ADSP-21369KSWZ-6A [ADI]

High-Performance 32-bit Floating-Point SHARC Processor for General Purpose Applications;
ADSP-21369KSWZ-6A
型号: ADSP-21369KSWZ-6A
厂家: ADI    ADI
描述:

High-Performance 32-bit Floating-Point SHARC Processor for General Purpose Applications

时钟 外围集成电路
文件: 总62页 (文件大小:1222K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SHARC Processor  
ADSP-21367/ADSP-21368/ADSP-21369  
SUMMARY  
DEDICATED AUDIO COMPONENTS  
High performance 32-bit/40-bit floating-point processor  
optimized for high performance audio processing  
Single-instruction, multiple-data (SIMD) computational  
architecture  
On-chip memory—2M bits of on-chip SRAM and 6M bits of  
on-chip mask programmable ROM  
S/PDIF-compatible digital audio receiver/transmitter  
4 independent asynchronous sample rate converters (SRC)  
16 PWM outputs configured as four groups of four outputs  
ROM-based security features include  
JTAG access to memory permitted with a 64-bit key  
Protected memory regions that can be assigned to limit  
Code compatible with all other members of the SHARC family  
The ADSP-21367/ADSP-21368/ADSP-21369 are available  
with a 400 MHz core instruction rate with unique audiocen-  
tric peripherals such as the digital applications interface,  
S/PDIF transceiver, serial ports, 8-channel asynchronous  
sample rate converter, precision clock generators, and  
more. For complete ordering information, see Ordering  
Guide.  
access under program control to sensitive code  
PLL has a wide variety of software and hardware multi-  
plier/divider ratios  
Available in 256-ball BGA_ED and 208-lead LQFP_EP  
packages  
Internal Memory  
SIMD Core  
Block 0  
RAM/ROM  
Block 1  
RAM/ROM  
Block 2  
RAM  
Block 3  
RAM  
Instruction  
Cache  
5 stage  
Sequencer  
B2D  
64-BIT  
B0D  
64-BIT  
B3D  
64-BIT  
B1D  
64-BIT  
S
DAG1/2  
PEx  
Timer  
PEy  
DMD  
64-BIT  
DMD 64-BIT  
Core Bus  
Cross Bar  
Internal Memory I/F  
PMD 64-BIT  
PMD  
64-BIT  
IOD0 32-BIT  
FLAGx/IRQx/  
TMREXP  
EPD BUS 32-BIT  
JTAG  
PERIPHERAL BUS  
32-BIT  
IOD1  
32-BIT  
IOD0 BUS  
MTM  
PERIPHERAL BUS  
EP  
IDP/  
PDAP  
7-0  
S/PDIF PCG ASRC  
SPORT  
7-0  
CORE PCG  
FLAGS  
TIMER  
UART  
CORE PWM  
TWI  
SPI/B  
AMI  
SDRAM  
Tx/Rx  
A
-D  
3
-
0
C
-
D
2
-0  
1-  
0
FLAGS  
3-0  
DPI Routing/Pins  
DAI Routing/Pins  
External Port Pin MUX  
External  
Port  
DPI Peripherals  
DAI Peripherals  
Peripherals  
Figure 1. Functional Block Diagram  
SHARC and the SHARC logo are registered trademarks of Analog Devices, Inc.  
Rev. G Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2017 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
ADSP-21367/ADSP-21368/ADSP-21369  
TABLE OF CONTENTS  
General Description ................................................. 3  
SHARC Family Core Architecture ............................ 4  
Family Peripheral Architecture ................................ 7  
I/O Processor Features ......................................... 10  
System Design .................................................... 10  
Development Tools ............................................. 11  
Additional Information ........................................ 12  
Related Signal Chains .......................................... 12  
Pin Function Descriptions ....................................... 13  
Specifications ........................................................ 16  
Operating Conditions .......................................... 16  
Electrical Characteristics ....................................... 17  
Package Information ........................................... 18  
ESD Caution ...................................................... 18  
Maximum Power Dissipation ................................. 18  
Absolute Maximum Ratings ................................... 18  
Timing Specifications ........................................... 18  
Output Drive Currents ......................................... 51  
Test Conditions .................................................. 51  
Capacitive Loading .............................................. 51  
Thermal Characteristics ........................................ 53  
256-Ball BGA_ED Pinout ......................................... 54  
208-Lead LQFP_EP Pinout ....................................... 57  
Package Dimensions ............................................... 59  
Surface-Mount Design .......................................... 60  
Automotive Products .............................................. 61  
Ordering Guide ..................................................... 61  
REVISION HISTORY  
9/2017—Rev. F to Rev. G  
Changes to Middleware Packages ................................ 12  
Change to SDCLK1 Pin Description, Table 8 in Pin Function  
Descriptions .......................................................... 13  
Changes to Table 24, Memory Read ............................. 30  
Change to Endnote 1, Table 45 in  
256-Ball BGA_ED Pinout ......................................... 54  
Changes to Figure 52, Package Dimensions ................... 59  
Change to Table 47, Surface-Mount Design ................... 60  
Changes to Ordering Guide ....................................... 61  
Rev. G  
|
Page 2 of 62  
|
September 2017  
ADSP-21367/ADSP-21368/ADSP-21369  
GENERAL DESCRIPTION  
The ADSP-21367/ADSP-21368/ADSP-21369 SHARC® proces-  
sors are members of the SIMD SHARC family of DSPs that  
feature Analog Devices’ Super Harvard Architecture. These pro-  
cessors are source code-compatible with the ADSP-2126x and  
ADSP-2116x DSPs as well as with first generation ADSP-2106x  
SHARC processors in SISD (single-instruction, single-data)  
mode. The processors are 32-bit/40-bit floating-point proces-  
sors optimized for high performance automotive audio  
applications with its large on-chip SRAM, mask programmable  
ROM, multiple internal buses to eliminate I/O bottlenecks, and  
an innovative digital applications interface (DAI).  
Table 2. ADSP-2136x Family Features1 (Continued)  
Feature  
Serial Ports  
8
IDP  
Yes  
DAI  
Yes  
As shown in the functional block diagram on Page 1, the  
processors use two computational units to deliver a significant  
performance increase over the previous SHARC processors on a  
range of DSP algorithms. Fabricated in a state-of-the-art, high  
speed, CMOS process, the ADSP-21367/ADSP-21368/  
ADSP-21369 processors achieve an instruction cycle time of up  
to 2.5 ns at 400 MHz. With its SIMD computational hardware,  
the processors can perform 2.4 GFLOPS running at 400 MHz.  
UART  
2
DAI  
Yes  
DPI  
Yes  
S/PDIF Transceiver  
AMI Interface Bus Width  
SPI  
1
32/16/8 bits  
Table 1 shows performance benchmarks for these devices.  
2
TWI  
Yes  
128 dB  
Table 1. Processor Benchmarks (at 400 MHz)  
SRC Performance  
Package  
Speed  
(at 400 MHz)  
256 Ball- 256 Ball- 256 Ball-  
Benchmark Algorithm  
1024 Point Complex FFT (Radix 4, with reversal) 23.2 s  
FIR Filter (per tap)1  
IIR Filter (per biquad)1  
Matrix Multiply (pipelined)  
[3×3] × [3×1]  
BGA,  
208-Lead  
LQFP_EP  
BGA  
BGA,  
208-Lead  
LQFP_EP  
1.25 ns  
5.0 ns  
1 W = Automotive grade product. See Automotive Products for more information.  
2 Audio decoding algorithms include PCM, Dolby Digital EX, Dolby Prologic IIx,  
DTS 96/24, Neo:6, DTS ES, MPEG-2 AAC, MP3, and functions like bass  
management, delay, speaker equalization, graphic equalization, and more.  
Decoder/post-processoralgorithmcombinationsupportvariesdependingupon  
the chip version and the system configurations. Please visit www.analog.com for  
complete information.  
11.25 ns  
20.0 ns  
8.75 ns  
13.5 ns  
[4×4] × [4×1]  
Divide (y/x)  
Inverse Square Root  
1 Assumes two files in multichannel SIMD mode.  
The diagram on Page 1 shows the two clock domains that make  
up the ADSP-21367/ADSP-21368/ADSP-21369 processors. The  
core clock domain contains the following features.  
Table 2. ADSP-2136x Family Features1  
• Two processing elements (PEx, PEy), each of which com-  
prises an ALU, multiplier, shifter, and data register file  
• Data address generators (DAG1, DAG2)  
• Program sequencer with instruction cache  
• PM and DM buses capable of supporting 2x64-bit data  
transfers between memory and the core at every core pro-  
cessor cycle  
• One periodic interval timer with pinout  
• On-chip SRAM (2M bit)  
Feature  
Frequency  
400 MHz  
RAM  
ROM2  
2M bits  
6M bits  
Yes  
Audio Decoders in ROM  
Pulse-Width Modulation  
S/PDIF  
• On-chip mask-programmable ROM (6M bit)  
Yes  
• JTAG test access port for emulation and boundary scan.  
The JTAG provides software debug through user break-  
points which allows flexible exception handling.  
Yes  
SDRAM Memory Bus Width  
32/16 bits  
Rev. G  
|
Page 3 of 62  
|
September 2017  
 
ADSP-21367/ADSP-21368/ADSP-21369  
The block diagram of the ADSP-21368 on Page 1 also shows the  
peripheral clock domain (also known as the I/O processor) and  
contains the following features:  
• IOD0 (peripheral DMA) and IOD1 (external port DMA)  
buses for 32-bit data transfers  
• Peripheral and external port buses for core connection  
• External port with an AMI and SDRAM controller  
• 4 units for PWM control  
• Digital peripheral interface that includes three timers, a 2-  
wire interface, two UARTs, two serial peripheral interfaces  
(SPI), 2 precision clock generators (PCG) and a flexible sig-  
nal routing unit (DPI SRU).  
SHARC FAMILY CORE ARCHITECTURE  
The ADSP-21367/ADSP-21368/ADSP-21369 are code compati-  
ble at the assembly level with the ADSP-2126x, ADSP-21160,  
and ADSP-21161, and with the first generation ADSP-2106x  
SHARC processors. The ADSP-21367/ADSP-21368/  
ADSP-21369 processors share architectural features with the  
ADSP-2126x and ADSP-2116x SIMD SHARC processors, as  
shown in Figure 2 and detailed in the following sections.  
• 1 MTM unit for internal-to-internal memory transfers  
• Digital applications interface that includes four precision  
clock generators (PCG), a input data port (IDP) for serial  
and parallel interconnect, an S/PDIF receiver/transmitter,  
four asynchronous sample rate converters, eight serial  
ports, a flexible signal routing unit (DAI SRU).  
S
SIMD Core  
JTAG  
FLAG TIMER INTERRUPT CACHE  
PM ADDRESS 24  
DMD/PMD 64  
5 STAGE  
PROGRAM SEQUENCER  
PM DATA 48  
DAG2  
16x32  
DAG1  
16x32  
PM ADDRESS 32  
SYSTEM  
I/F  
DM ADDRESS 32  
PM DATA 64  
USTAT  
4x32-BIT  
PX  
64-BIT  
DM DATA 64  
DATA  
SWAP  
RF  
Rx/Fx  
PEx  
RF  
Sx/SFx  
PEy  
ALU  
SHIFTER  
MULTIPLIER  
ALU  
SHIFTER MULTIPLIER  
16x40-BIT  
16x40-BIT  
MRB  
80-BIT  
MSB  
80-BIT  
MRF  
80-BIT  
MSF  
80-BIT  
ASTATy  
STYKy  
ASTATx  
STYKx  
Figure 2. SHARC Core Block Diagram  
Rev. G  
|
Page 4 of 62  
|
September 2017  
 
ADSP-21367/ADSP-21368/ADSP-21369  
The data bus exchange register (PX) permits data to be passed  
between the 64-bit PM data bus and the 64-bit DM data bus, or  
SIMD Computational Engine  
The processors contain two computational processing elements  
that operate as a single-instruction, multiple-data (SIMD)  
engine. The processing elements are referred to as PEX and PEY  
and each contains an ALU, multiplier, shifter, and register file.  
PEX is always active, and PEY may be enabled by setting the  
PEYEN mode bit in the MODE1 register. When this mode is  
enabled, the same instruction is executed in both processing ele-  
ments, but each processing element operates on different data.  
This architecture is efficient at executing math intensive DSP  
algorithms.  
Entering SIMD mode also has an effect on the way data is trans-  
ferred between memory and the processing elements. When in  
SIMD mode, twice the data bandwidth is required to sustain  
computational operation in the processing elements. Because of  
this requirement, entering SIMD mode also doubles the band-  
width between memory and the processing elements. When  
using the DAGs to transfer data in SIMD mode, two data values  
are transferred with each access of memory or the register file.  
between the 40-bit register file and the PM data bus. These reg-  
isters contain hardware to handle the data width difference.  
Timer  
A core timer that can generate periodic software Interrupts. The  
core timer can be configured to use FLAG3 as a timer expired  
signal.  
Single-Cycle Fetch of Instruction and Four Operands  
The ADSP-21367/ADSP-21368/ADSP-21369 feature an  
enhanced Harvard architecture in which the data memory  
(DM) bus transfers data and the program memory (PM) bus  
transfers both instructions and data (see Figure 2). With sepa-  
rate program and data memory buses and on-chip instruction  
cache, the processors can simultaneously fetch four operands  
(two over each data bus) and one instruction (from the cache),  
all in a single cycle.  
Instruction Cache  
Independent, Parallel Computation Units  
The processors include an on-chip instruction cache that  
enables three-bus operation for fetching an instruction and four  
data values. The cache is selective—only the instructions whose  
fetches conflict with PM bus data accesses are cached. This  
cache allows full-speed execution of core, looped operations  
such as digital filter multiply-accumulates, and FFT butterfly  
processing.  
Within each processing element is a set of computational units.  
The computational units consist of an arithmetic/logic unit  
(ALU), multiplier, and shifter. These units perform all opera-  
tions in a single cycle. The three units within each processing  
element are arranged in parallel, maximizing computational  
throughput. Single multifunction instructions execute parallel  
ALU and multiplier operations. In SIMD mode, the parallel  
ALU and multiplier operations occur in both processing  
elements. These computation units support IEEE 32-bit single-  
precision floating-point, 40-bit extended precision floating-  
point, and 32-bit fixed-point data formats.  
Data Address Generators with Zero-Overhead Hardware  
Circular Buffer Support  
The ADSP-21367/ADSP-21368/ADSP-21369 have two data  
address generators (DAGs). The DAGs are used for indirect  
addressing and implementing circular data buffers in hardware.  
Circular buffers allow efficient programming of delay lines and  
other data structures required in digital signal processing, and  
are commonly used in digital filters and Fourier transforms.  
The two DAGs contain sufficient registers to allow the creation  
of up to 32 circular buffers (16 primary register sets, 16 second-  
ary). The DAGs automatically handle address pointer  
wraparound, reduce overhead, increase performance, and sim-  
plify implementation. Circular buffers can start and end at any  
memory location.  
Data Register File  
A general-purpose data register file is contained in each pro-  
cessing element. The register files transfer data between the  
computation units and the data buses, and store intermediate  
results. These 10-port, 32-register (16 primary, 16 secondary)  
register files, combined with the ADSP-2136x enhanced Har-  
vard architecture, allow unconstrained data flow between  
computation units and internal memory. The registers in PEX  
are referred to as R0–R15 and in PEY as S0–S15.  
Context Switch  
Flexible Instruction Set  
Many of the processor’s registers have secondary registers that  
can be activated during interrupt servicing for a fast context  
switch. The data registers in the register file, the DAG registers,  
and the multiplier result registers all have secondary registers.  
The primary registers are active at reset, while the secondary  
registers are activated by control bits in a mode control register.  
The 48-bit instruction word accommodates a variety of parallel  
operations for concise programming. For example, the  
ADSP-21367/ADSP-21368/ADSP-21369 can conditionally exe-  
cute a multiply, an add, and a subtract in both processing  
elements while branching and fetching up to four 32-bit values  
from memory—all in a single instruction.  
Universal Registers  
On-Chip Memory  
These registers can be used for general-purpose tasks. The  
USTAT (4) registers allow easy bit manipulations (Set, Clear,  
Toggle, Test, XOR) for all system registers (control/status) of  
the core.  
The processors contain two megabits of internal RAM and six  
megabits of internal mask-programmable ROM. Each block can  
be configured for different combinations of code and data stor-  
age (see Table 3). Each memory block supports single-cycle,  
independent accesses by the core processor and I/O processor.  
Rev. G  
|
Page 5 of 62  
|
September 2017  
ADSP-21367/ADSP-21368/ADSP-21369  
The memory architecture, in combination with its separate on-  
chip buses, allows two data transfers from the core and one  
from the I/O processor, in a single cycle.  
Table 3. Internal Memory Space 1  
IOP Registers 0x0000 0000–0x0003 FFFF  
Extended Precision Normal or  
Long Word (64 Bits)  
Instruction Word (48 Bits)  
Normal Word (32 Bits)  
Short Word (16 Bits)  
Block 0 ROM (Reserved)  
Block 0 ROM (Reserved)  
Block 0 ROM (Reserved)  
Block 0 ROM (Reserved)  
0x0004 0000–0x0004 BFFF  
0x0008 0000–0x0008 FFFF  
0x0008 0000–0x0009 7FFF  
0x0010 0000–0x0012 FFFF  
Reserved  
Reserved  
Reserved  
Reserved  
0x0004 F000–0x0004 FFFF  
0x0009 4000–0x0009 FFFF  
0x0009 E000–0x0009 FFFF  
0x0013 C000–0x0013 FFFF  
Block 0 SRAM  
Block 0 SRAM  
Block 0 SRAM  
Block 0 SRAM  
0x0004 C000–0x0004 EFFF  
0x0009 0000–0x0009 3FFF  
0x0009 8000–0x0009 DFFF  
0x0013 0000–0x0013 BFFF  
Block 1 ROM (Reserved)  
Block 1 ROM (Reserved)  
Block 1 ROM (Reserved)  
Block 1 ROM (Reserved)  
0x0005 0000–0x0005 BFFF  
0x000A 0000–0x000A FFFF  
0x000A 0000–0x000B 7FFF  
0x0014 0000–0x0016 FFFF  
Reserved  
Reserved  
Reserved  
Reserved  
0x0005 F000–0x0005 FFFF  
0x000B 4000–0x000B FFFF  
0x000B E000–0x000B FFFF  
0x0017 C000–0x0017 FFFF  
Block 1 SRAM  
Block 1 SRAM  
Block 1 SRAM  
Block 1 SRAM  
0x0005 C000–0x0005 EFFF  
0x000B 0000–0x000B 3FFF  
0x000B 8000–0x000B DFFF  
0x0017 0000–0x0017 BFFF  
Block 2 SRAM  
Block 2 SRAM  
Block 2 SRAM  
Block 2 SRAM  
0x0006 0000–0x0006 0FFF  
0x000C 0000–0x000C 1554  
0x000C 0000–0x000C 1FFF  
0x0018 0000–0x0018 3FFF  
Reserved  
Reserved  
Reserved  
Reserved  
0x0006 1000– 0x0006 FFFF  
0x000C 1555–0x000C 3FFF  
0x000C 2000–0x000D FFFF  
0x0018 4000–0x001B FFFF  
Block 3 SRAM  
Block 3 SRAM  
Block 3 SRAM  
Block 3 SRAM  
0x0007 0000–0x0007 0FFF  
0x000E 0000–0x000E 1554  
0x000E 0000–0x000E 1FFF  
0x001C 0000–0x001C 3FFF  
Reserved  
Reserved  
Reserved  
Reserved  
0x0007 1000–0x0007 FFFF  
0x000E 1555–0x000F FFFF  
0x000E 2000–0x000F FFFF  
0x001C 4000–0x001F FFFF  
1 The ADSP-21368 and ADSP-21369 processors include a customer-definable ROM block. Please contact your Analog Devices sales representative for additional details.  
The SRAM can be configured as a maximum of 64k words of  
32-bit data, 128k words of 16-bit data, 42k words of 48-bit  
instructions (or 40-bit data), or combinations of different word  
sizes up to two megabits. All of the memory can be accessed as  
16-bit, 32-bit, 48-bit, or 64-bit words. A 16-bit floating-point  
storage format is supported that effectively doubles the amount  
of data that can be stored on-chip. Conversion between the  
32-bit floating-point and 16-bit floating-point formats is per-  
formed in a single instruction. While each memory block can  
store combinations of code and data, accesses are most efficient  
when one block stores data using the DM bus for transfers, and  
the other block stores instructions and data using the PM bus  
for transfers.  
On-Chip Memory Bandwidth  
The internal memory architecture allows programs to have four  
accesses at the same time to any of the four blocks (assuming  
there are no block conflicts). The total bandwidth is realized  
using the DMD and PMD buses (2x64-bits, core CLK) and the  
IOD0/1 buses (2x32-bit, PCLK).  
ROM-Based Security  
The ADSP-21367/ADSP-21368/ADSP-21369 have a ROM secu-  
rity feature that provides hardware support for securing user  
software code by preventing unauthorized reading from the  
internal code when enabled. When using this feature, the pro-  
cessor does not boot-load any external code, executing  
exclusively from internal ROM. Additionally, the processor is  
not freely accessible via the JTAG port. Instead, a unique 64-bit  
key, which must be scanned in through the JTAG or test access  
port will be assigned to each customer. The device will ignore a  
wrong key. Emulation features and external boot modes are  
only available after the correct key is scanned.  
Using the DM bus and PM buses, with one bus dedicated to  
each memory block, assures single-cycle execution with two  
data transfers. In this case, the instruction must be available in  
the cache.  
Rev. G  
|
Page 6 of 62  
|
September 2017  
ADSP-21367/ADSP-21368/ADSP-21369  
Table 4. External Memory for SDRAM Addresses  
FAMILY PERIPHERAL ARCHITECTURE  
The ADSP-21367/ADSP-21368/ADSP-21369 family contains a  
rich set of peripherals that support a wide variety of applications  
including high quality audio, medical imaging, communica-  
tions, military, test equipment, 3D graphics, speech recognition,  
motor control, imaging, and other applications.  
Size in  
Words  
Bank  
Address Range  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
62M  
64M  
64M  
64M  
0x0020 0000–0x03FF FFFF  
0x0400 0000–0x07FF FFFF  
0x0800 0000–0x0BFF FFFF  
0x0C00 0000–0x0FFF FFFF  
External Port  
The external port interface supports access to the external mem-  
ory through core and DMA accesses. The external memory  
address space is divided into four banks. Any bank can be pro-  
grammed as either asynchronous or synchronous memory. The  
external ports of the ADSP-21367/8/9 processors are comprised  
of the following modules.  
• An Asynchronous Memory Interface which communicates  
with SRAM, FLASH, and other devices that meet the stan-  
dard asynchronous SRAM access protocol. The AMI  
supports 14M words of external memory in bank 0 and  
16M words of external memory in bank 1, bank 2, and  
bank 3.  
• An SDRAM controller that supports a glueless interface  
with any of the standard SDRAMs. The SDC supports 62M  
words of external memory in bank 0, and 64M words of  
external memory in bank 1, bank 2, and bank 3.  
• Arbitration Logic to coordinate core and DMA transfers  
between internal and external memory over the external  
port.  
for connection of industry-standard synchronous DRAM  
devices and DIMMs (dual inline memory module), while the  
second is an asynchronous memory controller intended to  
interface to a variety of memory devices. Four memory select  
pins enable up to four separate devices to coexist, supporting  
any desired combination of synchronous and asynchronous  
device types. Non-SDRAM external memory address space is  
shown in Table 5.  
Table 5. External Memory for Non-SDRAM Addresses  
Size in  
Words  
Bank  
Address Range  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
14M  
0x0020 0000–0x00FF FFFF  
0x0400 0000–0x04FF FFFF  
0x0800 0000–0x08FF FFFF  
0x0C00 0000–0x0CFF FFFF  
16M  
16M  
• A Shared Memory Interface that allows the connection of  
up to four ADSP-21368 processors to create shared exter-  
nal bus systems (ADSP-21368 only).  
16M  
Shared External Memory  
SDRAM Controller  
The ADSP-21368 processor supports connecting to common  
shared external memory with other ADSP-21368 processors to  
create shared external bus processor systems. This support  
includes:  
• Distributed, on-chip arbitration for the shared external bus  
• Fixed and rotating priority bus arbitration  
• Bus time-out logic  
The SDRAM controller provides an interface of up to four sepa-  
rate banks of industry-standard SDRAM devices or DIMMs, at  
speeds up to fSCLK. Fully compliant with the SDRAM standard,  
each bank has its own memory select line (MS0–MS3), and can  
be configured to contain between 16M bytes and 128M bytes of  
memory. SDRAM external memory address space is shown in  
Table 4.  
A set of programmable timing parameters is available to config-  
ure the SDRAM banks to support slower memory devices. The  
memory banks can be configured as either 32 bits wide for max-  
imum performance and bandwidth or 16 bits wide for  
minimum device count and lower system cost.  
The SDRAM controller address, data, clock, and control pins  
can drive loads up to distributed 30 pF loads. For larger memory  
systems, the SDRAM controller external buffer timing should  
be selected and external buffering should be provided so that the  
load on the SDRAM controller pins does not exceed 30 pF.  
• Bus lock  
Multiple processors can share the external bus with no addi-  
tional arbitration logic. Arbitration logic is included on-chip to  
allow the connection of up to four processors.  
Bus arbitration is accomplished through the BR1–4 signals and  
the priority scheme for bus arbitration is determined by the set-  
ting of the RPBA pin. Table 8 provides descriptions of the pins  
used in multiprocessor systems.  
External Port Throughput  
The throughput for the external port, based on 166 MHz clock  
and 32-bit data bus, is 221M bytes/s for the AMI and 664M  
bytes/s for SDRAM.  
External Memory  
The external port provides a high performance, glueless inter-  
face to a wide variety of industry-standard memory devices. The  
32-bit wide bus can be used to interface to synchronous and/or  
asynchronous memory devices through the use of its separate  
internal memory controllers. The first is an SDRAM controller  
Rev. G  
|
Page 7 of 62  
|
September 2017  
 
 
ADSP-21367/ADSP-21368/ADSP-21369  
processor core, configurable as either eight channels of I2S serial  
Asynchronous Memory Controller  
data or as seven channels plus a single 20-bit wide synchronous  
parallel data acquisition port. Each data channel has its own  
DMA channel that is independent from the processor’s serial  
ports.  
For complete information on using the DAI, see the  
ADSP-21368 SHARC Processor Hardware Reference.  
The asynchronous memory controller provides a configurable  
interface for up to four separate banks of memory or I/O  
devices. Each bank can be independently programmed with dif-  
ferent timing parameters, enabling connection to a wide variety  
of memory devices including SRAM, ROM, flash, and EPROM,  
as well as I/O devices that interface with standard memory  
control lines. Bank 0 occupies a 14M word window and Banks 1,  
2, and 3 occupy a 16M word window in the processor’s address  
space but, if not fully populated, these windows are not made  
contiguous by the memory controller logic. The banks can also  
be configured as 8-bit, 16-bit, or 32-bit wide buses for ease of  
interfacing to a range of memories and I/O devices tailored  
either to high performance or to low cost and power.  
Serial Ports  
The processors feature eight synchronous serial ports (SPORTs)  
that provide an inexpensive interface to a wide variety of digital  
and mixed-signal peripheral devices such as Analog Devices’  
AD183x family of audio codecs, ADCs, and DACs. The serial  
ports are made up of two data lines, a clock, and frame sync. The  
data lines can be programmed to either transmit or receive and  
each data line has a dedicated DMA channel.  
Pulse-Width Modulation  
Serial ports are enabled via 16 programmable and simultaneous  
receive or transmit pins that support up to 32 transmit or 32  
receive channels of audio data when all eight SPORTs are  
enabled, or eight full duplex TDM streams of 128 channels  
per frame.  
The serial ports operate at a maximum data rate of 50 Mbps.  
Serial port data can be automatically transferred to and from  
on-chip memory via dedicated DMA channels. Each of the  
serial ports can work in conjunction with another serial port to  
provide TDM support. One SPORT provides two transmit sig-  
nals while the other SPORT provides the two receive signals.  
The frame sync and clock are shared.  
Serial ports operate in five modes:  
• Standard DSP serial mode  
• Multichannel (TDM) mode with support for packed I2S  
mode  
• I2S mode  
• Packed I2S mode  
• Left-justified sample pair mode  
The PWM module is a flexible, programmable, PWM waveform  
generator that can be programmed to generate the required  
switching patterns for various applications related to motor and  
engine control or audio power control. The PWM generator can  
generate either center-aligned or edge-aligned PWM wave-  
forms. In addition, it can generate complementary signals on  
two outputs in paired mode or independent signals in non-  
paired mode (applicable to a single group of four PWM  
waveforms).  
The entire PWM module has four groups of four PWM outputs  
each. Therefore, this module generates 16 PWM outputs in  
total. Each PWM group produces two pairs of PWM signals on  
the four PWM outputs.  
The PWM generator is capable of operating in two distinct  
modes while generating center-aligned PWM waveforms: single  
update mode or double update mode. In single update mode,  
the duty cycle values are programmable only once per PWM  
period. This results in PWM patterns that are symmetrical  
about the midpoint of the PWM period. In double update  
mode, a second updating of the PWM registers is implemented  
at the midpoint of the PWM period. In this mode, it is possible  
to produce asymmetrical PWM patterns that produce lower  
harmonic distortion in 2-phase PWM inverters.  
Left-justified sample pair mode is a mode where in each frame  
sync cycle two samples of data are transmitted/received—one  
sample on the high segment of the frame sync, the other on the  
low segment of the frame sync. Programs have control over var-  
ious attributes of this mode.  
Digital Applications Interface (DAI)  
The digital applications interface (DAI ) provide the ability to  
connect various peripherals to any of the DSP’s DAI pins  
(DAI_P20–1). Programs make these connections using the sig-  
nal routing unit (SRU1), shown in Figure 1.  
The SRU is amatrix routing unit (or group of multiplexers) that  
enable the peripherals provided by the DAI to be intercon-  
nected under software control. This allows easy use of the  
associated peripherals for a much wider variety of applications  
by using a larger set of algorithms than is possible with noncon-  
figurable signal paths.  
Each of the serial ports supports the left-justified sample pair  
and I2S protocols (I2S is an industry-standard interface com-  
monly used by audio codecs, ADCs, and DACs such as the  
Analog Devices AD183x family), with two data pins, allowing  
four left-justified sample pair or I2S channels (using two stereo  
devices) per serial port, with a maximum of up to 32 I2S chan-  
nels. The serial ports permit little-endian or big-endian  
transmission formats and word lengths selectable from 3 bits to  
32 bits. For the left-justified sample pair and I2S modes, data-  
word lengths are selectable between 8 bits and 32 bits. Serial  
ports offer selectable synchronization and transmit modes as  
well as optional -law or A-law companding selection on a per  
channel basis. Serial port clocks and frame syncs can be inter-  
nally or externally generated.  
The DAI include eight serial ports, an S/PDIF receiver/trans-  
mitter, four precision clock generators (PCG), eight channels of  
synchronous sample rate converters, and an input data port  
(IDP). The IDP provides an additional input path to the  
Rev. G  
|
Page 8 of 62  
|
September 2017  
ADSP-21367/ADSP-21368/ADSP-21369  
The serial ports also contain frame sync error detection logic  
where the serial ports detect frame syncs that arrive early (for  
Serial Peripheral (Compatible) Interface  
The processors contain two serial peripheral interface ports  
example, frame syncs that arrive while the transmission/recep-  
tion of the previous word is occurring). All the serial ports also  
share one dedicated error interrupt.  
(SPIs). The SPI is an industry-standard synchronous serial link,  
enabling the SPI-compatible port to communicate with other  
SPI-compatible devices. The SPI consists of two data pins, one  
device select pin, and one clock pin. It is a full-duplex  
synchronous serial interface, supporting both master and slave  
modes. The SPI port can operate in a multimaster environment  
by interfacing with up to four other SPI-compatible devices,  
either acting as a master or slave device. The ADSP-21367/  
ADSP-21368/ADSP-21369 SPI-compatible peripheral imple-  
mentation also features programmable baud rate and clock  
phase and polarities. The SPI-compatible port uses open-drain  
drivers to support a multimaster configuration and to avoid  
data contention.  
S/PDIF-Compatible Digital Audio Receiver/Transmitter  
The S/PDIF receiver/transmitter has no separate DMA chan-  
nels. It receives audio data in serial format and converts it into a  
biphase encoded signal. The serial data input to the  
receiver/transmitter can be formatted as left-justified, I2S, or  
right-justified with word widths of 16, 18, 20, or 24 bits.  
The serial data, clock, and frame sync inputs to the S/PDIF  
receiver/transmitter are routed through the signal routing unit  
(SRU). They can come from a variety of sources such as the  
SPORTs, external pins, the precision clock generators (PCGs),  
or the sample rate converters (SRC) and are controlled by the  
SRU control registers.  
UART Port  
The processors provide a full-duplex universal asynchronous  
receiver/transmitter (UART) port, which is fully compatible  
with PC-standard UARTs. The UART port provides a simpli-  
fied UART interface to other peripherals or hosts, supporting  
full-duplex, DMA-supported, asynchronous transfers of serial  
data. The UART also has multiprocessor communication capa-  
bility using 9-bit address detection. This allows it to be used in  
multidrop networks through the RS-485 data interface  
standard. The UART port also includes support for five data bits  
to eight data bits, one stop bit or two stop bits, and none, even,  
or odd parity. The UART port supports two modes of  
operation:  
Synchronous/Asynchronous Sample Rate Converter  
The sample rate converter (SRC) contains four SRC blocks and  
is the same core as that used in the AD1896 192 kHz stereo  
asynchronous sample rate converter and provides up to 128 dB  
SNR. The SRC block is used to perform synchronous or asyn-  
chronous sample rate conversion across independent stereo  
channels, without using internal processor resources. The four  
SRC blocks can also be configured to operate together to con-  
vert multichannel audio data without phase mismatches.  
Finally, the SRC can be used to clean up audio data from jittery  
clock sources such as the S/PDIF receiver.  
• PIO (programmed I/O) – The processor sends or receives  
data by writing or reading I/O-mapped UART registers.  
The data is double-buffered on both transmit and receive.  
Input Data Port  
The IDP provides up to eight serial input channels—each with  
its own clock, frame sync, and data inputs. The eight channels  
are automatically multiplexed into a single 32-bit by eight-deep  
FIFO. Data is always formatted as a 64-bit frame and divided  
into two 32-bit words. The serial protocol is designed to receive  
audio channels in I2S, left-justified sample pair, or right-justi-  
fied mode. One frame sync cycle indicates one 64-bit left/right  
pair, but data is sent to the FIFO as 32-bit words (that is, one-  
half of a frame at a time). The processor supports 24- and 32-bit  
I2S, 24- and 32-bit left-justified, and 24-, 20-, 18- and 16-bit  
right-justified formats.  
• DMA (direct memory access) – The DMA controller trans-  
fers both transmit and receive data. This reduces the  
number and frequency of interrupts required to transfer  
data to and from memory. The UART has two dedicated  
DMA channels, one for transmit and one for receive. These  
DMA channels have lower default priority than most DMA  
channels because of their relatively low service rates.  
The UART port’s baud rate, serial data format, error code gen-  
eration and status, and interrupts are programmable:  
• Supporting bit rates ranging from (fSCLK/1,048,576) to  
(fSCLK/16) bits per second.  
Precision Clock Generators  
• Supporting data formats from 7 bits to 12 bits per frame.  
• Both transmit and receive operations can be configured to  
generate maskable interrupts to the processor.  
Where the 16-bit UART_Divisor comes from the DLH register  
(most significant eight bits) and DLL register (least significant  
eight bits).  
The precision clock generators (PCG) consist of four units, each  
of which generates a pair of signals (clock and frame sync)  
derived from a clock input signal. The units, A B, C, and D, are  
identical in functionality and operate independently of each  
other. The two signals generated by each unit are normally used  
as a serial bit clock/frame sync pair.  
Digital Peripheral Interface (DPI)  
In conjunction with the general-purpose timer functions, auto-  
baud detection is supported.  
The digital peripheral interface provides connections to two  
serial peripheral interface ports (SPI), two universal asynchro-  
nous receiver-transmitters (UARTs), a 2-wire interface (TWI),  
12 flags, and three general-purpose timers.  
Rev. G  
|
Page 9 of 62  
|
September 2017  
ADSP-21367/ADSP-21368/ADSP-21369  
Peripheral Timers  
Delay Line DMA  
Three general-purpose timers can generate periodic interrupts  
and be independently set to operate in one of three modes:  
• Pulse waveform generation mode  
• Pulse width count/capture mode  
• External event watchdog mode  
The ADSP-21367/ADSP-21368/ADSP-21369 processors pro-  
vide delay line DMA functionality. This allows processor reads  
and writes to external delay line buffers (in external memory,  
SRAM, or SDRAM) with limited core interaction.  
SYSTEM DESIGN  
The following sections provide an introduction to system design  
options and power supply issues.  
Each general-purpose timer has one bidirectional pin and four  
registers that implement its mode of operation: a 6-bit configu-  
ration register, a 32-bit count register, a 32-bit period register,  
and a 32-bit pulse width register. A single control and status  
register enables or disables all three general-purpose timers  
independently.  
Program Booting  
The internal memory of the processors can be booted up at sys-  
tem power-up from an 8-bit EPROM via the external port, an  
SPI master or slave, or an internal boot. Booting is determined  
by the boot configuration (BOOT_CFG1–0) pins (see Table 7  
and the processor hardware reference). Selection of the boot  
source is controlled via the SPI as either a master or slave device,  
or it can immediately begin executing from ROM.  
2-Wire Interface Port (TWI)  
The TWI is a bidirectional 2-wire serial bus used to move 8-bit  
data while maintaining compliance with the I2C bus protocol.  
The TWI master incorporates the following features:  
• Simultaneous master and slave operation on multiple  
device systems with support for multimaster data  
arbitration  
• Digital filtering and timed event processing  
• 7-bit and 10-bit addressing  
• 100 kbps and 400 kbps data rates  
• Low interrupt rate  
Table 7. Boot Mode Selection  
BOOT_CFG1–0  
Booting Mode  
SPI Slave Boot  
00  
01  
10  
11  
SPI Master Boot  
EPROM/FLASH Boot  
No boot (processor executes from  
internal ROM after reset)  
I/O PROCESSOR FEATURES  
Power Supplies  
The I/O processor provides many channels of DMA, and con-  
trols the extensive set of peripherals described in the previous  
sections.  
The processors have separate power supply connections for the  
internal (VDDINT), external (VDDEXT), and analog (AVDD/AVSS) power  
supplies. The internal and analog supplies must meet the 1.3 V  
requirement for the 400 MHz device and 1.2 V for the  
333 MHz and 266 MHz devices. The external supply must meet  
the 3.3 V requirement. All external supply pins must be con-  
nected to the same power supply.  
DMA Controller  
The processor’s on-chip DMA controller allows data transfers  
without processor intervention. The DMA controller operates  
independently and invisibly to the processor core, allowing  
DMA operations to occur while the core is simultaneously exe-  
cuting its program instructions. DMA transfers can occur  
between the processor’s internal memory and its serial ports, the  
SPI-compatible (serial peripheral interface) ports, the IDP  
(input data port), the parallel data acquisition port (PDAP), or  
the UART.  
Note that the analog supply pin (AVDD) powers the processor’s  
internal clock generator PLL. To produce a stable clock, it is rec-  
ommended that PCB designs use an external filter circuit for the  
A
VDD pin. Place the filter components as close as possible to the  
VDD/AVSS pins. For an example circuit, see Figure 3. (A recom-  
A
mended ferrite chip is the muRata BLM18AG102SN1D). To  
reduce noise coupling, the PCB should use a parallel pair of  
power and ground planes for VDDINT and GND. Use wide traces  
to connect the bypass capacitors to the analog power (AVDD) and  
ground (AVSS) pins. Note that the AVDD and AVSS pins specified in  
Figure 3 are inputs to the processor and not the analog ground  
plane on the board—the AVSS pin should connect directly to dig-  
ital ground (GND) at the chip.  
Thirty four channels of DMA are available on the ADSP-2136x  
processors as shown in Table 6.  
Table 6. DMA Channels  
Peripheral  
SPORTs  
DMA Channels  
16  
8
PDAP  
SPI  
2
UART  
4
External Port  
Memory-to-Memory  
2
2
Rev. G  
|
Page 10 of 62  
|
September 2017  
 
 
ADSP-21367/ADSP-21368/ADSP-21369  
EZ-KIT Lite Evaluation Board  
ADSP-213xx  
100nF  
10nF  
1nF  
For processor evaluation, Analog Devices provides wide range  
of EZ-KIT Lite® evaluation boards. Including the processor and  
key peripherals, the evaluation board also supports on-chip  
emulation capabilities and other evaluation and development  
features. Also available are various EZ-Extenders®, which are  
daughter cards delivering additional specialized functionality,  
including audio and video processing. For more information  
visit www.analog.com and search on “ezkit” or “ezextender”.  
A
V
VDD  
DDINT  
HI-Z FERRITE  
BEAD CHIP  
A
VSS  
LOCATE ALL COMPONENTS  
CLOSE TO A AND A PINS  
VDD  
VSS  
EZ-KIT Lite Evaluation Kits  
Figure 3. Analog Power (AVDD) Filter Circuit  
For a cost-effective way to learn more about developing with  
Analog Devices processors, Analog Devices offer a range of EZ-  
KIT Lite evaluation kits. Each evaluation kit includes an EZ-KIT  
Lite evaluation board, directions for downloading an evaluation  
version of the available IDE(s), a USB cable, and a power supply.  
The USB controller on the EZ-KIT Lite board connects to the  
USB port of the user’s PC, enabling the chosen IDE evaluation  
suite to emulate the on-board processor in-circuit. This permits  
the customer to download, execute, and debug programs for the  
EZ-KIT Lite system. It also supports in-circuit programming of  
the on-board Flash device to store user-specific boot code,  
enabling standalone operation. With the full version of Cross-  
Core Embedded Studio or VisualDSP++ installed (sold  
separately), engineers can develop software for supported EZ-  
KITs or any custom system utilizing supported Analog Devices  
processors.  
Target Board JTAG Emulator Connector  
Analog Devices DSP Tools product line of JTAG emulators uses  
the IEEE 1149.1 JTAG test access port of the ADSP-21367/  
ADSP-21368/ADSP-21369 processors to monitor and control  
the target board processor during emulation. Analog Devices  
DSP Tools product line of JTAG emulators provides emulation  
at full processor speed, allowing inspection and modification of  
memory, registers, and processor stacks. The processor’s JTAG  
interface ensures that the emulator will not affect target system  
loading or timing.  
For complete information on Analog Devices’ SHARC DSP  
Tools product line of JTAG emulator operation, see the appro-  
priate “Emulator Hardware User’s Guide.”  
DEVELOPMENT TOOLS  
Software Add-Ins for CrossCore Embedded Studio  
Analog Devices supports its processors with a complete line of  
software and hardware development tools, including integrated  
development environments (which include CrossCore® Embed-  
ded Studio and/or VisualDSP++®), evaluation products,  
emulators, and a wide variety of software add-ins.  
Analog Devices offers software add-ins which seamlessly inte-  
grate with CrossCore Embedded Studio to extend its capabilities  
and reduce development time. Add-ins include board support  
packages for evaluation hardware, various middleware pack-  
ages, and algorithmic modules. Documentation, help,  
configuration dialogs, and coding examples present in these  
add-ins are viewable through the CrossCore Embedded Studio  
IDE once the add-in is installed.  
Integrated Development Environments (IDEs)  
For C/C++ software writing and editing, code generation, and  
debug support, Analog Devices offers two IDEs.  
The newest IDE, CrossCore Embedded Studio, is based on the  
Board Support Packages for Evaluation Hardware  
TM  
Eclipse framework. Supporting most Analog Devices proces-  
Software support for the EZ-KIT Lite evaluation boards and EZ-  
Extender daughter cards is provided by software add-ins called  
Board Support Packages (BSPs). The BSPs contain the required  
drivers, pertinent release notes, and select example code for the  
given evaluation hardware. A download link for a specific BSP is  
located on the web page for the associated EZ-KIT or EZ-  
Extender product. The link is found in the Product Download  
area of the product web page.  
sor families, it is the IDE of choice for future processors,  
including multicore devices. CrossCore Embedded Studio  
seamlessly integrates available software add-ins to support real  
time operating systems, file systems, TCP/IP stacks, USB stacks,  
algorithmic software modules, and evaluation hardware board  
support packages. For more information visit  
www.analog.com/cces.  
The other Analog Devices IDE, VisualDSP++, supports proces-  
sor families introduced prior to the release of CrossCore  
Embedded Studio. This IDE includes the Analog Devices VDK  
real time operating system and an open source TCP/IP stack.  
For more information visit www.analog.com/visualdsp. Note  
that VisualDSP++ will not support future Analog Devices  
processors.  
Rev. G  
|
Page 11 of 62  
|
September 2017  
ADSP-21367/ADSP-21368/ADSP-21369  
Middleware Packages  
RELATED SIGNAL CHAINS  
Analog Devices separately offers middleware add-ins such as  
real time operating systems, file systems, USB stacks, and  
TCP/IP stacks. For more information see the following web  
pages:  
www.analog.com/ucos2  
www.analog.com/ucos3  
www.analog.com/ucfs  
www.analog.com/ucusbd  
www.analog.com/ucusbh  
www.analog.com/lwip  
A signal chain is a series of signal-conditioning electronic com-  
ponents that receive input (data acquired from sampling either  
real-time phenomena or from stored data) in tandem, with the  
output of one portion of the chain supplying input to the next.  
Signal chains are often used in signal processing applications to  
gather and process data or to apply system controls based on  
analysis of real-time phenomena.  
Analog Devices eases signal processing system development by  
providing signal processing components that are designed to  
work together well. A tool for viewing relationships between  
specific applications and related components is available on the  
www.analog.com website.  
The application signal chains page in the Circuits from the Lab®  
site (http:\\www.analog.com\circuits) provides:  
Algorithmic Modules  
To speed development, Analog Devices offers add-ins that per-  
form popular audio and video processing algorithms. These are  
available for use with both CrossCore Embedded Studio and  
VisualDSP++. For more information visit www.analog.com and  
search on “Blackfin software modules” or “SHARC software  
modules”.  
• Graphical circuit block diagram presentation of signal  
chains for a variety of circuit types and applications  
• Drill down links for components in each chain to selection  
guides and application information  
• Reference designs applying best practice design techniques  
Designing an Emulator-Compatible DSP Board (Target)  
For embedded system test and debug, Analog Devices provides  
a family of emulators. On each JTAG DSP, Analog Devices sup-  
plies an IEEE 1149.1 JTAG Test Access Port (TAP). In-circuit  
emulation is facilitated by use of this JTAG interface. The emu-  
lator accesses the processor’s internal features via the  
processor’s TAP, allowing the developer to load code, set break-  
points, and view variables, memory, and registers. The  
processor must be halted to send data and commands, but once  
an operation is completed by the emulator, the DSP system is set  
to run at full speed with no impact on system timing. The emu-  
lators require the target board to include a header that supports  
connection of the DSP’s JTAG port to the emulator.  
For details on target board design issues including mechanical  
layout, single processor connections, signal buffering, signal ter-  
mination, and emulator pod logic, see “Analog Devices JTAG  
Emulation Technical Reference” (EE-68). This document is  
updated regularly to keep pace with improvements to emulator  
support.  
ADDITIONAL INFORMATION  
This data sheet provides a general overview of the  
ADSP-21367/ADSP-21368/ADSP-21369 architecture and func-  
tionality. For detailed information on the ADSP-2136x family  
core architecture and instruction set, refer to the ADSP-21368  
SHARC Processor Hardware Reference and the SHARC Processor  
Programming Reference.  
Rev. G  
|
Page 12 of 62  
|
September 2017  
ADSP-21367/ADSP-21368/ADSP-21369  
PIN FUNCTION DESCRIPTIONS  
The following symbols appear in the Type column of Table 8:  
The ADSP-21367/ADSP-21368/ADSP-21369 SHARC proces-  
sors use extensive pin multiplexing to achieve a lower pin count.  
For complete information on the multiplexing scheme, see the  
ADSP-21368 SHARC Processor Hardware Reference, “System  
Design” chapter.  
A = asynchronous, G = ground, I = input, O = output,  
O/T = output three-state, P = power supply, S = synchronous,  
(A/D) = active drive, (O/D) = open-drain, (pd) = pull-down  
resistor, (pu) = pull-up resistor.  
Table 8. Pin Descriptions  
State During/  
After Reset  
(ID = 00x)  
Name  
Type  
Description  
ADDR23–0  
O/T (pu)1  
Pulled high/  
driven low  
External Address. The processors output addresses for external memory and peripher-  
als on these pins.  
DATA31–0  
I/O (pu)1  
Pulled high/  
pulled high  
External Data. Data pins can be multiplexed to support external memory interface data  
(I/O), the PDAP (I), FLAGS (I/O), and PWM (O). After reset, all DATA pins are in EMIF mode  
and FLAG(0-3) pins are in FLAGS mode (default). When configured using the IDP_P-  
DAP_CTL register, IDP Channel 0 scans the external port data pins for parallel input data.  
ACK  
I (pu)1  
Memory Acknowledge. External devices can deassert ACK (low) to add wait states to an  
external memory access. ACK is used by I/O devices, memory controllers, or other periph-  
erals to hold off completion of an external memory access.  
MS0–1  
O/T (pu)1  
Pulled high/  
driven high  
Memory Select Lines 0–1. These lines are asserted (low) as chip selects for the corre-  
sponding banks of external memory. The MS3-0 lines are decoded memory address lines  
that change at the same time as the other address lines. When no external memory access  
is occurring, the MS3-0 lines are inactive; they are active, however, when a conditional  
memory access instruction is executed, whether or not the condition is true.  
The MS1 pin can be used in EPORT/FLASH boot mode. See the processor hardware  
reference for more information.  
RD  
O/T (pu)1  
O/T (pu)1  
Pulled high/  
driven high  
External Port Read Enable. RD is asserted whenever the processors read a word from  
external memory.  
WR  
Pulled high/  
driven high  
External Port Write Enable. WR is asserted when the processors write a word to external  
memory.  
FLAG[0]/IRQ0  
FLAG[1]/IRQ1  
I/O  
I/O  
FLAG[0] INPUT  
FLAG[1] INPUT  
FLAG[2] INPUT  
FLAG0/Interrupt Request 0.  
FLAG1/Interrupt Request 1.  
FLAG[2]/IRQ2/  
MS2  
I/O with pro-  
grammablepu  
(for MS mode)  
FLAG2/Interrupt Request 2/Memory Select 2.  
FLAG[3]/  
TMREXP/MS3  
I/O with pro-  
grammablepu  
(for MS mode)  
FLAG[3] INPUT  
FLAG3/Timer Expired/Memory Select 3.  
Rev. G  
|
Page 13 of 62  
|
September 2017  
 
ADSP-21367/ADSP-21368/ADSP-21369  
Table 8. Pin Descriptions (Continued)  
State During/  
After Reset  
(ID = 00x)  
Name  
Type  
Description  
SDRAS  
O/T (pu)1  
Pulled high/  
driven high  
SDRAM Row Address Strobe. Connect to SDRAM’s RAS pin. In conjunction with other  
SDRAM command pins, defines the operation for the SDRAM to perform.  
SDCAS  
SDWE  
O/T (pu)1  
O/T (pu)1  
O/T (pu)1  
O/T (pu)1  
O/T  
Pulled high/  
driven high  
SDRAMColumnAddressSelect. ConnecttoSDRAM’sCASpin.Inconjunctionwithother  
SDRAM command pins, defines the operation for the SDRAM to perform.  
Pulled high/  
driven high  
SDRAM Write Enable. Connect to SDRAM’s WE or W buffer pin.  
SDCKE  
SDA10  
SDCLK0  
SDCLK1  
Pulled high/  
driven high  
SDRAM Clock Enable. Connect to SDRAM’s CKE pin. Enables and disables the CLK signal.  
For details, see the data sheet supplied with the SDRAM device.  
Pulled high/  
driven low  
SDRAM A10 Pin. Enables applications to refresh an SDRAM in parallel with non-  
SDRAM accesses. This pin replaces the DSP’s A10 pin only during SDRAM accesses.  
High-Z/driving  
SDRAM Clock Output 0. Clock driver for this pin differs from all other clock drivers. See  
Figure 40.  
O/T  
SDRAM Clock Output 1. Additional clock for SDRAM devices. For systems with multiple  
SDRAM devices, handles the increased clock load requirements, eliminating need of off-  
chip clock buffers. Either SDCLK1 or both SDCLKx pins can be three-stated. Clock driver  
for this pin differs from all other clock drivers. See Figure 40.  
The SDCLK1 signal is only available on the FCBGA package. SDCLK1 is not available on  
the LQFP_EP package.  
DAI _P20–1  
I/O with pro-  
grammable  
pu2  
Pulled high/  
pulled high  
Digital Applications Interface. These pins provide the physical interface to the DAI SRU.  
The DAI SRU configuration registers define the combination of on-chip audiocentric  
peripheral inputs or outputs connected to the pin, and to the pin’s output enable. The  
configuration registers then determines the exact behavior of the pin. Any input or  
output signal present in the DAI SRU may be routed to any of these pins. The DAI SRU  
provides the connection from the serial ports (8), the SRC module, the S/PDIF module,  
input data ports (2), and the precision clock generators (4), to the DAI_P20–1 pins. Pull-  
ups can be disabled via the DAI_PIN_PULLUP register.  
DPI _P14–1  
I/O with pro-  
grammable  
pu2  
Pulled high/  
pulled high  
Digital Peripheral Interface. These pins provide the physical interface to the DPI SRU.  
The DPI SRU configuration registers define the combination of on-chip peripheral inputs  
or outputs connected to the pin and to the pin’s output enable. The configuration  
registers of these peripherals then determines the exact behavior of the pin. Any input  
or output signal present in the DPI SRU may be routed to any of these pins. The DPI SRU  
provides the connection from the timers (3), SPIs (2), UARTs (2), flags (12) TWI (1), and  
general-purpose I/O (9) to the DPI_P14–1 pins. The TWI output is an open-drain output—  
so the pins used for I2C data and clock should be connected to logic level 0. Pull-ups can  
be disabled via the DPI_PIN_PULLUP register.  
TDI  
I (pu)  
O/T  
I (pu)  
I
Test Data Input (JTAG). Provides serial data for the boundary scan logic.  
Test Data Output (JTAG). Serial scan output of the boundary scan path.  
Test Mode Select (JTAG). Used to control the test state machine.  
TDO  
TMS  
TCK  
Test Clock (JTAG). ProvidesaclockforJTAGboundaryscan. TCKmustbeasserted(pulsed  
low) after power-up, or held low for proper operation of the processor  
TRST  
I (pu)  
TestReset(JTAG). Resetstheteststatemachine. TRSTmustbeasserted(pulsedlow)after  
power-up or held low for proper operation of the processor.  
Rev. G  
|
Page 14 of 62  
|
September 2017  
ADSP-21367/ADSP-21368/ADSP-21369  
Table 8. Pin Descriptions (Continued)  
State During/  
After Reset  
(ID = 00x)  
Name  
Type  
Description  
EMU  
O (O/D, pu)  
Emulation Status. Must be connected to the ADSP-21367/ADSP-21368/  
ADSP-21369 Analog Devices DSP Tools product line of JTAG emulator target board con-  
nectors only.  
CLK_CFG1–0  
CLKIN  
I
I
Core/CLKINRatioControl. Thesepinssetthestart-upclockfrequency.Seetheprocessor  
hardware reference for a description of the clock configuration modes.  
Note that the operating frequency can be changed by programming the PLL multiplier  
and divider in the PMCTL register at any time after the core comes out of reset.  
Local Clock In. Used with XTAL. CLKIN is the processor’s clock input. It configures the  
processors to use either its internal clock generator or an external clock source. Connect-  
ing the necessary components to CLKIN and XTAL enables the internal clock generator.  
Connecting the external clock to CLKIN while leaving XTAL unconnected configures the  
processor to use an external clock such as an external clock oscillator. CLKIN may not be  
halted, changed, or operated below the specified frequency.  
XTAL  
O
I
Crystal Oscillator Terminal. Used in conjunction with CLKIN to drive an external crystal.  
RESET  
ProcessorReset. Resetstheprocessortoaknownstate. Upondeassertion,thereisa4096  
CLKIN cycle latency for the PLL to lock. After this time, the core begins program execution  
from the hardware reset vector address. The RESET input must be asserted (low) at power-  
up.  
RESETOUT  
O
I
Driven low/  
driven high  
Reset Out. Drives out the core reset signal to an external device.  
BOOT_CFG1–0  
Boot Configuration Select. These pins select the boot mode for the processor. The  
BOOT_CFG pins must be valid before reset is asserted. See the processor hardware  
reference for a description of the boot modes.  
BR4–1  
I/O (pu)1  
Pulled high/  
pulled high  
External Bus Request. Used by the ADSP-21368 processor to arbitrate for bus master-  
ship. A processor only drives its own BRx line (corresponding to the value of its ID2-0  
inputs) and monitors all others. In a system with less than four processors, the unused BRx  
pins should be tied high; the processor’s own BRx line must not be tied high or low  
because it is an output.  
ID2–0  
I (pd)  
Processor ID. Determineswhichbusrequest(BR4–1)isusedbytheADSP-21368processor.  
ID = 001 corresponds to BR1, ID = 010 corresponds to BR2, and so on. Use ID = 000 or 001  
in single-processor systems. These lines are a system configuration selection that should  
be hardwired or only changed at reset. ID = 101,110, and 111 are reserved.  
RPBA  
I (pu)1  
Rotating Priority Bus Arbitration Select. When RPBA is high, rotating priority for the  
ADSP-21368 external bus arbitration is selected. When RPBA is low, fixed priority is  
selected. This signal is a system configuration selection which must be set to the same  
value on every processor in the system.  
1 The pull-up is always enabled on the ADSP-21367 and ADSP-21369 processors. The pull-up on the ADSP-21368 processor is only enabled on the processor with ID2–0 = 00x  
2 Pull-up can be enabled/disabled, value of pull-up cannot be programmed.  
Rev. G  
|
Page 15 of 62  
|
September 2017  
ADSP-21367/ADSP-21368/ADSP-21369  
SPECIFICATIONS  
OPERATING CONDITIONS  
366 MHz  
350 MHz  
333 MHz  
266 MHz  
400 MHz  
Parameter1 Description  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
VDDINT  
AVDD  
Internal (Core) Supply Voltage  
1.25  
1.25  
3.13  
2.0  
1.35  
1.35  
3.47  
1.235  
1.235  
3.13  
1.365  
1.365  
3.47  
1.14  
1.14  
3.13  
1.26  
1.26  
3.47  
V
V
V
V
V
V
V
Analog (PLL) Supply Voltage  
VDDEXT  
External (I/O) Supply Voltage  
2
VIH  
High Level Input Voltage @ VDDEXT = Max  
Low Level Input Voltage @ VDDEXT = Min  
High Level Input Voltage @ VDDEXT = Max  
Low Level Input Voltage @ VDDEXT = Min  
VDDEXT + 0.5 2.0  
VDDEXT + 0.5 2.0  
VDDEXT + 0.5  
2
VIL  
–0.5  
1.74  
–0.5  
+0.8  
–0.5  
+0.8  
–0.5  
+0.8  
3
VIH  
VDDEXT + 0.5 1.74  
VDDEXT + 0.5 1.74  
VDDEXT + 0.5  
+1.1  
_
CLKIN  
3
VIL  
TJ  
+1.1  
–0.5  
+1.1  
110  
N/A  
N/A  
N/A  
–0.5  
_CLKIN  
Junction Temperature 208-Lead LQFP_EP @  
TAMBIENT 0C to 70C  
0
95  
0
0
110  
C  
C  
C  
C  
TJ  
TJ  
TJ  
Junction Temperature 208-Lead LQFP_EP @  
TAMBIENT –40C to +85C  
N/A  
0
N/A  
95  
N/A  
N/A  
N/A  
–40  
0
+120  
105  
Junction Temperature 256-Ball BGA_ED @  
TAMBIENT 0C to 70C  
Junction Temperature 256-Ball BGA_ED @  
TAMBIENT –40C to +85C  
N/A  
N/A  
–40  
+105  
1 Specifications subject to change without notice.  
2 Applies to input and bidirectional pins: DATAx, ACK, RPBA, BRx, IDx, FLAGx, DAI_Px, DPI_Px, BOOT_CFGx, CLK_CFGx, RESET, TCK, TMS, TDI, TRST.  
3 Applies to input pin CLKIN.  
Rev. G  
|
Page 16 of 62  
|
September 2017  
 
ADSP-21367/ADSP-21368/ADSP-21369  
ELECTRICAL CHARACTERISTICS  
Parameter  
Description  
Test Conditions  
Min  
Typ  
Max  
Unit  
1
VOH  
High Level Output Voltage  
Low Level Output Voltage  
@ VDDEXT = Min, IOH = –1.0 mA2  
@ VDDEXT = Min, IOL = 1.0 mA2  
@ VDDEXT = Max, VIN = VDDEXT Max  
@ VDDEXT = Max, VIN = 0 V  
2.4  
V
1
VOL  
0.4  
10  
V
3, 4  
IIH  
High Level Input Current  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
3, 5, 6  
IIL  
Low Level Input Current  
10  
5
IIHPD  
High Level Input Current Pull-Down  
Low Level Input Current Pull-Up  
Three-State Leakage Current  
Three-State Leakage Current  
Three-State Leakage Current Pull-Up  
Supply Current (Internal)  
@ VDDEXT = Max, VIN = 0 V  
250  
200  
10  
4
IILPU  
@ VDDEXT = Max, VIN = 0 V  
7, 8  
IOZH  
@ VDDEXT = Max, VIN = VDDEXT Max  
@ VDDEXT = Max, VIN = 0 V  
7, 9  
IOZL  
10  
8
IOZLPU  
@ VDDEXT = Max, VIN = 0 V  
200  
10  
IDD  
tCCLK = 3.75 ns, VDDINT = 1.2 V, 25°C  
700  
900  
1050  
1080  
1100  
mA  
mA  
mA  
mA  
mA  
-
INTYP  
t
t
t
t
CCLK = 3.00 ns, VDDINT = 1.2 V, 25°C  
CCLK = 2.85 ns, VDDINT = 1.3 V, 25°C  
CCLK = 2.73 ns, VDDINT = 1.3 V, 25°C  
CCLK = 2.50 ns, VDDINT = 1.3 V, 25°C  
11  
AIDD  
Supply Current (Analog)  
Input Capacitance  
AVDD = Max  
11  
mA  
pF  
12, 13  
CIN  
fIN = 1 MHz, TCASE = 25°C, VIN = 1.3 V  
4.7  
1 Applies to output and bidirectional pins: ADDRx, DATAx, RD, WR, MSx, BRx, FLAGx, DAI_Px, DPI_Px, SDRAS, SDCAS, SDWE, SDCKE, SDA10, SDCLKx, EMU, TDO.  
2 See Output Drive Currents for typical drive current capabilities.  
3 Applies to input pins without internal pull-ups: BOOT_CFGx, CLK_CFGx, CLKIN, RESET, TCK.  
4 Applies to input pins with internal pull-ups: ACK, RPBA, TMS, TDI, TRST.  
5 Applies to input pins with internal pull-downs: IDx.  
6 Applies to input pins with internal pull-ups disabled: ACK, RPBA.  
7 Applies to three-statable pins without internal pull-ups: FLAGx, SDCLKx, TDO.  
8 Applies to three-statable pins with internal pull-ups: ADDRx, DATAx, RD, WR, MSx, BRx, DAI_Px, DPI_Px, SDRAS, SDCAS, SDWE, SDCKE, SDA10, EMU.  
9 Applies to three-statable pins with internal pull-ups disabled: ADDRx, DATAx, RD, WR, MSx, BRx, DAI_Px, DPI_Px, SDRAS, SDCAS, SDWE, SDCKE, SDA10  
10See the Engineer-to-Engineer Note “Estimating Power Dissipation for ADSP-21368 SHARC Processors” (EE-299) for further information.  
11Characterized, but not tested.  
12Applies to all signal pins.  
13Guaranteed, but not tested.  
Rev. G  
|
Page 17 of 62  
|
September 2017  
 
ADSP-21367/ADSP-21368/ADSP-21369  
Table 10. Absolute Maximum Ratings  
PACKAGE INFORMATION  
The information presented in Figure 4 provides details about  
the package branding for the ADSP-21367/ADSP-21368/  
ADSP-21369 processors. For a complete listing of product avail-  
ability, see Ordering Guide.  
Parameter  
Internal (Core) Supply Voltage (VDDINT  
Rating  
)
–0.3 V to +1.5 V  
–0.3 V to +1.5 V  
–0.3 V to +4.6 V  
–0.5 V to +3.8 V  
–0.5 V to VDDEXT + 0.5 V  
200 pF  
Analog (PLL) Supply Voltage (AVDD  
)
External (I/O) Supply Voltage (VDDEXT  
Input Voltage  
)
Output Voltage Swing  
a
Load Capacitance  
ADSP-2136x  
Storage Temperature Range  
Junction Temperature Under Bias  
–65C to +150C  
125C  
tppZ-cc  
vvvvvv.x n.n  
#yyww country_of_origin  
TIMING SPECIFICATIONS  
S
Use the exact timing information given. Do not attempt to  
derive parameters from the addition or subtraction of others.  
While addition or subtraction would yield meaningful results  
for an individual device, the values given in this data sheet  
reflect statistical variations and worst cases. Consequently, it is  
not meaningful to add parameters to derive longer times. See  
Figure 41 under Test Conditions for voltage reference levels.  
Switching Characteristics specify how the processor changes its  
signals. Circuitry external to the processor must be designed for  
compatibility with these signal characteristics. Switching char-  
acteristics describe what the processor will do in a given  
circumstance. Use switching characteristics to ensure that any  
timing requirement of a device connected to the processor (such  
as memory) is satisfied.  
Figure 4. Typical Package Brand  
Table 9. Package Brand Information  
Brand Key  
t
Field Description  
Temperature Range  
Package Type  
pp  
Z
RoHS Compliant Option  
See Ordering Guide  
Assembly Lot Code  
Silicon Revision  
cc  
vvvvvv.x  
n.n  
#
RoHS Compliant Designation  
Date Code  
Timing Requirements apply to signals that are controlled by cir-  
cuitry external to the processor, such as the data input for a read  
operation. Timing requirements guarantee that the processor  
operates correctly with other devices.  
yyww  
ESD CAUTION  
Core Clock Requirements  
ESD (electrostatic discharge) sensitive device.  
Charged devices and circuit boards can discharge  
without detection. Although this product features  
patented or proprietary protection circuitry, damage  
may occur on devices subjected to high energy ESD.  
Therefore, proper ESD precautions should be taken to  
avoid performance degradation or loss of functionality.  
The processor’s internal clock (a multiple of CLKIN) provides  
the clock signal for timing internal memory, processor core, and  
serial ports. During reset, program the ratio between the proces-  
sor’s internal clock frequency and external (CLKIN) clock  
frequency with the CLK_CFG1–0 pins.  
The processor’s internal clock switches at higher frequencies  
than the system input clock (CLKIN). To generate the internal  
clock, the processor uses an internal phase-locked loop (PLL,  
see Figure 5). This PLL-based clocking minimizes the skew  
between the system clock (CLKIN) signal and the processor’s  
internal clock.  
MAXIMUM POWER DISSIPATION  
See the Engineer-to-Engineer Note “Estimating Power Dissipa-  
tion for ADSP-21368 SHARC Processors” (EE-299) for detailed  
thermal and power information regarding maximum power dis-  
sipation. For information on package thermal specifications, see  
Thermal Characteristics.  
Voltage Controlled Oscillator  
In application designs, the PLL multiplier value should be  
selected in such a way that the VCO frequency never exceeds  
ABSOLUTE MAXIMUM RATINGS  
f
VCO specified in Table 13.  
Stresses at or above those listed in Table 10 may cause perma-  
nent damage to the product. This is a stress rating only;  
functional operation of the product at these or any other condi-  
tions above those indicated in the operational section of this  
specification is not implied. Operation beyond the maximum  
operating conditions for extended periods may affect product  
reliability.  
• The product of CLKIN and PLLM must never exceed 1/2 of  
fVCO (max) in Table 13 if the input divider is not enabled  
(INDIV = 0).  
• The product of CLKIN and PLLM must never exceed fVCO  
(max) in Table 13 if the input divider is enabled  
(INDIV = 1).  
Rev. G  
|
Page 18 of 62  
|
September 2017  
 
 
ADSP-21367/ADSP-21368/ADSP-21369  
The VCO frequency is calculated as follows:  
Note the definitions of the clock periods that are a function of  
CLKIN and the appropriate ratio control shown in and  
Table 11. All of the timing specifications for the ADSP-2136x  
peripherals are defined in relation to tPCLK. See the peripheral spe-  
cific timing section for each peripheral’s timing information.  
f
f
VCO = 2 PLLM fINPUT  
CCLK = (2 PLLM fINPUT) (2 PLLD)  
where:  
VCO = VCO output  
f
Table 11. Clock Periods  
PLLM = Multiplier value programmed in the PMCTL register.  
During reset, the PLLM value is derived from the ratio selected  
using the CLK_CFG pins in hardware.  
Timing  
Requirements  
Description  
PLLD = Divider value 1, 2, 4, or 8 based on the PLLD value pro-  
tCK  
CLKIN Clock Period  
grammed on the PMCTL register. During reset this value is 1.  
tCCLK  
tPCLK  
Processor Core Clock Period  
Peripheral Clock Period = 2 × tCCLK  
f
f
f
INPUT = Input frequency to the PLL.  
INPUT = CLKIN when the input divider is disabled or  
INPUT = CLKIN 2 when the input divider is enabled  
Figure 5 shows core to CLKIN relationships with external oscil-  
lator or crystal. The shaded divider/multiplier blocks denote  
where clock ratios can be set through hardware or software  
using the power management control register (PMCTL). For  
more information, see the processor hardware reference.  
PMCTL  
(SDCKR)  
PMCTL  
(PLLBP)  
PLL  
fVCO  
fINPUT  
CCLK  
SDRAM  
DIVIDER  
CLKIN  
BUF  
CLKIN  
DIVIDER  
LOOP  
FILTER  
PLL  
DIVIDER  
VCO  
SDCLK  
fCCLK  
XTAL  
PMCTL  
(2xPLLD)  
PMCTL  
(INDIV)  
PCLK  
DIVIDE  
BY 2  
PLL  
MULTIPLIER  
PMCTL  
(PLLBP)  
PCLK  
CCLK  
CLK_CFGx/PMCTL (2xPLLM)  
CLKOUT (TEST ONLY)  
DELAY OF  
4096 CLKIN  
BUF  
CYCLES  
Figure 5. Core Clock and System Clock Relationship to CLKIN  
Rev. G  
|
Page 19 of 62  
|
September 2017  
 
 
ADSP-21367/ADSP-21368/ADSP-21369  
Power-Up Sequencing  
The timing requirements for processor start-up are given in  
Table 12. Note that during power-up, a leakage current of  
approximately 200μA may be observed on the RESET pin if it is  
driven low before power up is complete. This leakage current  
results from the weak internal pull-up resistor on this pin being  
enabled during power-up.  
Table 12. Power-Up Sequencing Timing Requirements (Processor Start-up)  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tRSTVDD  
RESET Low Before VDDINT/VDDEXT On  
VDDINT On Before VDDEXT  
0
ns  
tIVDDEVDD  
–50  
+200  
200  
ms  
ms  
μs  
1
tCLKVDD  
CLKIN Valid After VDDINT/VDDEXT Valid  
CLKIN Valid Before RESET Deasserted  
PLL Control Setup Before RESET Deasserted  
0
tCLKRST  
102  
20  
tPLLRST  
μs  
Switching Characteristic  
3, 4  
tCORERST  
Core Reset Deasserted After RESET Deasserted  
4096tCK + 2 tCCLK  
1 Valid VDDINT/VDDEXT assumes that the supplies are fully ramped to their 1.2 V rails and 3.3 V rails. Voltage ramp rates can vary from microseconds to hundreds of milliseconds  
depending on the design of the power supply subsystem.  
2 Assumes a stable CLKIN signal, after meeting worst-case start-up timing of crystal oscillators. Refer to your crystal oscillator manufacturer’s data sheet for start-up time.  
Assume a 25 ms maximum oscillator start-up time if using the XTAL pin and internal oscillator circuit in conjunction with an external crystal.  
3 Applies after the power-up sequence is complete. Subsequent resets require RESET to be held low a minimum of four CLKIN cycles in order to properly initialize and propagate  
default states at all I/O pins.  
4 The 4096 cycle count depends on tsrst specification in Table 14. If setup time is not met, 1 additional CLKIN cycle may be added to the core reset time, resulting in 4097 cycles  
maximum.  
tRSTVDD  
RESET  
V
DDINT  
tIVDDEVDD  
V
DDEXT  
tCLKVDD  
CLKIN  
tCLKRST  
CLK_CFG1–0  
RESETOUT  
tPLLRST  
tCORERST  
Figure 6. Power-Up Sequencing  
Rev. G  
|
Page 20 of 62  
|
September 2017  
 
ADSP-21367/ADSP-21368/ADSP-21369  
Clock Input  
Table 13. Clock Input  
400 MHz1  
366 MHz2  
350 MHz3  
333 MHz4  
266 MHz5  
Parameter  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
Timing Requirements  
tCK  
CLKIN Period  
156  
7.51  
7.51  
100  
45  
16.396 100  
17.146 100  
186  
91  
100  
45  
22.56  
100  
ns  
tCKL  
tCKH  
tCKRF  
tCCLK  
CLKIN Width Low  
CLKIN Width High  
CLKIN Rise/Fall (0.4 V to 2.0 V)  
CCLK Period  
8.11  
8.11  
45  
8.51  
8.51  
45  
11.251 45  
11.251 45  
3
ns  
45  
45  
45  
91  
45  
ns  
3
3
3
3
ns  
7
2.56  
10  
2.736  
100  
10  
2.856  
100  
10  
3.06  
100  
10  
3.756  
10  
ns  
8
fVCO  
VCO Frequency  
100  
800  
+250  
800  
+250  
800  
+250  
800  
+250  
100  
600  
+250  
MHz  
ps  
9, 10  
tCKJ  
CLKIN Jitter Tolerance  
–250  
–250  
–250  
–250  
–250  
1 Applies to all 400 MHz models. See Ordering Guide.  
2 Applies to all 366 MHz models. See Ordering Guide.  
3 Applies to all 350 MHz models. See Ordering Guide.  
4 Applies to all 333 MHz models. See Ordering Guide.  
5 Applies to all 266 MHz models. See Ordering Guide.  
6 Applies only for CLK_CFG1–0 = 00 and default values for PLL control bits in PMCTL.  
7 Any changes to PLL control bits in the PMCTL register must meet core clock timing specification tCCLK  
8 See Figure 5 for VCO diagram.  
.
9 Actual input jitter should be combined with ac specifications for accurate timing analysis.  
10Jitter specification is maximum peak-to-peak time interval error (TIE) jitter.  
tCKJ  
tCK  
CLKIN  
tCKH  
tCKL  
Figure 7. Clock Input  
Rev. G  
|
Page 21 of 62  
|
September 2017  
ADSP-21367/ADSP-21368/ADSP-21369  
Clock Signals  
The processors can use an external clock or a crystal. See the  
CLKIN pin description in Table 8. Programs can configure the  
processor to use its internal clock generator by connecting the  
necessary components to CLKIN and XTAL. Figure 8 shows the  
component connections used for a crystal operating in funda-  
mental mode.  
Note that the clock rate is achieved using a 25 MHz crystal and a  
PLL multiplier ratio 16:1 (CCLK:CLKIN achieves a clock speed  
of 400 MHz). To achieve the full core clock rate, programs need  
to configure the multiplier bits in the PMCTL register.  
ADSP-2136x  
R1  
1M*  
XTAL  
CLKIN  
R2  
47*  
C1  
22pF  
C2  
22pF  
Y1  
25.00 MHz  
R2 SHOULD BE CHOSEN TO LIMIT CRYSTAL  
DRIVE POWER. REFER TO CRYSTAL  
MANUFACTURER’S SPECIFICATIONS  
Figure 8. 400 MHz Operation (Fundamental Mode Crystal)  
Rev. G  
|
Page 22 of 62  
|
September 2017  
 
ADSP-21367/ADSP-21368/ADSP-21369  
Reset  
Table 14. Reset  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
1
tWRST  
RESET Pulse Width Low  
4tCK  
8
ns  
ns  
tSRST  
RESET Setup Before CLKIN Low  
1 Applies after the power-up sequence is complete. At power-up, the processor’s internal phase-locked loop requires no more than 100 s while RESET is low, assuming stable  
VDD and CLKIN (not including start-up time of external clock oscillator).  
CLKIN  
tWRST  
tSRST  
RESET  
Figure 9. Reset  
Interrupts  
The following timing specification applies to the FLAG0,  
FLAG1, and FLAG2 pins when they are configured as IRQ0,  
IRQ1, and IRQ2 interrupts.  
Table 15. Interrupts  
Parameter  
Timing Requirement  
Min  
2 × tPCLK +2  
Max  
Unit  
tIPW  
IRQx Pulse Width  
ns  
INTERRUPT  
INPUTS  
tIPW  
Figure 10. Interrupts  
Rev. G  
|
Page 23 of 62  
|
September 2017  
 
ADSP-21367/ADSP-21368/ADSP-21369  
Core Timer  
The following timing specification applies to FLAG3 when it is  
configured as the core timer (TMREXP).  
Table 16. Core Timer  
Parameter  
Min  
Max  
Unit  
Switching Characteristic  
tWCTIM  
TMREXP Pulse Width  
4 × tPCLK – 1  
ns  
tWCTIM  
FLAG3  
(TMREXP)  
Figure 11. Core Timer  
Timer PWM_OUT Cycle Timing  
The following timing specification applies to Timer0, Timer1,  
and Timer2 in PWM_OUT (pulse-width modulation) mode.  
Timer signals are routed to the DPI_P14–1 pins through the  
DPI SRU. Therefore, the timing specifications provided below  
are valid at the DPI_P14–1 pins.  
Table 17. Timer PWM_OUT Timing  
Parameter  
Switching Characteristic  
Min  
Max  
2 × (231 – 1) × tPCLK  
Unit  
tPWMO  
Timer Pulse Width Output  
2 × tPCLK – 1.2  
ns  
tPWMO  
PWM  
OUTPUTS  
Figure 12. Timer PWM_OUT Timing  
Rev. G  
|
Page 24 of 62  
|
September 2017  
ADSP-21367/ADSP-21368/ADSP-21369  
Timer WDTH_CAP Timing  
The following specification applies to Timer0, Timer1, and  
Timer2 in WDTH_CAP (pulse width count and capture) mode.  
Timer signals are routed to the DPI_P14–1 pins through the  
DPI SRU. Therefore, the specification provided in Table 18 is  
valid at the DPI_P14–1 pins.  
Table 18. Timer Width Capture Timing  
Parameter  
Min  
Max  
Unit  
Switching Characteristic  
tPWI  
Timer Pulse Width  
2 × tPCLK  
2 × (231 – 1) × tPCLK  
ns  
tPWI  
TIMER  
CAPTURE  
INPUTS  
Figure 13. Timer Width Capture Timing  
Pin to Pin Direct Routing (DAI and DPI)  
For direct pin connections only (for example, DAI_PB01_I to  
DAI_PB02_O).  
Table 19. DAI/DPI Pin to Pin Routing  
Parameter  
Timing Requirement  
Min  
Max  
12  
Unit  
tDPIO  
Delay DAI/DPI Pin Input Valid to DAI/DPI Output Valid  
1.5  
ns  
DAI_Pn  
DPI_Pn  
tDPIO  
DAI_Pm  
DPI_Pm  
Figure 14. DAI/DPI Pin to Pin Direct Routing  
Rev. G  
|
Page 25 of 62  
|
September 2017  
 
ADSP-21367/ADSP-21368/ADSP-21369  
inputs and outputs are not directly routed to/from DAI pins (via  
Precision Clock Generator (Direct Pin Routing)  
pin buffers) there is no timing data available. All timing param-  
eters and switching characteristics apply to external DAI pins  
(DAI_P01–20).  
This timing is only valid when the SRU is configured such that  
the precision clock generator (PCG) takes its inputs directly  
from the DAI pins (via pin buffers) and sends its outputs  
directly to the DAI pins. For the other cases, where the PCG’s  
Table 20. Precision Clock Generator (Direct Pin Routing)  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tPCGIP  
tSTRIG  
Input Clock Period  
tPCLK × 4  
4.5  
ns  
ns  
PCG Trigger Setup Before Falling  
Edge of PCG Input Clock  
tHTRIG  
PCG Trigger Hold After Falling  
Edge of PCG Input Clock  
3
ns  
ns  
Switching Characteristics  
tDPCGIO  
PCG Output Clock and Frame Sync Active Edge  
2.5  
10  
Delay After PCG Input Clock  
tDTRIGCLK  
PCG Output Clock Delay After PCG Trigger  
PCG Frame Sync Delay After PCG Trigger  
Output Clock Period  
2.5 + (2.5 × tPCGIP  
)
10 + (2.5 × tPCGIP  
)
ns  
ns  
ns  
tDTRIGFS  
2.5 + ((2.5 + D – PH) × tPCGIP  
2 × tPCGIP – 1  
)
10 + ((2.5 + D – PH) × tPCGIP)  
1
tPCGOW  
D = FSxDIV, and PH = FSxPHASE. For more information, see the processor hardware reference, “Precision Clock Generators” chapter.  
1 In normal mode.  
tSTRIG  
tHTRIG  
DAI_Pn  
DPI_Pn  
PCG_TRIGx_I  
DAI_Pm  
DPI_Pm  
PCG_EXTx_I  
(CLKIN)  
tDPCGIO  
tPCGIP  
DAI_Py  
DPI_Py  
PCG_CLKx_O  
tDTRIGCLK  
tPCGOW  
tDPCGIO  
DAI_Pz  
DPI_Pz  
PCG_FSx_O  
tDTRIGFS  
Figure 15. Precision Clock Generator (Direct Pin Routing)  
Rev. G  
|
Page 26 of 62  
|
September 2017  
ADSP-21367/ADSP-21368/ADSP-21369  
Flags  
The timing specifications provided below apply to the FLAG3–0  
and DPI_P14–1 pins, and the serial peripheral interface (SPI).  
See Table 8 for more information on flag use.  
Table 21. Flags  
Parameter  
Timing Requirement  
Min  
Max  
Unit  
ns  
tFIPW  
Switching Characteristic  
tFOPW FLAG3–0 OUT Pulse Width  
FLAG3–0 IN Pulse Width  
2 × tPCLK + 3  
2 × tPCLK – 1.5  
ns  
FLAG  
INPUTS  
tFIPW  
FLAG  
OUTPUTS  
tFOPW  
Figure 16. Flags  
Rev. G  
|
Page 27 of 62  
|
September 2017  
ADSP-21367/ADSP-21368/ADSP-21369  
SDRAM Interface Timing (166 MHz SDCLK)  
The 166 MHz access speed is for a single processor. When mul-  
tiple ADSP-21368 processors are connected in a shared memory  
system, the access speed is 100 MHz.  
Table 22. SDRAM Interface Timing1  
All Other Speed  
Grades  
366 MHz  
350 MHz  
Max  
Parameter  
Min  
Max  
Min  
Min  
Max  
Unit  
Timing Requirements  
tSSDAT  
tHSDAT  
Switching Characteristics  
DATA Setup Before SDCLK  
500  
500  
500  
ps  
ns  
DATA Hold After SDCLK  
1.23  
1.23  
1.23  
tSDCLK  
tSDCLKH  
tSDCLKL  
tDCAD  
SDCLK Period  
6.83  
3
7.14  
3
6.0  
2.6  
2.6  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SDCLK Width High  
SDCLK Width Low  
3
3
Command, ADDR, Data Delay After SDCLK2  
Command, ADDR, Data Hold After SDCLK2  
Data Disable After SDCLK  
Data Enable After SDCLK  
4.8  
5.3  
4.8  
5.3  
4.8  
5.3  
tHCAD  
1.2  
1.2  
1.2  
1.3  
tDSDAT  
tENSDAT  
1.3  
1.3  
1 The processor needs to be programmed in tSDCLK = 2.5 tCCLK mode when operated at 350 MHz, 366 MHz, and 400 MHz.  
2 Command pins include: SDCAS, SDRAS, SDWE, MSx, SDA10, SDCKE.  
tSDCLKH  
tSDCLK  
SDCLK  
tSSDAT  
tHSDAT  
tSDCLKL  
DATA (IN)  
tDCAD  
tHCAD  
tDSDAT  
tENSDAT  
DATA (OUT)  
tDCAD  
tHCAD  
COMMAND/ADDR  
(OUT)  
Figure 17. SDRAM Interface Timing  
Rev. G  
|
Page 28 of 62  
|
September 2017  
ADSP-21367/ADSP-21368/ADSP-21369  
SDRAM Interface Enable/Disable Timing (166 MHz SDCLK)  
Table 23. SDRAM Interface Enable/Disable Timing1  
Parameter  
Min  
Max  
Unit  
Switching Characteristics  
tDSDC  
Command Disable After CLKIN Rise  
Command Enable After CLKIN Rise  
SDCLK Disable After CLKIN Rise  
SDCLK Enable After CLKIN Rise  
Address Disable After CLKIN Rise  
Address Enable After CLKIN Rise  
2 × tPCLK + 3  
8.5  
ns  
ns  
ns  
ns  
ns  
ns  
tENSDC  
tDSDCC  
tENSDCC  
tDSDCA  
tENSDCA  
4.0  
3.8  
9.2  
2 × tPCLK – 4  
4 × tPCLK  
1 For fCCLK = 400 MHz (SDCLK ratio = 1:2.5).  
CLKIN  
tDSDC  
tDSDCC  
tDSDCA  
COMMAND  
SDCLK  
ADDR  
tENSDC  
tENSDCA  
tENSDCC  
COMMAND  
SDCLK  
ADDR  
Figure 18. SDRAM Interface Enable/Disable Timing  
Rev. G  
|
Page 29 of 62  
|
September 2017  
ADSP-21367/ADSP-21368/ADSP-21369  
Memory Read  
Use these specifications for asynchronous interfacing to memo-  
ries. These specifications apply when the processors are the bus  
master accessing external memory space in asynchronous access  
mode. Note that timing for ACK, DATA, RD, WR, and strobe  
timing parameters only apply to asynchronous access mode.  
Table 24. Memory Read  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tDAD  
tDRLD  
tSDS  
Address, Selects Delay to Data Valid1, 2  
W + tSDCLK –5.12  
W – 3.2  
ns  
ns  
ns  
ns  
ns  
ns  
RD Low to Data Valid2  
Data Setup to RD High  
2.5  
0
tHDRH  
tDAAK  
tDSAK  
Data Hold from RD High3, 4  
ACK Delay from Address, Selects1, 5  
ACK Delay from RD Low5  
tSDCLK 9.5 + W  
W – 7.0  
Switching Characteristics  
tDRHA  
tDARL  
tRW  
Address Selects Hold After RD High  
RH + 0.20  
tSDCLK – 3.3  
W – 1.4  
ns  
ns  
ns  
ns  
Address Selects to RD Low1  
RD Pulse Width  
tRWR  
RD High to WR, RD Low  
HI + tSDCLK – 0.8  
W = (number of wait states specified in AMICTLx register) × tSDCLK  
RHC = (number of Read Hold Cycles specified in AMICTLx register) × tSDCLK  
Where PREDIS = 0  
HI = RHC (if IC = 0): Read to Read from same bank  
HI = RHC+ tSDCLK (if IC > 0): Read to Read from same bank  
HI = RHC + IC: Read to Read from different bank  
HI = RHC + Max (IC, (4 × tSDCLK)): Read to Write from same or different bank  
Where PREDIS = 1  
HI = RHC + Max (IC, (4 × tSDCLK)): Read to Write from same or different bank  
HI = RHC + (3 × tSDCLK): Read to Read from same bank  
HI = RHC + Max (IC, (3 × tSDCLK)): Read to Read from different bank  
IC = (number of idle cycles specified in AMICTLx register) × tSDCLK  
H = (number of hold cycles specified in AMICTLx register) × tSDCLK  
1 The falling edge of MSx is referenced.  
2 Themaximum limit of timing requirement values for tDAD and tDRLD parametersareapplicable forthecase whereAMI_ACK isalways high and whenthe ACKfeature is not used.  
3 Note that timing for ACK, DATA, RD, WR, and strobe timing parameters only apply to asynchronous access mode.  
4 Data hold: User must meet tHDA or tHDRH in asynchronous access mode. See Test Conditions for the calculation of hold times given capacitive and dc loads.  
5 ACK delay/setup: User must meet tDAAK, or tDSAK, for deassertion of ACK (low). For asynchronous assertion of ACK (high), user must meet tDAAK or tDSAK  
.
Rev. G  
|
Page 30 of 62  
|
September 2017  
ADSP-21367/ADSP-21368/ADSP-21369  
ADDR  
MSx  
tDARL  
tRW  
tDRHA  
RD  
tDRLD  
tSDS  
tDAD  
tHDRH  
DATA  
tDSAK  
tRWR  
tDAAK  
ACK  
WR  
Figure 19. Memory Read  
Rev. G  
|
Page 31 of 62  
|
September 2017  
ADSP-21367/ADSP-21368/ADSP-21369  
access mode. Note that timing for ACK, DATA, RD, WR, and  
strobe timing parameters only applies to asynchronous access  
mode.  
Memory Write  
Use these specifications for asynchronous interfacing to memo-  
ries. These specifications apply when the processors are the bus  
masters, accessing external memory space in asynchronous  
Table 25. Memory Write  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tDAAK  
tDSAK  
ACK Delay from Address, Selects1, 2  
ACK Delay from WR Low 1, 3  
tSDCLK – 9.7 + W  
W – 4.9  
ns  
ns  
Switching Characteristics  
tDAWH  
tDAWL  
tWW  
Address, Selects to WR Deasserted2  
tSDCLK – 3.1+ W  
tSDCLK – 2.7  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address, Selects to WR Low2  
WR Pulse Width  
W – 1.3  
tDDWH  
tDWHA  
tDWHD  
tWWR  
tDDWR  
tWDE  
Data Setup Before WR High  
Address Hold After WR Deasserted  
Data Hold After WR Deasserted  
WR High to WR, RD Low  
tSDCLK – 3.0+ W  
H + 0.15  
H + 0.02  
tSDCLK – 1.5+ H  
2tSDCLK – 4.11  
tSDCLK – 3.5  
Data Disable Before RD Low  
Data Enabled to WR Low  
W = (number of wait states specified in AMICTLx register) × tSDCLK  
H = (number of hold cycles specified in AMICTLx register) × tSDCLK  
.
.
1 ACK delay/setup: System must meet tDAAK, or tDSAK, for deassertion of ACK (low). For asynchronous assertion of ACK (high), user must meet tDAAK or tDSAK  
.
2 The falling edge of MSx is referenced.  
3 Note that timing for ACK, DATA, RD, WR, and strobe timing parameters only applies to asynchronous access mode.  
ADDR  
MSx  
tDAWH  
tDWHA  
tDAWL  
tWW  
WR  
tWWR  
tWDE  
tDATRWH  
tDDWH  
tDDWR  
DATA  
tDSAK  
tDWHD  
tDAAK  
ACK  
RD  
Figure 20. Memory Write  
Rev. G  
|
Page 32 of 62  
|
September 2017  
ADSP-21367/ADSP-21368/ADSP-21369  
Asynchronous Memory Interface (AMI) Enable/Disable  
Use these specifications for passing bus mastership between  
ADSP-21368 processors (BRx).  
Table 26. AMI Enable/Disable  
Parameter  
Min  
Max  
Unit  
Switching Characteristics  
tENAMIAC  
tENAMID  
tDISAMIAC  
tDISAMID  
Address/Control Enable After Clock Rise  
Data Enable After Clock Rise  
4
ns  
ns  
ns  
ns  
tSDCLK + 4  
Address/Control Disable After Clock Rise  
Data Disable After Clock Rise  
8.7  
0
CLKIN  
tDISAMIAC  
tDISAMID  
ADDR, WR , RD,  
MS1–0, DATA  
tENAMIAC  
tENAMID  
ADDR , WR , RD,  
MS1–0, DATA  
Figure 21. AMI Enable/Disable  
Rev. G  
|
Page 33 of 62  
|
September 2017  
ADSP-21367/ADSP-21368/ADSP-21369  
Shared Memory Bus Request  
Use these specifications for passing bus mastership between  
ADSP-21368 processors (BRx).  
Table 27. Multiprocessor Bus Request  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tSBRI  
tHBRI  
BRx, Setup Before CLKIN High  
BRx, Hold After CLKIN High  
9
ns  
ns  
0.5  
Switching Characteristics  
tDBRO  
tHBRO  
BRx Delay After CLKIN High  
BRx Hold After CLKIN High  
9
ns  
ns  
1.0  
CLKIN  
tDBRO  
tHBRO  
BR (OUT)  
X
tSBRI  
tHBRI  
BR (IN)  
X
Figure 22. Shared Memory Bus Request  
Rev. G  
|
Page 34 of 62  
|
September 2017  
ADSP-21367/ADSP-21368/ADSP-21369  
Serial Ports  
To determine whether communication is possible between two  
devices at clock speed n, the following specifications must be  
confirmed: 1) frame sync delay and frame sync setup and hold,  
2) data delay and data setup and hold, and 3) SCLK width.  
Serial port signals SCLK, frame sync (FS), data channel A, data  
channel B are routed to the DAI_P20–1 pins using the SRU.  
Therefore, the timing specifications provided below are valid at  
the DAI_P20–1 pins.  
Table 28. Serial Ports—External Clock  
400 MHz  
366 MHz  
350 MHz  
333 MHz  
266 MHz  
Parameter  
Min  
Max  
Min  
Max  
Min  
Max  
Unit  
Timing Requirements  
1
tSFSE  
FS Setup Before SCLK  
2.5  
2.5  
2.5  
ns  
(Externally Generated FS in Either  
Transmit or Receive Mode)  
1
tHFSE  
FS Hold After SCLK  
2.5  
2.5  
2.5  
ns  
ns  
(Externally Generated FS in Either  
Transmit or Receive Mode)  
1
tSDRE  
Receive Data Setup Before Receive 1.9  
SCLK  
2.0  
2.5  
2.5  
2.5  
1
tHDRE  
tSCLKW  
tSCLK  
Receive Data Hold After SCLK  
SCLK Width  
2.5  
ns  
ns  
ns  
(tPCLK × 4) ÷ 2 – 0.5  
tPCLK × 4  
(tPCLK × 4) ÷ 2 – 0.5  
tPCLK × 4  
(tPCLK × 4) ÷ 2 – 0.5  
tPCLK × 4  
SCLK Period  
Switching Characteristics  
2
tDFSE  
FS Delay After SCLK  
(Internally Generated FS in Either  
Transmit or Receive Mode)  
10.25  
7.8  
10.25  
9.6  
10.25  
9.8  
ns  
ns  
2
tHOFSE  
FS Hold After SCLK  
(Internally Generated FS in Either  
Transmit or Receive Mode)  
2
2
2
2
2
2
2
tDDTE  
Transmit Data Delay After Transmit  
SCLK  
ns  
ns  
2
tHDTE  
Transmit Data Hold After Transmit  
SCLK  
1 Referenced to sample edge.  
2 Referenced to drive edge.  
Rev. G  
|
Page 35 of 62  
|
September 2017  
ADSP-21367/ADSP-21368/ADSP-21369  
Table 29. Serial Ports—Internal Clock  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
1
tSFSI  
FS Setup Before SCLK  
(Externally Generated FS in Either Transmit or Receive Mode)  
7
ns  
ns  
1
tHFSI  
FS Hold After SCLK  
2.5  
(Externally Generated FS in Either Transmit or Receive Mode)  
1
tSDRI  
tHDRI  
Receive Data Setup Before SCLK  
Receive Data Hold After SCLK  
7
ns  
ns  
1
2.5  
Switching Characteristics  
2
tDFSI  
FS Delay After SCLK (Internally Generated FS in Transmit Mode)  
4
ns  
ns  
ns  
ns  
ns  
ns  
2
tHOFSI  
FS Hold After SCLK (Internally Generated FS in Transmit Mode)  
FS Delay After SCLK (Internally Generated FS in Receive Mode)  
FS Hold After SCLK (Internally Generated FS in Receive Mode)  
Transmit Data Delay After SCLK  
–1.0  
–1.0  
2
tDFSIR  
9.75  
3.25  
2
tHOFSIR  
2
tDDTI  
2
tHDTI  
Transmit Data Hold After SCLK  
–1.0  
3
tSCLKIW  
Transmit or Receive SCLK Width  
2 × tPCLK – 1.5  
2 × tPCLK + 1.5 ns  
1 Referenced to the sample edge.  
2 Referenced to drive edge.  
3 Minimum SPORT divisor register value.  
Table 30. Serial Ports—Enable and Three-State  
Parameter  
Switching Characteristics  
Min  
2
Max  
Unit  
1
tDDTEN  
Data Enable from External Transmit SCLK  
Data Disable from External Transmit SCLK  
Data Enable from Internal Transmit SCLK  
ns  
ns  
ns  
1
tDDTTE  
10  
1
tDDTIN  
–1  
1 Referenced to drive edge.  
Table 31. Serial Ports—External Late Frame Sync  
Parameter  
Min  
Max  
Unit  
Switching Characteristics  
1
tDDTLFSE  
Data Delay from Late External Transmit FS or External Receive  
FS with MCE = 1, MFD = 0  
7.75  
ns  
ns  
1
tDDTENFS  
Data Enable for MCE = 1, MFD = 0  
0.5  
1 The tDDTLFSE and tDDTENFS parameters apply to left-justified sample pair as well as DSP serial mode, and MCE = 1, MFD = 0.  
Rev. G  
|
Page 36 of 62  
|
September 2017  
ADSP-21367/ADSP-21368/ADSP-21369  
DATA RECEIVE—INTERNAL CLOCK  
DRIVE EDGE SAMPLE EDGE  
DATA RECEIVE—EXTERNAL CLOCK  
DRIVE EDGE  
SAMPLE EDGE  
tSCLKIW  
tSCLKW  
DAI_P20–1  
(SCLK)  
DAI_P20–1  
(SCLK)  
tDFSI  
tDFSE  
tHOFSI  
tSFSI  
tHFSI  
tHOFSE  
tSFSE  
tHFSE  
DAI_P20–1  
(FS)  
DAI_P20–1  
(FS)  
tSDRI  
tHDRI  
tSDRE  
tHDRE  
DAI_P20–1  
(DATA  
CHANNEL A/B)  
DAI_P20–1  
(DATA  
CHANNEL A/B)  
DATA TRANSMIT—INTERNAL CLOCK  
DRIVE EDGE SAMPLE EDGE  
DATA TRANSMIT—EXTERNAL CLOCK  
DRIVE EDGE SAMPLE EDGE  
tSCLKIW  
tSCLKW  
DAI_P20–1  
(SCLK)  
DAI_P20–1  
(SCLK)  
tDFSI  
tDFSE  
tHOFSI  
tSFSI  
tHFSI  
tHOFSE  
tSFSE  
tHFSE  
DAI_P20–1  
(FS)  
DAI_P20–1  
(FS)  
tDDTI  
tDDTE  
tHDTI  
tHDTE  
DAI_P20–1  
(DATA  
CHANNEL A/B)  
DAI_P20–1  
(DATA  
CHANNEL A/B)  
Figure 23. Serial Ports  
DRIVE EDGE  
DRIVE EDGE  
DAI_P20–1  
(SCLK, EXT)  
tDDTEN  
tDDTTE  
DAI_P20–1  
(DATA  
CHANNEL A/B)  
DRIVE EDGE  
DAI_P20–1  
(SCLK, INT)  
tDDTIN  
DAI_P20–1  
(DATA  
CHANNEL A/B)  
Figure 24. Enable and Three-State  
Rev. G  
|
Page 37 of 62  
|
September 2017  
ADSP-21367/ADSP-21368/ADSP-21369  
EXTERNAL RECEIVE FS WITH MCE = 1, MFD = 0  
SAMPLE DRIVE  
DRIVE  
DAI_P20–1  
(SCLK)  
tHFSE/I  
tSFSE/I  
DAI_P20–1  
(FS)  
tDDTE/I  
tDDTENFS  
tHDTE/I  
DAI_P20–1  
(DATA CHANNEL  
A/B)  
1ST BIT  
2ND BIT  
tDDTLFSE  
LATE EXTERNAL TRANSMIT FS  
SAMPLE DRIVE  
DRIVE  
DAI_P20–1  
(SCLK)  
tHFSE/I  
tSFSE/I  
DAI_P20–1  
(FS)  
tDDTE/I  
tDDTENFS  
tHDTE/I  
DAI_P20–1  
(DATA CHANNEL  
A/B)  
1ST BIT  
2ND BIT  
tDDTLFSE  
Figure 25. External Late Frame Sync1  
1 This figure reflects changes made to support left-justified sample pair mode.  
Rev. G  
|
Page 38 of 62  
|
September 2017  
ADSP-21367/ADSP-21368/ADSP-21369  
Input Data Port  
The timing requirements for the IDP are given in Table 32. IDP  
signals SCLK, frame sync (FS), and SDATA are routed to the  
DAI_P20–1 pins using the SRU. Therefore, the timing specifica-  
tions provided below are valid at the DAI_P20–1 pins.  
Table 32. IDP  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
1
tSISFS  
tSIHFS  
FS Setup Before SCLK Rising Edge  
FS Hold After SCLK Rising Edge  
SDATA Setup Before SCLK Rising Edge  
SDATA Hold After SCLK Rising Edge  
Clock Width  
4
ns  
ns  
ns  
ns  
ns  
ns  
1
2.5  
1
tSISD  
tSIHD  
2.5  
1
2.5  
tIDPCLKW  
tIDPCLK  
(tPCLK × 4) ÷ 2 – 1  
tPCLK × 4  
Clock Period  
1
DATA, SCLK, FS can come from any of the DAI pins. SCLK and FS can also come via PCG or SPORTs. PCG’s input can be either CLKIN or any of the DAI pins.  
SAMPLE EDGE  
tIDPCLK  
tIDPCLKW  
DAI_P20–1  
(SCLK)  
tSISFS  
tSIHFS  
DAI_P20–1  
(FS)  
tSISD  
tSIHD  
DAI_P20–1  
(SDATA)  
Figure 26. IDP Master Timing  
Rev. G  
|
Page 39 of 62  
|
September 2017  
 
ADSP-21367/ADSP-21368/ADSP-21369  
chapter of the ADSP-21368 SHARC Processor Hardware  
Parallel Data Acquisition Port (PDAP)  
Reference. Note that the 20 bits of external PDAP data can be  
provided through the external port DATA31–12 pins or the  
DAI pins.  
The timing requirements for the PDAP are provided in  
Table 33. PDAP is the parallel mode operation of Channel 0 of  
the IDP. For details on the operation of the IDP, see the IDP  
Table 33. Parallel Data Acquisition Port (PDAP)  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
1
tSPHOLD  
PDAP_HOLD Setup Before PDAP_CLK Sample Edge  
PDAP_HOLD Hold After PDAP_CLK Sample Edge  
PDAP_DAT Setup Before SCLK PDAP_CLK Sample Edge  
PDAP_DAT Hold After SCLK PDAP_CLK Sample Edge  
Clock Width  
2.5  
ns  
ns  
ns  
ns  
ns  
ns  
1
tHPHOLD  
2.5  
1
tPDSD  
3.85  
1
tPDHD  
2.5  
tPDCLKW  
tPDCLK  
(tPCLK × 4) ÷ 2 – 3  
tPCLK × 4  
Clock Period  
Switching Characteristics  
tPDHLDD Delay of PDAP Strobe After Last PDAP_CLK Capture Edge for a Word  
tPDSTRB PDAP Strobe Pulse Width  
2 × tPCLK + 3  
2 × tPCLK – 1  
ns  
ns  
1 Data Source pins are DATA31–12, or DAI pins. Source pins for SCLK and FS are: 1) DATA11–10 pins, 2) DAI pins.  
SAMPLE EDGE  
tPDCLK  
tPDCLKW  
DAI_P20–1  
(PDAP_CLK)  
tHPHOLD  
tSPHOLD  
DAI_P20–1  
(PDAP_HOLD)  
tPDHD  
tPDSD  
DAI_P20–1/  
ADDR23–4  
(PDAP_DATA)  
tPDHLDD  
tPDSTRB  
DAI_P20–1  
(PDAP_STROBE)  
Figure 27. PDAP Timing  
Rev. G  
|
Page 40 of 62  
|
September 2017  
 
ADSP-21367/ADSP-21368/ADSP-21369  
Pulse-Width Modulation Generators  
Table 34. PWM Timing  
Parameter  
Min  
Max  
Unit  
Switching Characteristics  
tPWMW  
tPWMP  
PWM Output Pulse Width  
PWM Output Period  
tPCLK – 2  
(216 – 2) × tPCLK  
(216 – 1) × tPCLK  
ns  
ns  
2 × tPCLK – 1.5  
tPWMW  
PWM  
OUTPUTS  
tPWMP  
Figure 28. PWM Timing  
Sample Rate Converter—Serial Input Port  
The SRC input signals SCLK, frame sync (FS), and SDATA are  
routed from the DAI_P20–1 pins using the SRU. Therefore, the  
timing specifications provided in Table 35 are valid at the  
DAI_P20–1 pins.  
Table 35. SRC, Serial Input Port  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
1
tSRCSFS  
FS Setup Before SCLK Rising Edge  
FS Hold After SCLK Rising Edge  
SDATA Setup Before SCLK Rising Edge  
SDATA Hold After SCLK Rising Edge  
Clock Width  
4
ns  
ns  
ns  
ns  
ns  
ns  
1
tSRCHFS  
5.5  
4
1
tSRCSD  
1
tSRCHD  
tSRCCLKW  
tSRCCLK  
5.5  
(tPCLK × 4) ÷ 2 – 1  
tPCLK × 4  
Clock Period  
1
DATA, SCLK, FS can come from any of the DAI pins. SCLK and FS can also come via PCG or SPORTs. PCG’s input can be either CLKIN or any of the DAI pins.  
Rev. G  
|
Page 41 of 62  
|
September 2017  
 
ADSP-21367/ADSP-21368/ADSP-21369  
SAMPLE EDGE  
tSRCCLK  
DAI_P20–1  
(SCLK)  
tSRCCLKW  
tSRCSFS  
tSRCHFS  
DAI_P20–1  
(FS)  
tSRCSD  
tSRCHD  
DAI_P20–1  
(SDATA)  
Figure 29. SRC Serial Input Port Timing  
Rev. G  
|
Page 42 of 62  
|
September 2017  
ADSP-21367/ADSP-21368/ADSP-21369  
and delay specification with regard to SCLK. Note that SCLK  
rising edge is the sampling edge and the falling edge is the  
drive edge.  
Sample Rate Converter—Serial Output Port  
For the serial output port, the frame-sync is an input and it  
should meet setup and hold times with regard to SCLK on the  
output port. The serial data output, SDATA, has a hold time  
Table 36. SRC, Serial Output Port  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
1
tSRCSFS  
FS Setup Before SCLK Rising Edge  
FS Hold After SCLK Rising Edge  
Clock Width  
4
ns  
ns  
ns  
ns  
1
tSRCHFS  
tSRCCLKW  
tSRCCLK  
5.5  
(tPCLK × 4) ÷ 2 – 1  
tPCLK × 4  
Clock Period  
Switching Characteristics  
1
tSRCTDD  
Transmit Data Delay After SCLK Falling Edge  
Transmit Data Hold After SCLK Falling Edge  
9.9  
ns  
ns  
1
tSRCTDH  
1
1
DATA, SCLK, and FS can come from any of the DAI pins. SCLK and FS can also come via PCG or SPORTs. PCG’s input can be either CLKIN or any of the DAI pins.  
SAMPLE EDGE  
tSRCCLK  
DAI_P20–1  
(SCLK)  
tSRCCLKW  
tSRCSFS  
tSRCHFS  
DAI_P20–1  
(FS)  
tSRCTDD  
tSRCTDH  
DAI_P20–1  
(SDATA)  
Figure 30. SRC Serial Output Port Timing  
Rev. G  
|
Page 43 of 62  
|
September 2017  
ADSP-21367/ADSP-21368/ADSP-21369  
S/PDIF Transmitter—Serial Input Waveforms  
S/PDIF Transmitter  
Figure 31 shows the right-justified mode. LRCLK is high for the  
left channel and low for the right channel. Data is valid on the  
rising edge of SCLK. The MSB is delayed 12-bit clock periods  
(in 20-bit output mode) or 16-bit clock periods (in 16-bit output  
Serial data input to the S/PDIF transmitter can be formatted as  
left justified, I2S, or right justified with word widths of 16, 18, 20,  
or 24 bits. The following sections provide timing for the  
transmitter.  
mode) from an LRCLK transition, so that when there are 64  
SCLK periods per LRCLK period, the LSB of the data is right-  
justified to the next LRCLK transition.  
LEFT/RIGHT CHANNEL  
DAI_P20–1  
FS  
DAI_P20–1  
SCLK  
tRJD  
DAI_P20–1  
LSB  
MSB  
MSB–1 MSB–2  
LSB+2 LSB+1  
LSB  
SDATA  
Figure 31. Right-Justified Mode  
Figure 32 shows the default I2S-justified mode. LRCLK is low  
for the left channel and high for the right channel. Data is valid  
on the rising edge of SCLK. The MSB is left-justified to an  
LRCLK transition but with a single SCLK period delay.  
LEFT/RIGHT CHANNEL  
DAI_P20–1  
FS  
DAI_P20–1  
SCLK  
tI2SD  
DAI_P20–1  
SDATA  
MSB  
MSB–1 MSB–2  
LSB+2 LSB+1  
LSB  
Figure 32. I2S-Justified Mode  
Rev. G  
|
Page 44 of 62  
|
September 2017  
 
 
ADSP-21367/ADSP-21368/ADSP-21369  
Figure 33 shows the left-justified mode. LRCLK is high for the  
left channel and low for the right channel. Data is valid on the  
rising edge of SCLK. The MSB is left-justified to an LRCLK  
transition with no MSB delay.  
DAI_P20–1  
FS  
LEFT/RIGHT CHANNEL  
DAI_P20–1  
SCLK  
tLJD  
DAI_P20–1  
SDATA  
MSB  
MSB–1 MSB–2  
LSB+2 LSB+1  
LSB  
Figure 33. Left-Justified Mode  
S/PDIF Transmitter Input Data Timing  
The timing requirements for the input port are given in  
Table 37. Input signals SCLK, frame sync (FS), and SDATA are  
routed to the DAI_P20–1 pins using the SRU. Therefore, the  
timing specifications provided below are valid at the  
DAI_P20–1 pins.  
Table 37. S/PDIF Transmitter Input Data Timing  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
1
tSISFS  
tSIHFS  
FS Setup Before SCLK Rising Edge  
FS Hold After SCLK Rising Edge  
SDATA Setup Before SCLK Rising Edge  
SDATA Hold After SCLK Rising Edge  
Clock Width  
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
3
1
tSISD  
tSIHD  
3
1
3
tSISCLKW  
tSISCLK  
tSITXCLKW  
tSITXCLK  
36  
80  
9
Clock Period  
Transmit Clock Width  
Transmit Clock Period  
20  
1
DATA, SCLK, and FS can come from any of the DAI pins. SCLK and FS can also come via PCG or SPORTs. PCG’s input can be either CLKIN or any of the DAI pins.  
Rev. G  
|
Page 45 of 62  
|
September 2017  
 
 
ADSP-21367/ADSP-21368/ADSP-21369  
SAMPLE EDGE  
tSITXCLKW  
tSITXCLK  
DAI_P20–1  
(TxCLK)  
tSISCLK  
tSISCLKW  
DAI_P20–1  
(SCLK)  
tSISFS  
tSIHFS  
DAI_P20–1  
(FS)  
tSISD  
tSIHD  
DAI_P20–1  
(SDATA)  
Figure 34. S/PDIF Transmitter Input Timing  
Rev. G  
|
Page 46 of 62  
|
September 2017  
ADSP-21367/ADSP-21368/ADSP-21369  
Oversampling Clock (TxCLK) Switching Characteristics  
The S/PDIF transmitter has an oversampling clock. This TxCLK  
input is divided down to generate the biphase clock.  
Table 38. Oversampling Clock (TxCLK) Switching Characteristics  
Parameter  
Min  
Max  
Unit  
MHz  
MHz  
kHz  
TxCLK Frequency for TxCLK = 384 × FS  
TxCLK Frequency for TxCLK = 256 × FS  
Frame Rate (FS)  
Oversampling Ratio × FS <= 1/tSITXCLK  
49.2  
192.0  
S/PDIF Receiver  
The following section describes timing as it relates to the  
S/PDIF receiver.  
Internal Digital PLL Mode  
In the internal digital phase-locked loop mode the internal PLL  
(digital PLL) generates the 512 × FS clock.  
Table 39. S/PDIF Receiver Internal Digital PLL Mode Timing  
Parameter  
Min  
Max  
Unit  
Switching Characteristics  
tDFSI  
LRCLK Delay After SCLK  
LRCLK Hold After SCLK  
5
5
ns  
ns  
ns  
ns  
ns  
tHOFSI  
tDDTI  
tHDTI  
–2  
Transmit Data Delay After SCLK  
Transmit Data Hold After SCLK  
Transmit SCLK Width  
–2  
40  
1
tSCLKIW  
1 SCLK frequency is 64 × FS where FS = the frequency of LRCLK.  
DRIVE EDGE  
SAMPLE EDGE  
tSCLKIW  
DAI_P20–1  
(SCLK)  
tDFSI  
tHOFSI  
DAI_P20–1  
(FS)  
tDDTI  
tHDTI  
DAI_P20–1  
(DATA CHANNEL  
A/B)  
Figure 35. S/PDIF Receiver Internal Digital PLL Mode Timing  
Rev. G  
|
Page 47 of 62  
|
September 2017  
ADSP-21367/ADSP-21368/ADSP-21369  
SPI Interface—Master  
The processors contain two SPI ports. The primary has dedi-  
cated pins and the secondary is available through the DPI. The  
timing provided in Table 40 and Table 41 applies  
to both.  
Table 40. SPI Interface Protocol—Master Switching and Timing Specifications  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tSSPIDM  
tHSPIDM  
Switching Characteristics  
Data Input Valid to SPICLK Edge (Data Input Setup Time)  
8.2  
2
ns  
ns  
SPICLK Last Sampling Edge to Data Input Not Valid  
tSPICLKM  
tSPICHM  
tSPICLM  
tDDSPIDM  
tHDSPIDM  
tSDSCIM  
tHDSM  
Serial Clock Cycle  
8 × tPCLK – 2  
4 × tPCLK – 2  
4 × tPCLK – 2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Serial Clock High Period  
Serial Clock Low Period  
SPICLK Edge to Data Out Valid (Data Out Delay Time)  
SPICLK Edge to Data Out Not Valid (Data Out Hold Time)  
DPI Pin (SPI Device Select) Low to First SPICLK Edge  
Last SPICLK Edge to DPI Pin (SPI Device Select) High  
Sequential Transfer Delay  
2.5  
4 × tPCLK – 2  
4 × tPCLK – 2  
4 × tPCLK – 2  
4 × tPCLK – 1  
tSPITDM  
DPI  
(OUTPUT)  
tSDSCIM  
tSPICHM  
tSPICLM  
tSPICLKM  
tHDSM  
tSPITDM  
SPICLK  
(CP = 0,  
CP = 1)  
(OUTPUT)  
tHDSPIDM  
tDDSPIDM  
MOSI  
(OUTPUT)  
tSSPIDM  
tHSPIDM  
tSSPIDM  
CPHASE = 1  
tHSPIDM  
MISO  
(INPUT)  
tDDSPIDM  
tHDSPIDM  
MOSI  
(OUTPUT)  
tSSPIDM  
tHSPIDM  
CPHASE = 0  
MISO  
(INPUT)  
Figure 36. SPI Master Timing  
Rev. G  
|
Page 48 of 62  
|
September 2017  
 
ADSP-21367/ADSP-21368/ADSP-21369  
SPI Interface—Slave  
Table 41. SPI Interface Protocol—Slave Switching and Timing Specifications  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tSPICLKS  
tSPICHS  
tSPICLS  
tSDSCO  
tHDS  
Serial Clock Cycle  
4 × tPCLK – 2  
2 × tPCLK – 2  
2 × tPCLK – 2  
2 × tPCLK  
2 × tPCLK  
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Serial Clock High Period  
Serial Clock Low Period  
SPIDS Assertion to First SPICLK Edge, CPHASE = 0 or CPHASE = 1  
Last SPICLK Edge to SPIDS Not Asserted, CPHASE = 0  
Data Input Valid to SPICLK Edge (Data Input Setup Time)  
SPICLK Last Sampling Edge to Data Input Not Valid  
SPIDS Deassertion Pulse Width (CPHASE = 0)  
tSSPIDS  
tHSPIDS  
tSDPPW  
2
2 × tPCLK  
Switching Characteristics  
tDSOE  
tDSOE  
SPIDS Assertion to Data Out Active  
0
0
0
0
6.8  
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
SPIDS Assertion to Data Out Active (SPI2)  
tDSDHI  
SPIDS Deassertion to Data High Impedance  
6.8  
8.6  
9.5  
1
tDSDHI  
SPIDS Deassertion to Data High Impedance (SPI2)  
SPICLK Edge to Data Out Valid (Data Out Delay Time)  
SPICLK Edge to Data Out Not Valid (Data Out Hold Time)  
SPIDS Assertion to Data Out Valid (CPHASE = 0)  
tDDSPIDS  
tHDSPIDS  
tDSOV  
2 × tPCLK  
5 × tPCLK  
1 The timing for these parameters applies when the SPI is routed through the signal routing unit. For more information, see the processor hardware reference, “Serial Peripheral  
Interface Port” chapter.  
SPIDS  
(INPUT)  
tSPICHS  
tSPICLS  
tSPICLKS  
tHDS  
tSDPPW  
SPICLK  
(CP = 0,  
CP = 1)  
(INPUT)  
tSDSCO  
tDSOE  
tDSDHI  
tHDSPIDS  
tDDSPIDS  
tDDSPIDS  
MISO  
(OUTPUT)  
tSSPIDS tHSPIDS  
CPHASE = 1  
MOSI  
(INPUT)  
tHDSPIDS  
tDSDHI  
MISO  
(OUTPUT)  
tDSOV  
tHSPIDS  
CPHASE = 0  
tSSPIDS  
MOSI  
(INPUT)  
Figure 37. SPI Slave Timing  
Rev. G  
|
Page 49 of 62  
|
September 2017  
ADSP-21367/ADSP-21368/ADSP-21369  
JTAG Test Access Port and Emulation  
Table 42. JTAG Test Access Port and Emulation  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tTCK  
TCK Period  
tCK  
5
ns  
ns  
ns  
ns  
ns  
ns  
tSTAP  
tHTAP  
TDI, TMS Setup Before TCK High  
TDI, TMS Hold After TCK High  
System Inputs Setup Before TCK High  
System Inputs Hold After TCK High  
TRST Pulse Width  
6
1
tSSYS  
tHSYS  
7
1
18  
4tCK  
tTRSTW  
Switching Characteristics  
tDTDO TDO Delay from TCK Low  
System Outputs Delay After TCK Low  
7
ns  
ns  
2
tDSYS  
tCK ÷ 2 + 7  
1 System Inputs = AD15–0, SPIDS, CLK_CFG1–0, RESET, BOOT_CFG1–0, MISO, MOSI, SPICLK, DAI_Px, FLAG3–0.  
2 System Outputs = MISO, MOSI, SPICLK, DAI_Px, AD15–0, RD, WR, FLAG3–0, EMU.  
tTCK  
TCK  
tSTAP  
tHTAP  
TMS  
TDI  
tDTDO  
TDO  
tSSYS  
tHSYS  
SYSTEM  
INPUTS  
tDSYS  
SYSTEM  
OUTPUTS  
Figure 38. IEEE 1149.1 JTAG Test Access Port  
Rev. G  
|
Page 50 of 62  
|
September 2017  
 
ADSP-21367/ADSP-21368/ADSP-21369  
OUTPUT DRIVE CURRENTS  
TEST CONDITIONS  
Figure 39 shows typical I-V characteristics for the output driv-  
ers and Figure 40 shows typical I-V characteristics for the  
SDCLK output drivers. The curves represent the current drive  
capability of the output drivers as a function of output voltage.  
The ac signal specifications (timing parameters) appear in  
Table 14 through Table 42. These include output disable time,  
output enable time, and capacitive loading. The timing specifi-  
cations for the SHARC apply for the voltage reference levels in  
Figure 41.  
Timing is measured on signals when they cross the 1.5 V level as  
described in Figure 41. All delays (in nanoseconds) are mea-  
sured between the point that the first signal reaches 1.5 V and  
the point that the second signal reaches 1.5 V.  
40  
VOH  
30  
3.3V, 25°C  
20  
3.47V, -45°C  
10  
0
3.11V, 125°C  
INPUT  
OR  
3.11V, 105°C  
1.5V  
1.5V  
OUTPUT  
-
10  
20  
30  
40  
3.11V, 125°C  
3.11V, 105°C  
-
3.3V, 25°C  
Figure 41. Voltage Reference Levels for AC Measurements  
VOL  
-
3.47V,  
-
45°C  
CAPACITIVE LOADING  
-
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
Output delays and holds are based on standard capacitive loads  
of an average of 6 pF on all pins (see Figure 42). Figure 47 and  
Figure 48 show graphically how output delays and holds vary  
with load capacitance. The graphs of Figure 43 through  
Figure 48 may not be linear outside the ranges shown for Typi-  
cal Output Delay vs. Load Capacitance and Typical Output Rise  
Time (20% to 80%, V = Min) vs. Load Capacitance.  
SWEEP (VDDEXT) VOLTAGE (V)  
Figure 39. Typical Drive at Junction Temperature  
75  
60  
V
OH  
3.47V,  
-
45°C  
45  
30  
15  
3.3V, 25°C  
TESTER PIN ELECTRONICS  
3.13V, 125°C  
3.13V, 105°C  
1.5V  
0
15  
30  
45  
60  
T1  
DUT  
-
-
-
-
-
-
OUTPUT  
45Ω  
3.13V, 125°C  
3.13V, 105°C  
70Ω  
ZO = 50Ω (impedance)  
TD = 4.04 1.18 ns  
50Ω  
3.3V, 2 5°C  
3.47V, 45°C  
0.5pF  
75  
90  
4pF  
2pF  
-
V
OL  
400Ω  
-105  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
SWEEP (V  
) VOLTAGE (V)  
D DEXT  
NOTES:  
Figure 40. SDCLK1–0 Drive at Junction Temperature  
THE WORST CASE TRANSMISSION LINE DELAY IS SHOWN AND CAN BE USED  
FOR THE OUTPUT TIMING ANALYSIS TO REFELECT THE TRANSMISSION LINE  
EFFECT AND MUST BE CONSIDERED.THE TRANSMISSION LINE (TD), IS FOR  
LOAD ONLY AND DOES NOT AFFECT THE DATA SHEET TIMING SPECIFICATIONS.  
ANALOG DEVICES RECOMMENDS USING THE IBIS MODEL TIMING FOR A GIVEN  
SYSTEM REQUIREMENT. IF NECESSARY, A SYSTEM MAY INCORPORATE  
EXTERNAL DRIVERS TO COMPENSATE FOR ANY TIMING DIFFERENCES.  
Figure 42. Equivalent Device Loading for AC Measurements  
(Includes All Fixtures)  
Rev. G  
|
Page 51 of 62  
|
September 2017  
 
 
 
 
ADSP-21367/ADSP-21368/ADSP-21369  
12  
10  
8
RISE  
RISE  
10  
FALL  
y = 0.049x + 1.5105  
y = 0.0372x + 0.228  
8
6
4
2
6
FALL  
y = 0.0482x + 1.4604  
4
y = 0.0277x + 0.369  
2
0
0
0
50  
100  
150  
200  
250  
0
50  
100  
150  
200  
250  
LOAD CAPACITANCE (pF)  
LOAD CAPACITANCE (pF)  
Figure 43. Typical Output Rise/Fall Time  
(20% to 80%, VDDEXT = Min)  
Figure 45. SDCLK Typical Output Rise/Fall Time  
(20% to 80%, VDDEXT = Min)  
12  
10  
10  
8
RISE  
RISE  
y = 0.0467x + 1.6323  
y = 0.0364x + 0.197  
FALL  
8
6
FALL  
6
4
y = 0.045x + 1.524  
4
y = 0.0259x + 0.311  
2
2
0
0
50  
100  
150  
200  
250  
0
0
50  
100  
150  
200  
250  
LOAD CAPACITANCE (pF)  
LOAD CAPACITANCE (pF)  
Figure 44. Typical Output Rise/Fall Time  
(20% to 80%, VDDEXT = Max)  
Figure 46. SDCLK Typical Output Rise/Fall Time  
(20% to 80%, VDDEXT = Max)  
Rev. G  
|
Page 52 of 62  
|
September 2017  
ADSP-21367/ADSP-21368/ADSP-21369  
To determine the junction temperature of the device while on  
the application PCB, use:  
10  
8
TJ = TTOP + JT PD  
6
where:  
y = 0.0488x  
-
1.5923  
TJ = junction temperature (C)  
4
T
TOP = case temperature (C) measured at the top center of the  
2
0
package  
JT = junction-to-top (of package) characterization parameter is  
the typical value from Table 43 and Table 44.  
-
2
4
PD = power dissipation (see Engineer-to-Engineer Note EE-299)  
Values of JA are provided for package comparison and PCB  
design considerations. JA can be used for a first-order approxi-  
mation of TJ by the equation:  
-
0
50  
100  
150  
200  
LOAD CAPACITANCE (pF)  
TJ = TA + JA PD  
Figure 47. Typical Output Delay or Hold vs. Load Capacitance  
(at Junction Temperature)  
where:  
TA = ambient temperature (C)  
8
Values of JC are provided for package comparison and PCB  
design considerations when an external heat sink is required.  
This is only applicable when a heat sink is used.  
6
y = 0.0256x  
-0.021  
Values of JB are provided for package comparison and PCB  
design considerations. The thermal characteristics values pro-  
vided in Table 43 and Table 44 are modeled values @ 2 W.  
4
2
0
2
Table 43. Thermal Characteristics for 256-Ball BGA_ED  
Parameter  
JA  
JMA  
JMA  
JC  
JB  
JT  
JMT  
JMT  
Condition  
Typical  
12.5  
10.6  
9.9  
Unit  
Airflow = 0 m/s  
Airflow = 1 m/s  
Airflow = 2 m/s  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
-
0
50  
100  
LOAD CAPACITANCE (pF)  
150  
200  
0.7  
5.3  
Airflow = 0 m/s  
Airflow = 1 m/s  
Airflow = 2 m/s  
0.3  
Figure 48. SDCLK Typical Output Delay or Hold vs. Load Capacitance  
(at Junction Temperature)  
0.3  
0.3  
THERMAL CHARACTERISTICS  
Table 44. Thermal Characteristics for 208-Lead LQFP EPAD  
(With Exposed Pad Soldered to PCB)  
The ADSP-21367/ADSP-21368/ADSP-21369 processors are  
rated for performance over the temperature range specified in  
Operating Conditions.  
Table 43 and Table 44 airflow measurements comply with  
JEDEC standards JESD51-2 and JESD51-6 and the junction-to-  
board measurement complies with JESD51-8. Test board design  
complies with JEDEC standards JESD51-9 (BGA_ED) and  
JESD51-8 (LQFP_EP). The junction-to-case measurement com-  
plies with MIL-STD-883. All measurements use a 2S2P JEDEC  
test board.  
Parameter  
JA  
Condition  
Typical  
17.1  
14.7  
14.0  
9.6  
Unit  
Airflow = 0 m/s  
Airflow = 1 m/s  
Airflow = 2 m/s  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
JMA  
JMA  
JC  
JT  
Airflow = 0 m/s  
Airflow = 1 m/s  
Airflow = 2 m/s  
Airflow = 0 m/s  
Airflow = 1 m/s  
Airflow = 2 m/s  
0.23  
0.39  
0.45  
11.5  
11.2  
11.0  
JMT  
JMT  
JB  
JMB  
JMB  
The LQFP-EP package requires thermal trace squares and ther-  
mal vias, to an embedded ground plane, in the PCB. Refer to  
JEDEC standard JESD51-5 for more information.  
Rev. G  
|
Page 53 of 62  
|
September 2017  
 
 
ADSP-21367/ADSP-21368/ADSP-21369  
256-BALL BGA_ED PINOUT  
The following table shows the ADSP-2136x’s pin names and  
their default function after reset (in parentheses).  
Table 45. 256-Ball BGA_ED Pin Assignment (Numerically by Ball Number)  
Ball No. Signal  
Ball No.  
B01  
B02  
B03  
B04  
B05  
B06  
B07  
B08  
B09  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
F01  
F02  
F03  
F04  
F17  
F18  
F19  
F20  
K01  
K02  
K03  
K04  
K17  
K18  
K19  
K20  
Signal  
DAI_P05 (SD1A)  
SDCLK11  
Ball No.  
C01  
Signal  
DAI_P09 (SD2A)  
DAI_P07 (SCLK1)  
GND  
Ball No.  
D01  
D02  
D03  
D04  
D05  
D06  
D07  
D08  
D09  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
H01  
H02  
H03  
H04  
H17  
H18  
H19  
H20  
M01  
M02  
M03  
M04  
M17  
M18  
M19  
M20  
Signal  
DAI_P10 (SD2B)  
DAI_P06 (SD1B)  
GND  
A01  
A02  
A03  
A04  
A05  
A06  
A07  
A08  
A09  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
E01  
E02  
E03  
E04  
E17  
E18  
E19  
E20  
J01  
NC  
TDI  
C02  
TMS  
TRST  
C03  
CLK_CFG0  
CLK_CFG1  
EMU  
TCK  
C04  
VDDEXT  
VDDEXT  
BOOT_CFG0  
BOOT_CFG1  
TDO  
C05  
GND  
GND  
C06  
GND  
VDDEXT  
DAI_P04 (SFS0)  
DAI_P01 (SD0A)  
DPI_P14 (TIMER1)  
DPI_P12 (TWI_CLK)  
DPI_P10 (UART0RX)  
DPI_P09 (UART0TX)  
DPI_P07 (SPIFLG2)  
DPI_P06 (SPIFLG1)  
DPI_P03 (SPICLK)  
DPI_P02 (SPIMISO)  
RESETOUT  
DATA31  
C07  
VDDINT  
VDDINT  
DAI_P03 (SCLK0)  
DAI_P02 (SD0B)  
DPI_P13 (TIMER0)  
C08  
GND  
GND  
C09  
GND  
VDDEXT  
C10  
VDDINT  
VDDINT  
DPI_P11 (TWI_DATA) C11  
GND  
GND  
DPI_P08 (SPIFLG3)  
DPI_P05 (SPIFLG0)  
DPI_P04 (SPIDS)  
DPI_P01 (SPIMOSI)  
RESET  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
G01  
G02  
G03  
G04  
G17  
G18  
G19  
G20  
L01  
L02  
L03  
L04  
L17  
L18  
L19  
L20  
GND  
VDDEXT  
VDDINT  
VDDINT  
GND  
GND  
GND  
VDDEXT  
VDDINT  
GND  
DATA30  
VDDINT  
VDDEXT  
DATA29  
VDDINT  
GND  
NC  
DATA28  
DATA27  
NC/RPBA2  
DAI_P15 (SD4A)  
DAI_P13 (SCLK3)  
GND  
DATA26  
DATA24  
DAI_P17 (SD5A)  
DAI_P16 (SD4B)  
VDDINT  
NC  
NC  
DAI_P11 (SD3A)  
DAI_P08 (SFS1)  
VDDINT  
DAI_P14 (SFS3)  
DAI_P12 (SD3B)  
GND  
VDDINT  
GND  
VDDEXT  
VDDINT  
GND  
VDDEXT  
VDDINT  
VDDEXT  
GND  
GND  
GND/ID22  
VDDINT  
GND  
DATA25  
DATA22  
DATA20  
FLAG2  
FLAG1  
VDDINT  
DATA19  
DATA18  
ACK  
DATA23  
DATA21  
DAI_P19 (SCLK5)  
DAI_P18 (SD5B)  
GND  
FLAG0  
J02  
DAI_P20 (SFS5)  
GND  
FLAG3  
GND  
J03  
J04  
GND  
VDDEXT  
VDDINT  
GND  
J17  
GND  
VDDINT  
VDDINT  
VDDEXT  
J18  
GND  
GND/ID12  
VDDINT  
GND/ID02  
VDDINT  
GND  
J19  
DATA15  
DATA14  
DATA12  
DATA13  
J20  
DATA17  
DATA16  
Rev. G  
|
Page 54 of 62  
|
September 2017  
ADSP-21367/ADSP-21368/ADSP-21369  
Table 45. 256-Ball BGA_ED Pin Assignment (Numerically by Ball Number) (Continued)  
Ball No. Signal  
Ball No.  
P01  
P02  
P03  
P04  
P17  
P18  
P19  
P20  
V01  
V02  
V03  
V04  
V05  
V06  
V07  
V08  
V09  
V10  
V11  
V12  
V13  
V14  
V15  
V16  
V17  
V18  
V19  
V20  
Signal  
SDA10  
WR  
Ball No.  
R01  
Signal  
SDWE  
Ball No.  
T01  
T02  
T03  
T04  
T17  
T18  
T19  
T20  
Y01  
Y02  
Y03  
Y04  
Y05  
Y06  
Y07  
Y08  
Y09  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
Signal  
SDCKE  
SDCAS  
GND  
N01  
N02  
N03  
N04  
N17  
N18  
N19  
N20  
U01  
U02  
U03  
U04  
U05  
U06  
U07  
U08  
U09  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
U18  
U19  
U20  
RD  
SDCLK0  
GND  
VDDEXT  
GND  
GND  
DATA11  
DATA10  
MS0  
R02  
SDRAS  
GND  
VDDINT  
R03  
VDDINT  
R04  
GND  
VDDEXT  
VDDINT  
R17  
VDDEXT  
GND  
VDDINT  
R18  
GND  
GND  
DATA8  
DATA9  
ADDR22  
ADDR23  
VDDINT  
R19  
DATA6  
DATA7  
GND  
DATA5  
DATA4  
GND  
R20  
W01  
W02  
W03  
W04  
W05  
W06  
W07  
W08  
W09  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
W17  
W18  
W19  
W20  
MS1  
ADDR21  
ADDR19  
ADDR20  
ADDR17  
ADDR16  
ADDR15  
ADDR14  
AVDD  
NC  
VDDINT  
NC  
GND  
VDDEXT  
GND  
VDDEXT  
VDDINT  
GND  
ADDR18  
NC/BR12  
NC/BR22  
XTAL  
GND  
GND  
GND  
VDDINT  
CLKIN  
NC  
VDDEXT  
GND  
VDDEXT  
VDDINT  
GND  
GND  
AVSS  
NC  
GND  
ADDR13  
ADDR12  
ADDR10  
ADDR8  
ADDR5  
ADDR4  
ADDR1  
ADDR2  
ADDR0  
NC  
NC/BR32  
NC/BR42  
ADDR11  
ADDR9  
ADDR7  
ADDR6  
ADDR3  
GND  
VDDINT  
VDDEXT  
VDDEXT  
VDDINT  
VDDEXT  
GND  
VDDINT  
VDDEXT  
VDDINT  
GND  
GND  
VDDINT  
GND  
DATA0  
DATA2  
DATA1  
GND  
DATA3  
NC  
1 The SDCLK1 signal is only available on the FCBGA package. SDCLK1 is not available on the LQFP_EP package.  
2 Applies to ADSP-21368 models only.  
Rev. G  
|
Page 55 of 62  
|
September 2017  
 
ADSP-21367/ADSP-21368/ADSP-21369  
Figure 49 shows the bottom view of the BGA_ED ball configu-  
ration. Figure 50 shows the top view of the BGA_ED ball  
configuration.  
2
4
6
8
10  
12  
14  
16  
18  
20  
20  
18  
16  
14  
12  
10  
8
6
4
2
1
3
5
7
9
11  
13  
15  
17  
19  
5
3
1
19  
17  
15  
13  
11  
9
7
A
B
A
B
C
D
E
F
G
H
J
C
D
E
F
G
H
J
TOP  
VIEW  
K
L
BOTTOM  
VIEW  
K
L
M
N
P
R
T
U
V
W
Y
M
N
P
R
T
U
V
W
Y
KEY  
KEY  
AVDD  
AVSS  
VDDINT  
I/O SIGNALS  
VDDEXT  
GND  
A
A
VSS  
V
V
VDD  
DDINT  
DDEXT  
GND  
NO CONNECT  
I/O SIGNALS  
NO CONNECT  
Figure 49. 256-Ball BGA_ED Ball Configuration (Bottom View)  
Figure 50. 256-Ball BGA_ED Ball Configuration (Top View)  
Rev. G  
|
Page 56 of 62  
|
September 2017  
 
 
ADSP-21367/ADSP-21368/ADSP-21369  
208-LEAD LQFP_EP PINOUT  
The following table shows the ADSP-2136x’s pin names and  
their default function after reset (in parentheses).  
Table 46. 208-Lead LQFP_EP Pin Assignment (Numerically by Lead Number)  
Lead  
No.  
1
Lead  
No.  
Lead  
No.  
85  
Lead  
No.  
Lead  
No.  
Signal  
VDDINT  
Signal  
VDDINT  
Signal  
VDDEXT  
Signal  
VDDINT  
Signal  
CLK_CFG0  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
161  
162  
163  
164  
165  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
2
DATA28  
DATA27  
GND  
DATA4  
DATA5  
DATA2  
DATA3  
DATA0  
DATA1  
VDDEXT  
86  
GND  
GND  
BOOT_CFG0  
CLK_CFG1  
3
87  
VDDINT  
VDDEXT  
4
88  
ADDR14  
GND  
DAI_P19 (SCLK5)  
DAI_P18 (SD5B)  
DAI_P17 (SD5A)  
DAI_P16 (SD4B)  
DAI_P15 (SD4A)  
DAI_P14 (SFS3)  
DAI_P13 (SCLK3)  
DAI_P12 (SD3B)  
VDDINT  
EMU  
5
VDDEXT  
89  
BOOT_CFG1  
TDO  
6
DATA26  
DATA25  
DATA24  
DATA23  
GND  
90  
VDDEXT  
7
91  
ADDR15  
ADDR16  
ADDR17  
ADDR18  
GND  
DAI_P04 (SFS0)  
DAI_P02 (SD0B)  
DAI_P03 (SCLK0)  
DAI_P01 (SD0A)  
VDDEXT  
8
92  
9
GND  
93  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
VDDINT  
94  
VDDINT  
VDDINT  
95  
DATA22  
DATA21  
DATA20  
VDDEXT  
GND  
96  
VDDEXT  
GND  
VDDEXT  
97  
ADDR19  
ADDR20  
ADDR21  
ADDR23  
ADDR22  
MS1  
VDDEXT  
VDDINT  
ADDR0  
ADDR2  
ADDR1  
ADDR4  
ADDR3  
ADDR5  
GND  
98  
GND  
GND  
99  
VDDINT  
DPI_P14 (TIMER1)  
DPI_P13 (TIMER0)  
DPI_P12 (TWI_CLK)  
DPI_P11 (TWI_DATA)  
DPI_P10 (UART0RX)  
DPI_P09 (UART0TX)  
DPI_P08 (SPIFLG3)  
DPI_P07 (SPIFLG2)  
VDDEXT  
GND  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
GND  
DATA19  
DATA18  
VDDINT  
DAI_P11 (SD3A)  
DAI_P10 (SD2B)  
DAI_P08 (SFS1)  
DAI_P09 (SD2A)  
DAI_P06 (SD1B)  
DAI_P07 (SCLK1)  
DAI_P05 (SD1A)  
VDDEXT  
MS0  
GND  
VDDINT  
DATA17  
VDDINT  
VDDINT  
VDDINT  
GND  
GND  
GND  
VDDEXT  
VDDEXT  
VDDINT  
ADDR6  
ADDR7  
ADDR8  
ADDR9  
ADDR10  
GND  
SDCAS  
SDRAS  
SDCKE  
SDWE  
WR  
GND  
GND  
GND  
VDDINT  
DATA16  
DATA15  
DATA14  
DATA13  
DATA12  
VDDEXT  
VDDINT  
GND  
GND  
DPI_P06 (SPIFLG1)  
DPI_P05 (SPIFLG0)  
DPI_P04 (SPIDS)  
DPI_P03 (SPICLK)  
DPI_P01 (SPIMOSI)  
DPI_P02 (SPIMISO)  
RESETOUT  
VDDINT  
SDA10  
GND  
GND  
VDDINT  
VDDINT  
GND  
VDDEXT  
VDDINT  
GND  
VDDEXT  
SDCLK0  
GND  
VDDINT  
VDDINT  
ADDR11  
ADDR12  
ADDR13  
GND  
GND  
GND  
VDDINT  
VDDINT  
RESET  
DATA11  
DATA10  
DATA9  
DATA8  
DATA7  
RD  
VDDINT  
VDDEXT  
ACK  
VDDINT  
GND  
VDDINT  
FLAG3  
FLAG2  
FLAG1  
TDI  
DATA30  
AVSS  
TRST  
DATA31  
AVDD  
TCK  
DATA29  
Rev. G  
|
Page 57 of 62  
|
September 2017  
ADSP-21367/ADSP-21368/ADSP-21369  
Table 46. 208-Lead LQFP_EP Pin Assignment (Numerically by Lead Number) (Continued)  
Lead  
No.  
40  
41  
42  
Lead  
No.  
82  
83  
84  
Lead  
No.  
124  
125  
126  
Lead  
No.  
166  
Lead  
No.  
208  
Signal  
DATA6  
VDDEXT  
Signal  
GND  
Signal  
FLAG0  
Signal  
GND  
VDDINT  
Signal  
VDDINT  
CLKIN  
XTAL  
DAI_P20 (SFS5) 167  
GND 168  
GND  
TMS  
Rev. G  
|
Page 58 of 62  
|
September 2017  
ADSP-21367/ADSP-21368/ADSP-21369  
PACKAGE DIMENSIONS  
The ADSP-21367/ADSP-21368/ADSP-21369 processors are  
available in 256-ball RoHS compliant and leaded BGA_ED, and  
208-lead RoHS compliant LQFP_EP packages.  
30.20  
30.00 SQ  
29.80  
25.50  
REF  
28.10  
28.00 SQ  
27.90  
1.60 MAX  
0.75  
0.60  
8.712  
REF  
0.45  
208  
157  
156  
157  
156  
208  
1
1
1.00 REF  
PIN 1  
SEATING  
PLANE  
8.890  
REF  
TOP VIEW  
(PINS DOWN)  
EXPOSED  
PAD  
1.45  
1.40  
1.35  
0.20  
0.15  
0.09  
0.15  
0.10  
0.05  
7°  
3.5°  
0°  
BOTTOM VIEW  
(PINS UP)  
0.08  
COPLANARITY  
105  
104  
105  
104  
52  
52  
53  
53  
VIEW A  
0.27  
0.22  
0.17  
VIEW A  
ROTATED 90° CCW  
0.50  
BSC  
LEAD PITCH  
COMPLIANT TO JEDEC STANDARDS MS-026-BJB-HD  
NOTE:  
THE EXPOSED PAD IS REQUIRED TO BE ELECTRICALLY AND THERMALLY CONNECTED TO VSS.  
THIS SHOULD BE IMPLEMENTED BY SOLDERING THE EXPOSED PAD TO A VSS PCB LAND THAT IS THE SAME SIZE  
AS THE EXPOSED PAD.THE VSS PCB LAND SHOULD BE ROBUSTLY CONNECTED TO THE VSS PLANE IN THE PCB  
WITH AN ARRAY OF THERMAL VIAS FOR BEST PERFORMANCE.  
Figure 51. 208-Lead Low Profile Quad Flat Package, Exposed Pad [LQFP_EP]  
(SW-208-1)  
Dimensions shown in millimeters  
Rev. G  
|
Page 59 of 62  
|
September 2017  
ADSP-21367/ADSP-21368/ADSP-21369  
27.10  
27.00 SQ  
26.90  
A1 BALL  
A1 BALL  
PAD CORNER  
PAD CORNER  
20  
18  
16  
14  
12  
10  
8
6
4
2
3 1  
19  
17  
15  
13  
11  
9
7
5
A
C
E
G
J
B
D
F
H
K
M
P
T
21.00 REF  
SQ  
24.13 REF  
SQ  
L
N
R
U
1.27  
BSC  
V
W
Y
TOP VIEW  
BOTTOM VIEW  
1.30 REF  
1.44 REF  
19.00  
DETAIL A  
2.84  
2.65  
2.46  
0.75  
0.65  
0.55  
SIDE VIEW  
0.59 REF  
DETAIL A  
0.91  
0.76  
0.61  
SEATING  
PLANE  
COPLANARITY  
0.20  
BALL DIAMETER  
Figure 52. 256-Ball Ball Grid Array, Thermally Enhanced [BGA_ED]  
(BP-256-2)  
Dimension shown in millimeters  
SURFACE-MOUNT DESIGN  
Table 47 is provided as an aide to PCB design. For industry-  
standard design recommendations, refer to IPC-7351, Generic  
Requirements for Surface-Mount Design and Land Pattern  
Standard.  
Table 47. BGA_ED Data for Use with Surface-Mount Design  
Package  
Ball Attach Type  
Solder Mask Opening  
Ball Pad Size  
256-Lead Ball Grid Array BGA_ED  
(BP-256-2)  
Solder Mask Defined (SMD)  
0.63 mm  
0.73 mm  
Rev. G  
|
Page 60 of 62  
|
September 2017  
 
ADSP-21367/ADSP-21368/ADSP-21369  
AUTOMOTIVE PRODUCTS  
An ADSP-21369 model is available for automotive applications  
with controlled manufacturing. Note that this special model  
may have specifications that differ from the general release  
models.  
The automotive grade product shown in Table 48 is available for  
use in automotive applications. Contact your local ADI account  
representative or authorized ADI product distributor for spe-  
cific product ordering information. Note that all automotive  
products are RoHS compliant.  
Table 48. Automotive Products  
Temperature  
Range1  
Instruction  
Rate  
On-Chip  
SRAM  
Package  
Option  
Model  
ROM  
Package Description  
AD21369WBSWZ1xx  
–40°C to +85°C  
266 MHz  
2M bit  
6M bit  
208-Lead LQFP_EP  
SW-208-1  
1 Referenced temperature is ambient temperature.  
ORDERING GUIDE  
Temperature  
Instruction On-Chip  
Package  
Option  
Model  
Notes  
Range1  
Rate  
SRAM  
2M bit  
2M bit  
2M bit  
2M bit  
2M bit  
2M bit  
2M bit  
2M bit  
2M bit  
2M bit  
2M bit  
2M bit  
2M bit  
2M bit  
2M bit  
2M bit  
2M bit  
ROM  
Package Description  
256-Ball BGA_ED  
256-Ball BGA_ED  
208-Lead LQFP_EP  
208-Lead LQFP_EP  
256-Ball BGA_ED  
256-Ball BGA_ED  
256-Ball BGA_ED  
256-Ball BGA_ED  
256-Ball BGA_ED  
256-Ball BGA_ED  
208-Lead LQFP_EP  
208-Lead LQFP_EP  
208-Lead LQFP_EP  
208-Lead LQFP_EP  
208-Lead LQFP_EP  
208-Lead LQFP_EP  
208-Lead LQFP_EP  
2, 3  
ADSP-21367KBPZ-2A  
ADSP-21367KBPZ-3A  
ADSP-21367KSWZ-1A  
ADSP-21367KSWZ-2A  
ADSP-21368KBPZ-2A  
ADSP-21368KBPZ-3A  
ADSP-21369KBPZ-2A  
ADSP-21369BBP-2A  
ADSP-21369BBPZ-2A  
ADSP-21369KBPZ-3A  
ADSP-21369KSWZ-1A  
ADSP-21369KSWZ-2A  
ADSP-21369KSWZ-4A  
ADSP-21369KSWZ-5A  
ADSP-21369KSWZ-6A  
ADSP-21369BSWZ-1A  
ADSP-21369BSWZ-2A  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
–40°C to +85°C  
–40°C to +85°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
–40°C to +85°C  
–40°C to +85°C  
333 MHz  
400 MHz  
266 MHz  
333 MHz  
333 MHz  
400 MHz  
333 MHz  
333 MHz  
333 MHz  
400 MHz  
266 MHz  
333 MHz  
350 MHz  
366 MHz  
400 MHz  
266 MHz  
333 MHz  
6M bit  
6M bit  
6M bit  
6M bit  
6M bit  
6M bit  
6M bit  
6M bit  
6M bit  
6M bit  
6M bit  
6M bit  
6M bit  
6M bit  
6M bit  
6M bit  
6M bit  
BP-256-2  
BP-256-2  
SW-208-1  
SW-208-1  
BP-256-2  
BP-256-2  
BP-256-2  
BP-256-2  
BP-256-2  
BP-256-2  
SW-208-1  
SW-208-1  
SW-208-1  
SW-208-1  
SW-208-1  
SW-208-1  
SW-208-1  
2, 3  
2, 3  
2, 3  
3
3
3
2
3
3
3
3
3
3
3
3
1 Referenced temperature is ambient temperature.  
2 Available with a wide variety of audio algorithm combinations sold as part of a chipset and bundled with necessary software. For a complete list, visit our website at  
www.analog.com/SHARC.  
3 Z = RoHS Compliant Part.  
Rev. G  
|
Page 61 of 62  
|
September 2017  
 
ADSP-21367/ADSP-21368/ADSP-21369  
©2017 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05267-0-9/17(G)  
Rev. G  
|
Page 62 of 62  
|
September 2017  

相关型号:

ADSP-21369KSZ-1A

SHARC Processors
ADI

ADSP-21369KSZ-ENG

IC 32-BIT, 66.66 MHz, OTHER DSP, PQFP208, LEAD FREE, MS-029FA-1, MQFP-208, Digital Signal Processor
ADI

ADSP-21371

SHARC Processor
ADI

ADSP-21371BSWZ-2B

High-Performance 32-bit Floating-Point SHARC Processor for Automotive Audio
ADI

ADSP-21371BSWZ-2B2

SHARC Processor optimized for high performance audio processing
ADI

ADSP-21371KSWZ-2A

32-BIT, 16.67MHz, OTHER DSP, PQFP208, ROHS COMPLIANT, MS-026BJB-HD, LQFP-208
ADI

ADSP-21371KSWZ-2A2

SHARC Processor optimized for high performance audio processing
ADI

ADSP-21371KSWZ-2B

High-Performance 32-bit Floating-Point SHARC Processor for Automotive Audio
ADI

ADSP-21371KSWZ-2B2

SHARC Processor optimized for high performance audio processing
ADI

ADSP-21371KSZ-ENG

SHARC Processor
ADI

ADSP-21371_07

SHARC㈢ Processor
ADI

ADSP-21371_09

SHARC Processor optimized for high performance audio processing
ADI