ADSP-21369KBP-3A [ADI]

IC 0-BIT, 25 MHz, OTHER DSP, PBGA256, SBGA-256, Digital Signal Processor;
ADSP-21369KBP-3A
型号: ADSP-21369KBP-3A
厂家: ADI    ADI
描述:

IC 0-BIT, 25 MHz, OTHER DSP, PBGA256, SBGA-256, Digital Signal Processor

文件: 总12页 (文件大小:821K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SHARC® Processor  
Data Sheet Addendum  
a
Preliminary Technical Data  
SUMMARY  
High performance 32-bit/40-bit floating point processor  
optimized for high performance audio processing  
Single-instruction, multiple-data (SIMD) computational  
architecture  
ADSP-21367/ADSP-21368/ADSP-21369  
sample rate converter, precision clock generators, and  
more. For complete ordering information, see Ordering  
Guide on Page 11.  
At 400 MHz (2.5 ns) core instruction rate, the processors per-  
form 2.4 GFLOPS/800 MMACS  
Transfers between memory and core at a sustained  
6.4G bytes/s bandwidth at 400 MHz core instruction rate  
On-chip memory—2M bit of on-chip SRAM and 6M bit of on-  
chip mask programmable ROM  
400 MHz maximum core clock frequency  
1.3 V core VDD/3.3 V I/O  
Code compatible with all other members of the SHARC  
family  
The ADSP-21367/ADSP-21368/ADSP-21369 are available  
with a 400 MHz core instruction rate with unique audio-  
centric peripherals such as the digital audio interface,  
S/PDIF transceiver, serial ports, 8-channel asynchronous  
GENERAL DESCRIPTION  
This data sheet addendum introduces the 400 MHz ADSP-21367/ADSP-21368/ADSP-21369 SHARC processors. This addendum pro-  
vides the frequency benchmark, as well as ac and dc specifications that differ from the 333 MHz ADSP-21367/ADSP-21368/ADSP-21369  
SHARC processors. All other specifications and timing data as well as package information for these devices can be found in the  
ADSP-21367/ADSP-21368/ADSP-21369 SHARC Processor Data Sheet, Rev A. The products listed in the addendum are engineering  
grade and have not been fully characterized. For complete ordering information, see the Ordering Guide on Page 11.  
SHARC and the SHARC logo are registered trademarks of Analog Devices, Inc.  
Rev. PrA  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2007 Analog Devices, Inc. All rights reserved.  
ADSP-21367/ADSP-21368/ADSP-21369 Data Sheet Addendum  
Preliminary Technical Data  
Table 1 shows performance benchmarks for these devices.  
TABLE OF CONTENTS  
Summary ................................................................1  
General Description ..................................................1  
Specifications ...........................................................3  
Operating Conditions .............................................3  
Electrical Characteristics ..........................................3  
Timing Specifications .............................................4  
Output Drive Currents .......................................... 10  
Capacitive Loading ............................................... 10  
Ordering Guide ...................................................... 11  
Table 1. Processor Benchmarks (at 400 MHz)  
Benchmark Algorithm  
Speed (at 400 MHz)  
1024 Point Complex FFT (Radix 4, with 23.2 μs  
reversal)  
FIR Filter (per tap)1  
IIR Filter (per biquad)1  
1.25 ns  
5.0 ns  
Matrix Multiply (pipelined)  
[3×3] × [3×1]  
[4×4] × [4×1]  
11.25 ns  
20.0 ns  
PERFORMANCE BENCHMARKS  
Divide (y/×)  
8.75 ns  
13.5 ns  
The processors use two computational units to deliver a signifi-  
cant performance increase over the previous SHARC processors  
on a range of DSP algorithms. Fabricated in a state-of-the-art,  
high speed, CMOS process, the ADSP-21367/ADSP-  
21368/ADSP-21369 processors achieve an instruction cycle  
time of up to 2.5 ns at 400 MHz. With its SIMD computational  
hardware, the processors can perform 2.4 GFLOPS running at  
400 MHz.  
Inverse Square Root  
1 Assumes two files in multichannel SIMD mode.  
POWER SUPPLIES  
The processors have separate power supply connections for the  
internal (VDDINT), external (VDDEXT), and analog (AVDD/AVSS  
power supplies. The internal and analog supplies must meet the  
1.3 V requirement for the 400 MHz device. The external supply  
must meet the 3.3 V requirement. All external supply pins must  
be connected to the same power supply.  
)
Rev. PrA  
|
Page 2 of 12 | March 2007  
Preliminary Technical Data  
ADSP-21367/ADSP-21368/ADSP-21369 Data Sheet Addendum  
SPECIFICATIONS  
OPERATING CONDITIONS  
Parameter1  
Description  
Min  
Max  
Unit  
VDDINT  
AVDD  
Internal (Core) Supply Voltage  
1.25  
1.25  
3.13  
2.0  
1.35  
V
V
V
V
V
V
V
°C  
Analog (PLL) Supply Voltage  
1.35  
VDDEXT  
External (I/O) Supply Voltage  
3.47  
2
VIH  
High Level Input Voltage @ VDDEXT = max  
Low Level Input Voltage @ VDDEXT = min  
High Level Input Voltage @ VDDEXT = max  
Low Level Input Voltage @ VDDEXT = min  
Junction Temperature, 256-Ball SBGA @ TAMBIENT 0°C to +70°C  
VDDEXT + 0.5  
+0.8  
2
VIL  
–0.5  
1.74  
–0.5  
0
3
VIH  
_
VDDEXT + 0.5  
+1.1  
CLKIN  
3
VIL  
TJ  
_CLKIN  
+105  
1 Specifications subject to change without notice.  
2 Applies to input and bidirectional pins: DATAx, ACK, RPBA, BRx, IDx, FLAGx, DAI_Px, DPI_Px, BOOT_CFGx, CLK_CFGx, RESET, TCK, TMS, TDI, TRST.  
3 Applies to input pin CLKIN.  
ELECTRICAL CHARACTERISTICS  
Parameter1  
Description  
Test Conditions  
Min  
Typ  
Max  
Unit  
2
VOH  
High Level Output Voltage  
Low Level Output Voltage  
High Level Input Current  
@ VDDEXT = min, IOH = –1.0 mA3  
@ VDDEXT = min, IOL = 1.0 mA3  
@ VDDEXT = max, VIN = VDDEXT max  
@ VDDEXT = max, VIN = 0 V  
2.4  
V
2
VOL  
0.4  
10  
V
4, 5  
IIH  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
A
4, 6, 7  
IIL  
Low Level Input Current  
10  
6
IIHPD  
High Level Input Current Pull-down  
Low Level Input Current Pull-up  
Three-State Leakage Current  
Three-State Leakage Current  
Three-State Leakage Current Pull-up  
Supply Current (Internal)  
@ VDDEXT = max, VIN = 0 V  
250  
200  
10  
5
IILPU  
@ VDDEXT = max, VIN = 0 V  
8, 9  
IOZH  
@ VDDEXT = max, VIN = VDDEXT max  
@ VDDEXT = max, VIN = 0 V  
8, 10  
IOZL  
10  
9
IOZLPU  
@ VDDEXT = max, VIN = 0 V  
200  
11  
IDD  
-
tCCLK = 2.5 ns, VDDINT = 1.3 V, 25°C  
AVDD = max  
1.4  
INTYP  
12  
AIDD  
Supply Current (Analog)  
10  
mA  
pF  
13, 14  
CIN  
Input Capacitance  
fIN = 1 MHz, TCASE = 25°C, VIN = 1.3 V  
4.7  
1
Specifications subject to change without notice.  
2 Applies to output and bidirectional pins: ADDRx, DATAx, RD, WR, MSx, BRx, FLAGx, DAI_Px, DPI_Px, SDRAS, SDCAS, SDWE, SDCKE, SDA10, SDCLKx, EMU, TDO,  
CLKOUT.  
3 See Output Drive Currents on Page 10 for typical drive current capabilities.  
4 Applies to input pins without internal pull-ups: BOOT_CFGx, CLK_CFGx, CLKIN, RESET, TCK.  
5 Applies to input pins with internal pull-ups: ACK, RPBA, TMS, TDI, TRST.  
6 Applies to input pins with internal pull-downs: IDx.  
7 Applies to input pins with internal pull-ups disabled: ACK, RPBA.  
8 Applies to three-statable pins without internal pull-ups: FLAGx, SDCLKx, TDO.  
9 Applies to three-statable pins with internal pull-ups: ADDRx, DATAx, RD, WR, MSx, BRx, DAI_Px, DPI_Px, SDRAS, SDCAS, SDWE, SDCKE, SDA10, EMU.  
10Applies to three-statable pins with internal pull-ups disabled: ADDRx, DATAx, RD, WR, MSx, BRx, DAI_Px, DPI_Px, SDRAS, SDCAS, SDWE, SDCKE, SDA10  
11See Engineer-to-Engineer Note 299 for further information.  
12Characterized, but not tested.  
13Applies to all signal pins.  
14Guaranteed, but not tested.  
Rev. PrA  
|
Page 3 of 12 | March 2007  
ADSP-21367/ADSP-21368/ADSP-21369 Data Sheet Addendum  
Preliminary Technical Data  
Switching Characteristics specify how the processor changes its  
signals. Circuitry external to the processor must be designed for  
compatibility with these signal characteristics. Switching char-  
acteristics describe what the processor will do in a given  
circumstance. Use switching characteristics to ensure that any  
timing requirement of a device connected to the processor (such  
as memory) is satisfied.  
TIMING SPECIFICATIONS  
The processor’s internal clock (a multiple of CLKIN) provides  
the clock signal for timing internal memory, processor core, and  
serial ports. During reset, program the ratio between the proces-  
sor’s internal clock frequency and external (CLKIN) clock  
frequency with the CLK_CFG1–0 pins. To determine switching  
frequencies for the serial ports, divide down the internal clock,  
using the programmable divider control of each port (DIVx for  
the serial ports).  
Timing Requirements apply to signals that are controlled by cir-  
cuitry external to the processor, such as the data input for a read  
operation. Timing requirements guarantee that the processor  
operates correctly with other devices.  
The processor’s internal clock switches at higher frequencies  
than the system input clock (CLKIN). To generate the internal  
clock, the processor uses an internal phase-locked loop (PLL).  
This PLL-based clocking minimizes the skew between the sys-  
tem clock (CLKIN) signal and the processor’s internal clock.  
Use the exact timing information given. Do not attempt to  
derive parameters from the addition or subtraction of others.  
While addition or subtraction would yield meaningful results  
for an individual device, the values given in this data sheet  
reflect statistical variations and worst cases. Consequently, it is  
not meaningful to add parameters to derive longer times.  
Rev. PrA  
|
Page 4 of 12 | March 2007  
Preliminary Technical Data  
ADSP-21367/ADSP-21368/ADSP-21369 Data Sheet Addendum  
Power-Up Sequencing  
The timing requirements for processor startup are given in  
Table 2.  
Table 2. Power-Up Sequencing Timing Requirements (Processor Startup)  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tRSTVDD  
RESET Low Before VDDINT/VDDEXT On  
VDDINT On Before VDDEXT  
0
ns  
tIVDDEVDD  
–50  
0
102  
+200  
+200  
ms  
ms  
μs  
1
tCLKVDD  
CLKIN Valid After VDDINT/VDDEXT Valid  
CLKIN Valid Before RESET Deasserted  
PLL Control Setup Before RESET Deasserted  
tCLKRST  
tPLLRST  
20  
μs  
Switching Characteristic  
3, 4  
tCORERST  
Core Reset Deasserted After RESET Deasserted  
4096tCK + 2 tCCLK  
1 Valid VDDINT/VDDEXT assumes that the supplies are fully ramped to their 1.3 volt rails and 3.3 volt rails. Voltage ramp rates can vary from microseconds to hundreds of milliseconds  
depending on the design of the power supply subsystem.  
2 Assumes a stable CLKIN signal, after meeting worst-case startup timing of crystal oscillators. Refer to your crystal oscillator manufacturer’s data sheet for start-up time. Assume  
a 25 ms maximum oscillator start-up time if using the XTAL pin and internal oscillator circuit in conjunction with an external crystal.  
3 Applies after the power-up sequence is complete. Subsequent resets require RESET to be held low a minimum of four CLKIN cycles in order to properly initialize and propagate  
default states at all I/O pins.  
4 The 4096 cycle count depends on tsrst specification. If setup time is not met, 1 additional CLKIN cycle may be added to the core reset time, resulting in 4097 cycles maximum.  
RESET  
tRSTVDD  
V
DDINT  
tIVDDEVDD  
V
tCLKVDD  
DDEXT  
CLKIN  
tCLKRST  
CLK_CFG1-0  
tCORERST  
tPLLRST  
RESETOUT  
Figure 1. Power-Up Sequencing  
Rev. PrA  
|
Page 5 of 12 | March 2007  
ADSP-21367/ADSP-21368/ADSP-21369 Data Sheet Adddendum  
Preliminary Technical Data  
Clock Input  
Clock Signals  
The processors can use an external clock or a crystal. See the  
CLKIN pin description. Programs can configure the processor  
to use its internal clock generator by connecting the necessary  
components to CLKIN and XTAL. Figure 3 shows the compo-  
nent connections used for a crystal operating in fundamental  
mode. Note that the clock rate is achieved using a 25 MHz crys-  
tal and a PLL multiplier ratio 16:1 (CCLK:CLKIN achieves a  
clock speed of 400 MHz). To achieve the full core clock rate,  
programs need to configure the multiplier bits in the PMCTL  
register.  
Table 3. Clock Input  
400 MHz  
Min  
Parameter  
Max  
Unit  
Timing Requirements  
tCK  
CLKIN Period  
181  
81  
81  
1002  
452  
452  
3
ns  
ns  
ns  
ns  
tCKL  
tCKH  
tCKRF  
CLKIN Width Low  
CLKIN Width High  
CLKIN Rise/Fall (0.4 V to  
2.0 V)  
3
tCCLK  
CCLK Period  
2.51  
10  
ns  
ps  
4, 5  
tCKJ  
CLKIN Jitter Tolerance  
–250  
+250  
ADSP-2136x  
1 Applies only for CLK_CFG1–0 = 00 and default values for PLL control bits in  
PMCTL.  
R1  
XTAL  
CLKIN  
2 Applies only for CLK_CFG1–0 = 10 and default values for PLL control bits in  
PMCTL.  
1M(TYPICAL)  
R2  
3 Any changes to PLL control bits in the PMCTL register must meet core clock  
47(TYPICAL)  
timing specification tCCLK  
.
C1  
22pF  
C2  
22pF  
4 Actualinputjittershouldbecombinedwithacspecificationsforaccuratetiming  
analysis.  
Y1  
5 Jitter specification is maximum peak-to-peak time interval error (TIE) jitter.  
24.576MHz  
R2 SHOULD BE CHOSEN TO LIMIT CRYSTAL DRIVE POWER.  
REFER TO CRYSTAL MANUFACTURER’S SPECIFICATIONS  
tCK  
CLKIN  
Figure 3. 400 MHz Operation (Fundamental Mode Crystal)  
tCKH  
tCKL  
Figure 2. Clock Input  
Rev. PrA  
|
Page 6 of 12  
|
March 2007  
Preliminary Technical Data  
ADSP-21367/ADSP-21368/ADSP-21369 Data Sheet Addendum  
SDRAM Interface Timing (133 MHz SDCLK)  
The 133 MHz access speed is for a single processor. When mul-  
tiple ADSP-21368 processors are connected in a shared memory  
system, the access speed is 100 MHz.  
Table 4. SDRAM Interface Timing1  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tSSDAT  
tHSDAT  
DATA Setup Before SDCLK  
DATA Hold After SDCLK  
0.78  
1.23  
ns  
ns  
Switching Characteristics  
tSDCLK  
tSDCLKH  
tSDCLKL  
tDCAD  
SDCLK Period  
7.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SDCLK Width High  
3.65  
3.65  
SDCLK Width Low  
Command, ADDR, Data Delay After SDCLK2  
Command, ADDR, Data Hold After SDCLK2  
Data Disable After SDCLK  
4.8  
5.3  
tHCAD  
1.2  
1.2  
tDSDAT  
tENSDAT  
Data Enable After SDCLK  
1 For FCCLK = 400 MHz (SDCLK ratio = 1:2.5).  
2 Command pins include: SDCAS, SDRAS, SDWE, MSx, SDA10, SDCKE.  
tSDCLK  
tSDCLKH  
SDCLK  
tSSDAT  
tSDCLKL  
tHSDAT  
DATA (IN)  
tDCAD  
tDSDAT  
tHCAD  
tENSDAT  
DATA(OUT)  
tDCAD  
CMND ADDR  
(OUT)  
tHCAD  
Figure 4. SDRAM Interface Timing  
Rev. PrA  
|
Page 7 of 12 | March 2007  
ADSP-21367/ADSP-21368/ADSP-21369 Data Sheet Adddendum  
Preliminary Technical Data  
SDRAM Interface Enable/Disable Timing (133 MHz SDCLK)  
Table 5. SDRAM Interface Enable/Disable Timing1  
Parameter  
Min  
Max  
Unit  
Switching Characteristics  
tDSDC  
Command Disable After CLKIN Rise  
Command Enable After CLKIN Rise  
SDCLK Disable After CLKIN Rise  
SDCLK Enable After CLKIN Rise  
Address Disable After CLKIN Rise  
Address Enable After CLKIN Rise  
2 × tPCLK + 1  
8.5  
ns  
ns  
ns  
ns  
ns  
ns  
tENSDC  
tDSDCC  
tENSDCC  
tDSDCA  
tENSDCA  
4.0  
3.8  
9.2  
2 × tPCLK – 4  
4 × tPCLK  
1 For FCCLK = 400 MHz (SDCLK ratio = 1:2.5).  
CLKIN  
tDSDC  
tDSDCC  
tDSDCA  
COMMAND  
SDCLK  
ADDR  
tENSDC  
tENSDCC  
tENSDCA  
COMMAND  
SDCLK  
ADDR  
Figure 5. SDRAM Interface Enable/Disable Timing  
Pin to Pin Direct Routing (DAI and DPI)  
For direct pin connections only (for example, DAI_PB01_I to  
DAI_PB02_O).  
Table 6. DAI Pin to Pin Routing  
Parameter  
Min  
Max  
Unit  
Timing Requirement  
tDPIO  
Delay DAI Pin Input Valid to DAI Output Valid  
1.5  
12  
ns  
DAI_Pn  
DPI_Pn  
DAI_pm  
DPI_Pm  
tDPIO  
Figure 6. DAI Pin to Pin Direct Routing  
Rev. PrA  
|
Page 8 of 12 | March 2007  
Preliminary Technical Data  
ADSP-21367/ADSP-21368/ADSP-21369 Data Sheet Addendum  
Memory Read – Bus Master to Memory Read  
Use these specifications for asynchronous interfacing to memo-  
ries. These specifications apply when the processors are the bus  
master accessing external memory space in asynchronous access  
mode. Note that timing for ACK, DATA, RD, WR, and strobe  
timing parameters only apply to asynchronous access mode.  
Table 7. Memory Read—Bus Master  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tDAD  
Address, Selects Delay to Data Valid1, 2  
RD Low to Data Valid1  
W+tSDCLK –5.12  
W– 2.9  
ns  
ns  
ns  
ns  
ns  
ns  
tDRLD  
tSDS  
Data Setup to RD High  
2.2  
0
tHDRH  
tDAAK  
tDSAK  
Data Hold from RD High3, 4  
ACK Delay from Address, Selects2, 5  
ACK Delay from RD Low4  
tSDCLK 9.5+ W  
W – 7.0  
Switching Characteristics  
tDRHA  
tDARL  
tRW  
Address Selects Hold After RD High  
Address Selects to RD Low2  
RH + 0.18  
tSDCLK 3.3  
W – 1.2  
ns  
ns  
ns  
ns  
RD Pulse Width  
tRWR  
RD High to WR, RD Low  
HI +tSDCLK – 0.8  
W = (number of wait states specified in AMICTLx register) × tSDCLK  
HI =RHC + IC (RHC = number of read hold cycles specified in AMICTLx register) × tSDCLK  
IC = (number of idle cycles specified in AMICTLx register) × tSDCLK  
.
.
H = (number of hold cycles specified in AMICTLx register) × tSDCLK  
.
1 Data delay/setup: system must meet tDAD, tDRLD, or tSDS.  
2 The falling edge of MSx is referenced.  
3 Note that timing for ACK, DATA, RD, WR, and strobe timing parameters only apply to asynchronous access mode.  
4 Data hold: User must meet tHDA or tHDRH in asynchronous access mode.  
5 ACK Delay/Setup: User must meet tDAAK, or tDSAK, for deassertion of ACK (low). For asynchronous assertion of ACK (high) user must meet tDAAK or tDSAK  
.
ADDRESS  
MSx  
tDRHA  
tDARL  
tRW  
RD  
tDRLD  
tSDS  
tDAD  
tHDRH  
DATA  
tDSAK  
tDAAK  
tRWR  
ACK  
WR  
Figure 7. Memory Read—Bus Master  
Rev. PrA  
|
Page 9 of 12 | March 2007  
ADSP-21367/ADSP-21368/ADSP-21369 Data Sheet Adddendum  
Preliminary Technical Data  
OUTPUT DRIVE CURRENTS  
CLKOUT (CLKOUT DRIVER), V  
(MAX) = 3.65V,TEMPERATURE = 85°C  
Figure 8 shows typical I-V characteristics for the output drivers  
DDEXT  
10  
of the ADSP-21367/ADSP-21368/ADSP-21369. The curves rep-  
9
resent the current drive capability of the output drivers as a  
function of output voltage.  
8
7
6
CLKOUT (CLKOUT DRIVER), V  
(MAX) = 3.65V,TEMPERATURE = 85°C  
DDEXT  
10  
5
4
3
2
1
0
9
8
7
6
5
0
50  
100  
150  
200  
250  
LOAD CAPACITANCE (pF)  
4
3
2
1
0
Figure 10. Typical Output Rise/Fall Time (20% to 80%,  
VDDEXT = Min)  
0
50  
100  
150  
200  
250  
LOAD CAPACITANCE (pF)  
CLKOUT (CLKOUT DRIVER), V  
(MAX) = 3.65V,TEMPERATURE = 85°C  
DDEXT  
10  
9
8
7
Figure 8. Typical Drive at Junction temperature  
CAPACITIVE LOADING  
Output delays and holds are based on standard capacitive loads:  
30 pF on all pins. Figure 11 shows graphically how output delays  
and holds vary with load capacitance. The graphs of Figure 9,  
Figure 10, and Figure 11 may not be linear outside the ranges  
shown for Typical Output Delay vs. Load Capacitance and  
Typical Output Rise Time (20% to 80%, V = Min) vs. Load  
Capacitance.  
6
5
4
3
2
1
0
0
50  
100  
150  
200  
250  
LOAD CAPACITANCE (pF)  
CLKOUT (CLKOUT DRIVER), V  
(MAX) = 3.65V,TEMPERATURE = 85°C  
DDEXT  
10  
9
8
7
Figure 11. Typical Output Delay or Hold vs. Load Capacitance  
(at Junction Temperature)  
6
5
4
3
2
1
0
0
50  
100  
150  
200  
250  
LOAD CAPACITANCE (pF)  
Figure 9. Typical Output Rise/Fall Time (20% to 80%,  
DDEXT = Max)  
V
Rev. PrA  
|
Page 10 of 12 | March 2007  
Preliminary Technical Data  
ADSP-21367/ADSP-21368/ADSP-21369 Data Sheet Addendum  
ORDERING GUIDE  
Operating  
Temperature  
Range  
Instruction On-Chip  
Voltage  
Internal/External Description  
Package  
Package  
Option  
Part Number  
Rate  
SRAM  
2M bit  
2M bit  
2M bit  
2M bit  
2M bit  
2M bit  
ROM  
ADSP-21367KBP-3A1  
ADSP-21367KBPZ-3A2  
ADSP-21368KBP-3A  
ADSP-21368KBPZ-3A2  
ADSP-21369KBP-3A  
ADSP-21369KBPZ-3A2  
C to +70°C  
C to +70°C  
C to +70°C  
C to +70°C  
C to +70°C  
C to +70°C  
400 MHz  
400 MHz  
400 MHz  
400 MHz  
400 MHz  
400 MHz  
6M bit  
6M bit  
6M bit  
6M bit  
6M bit  
6M bit  
1.3 V/3.3 V  
1.3 V/3.3 V  
1.3 V/3.3 V  
1.3 V/3.3 V  
1.3 V/3.3 V  
1.3 V/3.3 V  
256-Ball SBGA  
256-Ball SBGA  
256-Ball SBGA  
256-Ball SBGA  
256-Ball SBGA  
256-Ball SBGA  
BP-256  
BP-256  
BP-256  
BP-256  
BP-256  
BP-256  
1 Available with a wide variety of audio algorithm combinations sold as part of a chipset and bundled with necessary software. For a complete list, visit our website at  
www.analog.com/SHARC.  
2 Z = RoHS Compliant Part.  
Rev. PrA  
|
Page 11 of 12 | March 2007  
ADSP-21367/ADSP-21368/ADSP-21369 Data Sheet Addendum  
Preliminary Technical Data  
©2007 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
PR06770-0-4/07(PrA)  
Rev. PrA  
|
Page 12 of 12 | March 2007  

相关型号:

ADSP-21369KBP-ENG

IC 32-BIT, 66.66 MHz, OTHER DSP, PBGA256, MO-192-BAL-2, SBGA-256, Digital Signal Processor
ADI

ADSP-21369KBPZ-2A

SHARC Processors
ADI

ADSP-21369KBPZ-3A

SHARC Processors
ADI

ADSP-21369KBPZ-ENG

IC 32-BIT, 66.66 MHz, OTHER DSP, PBGA256, LEAD FREE, MO-192-BAL-2, SBGA-256, Digital Signal Processor
ADI

ADSP-21369KBPZ-X

IC 32-BIT, 55.55 MHz, OTHER DSP, PBGA256, LEAD FREE, MO-192BAL-2, SBGA-256, Digital Signal Processor
ADI

ADSP-21369KSWZ-1A

SHARC Processors
ADI

ADSP-21369KSWZ-2A

SHARC Processors
ADI

ADSP-21369KSWZ-4A

SHARC Processors
ADI

ADSP-21369KSWZ-5A

SHARC Processors
ADI

ADSP-21369KSWZ-6A

High-Performance 32-bit Floating-Point SHARC Processor for General Purpose Applications
ADI

ADSP-21369KSZ-1A

SHARC Processors
ADI

ADSP-21369KSZ-ENG

IC 32-BIT, 66.66 MHz, OTHER DSP, PQFP208, LEAD FREE, MS-029FA-1, MQFP-208, Digital Signal Processor
ADI