
P
R
T
U
V
W
Y
24.13  
REF SQ  
DETAIL A  
1.00  
0.80  
0.60  
1.27  
NOM  
1.70 MAX  
DETAIL A  
0.70  
0.60  
0.50  
0.10  
MIN  
0.20  
COPLANARITY  
SEATING  
PLANE  
0.90  
0.75  
0.60  
BALL  
DIAMETER  
0.25 MIN 4ϫ  
DIMENSIONS ARE IN MILLIMETERS AND COMPLY  
WITH JEDEC STANDARDS MO-192-BAL-2.  
Figure 46. 256-Ball SBGA, Thermally Enhanced (BP-256)  
SURFACE-MOUNT DESIGN  
Table 48 is provided as an aide to PCB design. For industry-  
standard design recommendations, refer to IPC-7351, Generic  
Requirements for Surface-Mount Design and Land Pattern  
Standard.  
Table 48. SBGA Data for Use with Surface-Mount Design  
Package  
Ball Attach Type  
Solder Mask Opening  
Ball Pad Size  
256-Lead Ball Grid Array SBGA  
(BP-256)  
Solder Mask Defined (SMD)  
0.63  
0.73  
Rev. A  
|
Page 55 of 56  
|
August 2006  
ADSP-21367/ADSP-21368/ADSP-21369  
ORDERING GUIDE  
Operating  
Voltage  
Internal/External Description  
Temperature  
Range 1  
Instruction On-Chip  
Rate  
Package  
Package  
Option  
Part Number  
SRAM  
2M bit  
2M bit  
2M bit  
2M bit  
2M bit  
2M bit  
2M bit  
2M bit  
2M bit  
2M bit  
2M bit  
2M bit  
2M bit  
2M bit  
ROM  
ADSP-21367KSZ-1A2, 3  
ADSP-21367KBP-2A3  
ADSP-21367KBPZ-2A2, 3  
ADSP-21367BBP-2A  
ADSP-21367BBPZ-2A2  
ADSP-21368KBP-2A  
ADSP-21368KBPZ-2A2  
ADSP-21368BBP-2A  
ADSP-21368BBPZ-2A2  
ADSP-21369KSZ-1A2  
ADSP-21369KBP-2A  
ADSP-21369KBPZ-2A2  
ADSP-21369BBP-2A  
ADSP-21369BBPZ-2A2  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
–40°C to +85°C  
–40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
–40°C to +85°C  
–40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
–40°C to +85°C  
–40°C to +85°C  
266 MHz  
333 MHz  
333 MHz  
333 MHz  
333 MHz  
333 MHz  
333 MHz  
333 MHz  
333 MHz  
266 MHz  
333 MHz  
333 MHz  
333 MHz  
333 MHz  
6M bit  
6M bit  
6M bit  
6M bit  
6M bit  
6M bit  
6M bit  
6M bit  
6M bit  
6M bit  
6M bit  
6M bit  
6M bit  
6M bit  
1.2 V/3.3 V  
1.3 V/3.3 V  
1.3 V/3.3 V  
1.3 V/3.3 V  
1.3 V/3.3 V  
1.3 V/3.3 V  
1.3 V/3.3 V  
1.3 V/3.3 V  
1.3 V/3.3 V  
1.2 V/3.3 V  
1.3 V/3.3 V  
1.3 V/3.3 V  
1.3 V/3.3 V  
1.3 V/3.3 V  
208-Lead MQFP S-208-2  
256-Ball SBGA  
256-Ball SBGA  
256-Ball SBGA  
256-Ball SBGA  
256-Ball SBGA  
256-Ball SBGA  
256-Ball SBGA  
256-Ball SBGA  
BP-256  
BP-256  
BP-256  
BP-256  
BP-256  
BP-256  
BP-256  
BP-256  
208-Lead MQFP S-208-2  
256-Ball SBGA  
256-Ball SBGA  
256-Ball SBGA  
256-Ball SBGA  
BP-256  
BP-256  
BP-256  
BP-256  
1 Referenced temperature is ambient temperature.  
2 Z = Pb-free part.  
3 Available with a wide variety of audio algorithm combinations sold as part of a chipset and bundled with necessary software. For a complete list, visit our website at  
www.analog.com/SHARC.  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05267-0-8/06(A)  
Rev. A  
|
Page 56 of 56  
|
August 2006  

相关型号:

ADSP-21369BBP-2A

SHARC Processors
ADI

ADSP-21369BBPZ-2A

SHARC Processors
ADI

ADSP-21369BSWZ-1A

SHARC Processors
ADI

ADSP-21369BSWZ-2A

SHARC Processors
ADI

ADSP-21369KBP-2A

SHARC Processors
ADI

ADSP-21369KBP-3A

IC 0-BIT, 25 MHz, OTHER DSP, PBGA256, SBGA-256, Digital Signal Processor
ADI

ADSP-21369KBP-ENG

IC 32-BIT, 66.66 MHz, OTHER DSP, PBGA256, MO-192-BAL-2, SBGA-256, Digital Signal Processor
ADI

ADSP-21369KBPZ-2A

SHARC Processors
ADI

ADSP-21369KBPZ-3A

SHARC Processors
ADI

ADSP-21369KBPZ-ENG

IC 32-BIT, 66.66 MHz, OTHER DSP, PBGA256, LEAD FREE, MO-192-BAL-2, SBGA-256, Digital Signal Processor
ADI

ADSP-21369KBPZ-X

IC 32-BIT, 55.55 MHz, OTHER DSP, PBGA256, LEAD FREE, MO-192BAL-2, SBGA-256, Digital Signal Processor
ADI

ADSP-21369KSWZ-1A

SHARC Processors
ADI