ADSP-21371KSWZ-2A [ADI]

32-BIT, 16.67MHz, OTHER DSP, PQFP208, ROHS COMPLIANT, MS-026BJB-HD, LQFP-208;
ADSP-21371KSWZ-2A
型号: ADSP-21371KSWZ-2A
厂家: ADI    ADI
描述:

32-BIT, 16.67MHz, OTHER DSP, PQFP208, ROHS COMPLIANT, MS-026BJB-HD, LQFP-208

时钟 外围集成电路
文件: 总56页 (文件大小:1121K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SHARC Processor  
ADSP-21371/ADSP-21375  
SUMMARY  
DEDICATED AUDIO COMPONENTS  
High performance 32-bit/40-bit floating point processor  
optimized for high performance audio processing  
Single-instruction, multiple-data (SIMD) computational  
architecture  
On-chip memory, ADSP-21371—1M bits of on-chip SRAM  
and 4M bits of on-chip mask-programmable ROM  
On-chip memory, ADSP-21375—0.5M bits of on-chip  
SRAM and 2M bits of on-chip mask-programmable ROM  
ADSP-21371—S/PDIF-compatible digital audio  
receiver/transmitter  
ADSP-21371—8 dual data line serial ports that operate at up  
to 33 Mbps on each data line — each has a clock, frame  
sync, and two data lines that can be configured as either a  
receiver or transmitter pair  
16 PWM outputs configured as four groups of four outputs  
ROM-based security features include  
JTAG access to memory permitted with a 64-bit key  
Protected memory regions that can be assigned to limit  
access under program control to sensitive code  
PLL has a wide variety of software and hardware multi-  
plier/divider ratios  
Code compatible with all other members of the SHARC family  
The ADSP-21371/ADSP-21375 processors are available with a  
200/266 MHz core instruction rate with unique audiocen-  
tric peripherals such as the digital applications interface,  
S/PDIF transceiver, serial ports, precision clock generators,  
and more. For complete ordering information, see Order-  
ing Guide on Page 56.  
Available in a 208-lead LQFP_EP package  
Internal Memory  
SIMD Core  
Block 0  
RAM/ROM  
Block 1  
RAM/ROM  
Block 2  
RAM  
Block 3  
RAM  
Instruction  
Cache  
5 stage  
Sequencer  
B2D  
64-BIT  
B0D  
64-BIT  
B3D  
64-BIT  
B1D  
64-BIT  
S
DAG1/2  
PEx  
Timer  
PEy  
DMD 64-BIT  
PMD 64-BIT  
DMD 64-BIT  
Core Bus  
Cross Bar  
Internal Memory I/F  
PMD 64-BIT  
IODO 32-BIT  
FLAGx/IRQx/  
TMREXP  
EPD BUS 48-BIT  
JTAG  
PERIPHERAL BUS  
32-BIT  
IOD1  
32-BIT  
IOD0 BUS  
MTM/  
DTCP  
PERIPHERAL BUS  
EP  
IDP/  
PDAP  
7-0  
S/PDIF  
Tx/Rx  
CORE PCG  
FLAGS  
TIMER  
PCG  
SPORT  
CORE PWM  
AMI  
TWI  
SPI/B  
UART  
SDRAM  
C
-
D
1-0  
A
-
D
7-0  
FLAGS  
3-0  
DPI Routing/Pins  
External Port Pin MUX  
DAI Routing/Pins  
External  
Port  
DPI Peripherals  
DAI Peripherals  
Peripherals  
Figure 1. Functional Block Diagram  
SHARC and the SHARC logo are registered trademarks of Analog Devices, Inc.  
Rev. D Document Feedback  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 U.S.A.  
Tel: 781.329.4700  
Technical Support  
©2013 Analog Devices, Inc. All rights reserved.  
www.analog.com  
 
 
 
ADSP-21371/ADSP-21375  
TABLE OF CONTENTS  
Summary ............................................................... 1  
Dedicated Audio Components ................................. 1  
General Description ................................................. 3  
SHARC Family Core Architecture ............................ 4  
Family Peripheral Architecture ................................ 6  
I/O Processor Features ......................................... 10  
System Design .................................................... 10  
Development Tools ............................................. 11  
Additional Information ........................................ 12  
Related Signal Chains .......................................... 12  
Pin Function Descriptions ....................................... 13  
ADSP-21371/ADSP-21375 Specifications .................... 16  
Operating Conditions .......................................... 16  
Electrical Characteristics ....................................... 17  
Package Information ............................................ 18  
Maximum Power Dissipation ................................. 18  
Absolute Maximum Ratings ................................... 18  
ESD Sensitivity ................................................... 18  
Timing Specifications ........................................... 18  
Output Drive Currents ......................................... 49  
Test Conditions .................................................. 49  
Capacitive Loading .............................................. 49  
Thermal Characteristics ........................................ 50  
208-Lead LQFP_EP Pinout ....................................... 51  
Package Dimensions ............................................... 55  
Automotive Products .............................................. 56  
Ordering Guide ..................................................... 56  
REVISION HISTORY  
4/13—Rev. C to Rev. D  
Added 1.0 V, 200 MHz specifications to the following timing  
specifications.  
Corrected Extended Precision Normal or Instruction Word  
(48 bits) ADSP-21375 Internal Memory Space .................7  
Clock Input ............................................................21  
Precision Clock Generator (Direct Pin Routing) .............26  
SDRAM Interface Timing ..........................................28  
Memory Read—Bus Master .......................................29  
Memory Write—Bus Master ......................................31  
Serial Ports ............................................................33  
Input Data Port (IDP) ..............................................38  
S/PDIF Transmitter Input Data Timing ........................42  
S/PDIF Receiver ......................................................43  
SPI Interface—Slave .................................................45  
Updated Development Tools ..................................... 11  
Added section Related Signal Chains ...........................12  
Revised MS1-0 pin description in  
Pin Function Descriptions ........................................ 13  
Corrected EMU pin Type from O/T (pu) to O (O/D) (pu) in  
Pin Function Descriptions ........................................ 13  
Corrected TJUNCTION specifications in  
Operating Conditions .............................................. 16  
Added footnote 3 to Table 25 in  
Memory Read—Bus Master ....................................... 29  
Updated Serial Ports timing parameter data in Serial Ports—  
External Clock ....................................................... 33  
Updated Serial Ports timing parameter data in Serial Ports—  
Internal Clock ........................................................ 34  
Changed Max values in Table 33 in Pulse-Width Modulation  
Generators (PWM) ................................................. 40  
Updated timing parameters in Table 37 and in Figure 31 in  
SPI Interface—Master .............................................. 44  
Rev. D  
| Page 2 of 56 | April 2013  
ADSP-21371/ADSP-21375  
GENERAL DESCRIPTION  
The ADSP-21371/ADSP-21375 SHARC® processors are mem-  
bers of the SIMD SHARC family of DSPs that feature Analog  
Devices’ Super Harvard Architecture. The processors are source  
code compatible with the ADSP-2126x, ADSP-2136x, and  
ADSP-2116x DSPs, as well as with first generation ADSP-2106x  
SHARC processors in SISD (single-instruction, single-data)  
mode. The processors are 32-bit/40-bit floating-point proces-  
sors optimized for high performance automotive audio  
applications with their large on-chip SRAM and mask-pro-  
grammable ROM, multiple internal buses to eliminate I/O  
bottlenecks, and an innovative digital applications interface  
(DAI).  
Table 2. ADSP-21371/ADSP-21375 Features (Continued)  
Feature  
ADSP-21371  
ADSP-21375  
Yes  
Digital Peripheral Interface  
(DPI)  
S/PDIF Transceiver  
Yes  
No  
SPI  
2
TWI  
Yes  
208-Lead LQFP_EP  
Package  
As shown in the functional block diagram on Page 1, the pro-  
cessors use two computational units to deliver a significant  
performance increase over the previous SHARC processors on a  
range of DSP algorithms. Fabricated in a state-of-the-art, high  
speed, CMOS process, the processors achieve an instruction  
cycle time of 3.75 ns at 266 MHz. With its SIMD computational  
hardware, the processors can perform 1.596 GFLOPS running  
at 266 MHz.  
The diagram on Page 1 shows the two clock domains that make  
up the ADSP-2137x processors. The core clock domain contains  
the following features:  
• Two processing elements, each of which comprises an  
ALU, multiplier, shifter, and data register file  
• Data address generators (DAG1, DAG2)  
• Program sequencer with instruction cache  
Table 1 shows performance benchmarks for these devices.  
Table 2 shows the features of the individual product offerings.  
• PM and DM buses capable of supporting four 32-bit data  
transfers between memory and the core at every core pro-  
cessor cycle  
Table 1. Processor Benchmarks (at 266 MHz)  
• One periodic interval timer with pinout  
Speed  
• On-chip SRAM (1M bit, ADSP-21371; 0.5M bit,  
ADSP-21375)  
Benchmark Algorithm  
(at 266 MHz)  
1024 Point Complex FFT (Radix 4, With Reversal) 34.5 s  
• On-chip mask-programmable ROM (4M bit, ADSP-21371;  
2M bit, ADSP-21375)  
FIR Filter (per Tap)1  
IIR Filter (per Biquad)1  
1.88 ns  
7.5 ns  
• JTAG test access port for emulation and boundary scan.  
The JTAG provides software debug through user break-  
points which allow flexible exception handling.  
Matrix Multiply (Pipelined)  
[3 × 3] × [3 × 1]  
[4 × 4] × [4 × 1]  
16.91 ns  
30.07 ns  
The diagram on Page 1 also shows the peripheral clock domains  
(also known as the I/O processor) and contains the following  
features:  
Divide (y/x)  
13.1 ns  
20.4 ns  
Inverse Square Root  
1 Assumes two files in multichannel SIMD mode  
• IOD0 (peripheral DMA) and IOD1 (external port DMA)  
buses for 32-bit data transfers  
Table 2. ADSP-21371/ADSP-21375 Features  
• Peripheral and external port bus for core connection  
• Digital applications interface that includes four precision  
clock generators (PCG), an S/PDIF-compatible digital  
audio receiver/transmitter, an input data port (IDP), eight  
serial ports, eight serial interfaces, a 20-bit parallel input  
port (PDAP), and a flexible signal routing unit (DAI SRU).  
Feature  
ADSP-21371  
ADSP-21375  
Frequency  
266 MHz  
(3.75 ns)  
266 MHz  
(3.75 ns)  
RAM  
1M bit  
4M bits  
Yes  
0.5M bit  
2M bits  
No  
• Digital peripheral interface that includes two timers, one  
UART, two serial peripheral interfaces (SPI), a 2-wire  
interface (TWI), and a flexible signal routing unit  
(DPI SRU).  
ROM  
Pulse-Width Modulation  
Serial Ports  
8
4
• External port with AMI and SDRAM controller  
• Four units for PWM control  
UART  
1
Digital Application  
Interface (DAI)  
Yes  
• One MTM for internal to internal memory transfers  
Rev. D  
| Page 3 of 56 | April 2013  
 
ADSP-21371/ADSP-21375  
Entering SIMD mode also has an effect on the way data is trans-  
ferred between memory and the processing elements. When in  
SIMD mode, twice the data bandwidth is required to sustain  
computational operation in the processing elements. Because of  
this requirement, entering SIMD mode also doubles the band-  
width between memory and the processing elements. When  
using the DAGs to transfer data in SIMD mode, two data values  
are transferred with each access of memory or the register file.  
SHARC FAMILY CORE ARCHITECTURE  
The ADSP-21371/ADSP-21375 processors are code compatible  
at the assembly level with the ADSP-2136x, ADSP-2126x,  
ADSP-21160x, and ADSP-21161N, and with the first generation  
ADSP-2106x SHARC processors. The ADSP-21371/  
ADSP-21375 processors share architectural features with the  
ADSP-2126x, ADSP-2136x, and ADSP-2116x SIMD SHARC  
processors, as shown in Figure 2 and detailed in the following  
sections.  
Independent, Parallel Computation Units  
Within each processing element is a set of computational units.  
The computational units consist of an arithmetic/logic unit  
(ALU), multiplier, and shifter. These units perform all opera-  
tions in a single cycle. The three units within each processing  
element are arranged in parallel, maximizing computational  
throughput. Single multifunction instructions execute parallel  
ALU and multiplier operations. In SIMD mode, the parallel  
ALU and multiplier operations occur in both processing ele-  
ments. These computation units support IEEE 32-bit single-  
precision floating-point, 40-bit extended precision floating-  
point, and 32-bit fixed-point data formats.  
SIMD Computational Engine  
The processors contain two computational processing elements  
that operate as a single-instruction, multiple-data (SIMD)  
engine. The processing elements are referred to as PEX and  
PEY, and each contains an ALU, multiplier, shifter, and register  
file. PEX is always active, and PEY may be enabled by setting the  
PEYEN mode bit in the MODE1 register. When this mode is  
enabled, the same instruction is executed in both processing ele-  
ments, but each processing element operates on different data.  
This architecture is efficient at executing math intensive DSP  
algorithms.  
S
JTAG  
FLAG TIMER INTERRUPT CACHE  
SIMD Core  
PM ADDRESS 24  
DMD/PMD 64  
5 STAGE  
PROGRAM SEQUENCER  
PM DATA 48  
DAG2  
16x32  
DAG1  
16x32  
PM ADDRESS 32  
SYSTEM  
I/F  
DM ADDRESS 32  
PM DATA 64  
USTAT  
4x32-BIT  
PX  
64-BIT  
DM DATA 64  
DATA  
SWAP  
RF  
Rx/Fx  
PEx  
RF  
Sx/SFx  
PEy  
ALU  
SHIFTER  
MULTIPLIER  
MULTIPLIER  
ALU  
SHIFTER  
16x40-BIT  
16x40-BIT  
MRB  
80-BIT  
MSB  
80-BIT  
MRF  
80-BIT  
MSF  
80-BIT  
ASTATy  
STYKy  
ASTATx  
STYKx  
Figure 2. SHARC Core Block Diagram  
Rev. D  
| Page 4 of 56 | April 2013  
 
ADSP-21371/ADSP-21375  
processing, and are commonly used in digital filters and Fourier  
transforms. The two DAGs contain sufficient registers to allow  
the creation of up to 32 circular buffers (16 primary register sets,  
16 secondary). The DAGs automatically handle address pointer  
wraparound, reduce overhead, increase performance, and sim-  
plify implementation. Circular buffers can start and end at any  
memory location.  
Data Register File  
Each processing element contains a general-purpose data regis-  
ter file. The register files transfer data between the computation  
units and the data buses, and store intermediate results. These  
10-port, 32-register (16 primary, 16 secondary) register files,  
combined with the SHARC’s enhanced Harvard architecture,  
allow unconstrained data flow between computation units and  
internal memory. The registers in PEX are referred to as  
R0–R15 and in PEY as S0–S15.  
Flexible Instruction Set  
The 48-bit instruction word accommodates a variety of parallel  
operations, for concise programming. For example, the proces-  
sors can conditionally execute a multiply, an add, and a subtract  
in both processing elements while branching and fetching up to  
four 32-bit values from memory—all in a single instruction.  
Context Switch  
Many of the processor’s registers have secondary registers that  
can be activated during interrupt servicing for a fast context  
switch. The data registers in the register file, the DAG registers,  
and the multiplier result register all have secondary registers.  
The primary registers are active at reset, while the secondary  
registers are activated by control bits in a mode control register.  
On-Chip Memory  
The ADSP-21371 processor contains 1 megabit of internal RAM  
and four megabits of internal mask-programmable ROM (see  
Table 3 on Page 6) and the ADSP-21375 processor contains 0.5  
megabits of internal RAM and two megabits of internal mask-  
programmable ROM (see Table 4 on Page 7). Each block can be  
configured for different combinations of code and data storage.  
Each memory block supports single-cycle, independent accesses  
by the core processor and I/O processor. The processor’s mem-  
ory architecture, in combination with its separate on-chip buses,  
allow two data transfers from the core and one from the I/O  
processor, in a single cycle.  
Universal Registers  
Universal registers can be used for general purpose tasks. The  
USTAT (4) registers allow easy bit manipulations (Set, Clear,  
Toggle, Test, XOR) for all system registers (control/status) of  
the core.  
The data bus exchange register PX permits data to be passed  
between the 64-bit PM data bus and the 64-bit DM data bus, or  
between the 40-bit register file and the PM data bus. These reg-  
isters contain hardware to handle the data width difference.  
The ADSP-21371 processor’s SRAM can be configured as a  
maximum of 32k words of 32-bit data, 64k words of 16-bit data,  
21.3k words of 48-bit instructions (or 40-bit data), or combina-  
tions of different word sizes up to 1 megabit. All of the memory  
can be accessed as 16-bit, 32-bit, 48-bit, or 64-bit words. A 16-  
bit floating-point storage format is supported that effectively  
doubles the amount of data that may be stored on-chip. Conver-  
sion between the 32-bit floating-point and 16-bit floating-point  
formats is performed in a single instruction. While each mem-  
ory block can store combinations of code and data, accesses are  
most efficient when one block stores data using the DM bus for  
transfers, and the other block stores instructions and data using  
the PM bus for transfers.  
Timer  
The processors contain a core timer that can generate periodic  
software interrupts. The core timer can be configured to use  
FLAG3 as a timer expired signal.  
Single-Cycle Fetch of an Instruction and Four Operands  
The processors feature an enhanced Harvard architecture in  
which the data memory (DM) bus transfers data and the pro-  
gram memory (PM) bus transfers both instructions and data  
(see Figure 2). With the processor’s separate program and data  
memory buses and on-chip instruction cache, the processor can  
simultaneously fetch four operands (two over each data bus)  
and one instruction (from the cache), all in a single cycle.  
Using the DM bus and PM buses, with one bus dedicated to a  
memory block, assures single-cycle execution with two data  
transfers. In this case, the instruction must be available in  
the cache.  
Instruction Cache  
The processors include an on-chip instruction cache that  
enables three-bus operation for fetching an instruction and four  
data values. The cache is selective—only the instructions whose  
fetches conflict with PM bus data accesses are cached. This  
cache allows full speed execution of core, looped operations  
such as digital filter multiply-accumulates, and FFT butterfly  
processing.  
On-Chip Memory Bandwidth  
The internal memory architecture allows four accesses at the  
same time to any of the four blocks, assuming no block con-  
flicts. The total bandwidth is gained with DMD and PMD buses  
(2 64-bits, core CLK) and the IOD0/1 buses (2 32-bit,  
PCLK).  
Data Address Generators with Zero-Overhead Hardware  
Circular Buffer Support  
ROM-Based Security  
The processors have a ROM security feature that provides hard-  
ware support for securing user software code by preventing  
unauthorized reading from the internal code when enabled.  
When using this feature, the processor does not boot-load any  
The processors’s two data address generators (DAGs) are used  
for indirect addressing and implementing circular data buffers  
in hardware. Circular buffers allow efficient programming of  
delay lines and other data structures required in digital signal  
Rev. D  
| Page 5 of 56 | April 2013  
ADSP-21371/ADSP-21375  
Table 3. ADSP-21371 Internal Memory Space  
IOP Registers 0x0000 0000–0x0003 FFFF  
Extended Precision Normal or  
Long Word (64 bits)  
Instruction Word (48 bits)  
Normal Word (32 bits)  
Short Word (16 bits)  
BLOCK 0 ROM  
BLOCK 0 ROM  
BLOCK 0 ROM  
BLOCK 0 ROM  
0x0004 0000–0x0004 7FFF  
0x0008 0000–0x0008 AAA9  
0x0008 0000–0x0008 FFFF  
0x0010 0000–0x0011 FFFF  
Reserved  
Reserved  
Reserved  
Reserved  
0x0004 8000–0x0004 BFFF  
0x0008 AAAA–0x0008 FFFF  
0x0009 0000–0x0009 7FFF  
0x0012 0000–0x0012 FFFF  
BLOCK 0 RAM  
BLOCK 0 RAM  
BLOCK 0 RAM  
BLOCK 0 RAM  
0x0004 C000–0x0004 CFFF  
0x0009 0000–0x0009 1554  
0x0009 8000–0x0009 9FFF  
0x0013 0000–0x0013 3FFF  
Reserved  
Reserved  
Reserved  
Reserved  
0x0004 D000–0x0004 FFFF  
0x0009 1555–0x0009 FFFF  
0x0009 A000–0x0009 FFFF  
0x0013 4000–0x0013 FFFF  
BLOCK 1 ROM  
BLOCK 1 ROM  
BLOCK 1 ROM  
BLOCK 1 ROM  
0x0005 0000–0x0005 7FFF  
0x000A 0000–0x000A AAA9  
0x000A 0000–0x000A FFFF  
0x0014 0000–0x0015 FFFF  
Reserved  
Reserved  
Reserved  
Reserved  
0x0005 8000–0x0005 BFFF  
0x000A AAAA–0x000A FFFF  
0x000B 0000–0x000B 7FFF  
0x0016 0000–0x0016 FFFF  
BLOCK 1 RAM  
BLOCK 1 RAM  
BLOCK 1 RAM  
BLOCK 1 RAM  
0x0005 C000–0x0005 CFFF  
0x000B 0000–0x000B 1554  
0x000B 8000–0x000B 9FFF  
0x0017 0000–0x0017 3FFF  
Reserved  
Reserved  
Reserved  
Reserved  
0x0005 D000–0x0005 FFFF  
0x000B 1555–0x000B FFFF  
0x000B A000–0x000B FFFF  
0x0017 4000–0x0017 FFFF  
BLOCK 2 RAM  
BLOCK 2 RAM  
BLOCK 2 RAM  
BLOCK 2 RAM  
0x0006 0000–0x0006 0FFF  
0x000C 0000–0x000C 1554  
0x000C 0000–0x000C 1FFF  
0x0018 0000–0x0018 3FFF  
Reserved  
Reserved  
Reserved  
Reserved  
0x0006 1000–0x0006 FFFF  
0x000C 1555–0x000D FFFF  
0x000C 2000–0x000D FFFF  
0x0018 4000–0x001B FFFF  
BLOCK 3 RAM  
BLOCK 3 RAM  
BLOCK 3 RAM  
BLOCK 3 RAM  
0x0007 0000–0x0007 0FFF  
0x000E 0000–0x000E 1554  
0x000E 0000–0x000E 1FFF  
0x001C 0000–0x001C 3FFF  
Reserved  
Reserved  
Reserved  
Reserved  
0x0007 1000–0x0007 FFFF  
0x000E 1555–0x000F FFFF  
0x000E 2000–0x000F FFFF  
0x001C 4000–0x001F FFFF  
external code, executing exclusively from internal ROM. Addi-  
tionally, the processor is not freely accessible via the JTAG port.  
Instead, a unique 64-bit key, which must be scanned in through  
the JTAG or Test Access Port will be assigned to each customer.  
The device will ignore a wrong key. Emulation features and  
external boot modes are only available after the correct key is  
scanned.  
External Port  
The external port on the ADSP-21371/ADSP-21375 SHARC  
processors provide a high performance, glueless interface to a  
wide variety of industry-standard memory devices. The 32-bit  
wide bus (ADSP-21371) may be used to interface to synchro-  
nous and/or asynchronous memory devices through the use of  
its separate internal memory controllers: the first is an SDRAM  
controller for connection of industry-standard synchronous  
DRAM devices and DIMMs (dual inline memory module),  
while the second is an asynchronous memory controller  
intended to interface to a variety of memory devices. Four  
memory select pins enable up to four separate devices to coexist,  
supporting any desired combination of synchronous and asyn-  
chronous device types.  
FAMILY PERIPHERAL ARCHITECTURE  
The ADSP-21371/ADSP-21375 family contains a rich set of  
peripherals that support a wide variety of applications, includ-  
ing high quality audio, medical imaging, communications,  
military, test equipment, 3D graphics, speech recognition, mon-  
itor control, imaging, and other applications.  
Rev. D  
| Page 6 of 56 | April 2013  
ADSP-21371/ADSP-21375  
Table 4. ADSP-21375 Internal Memory Space  
IOP Registers 0x0000 0000–0x0003 FFFF  
Extended Precision Normal or  
Long Word (64 bits)  
Instruction Word (48 bits)  
Normal Word (32 bits)  
Short Word (16 bits)  
BLOCK 0 ROM  
BLOCK 0 ROM  
BLOCK 0 ROM  
BLOCK 0 ROM  
0x0004 0000–0x0004 3FFF  
0x0008 0000–0x0008 5554  
0x0008 0000–0x0008 7FFF  
0x0010 0000–0x0010 FFFF  
Reserved  
Reserved  
Reserved  
Reserved  
0x0004 4000–0x0004 BFFF  
0x0008 5555–0x0008 FFFF  
0x0008 8000–0x0009 7FFF  
0x0011 0000–0x0012 FFFF  
BLOCK 0 RAM  
BLOCK 0 RAM  
BLOCK 0 RAM  
BLOCK 0 RAM  
0x0004 C000–0x0004 C7FF  
0x0009 0000–0x0009 0AA9  
0x0009 8000–0x0009 8FFF  
0x0013 0000–0x0013 1FFF  
Reserved  
Reserved  
Reserved  
Reserved  
0x0004 C800–0x0004 FFFF  
0x0009 0AAA–0x0009 FFFF  
0x0009 9000–0x0009 FFFF  
0x0013 2000–0x0013 FFFF  
BLOCK 1 ROM  
BLOCK 1 ROM  
BLOCK 1 ROM  
BLOCK 1 ROM  
0x0005 0000–0x0005 3FFF  
0x000A 0000–0x000A 5554  
0x000A 0000–0x000A 7FFF  
0x0014 0000–0x0014 FFFF  
Reserved  
Reserved  
Reserved  
Reserved  
0x0005 4000–0x0005 BFFF  
0x000A 5555–0x000A FFFF  
0x000A 8000–0x000B 7FFF  
0x0015 0000–0x0016 FFFF  
BLOCK 1 RAM  
BLOCK 1 RAM  
BLOCK 1 RAM  
BLOCK 1 RAM  
0x0005 C000–0x0005 C7FF  
0x000B 0000–0x000B 0AA9  
0x000B 8000–0x000B 8FFF  
0x0017 0000–0x0017 1FFF  
Reserved  
Reserved  
Reserved  
Reserved  
0x0005 C800–0x0005 FFFF  
0x000B 0AAA–0x000B FFFF  
0x000B 9000–0x000B FFFF  
0x0017 2000–0x0017 FFFF  
BLOCK 2 RAM  
BLOCK 2 RAM  
BLOCK 2 RAM  
BLOCK 2 RAM  
0x0006 0000–0x0006 07FF  
0x000C 0000–0x000C 0AA9  
0x000C 0000–0x000C 0FFF  
0x0018 0000–0x0018 1FFF  
Reserved  
Reserved  
Reserved  
Reserved  
0x0006 0800–0x0006 FFFF  
0x000C 0AAA–0x000D FFFF  
0x000C 1000–0x000D FFFF  
0x0018 2000–0x001B FFFF  
BLOCK 3 RAM  
BLOCK 3 RAM  
BLOCK 3 RAM  
BLOCK 3 RAM  
0x0007 0000–0x0007 07FF  
0x000E 0000–0x000E 0AA9  
0x000E 0000–0x000E 0FFF  
0x001C 0000–0x001C 1FFF  
Reserved  
Reserved  
Reserved  
Reserved  
0x0007 0800–0x0007 FFFF  
0x000E 0AAA–0x000F FFFF  
0x000E 1000–0x000F FFFF  
0x001C 2000–0x001F FFFF  
Table 5. External Memory for SDRAM Addresses  
SDRAM Controller  
The SDRAM controller provides an interface to up to four sepa-  
rate banks of industry-standard SDRAM devices or DIMMs.  
Fully compliant with the SDRAM standard, each bank has its  
own memory select line (MS0–MS3), and can be configured to  
contain between 16M bytes and 256M bytes of memory.  
SDRAM external memory address space is shown in Table 5.  
Bank  
Size in Words Address Range  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
62M  
64M  
64M  
64M  
0x0020 0000–0x03FF FFFF  
0x0400 0000–0x07FF FFFF  
0x0800 0000–0x0BFF FFFF  
0x0C00 0000–0x0FFF FFFF  
The controller maintains all of the banks as a contiguous  
address space so that the processor sees this as a single address  
space, even if different size devices are used in the  
different banks.  
Note that the external memory bank addresses shown in Table 5  
are for normal word accesses. If 48-bit instructions are placed in  
any such bank (with two instructions packed into three 32-bit  
locations), then care must be taken to map data buffers in the  
same bank. For example, if 2k instructions are placed starting at  
the bank 0 base address (0x0020 0000), then the data buffers can  
be placed starting at an address that is offset by 3k words  
(0x0020 0C00).  
A set of programmable timing parameters is available to config-  
ure the SDRAM banks to support slower memory devices. The  
memory banks can be configured as 16 bits wide or as  
32 bits wide. The SDRAM controller address, data, clock, and  
command pins can drive loads up to 30 pF. For larger memory  
systems, the SDRAM controller external buffer timing should  
be selected and external buffering should be provided so that the  
load on the SDRAM controller pins does not exceed 30 pF.  
External Memory Code Execution  
The program sequencer can execute code directly from external  
memory bank 0 (SRAM, SDRAM) over the 48-bit external port  
data bus (EPD). This allows a reduction in internal memory  
size, thereby reducing the die area. Because instructions on the  
Rev. D  
| Page 7 of 56 | April 2013  
 
ADSP-21371/ADSP-21375  
SHARC processor are 48 bits wide, instruction throughput  
when executing code from external SDRAM memory is 2  
instructions every 3 SDCLK (peripheral) clock cycles over a 32-  
bit wide external port, and 2 instructions every 6 SDCLK clock  
cycles over a 16-bit external port. Non SDRAM external mem-  
ory address space is shown in Table 6.  
point of the PWM period. In this mode, it is possible to produce  
asymmetrical PWM patterns that produce lower harmonic dis-  
tortion in three-phase PWM inverters.  
Digital Applications Interface (DAI)  
The digital applications interface (DAI) provides the ability to  
connect various peripherals to any of the processor’s DAI pins  
(DAI_P1 to DAI_P20).  
Table 6. External Memory for Non SDRAM Addresses  
Programs make these connections using the signal routing unit  
(SRU), shown in Figure 1.  
Bank  
Size in Words Address Range  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
14M  
16M  
16M  
16M  
0x0020 0000–0x00FF FFFF  
The SRU is a matrix routing unit (or group of multiplexers) that  
enables the peripherals provided by the DAI to be intercon-  
nected under software control. This allows easy use of the DAI  
associated peripherals for a much wider variety of applications  
by using a larger set of algorithms than is possible with noncon-  
figurable signal paths.  
0x0400 0000–0x04FF FFFF  
0x0800 0000–0x08FF FFFF  
0x0C00 0000–0x0CFF FFFF  
External Port Throughput  
The throughput for the external port, based on 133 MHz clock  
and 32-bit data bus, is 177M bytes/s for the AMI and 532M  
bytes/s for SDRAM.  
In the ADSP-21371, the DAI includes eight serial ports, four  
precision clock generators (PCG), and an input data port (IDP).  
For the ADSP-21375, the DAI includes four serial ports, four  
precision clock generators (PCG) and an input data port (IDP).  
Asynchronous Memory Controller  
The IDP provides an additional input path to the core of the  
processor, configurable as either eight channels of I2S serial  
data, or a single 20-bit wide synchronous parallel data acquisi-  
tion port. Each data channel has its own DMA channel that is  
independent from the processor’s serial ports.  
The asynchronous memory controller provides a configurable  
interface for up to four separate banks of memory or I/O  
devices. Each bank can be independently programmed with dif-  
ferent timing parameters, enabling connection to a wide variety  
of memory devices including SRAM, ROM, flash, and EPROM,  
as well as I/O devices that interface with standard memory con-  
trol lines. Bank 0 occupies a 14.7M word window and banks 1, 2,  
and 3 occupy a 16M word window in the processor’s address  
space but, if not fully populated, these windows are not made  
contiguous by the memory controller logic. The banks can also  
be configured as 8-bit or 16-bit wide buses for ease of interfac-  
ing to a range of memories and I/O devices tailored either to  
high performance or to low cost and power.  
Serial Ports  
The processors feature eight synchronous serial ports on the  
ADSP-21371 and four on the ADSP-21375. The SPORTs pro-  
vide an inexpensive interface to a wide variety of digital and  
mixed-signal peripheral devices such as Analog Devices’  
AD183x family of audio codecs, ADCs, and DACs. The serial  
ports are made up of two data lines, a clock, and frame sync. The  
data lines can be programmed to either transmit or receive and  
each data line has a dedicated DMA channel.  
Pulse-Width Modulation  
For the ADSP-21371, serial ports are enabled via 16 program-  
mable pins and simultaneous receive or transmit pins that  
support up to 32 transmit or 32 receive channels of audio data  
when all eight SPORTs are enabled, or eight duplex TDM  
streams of 128 channels per frame.  
The PWM module is a flexible, programmable, PWM waveform  
generator that can be programmed to generate the required  
switching patterns for various applications related to motor and  
engine control or audio power control. The PWM generator can  
generate either center-aligned or edge-aligned PWM wave-  
forms. In addition, it can generate complementary signals on  
two outputs in paired mode or independent signals in non-  
paired mode (applicable to a single group of four PWM  
waveforms).  
For the ADSP-21375, serial ports are enabled via eight program-  
mable pins and simultaneous receive or transmit pins that  
support up to 16 transmit or 16 receive channels of audio data  
when all four SPORTs are enabled, or four duplex TDM streams  
of 128 channels per frame.  
The entire PWM module has four groups of four PWM outputs  
each. Therefore, this module generates 16 PWM outputs in  
total. Each PWM group produces two pairs of PWM signals on  
the four PWM outputs.  
The serial ports operate at a maximum data rate of fPCLK/4.  
Serial port data can be automatically transferred to and from  
on-chip memory via dedicated DMA channels. Each of the  
serial ports can work in conjunction with another serial port to  
provide TDM support. One SPORT provides two transmit sig-  
nals while the other SPORT provides the two receive signals.  
The frame sync and clock are shared.  
The PWM generator is capable of operating in two distinct  
modes while generating center-aligned PWM waveforms: single  
update mode or double update mode. In single update mode the  
duty cycle values are programmable only once per PWM period.  
This results in PWM patterns that are symmetrical about the  
mid-point of the PWM period. In double update mode, a sec-  
ond updating of the PWM registers is implemented at the mid-  
Rev. D  
| Page 8 of 56 | April 2013  
 
ADSP-21371/ADSP-21375  
but data is sent to the FIFO as 32-bit words (that is, one-half of a  
frame at a time). The processor supports 24- and 32-bit I2S, 24-  
and 32-bit left-justified, and 24-, 20-, 18- and 16-bit right-justi-  
fied formats.  
Serial ports operate in five modes:  
• Standard DSP serial mode  
• Multichannel (TDM) mode with support for packed I2S  
mode  
• I2S mode  
• Packed I2S mode  
Precision Clock Generator (PCG)  
The precision clock generators (PCG) consist of four units, each  
of which generates a pair of signals (clock and frame sync)  
derived from a clock input signal. The units, A B, C, and D, are  
identical in functionality and operate independently of each  
other. The two signals generated by each unit are normally used  
as a serial bit clock/frame sync pair.  
• Left-justified sample pair mode  
Left-justified sample pair mode is a mode where in each frame  
sync cycle two samples of data are transmitted/received—one  
sample on the high segment of the frame sync, the other on the  
low segment of the frame sync. Programs have control over var-  
ious attributes of this mode.  
Digital Peripheral Interface (DPI)  
The digital peripheral interface provides connections to two  
serial peripheral interface (SPI) ports, one universal asynchro-  
nous receiver-transmitter (UART), 12 flags, a 2-wire interface  
(TWI), and two general-purpose timers.  
Each of the serial ports supports the left-justified sample pair  
and I2S protocols (I2S is an industry-standard interface com-  
monly used by audio codecs, ADCs, and DACs such as the  
Analog Devices AD183x family), with two data pins, allowing  
four left-justified sample pair or I2S channels (using two stereo  
devices) per serial port, with a maximum of up to 32 I2S chan-  
nels. The serial ports permit little-endian or big-endian  
transmission formats and word lengths selectable from 3 bits to  
32 bits. For the left-justified sample pair and I2S modes, data-  
word lengths are selectable between 8 bits and 32 bits. Serial  
ports offer selectable synchronization and transmit modes as  
well as optional -law or A-law companding selection on a per  
channel basis. Serial port clocks and frame syncs can be inter-  
nally or externally generated.  
Serial Peripheral (Compatible) Interface  
The ADSP-21371/ADSP-21375 SHARC processors contain two  
serial peripheral interface ports (SPIs). The SPI is an industry-  
standard synchronous serial link, enabling the SPI-compatible  
ports of the processors to communicate with other SPI compati-  
ble devices. The SPI consists of two data pins, one device select  
pin, and one clock pin. It is a full-duplex synchronous serial  
interface, supporting both master and slave modes. The SPI port  
can operate in a multimaster environment by interfacing with  
up to four other SPI-compatible devices, either acting as a mas-  
ter or slave device.  
The serial ports also contain frame sync error detection logic  
where the serial ports detect frame syncs that arrive early (for  
example frame syncs that arrive while the transmission/recep-  
tion of the previous word is occurring). All the serial ports also  
share one dedicated error interrupt.  
The SPI-compatible peripheral implementation also features  
programmable baud rates and clock phases and polarities. The  
SPI-compatible port uses open drain drivers to support a multi-  
master configuration and to avoid data contention.  
S/PDIF-Compatible Digital Audio Receiver/Transmitter  
UART Port  
The ADSP-21371 S/PDIF receiver/transmitter has no separate  
DMA channels. It receives audio data in serial format and con-  
verts it into a biphase encoded signal. The serial data input to  
the receiver/transmitter can be formatted as left justified, I2S or  
right justified with word widths of 16, 18, 20, or  
24 bits.  
The processors provide a full-duplex Universal Asynchronous  
Receiver/Transmitter (UART) port, which is fully compatible  
with PC-standard UARTs. The UART port provides a simpli-  
fied UART interface to other peripherals or hosts, supporting  
full-duplex, DMA-supported, asynchronous transfers of serial  
data. The UART also has multiprocessor communication capa-  
bility using 9-bit address detection. This allows it to be used in  
multidrop networks through the RS-485 data interface stan-  
dard. The UART port also includes support for 5 to 8 data bits, 1  
or 2 stop bits, and none, even, or odd parity. The UART port  
supports two modes of operation:  
The serial data, clock, and frame sync inputs to the S/PDIF  
receiver/transmitter are routed through the signal routing unit  
(SRU). They can come from a variety of sources such as the  
SPORTs, external pins, the precision clock generators (PCGs),  
and are controlled by the SRU control registers.  
The ADSP-21375 does not have an S/PDIF-compatible digital  
receiver/transmitter.  
• PIO (programmed I/O) – The processor sends or receives  
data by writing or reading I/O-mapped UART registers.  
The data is double-buffered on both transmit and receive.  
Input Data Port (IDP)  
• DMA (direct memory access) – The DMA controller trans-  
fers both transmit and receive data. This reduces the  
number and frequency of interrupts required to transfer  
data to and from memory. The UART has two dedicated  
The IDP provides up to eight serial input channels—each with  
its own clock, frame sync, and data inputs. The eight channels  
are automatically multiplexed into a single 32-bit by eight-deep  
FIFO. Data is always formatted as a 64-bit frame and divided  
into two 32-bit words. The serial protocol is designed to receive  
audio channels in I2S, left-justified sample pair, or right-justified  
mode. One frame sync cycle indicates one 64-bit left/right pair,  
Rev. D  
| Page 9 of 56 | April 2013  
ADSP-21371/ADSP-21375  
DMA channels, one for transmit and one for receive. These  
DMA channels have lower default priority than most DMA  
channels because of their relatively low service rates.  
port (PDAP), or the UART (see Table 7).  
Table 7. DMA Channels  
The UART port’s baud rate, serial data format, error code gen-  
eration and status, and interrupts are programmable. The port:  
Peripheral  
ADSP-21371  
ADSP-21375  
SPORT  
16  
8
8
• Supports bit rates ranging from (fPCLK/1,048,576) to  
(fPCLK/16) bits per second.  
PDAP  
8
SPI  
2
2
• Supports data formats from 7 to 12 bits per frame.  
UART  
2
2
• Can be configured to generate maskable interrupts for both  
transmit and receive operations.  
EP  
2
2
MTM/DTCP  
Total DMA Channels  
2
2
In conjunction with the general-purpose timer functions, auto-  
baud detection is supported.  
32  
24  
Delay Line DMA  
Peripheral Timers  
The processors provide delay line DMA functionality. This  
allows processor reads and writes to external delay line buffers  
(and hence to external memory) with limited core interaction.  
Two general-purpose timers can generate periodic interrupts  
and be independently set to operate in one of three modes:  
• Pulse waveform generation mode  
• Pulse width count/capture mode  
• External event watchdog mode  
Scatter/Gather DMA  
The ADSP-2137x processor provides scatter/gather DMA func-  
tionality. This allows processor DMA reads/writes to/from non-  
contiguous memory blocks.  
Each general-purpose timer has one bidirectional pin and four  
registers that implement its mode of operation: a 6-bit configu-  
ration register, a 32-bit count register, a 32-bit period register,  
and a 32-bit pulse width register. A single control and status  
register enables or disables the general-purpose timers  
independently.  
SYSTEM DESIGN  
The following sections provide an introduction to system design  
options and power supply issues. For complete system design  
information, see the ADSP-2137x SHARC Processor Hardware  
Reference.  
2-Wire Interface Port (TWI)  
The TWI is a bidirectional 2-wire serial bus used to move 8-bit  
data while maintaining compliance with the I2C bus protocol.  
The TWI master incorporates the following features:  
Program Booting  
The internal memory of the processor boots at system power-up  
from an 8-bit EPROM via the external port, an SPI master, or an  
SPI slave. Booting is determined by the boot configuration  
(BOOT_CFG1–0) pins in Table 8. Selection of the boot source  
is controlled via the SPI as either a master or slave device, or it  
can immediately begin executing from ROM.  
• Simultaneous master and slave operation on multiple  
device systems with support for multi master data  
arbitration  
• Digital filtering and timed event processing  
• 7-bit addressing  
Table 8. Boot Mode Selection  
• 100 kbps and 400 kbps data rates  
• Low interrupt rate  
BOOT_CFG1–0  
Booting Mode  
SPI Slave Boot  
00  
01  
10  
11  
I/O PROCESSOR FEATURES  
SPI Master Boot  
EPROM/FLASH Boot  
The I/O processor provides many channels of DMA and con-  
trols the extensive set of peripherals described in the previous  
sections.  
No boot (processor executes from  
internal ROM after reset)  
DMA Controller  
The “Running Reset” feature allows programs to perform a reset  
of the processor core and peripherals, but without resetting the  
PLL and SDRAM controller, or performing a boot. The RESET-  
OUT pin acts as the input for initiating a running reset.  
The processor’s on-chip DMA controller allows data transfers  
without processor intervention. The DMA controller operates  
independently and invisibly to the processor core, allowing  
DMA operations to occur while the core is simultaneously exe-  
cuting its program instructions. DMA transfers can occur  
between the ADSP-2137x processor’s internal memory and its  
serial ports, the SPI-compatible (serial peripheral interface)  
ports, the IDP (input data port), the parallel data acquisition  
Rev. D  
| Page 10 of 56 | April 2013  
 
 
ADSP-21371/ADSP-21375  
EZ-KIT Lite Evaluation Kits  
Power Supplies  
The processors have separate power supply connections for the  
internal (VDDINT), and external (VDDEXT) power supplies. The  
internal supplies must meet the 1.2 V requirement. The external  
supply must meet the 3.3 V requirement. All external supply  
pins must be connected to the same power supply.  
For a cost-effective way to learn more about developing with  
Analog Devices processors, Analog Devices offer a range of EZ-  
KIT Lite evaluation kits. Each evaluation kit includes an EZ-KIT  
Lite evaluation board, directions for downloading an evaluation  
version of the available IDE(s), a USB cable, and a power supply.  
The USB controller on the EZ-KIT Lite board connects to the  
USB port of the user’s PC, enabling the chosen IDE evaluation  
suite to emulate the on-board processor in-circuit. This permits  
the customer to download, execute, and debug programs for the  
EZ-KIT Lite system. It also supports in-circuit programming of  
the on-board Flash device to store user-specific boot code,  
enabling standalone operation. With the full version of Cross-  
Core Embedded Studio or VisualDSP++ installed (sold  
separately), engineers can develop software for supported EZ-  
KITs or any custom system utilizing supported Analog Devices  
processors.  
Target Board JTAG Emulator Connector  
Analog Devices DSP Tools product line of JTAG emulators uses  
the IEEE 1149.1 JTAG test access port of the processor to moni-  
tor and control the target board processor during emulation.  
Analog Devices DSP Tools product line of JTAG emulators pro-  
vides emulation at full processor speed, allowing inspection and  
modification of memory, registers, and processor stacks. The  
processor’s JTAG interface ensures that the emulator will not  
affect target system loading  
or timing.  
For complete information on Analog Devices’ SHARC DSP  
Tools product line of JTAG emulator operation, see the appro-  
priate “Emulator Hardware User’s Guide”.  
Software Add-Ins for CrossCore Embedded Studio  
Analog Devices offers software add-ins which seamlessly inte-  
grate with CrossCore Embedded Studio to extend its capabilities  
and reduce development time. Add-ins include board support  
packages for evaluation hardware, various middleware pack-  
ages, and algorithmic modules. Documentation, help,  
configuration dialogs, and coding examples present in these  
add-ins are viewable through the CrossCore Embedded Studio  
IDE once the add-in is installed.  
DEVELOPMENT TOOLS  
Analog Devices supports its processors with a complete line of  
software and hardware development tools, including integrated  
development environments (which include CrossCore® Embed-  
ded Studio and/or VisualDSP++®), evaluation products,  
emulators, and a wide variety of software add-ins.  
Board Support Packages for Evaluation Hardware  
Integrated Development Environments (IDEs)  
Software support for the EZ-KIT Lite evaluation boards and EZ-  
Extender daughter cards is provided by software add-ins called  
Board Support Packages (BSPs). The BSPs contain the required  
drivers, pertinent release notes, and select example code for the  
given evaluation hardware. A download link for a specific BSP is  
located on the web page for the associated EZ-KIT or EZ-  
Extender product. The link is found in the Product Download  
area of the product web page.  
For C/C++ software writing and editing, code generation, and  
debug support, Analog Devices offers two IDEs.  
The newest IDE, CrossCore Embedded Studio, is based on the  
EclipseTM framework. Supporting most Analog Devices proces-  
sor families, it is the IDE of choice for future processors,  
including multicore devices. CrossCore Embedded Studio  
seamlessly integrates available software add-ins to support real  
time operating systems, file systems, TCP/IP stacks, USB stacks,  
algorithmic software modules, and evaluation hardware board  
support packages. For more information visit  
Middleware Packages  
Analog Devices separately offers middleware add-ins such as  
real time operating systems, file systems, USB stacks, and  
TCP/IP stacks. For more information see the following web  
pages:  
www.analog.com/cces.  
The other Analog Devices IDE, VisualDSP++, supports proces-  
sor families introduced prior to the release of CrossCore  
Embedded Studio. This IDE includes the Analog Devices VDK  
real time operating system and an open source TCP/IP stack.  
For more information visit www.analog.com/visualdsp. Note  
that VisualDSP++ will not support future Analog Devices  
processors.  
www.analog.com/ucos3  
www.analog.com/ucfs  
www.analog.com/ucusbd  
www.analog.com/lwip  
EZ-KIT Lite Evaluation Board  
Algorithmic Modules  
For processor evaluation, Analog Devices provides wide range  
of EZ-KIT Lite® evaluation boards. Including the processor and  
key peripherals, the evaluation board also supports on-chip  
emulation capabilities and other evaluation and development  
features. Also available are various EZ-Extenders®, which are  
daughter cards delivering additional specialized functionality,  
including audio and video processing. For more information  
visit www.analog.com and search on “ezkit” or “ezextender”.  
To speed development, Analog Devices offers add-ins that per-  
form popular audio and video processing algorithms. These are  
available for use with both CrossCore Embedded Studio and  
VisualDSP++. For more information visit www.analog.com  
and search on “Blackfin software modules” or “SHARC software  
modules”.  
Rev. D  
| Page 11 of 56 | April 2013  
ADSP-21371/ADSP-21375  
Designing an Emulator-Compatible DSP Board (Target)  
For embedded system test and debug, Analog Devices provides  
a family of emulators. On each JTAG DSP, Analog Devices sup-  
plies an IEEE 1149.1 JTAG Test Access Port (TAP). In-circuit  
emulation is facilitated by use of this JTAG interface. The emu-  
lator accesses the processor’s internal features via the  
processor’s TAP, allowing the developer to load code, set break-  
points, and view variables, memory, and registers. The  
processor must be halted to send data and commands, but once  
an operation is completed by the emulator, the DSP system is set  
to run at full speed with no impact on system timing. The emu-  
lators require the target board to include a header that supports  
connection of the DSP’s JTAG port to the emulator.  
For details on target board design issues including mechanical  
layout, single processor connections, signal buffering, signal ter-  
mination, and emulator pod logic, see the Engineer-to-Engineer  
Note “Analog Devices JTAG Emulation Technical Reference”  
(EE-68) on the Analog Devices website (www.analog.com)—use  
site search on “EE-68.” This document is updated regularly to  
keep pace with improvements to emulator support.  
ADDITIONAL INFORMATION  
This data sheet provides a general overview of the processor’s  
architecture and functionality. For detailed information on the  
core architecture and instruction set, refer to the ADSP-2137x  
SHARC Processor Hardware Reference.  
RELATED SIGNAL CHAINS  
A signal chain is a series of signal conditioning electronic com-  
ponents that receive input (data acquired from sampling either  
real-time phenomena or from stored data) in tandem, with the  
output of one portion of the chain supplying input to the next.  
Signal chains are often used in signal processing applications to  
gather and process data or to apply system controls based on  
analysis of real-time phenomena. For more information about  
this term and related topics, see the “signal chain” entry in the  
Glossary of EE Terms on the Analog Devices website.  
Analog Devices eases signal processing system development by  
providing signal processing components that are designed to  
work together well. A tool for viewing relationships between  
specific applications and related components is available on the  
www.analog.com website.  
TM  
The Circuits from the Lab site (www.analog.com/signal  
chains) provides:  
• Graphical circuit block diagram presentation of signal  
chains for a variety of circuit types and applications  
• Drill down links for components in each chain to selection  
guides and application information  
• Reference designs applying best practice design techniques  
Rev. D  
| Page 12 of 56 | April 2013  
ADSP-21371/ADSP-21375  
PIN FUNCTION DESCRIPTIONS  
The following symbols appear in the Type column of Table 9:  
A = asynchronous, I = input, O = output, S = synchronous,  
(A/D) = active drive, (O/D) = open drain, and T = three-state,  
(pd) = pull-down resistor, (pu) = pull-up resistor.  
Table 9. Pin Descriptions  
State During  
and After  
Name  
Type  
Reset  
Description  
ADDR23–0  
O/T (pu)  
Pulled high/  
driven low  
External Address. The processor outputs addresses for external memory and periph-  
erals on these pins.  
DATA31–0  
I/O (pu)  
Pulled high/  
pulled high  
External Data. The data pins can be multiplexed to support the external memory  
interface data (I/O), the PDAP (I) (PDAP for ADSP-21371), FLAGS (I/O) and PWM (O). After  
reset, all DATA pins are in EMIF mode and FLAG(0–3) pins are in FLAGS mode (default).  
When configured in the IDP_PDAP_CTL register, IDP channel 0 scans the external port  
data pins for parallel input data. PDAP over 16-bit external port DATA is not supported  
on the ADSP-21375 processor.  
DAI _P20–1  
I/O with  
Pulled high/  
pulled high  
Digital Applications Interface Pins. These pins provide the physical interface to the  
DAI SRU. The DAI SRU configuration registers define the combination of on-chip audio-  
centric peripheral inputs or outputs connected to the pin and to the pin’s output enable.  
The configuration registers of these peripherals then determine the exact behavior of  
the pin. Any input or output signal present in the DAI SRU may be routed to any of these  
pins. The DAI SRU provides the connection from the serial ports, the S/PDIF module  
(ADSP-21371), IDP (2), and the PCGs (4), to the DAI_P20–1 pins. Pullups can be disabled  
via the DAI_PIN_PULLUP register.  
programmable  
(pu)1  
DPI _P14–1  
I/O with  
Pulled high/  
pulled high  
Digital Peripheral Interface. These pins provide the physical interface to the DPI SRU.  
TheDPISRUconfigurationregistersdefinethecombinationofon-chipperipheralinputs  
or outputs connected to the pin and to the pin’s output enable. The configuration  
registers of these peripherals then determines the exact behavior of the pin. Any input  
or output signal present in the DPI SRU may be routed to any of these pins. The DPI SRU  
provides the connection from the timers (2), SPIs (2), UART (1), flags (12), and general-  
purpose I/O (9) to the DPI_P14–1 pins. Pull-ups can be disabled via the DPI_PIN_PULLUP  
register.  
programmable  
(pu)1  
ACK  
I (pu)  
Memory Acknowledge. External devices can deassert ACK (low) to add wait states to  
an external memory access. ACK is used by I/O devices, memory controllers, or other  
peripherals to hold off completion of an external memory access.  
RD  
O/T (pu)  
O/T (pu)  
O/T (pu)  
O/T (pu)  
O/T (pu)  
Pulled high/  
driven high  
External Port Read Enable. RD is asserted whenever the processor reads a word from  
external memory. RD has a 22.5 kinternal pull-up resistor.  
WR  
Pulled high/  
driven high  
External Port Write Enable. WR is asserted when the processor writes a word to  
external memory. WR has a 22.5 k internal pull-up resistor.  
SDRAS  
SDCAS  
SDWE  
Pulled high/  
driven high  
SDRAM Row Address Strobe. Connect to SDRAM’s RAS pin. In conjunction with other  
SDRAM command pins, defines the operation for the SDRAM to perform.  
Pulled high/  
driven high  
SDRAM Column Address Select. Connect to SDRAM's CAS pin. In conjunction with  
other SDRAM command pins, defines the operation for the SDRAM to perform.  
Pulled high/  
driven high  
SDRAM Write Enable. Connect to SDRAM’s WE or W buffer pin.  
Rev. D  
| Page 13 of 56 | April 2013  
 
ADSP-21371/ADSP-21375  
Table 9. Pin Descriptions (Continued)  
State During  
and After  
Name  
Type  
Reset  
Description  
SDCKE  
O/T (pu)  
Pulled high/  
driven high  
SDRAM Clock Enable. Connect to SDRAM’s CKE pin. Enables and disables the CLK  
signal. For details, see the data sheet supplied with the SDRAM device.  
SDA10  
O/T (pu)  
Pulled high/  
driven low  
SDRAM A10 Pin. Enables applications to refresh an SDRAM in parallel with a non-  
SDRAM accesses. This pin replaces the DSP’s A10 pin only during SDRAM accesses.  
SDCLK  
MS0–1  
O/T  
High-Z/driving  
SDRAM Clock.  
O/T (pu)  
Pulled high/  
driven high  
Memory Select Lines 0–1. These lines are asserted (low) as chip selects for the corre-  
sponding banks of external memory. The MS1-0 lines are decoded memory address lines  
that change at the same time as the other address lines. The MS1 pin can be used in  
EPORT/FLASH boot mode. For more information, see the ADSP-2137x SHARC Processor  
Hardware Reference.  
FLAG[0]/IRQ0  
FLAG[1]/IRQ1  
I/O  
I/O  
FLAG[0] INPUT  
FLAG[1] INPUT  
FLAG[2] INPUT  
FLAG0/Interrupt Request0.  
FLAG1/Interrupt Request1.  
FLAG[2]/IRQ2/  
MS2  
I/O with  
programmable pu  
(for MS mode)  
FLAG2/Interrupt Request/Memory Select2.  
FLAG[3]/  
I/O with  
FLAG[3] INPUT  
FLAG3/Timer Expired/Memory Select3.  
TMREXP/ MS3  
programmable pu  
(for MS mode)  
TDI  
I (pu)  
Test Data Input (JTAG). Provides serial data for the boundary scan logic. TDI has a  
22.5 kinternal pull-up resistor.  
TDO  
TMS  
O/T  
Test Data Output (JTAG). Serial scan output of the boundary scan path.  
I (pu)  
Test Mode Select (JTAG). Used to control the test state machine. TMS has a 22.5 k  
internal pull-up resistor.  
TCK  
I
Test Clock (JTAG). Provides a clock for JTAG boundary scan. TCK must be asserted  
(pulsed low) after power-up or held low for proper operation of the processor.  
TRST  
I (pu)  
Test Reset (JTAG). Resets the test state machine. TRST must be asserted (pulsed low)  
after power-up or held low for proper operation of the processor. TRST has a 22.5 k  
internal pull-up resistor.  
EMU  
O (O/D) (pu)  
Emulation Status. Must be connected to the processor. Analog Devices DSP Tools  
product line of JTAG emulators target board connector only. EMU has a 22.5 k  
pull-up resistor.  
internal  
CLK_CFG1–0  
I
Core to CLKIN Ratio Control. These pins set the start up clock frequency. See the  
ADSP-2137x SHARC Processor Hardware Reference for a description of the clock configu-  
ration modes.  
Note that the operating frequency can be changed by programming the PLL multiplier  
and divider in the PMCTL register at any time after the core comes out of reset.  
BOOT_CFG1–0  
I
Boot Configuration Select. These pins select the boot mode for the processor. The  
BOOT_CFG pins must be valid before reset is asserted. See the ADSP-2137x SHARC  
Processor Hardware Reference for information about boot modes.  
Rev. D  
| Page 14 of 56 | April 2013  
ADSP-21371/ADSP-21375  
Table 9. Pin Descriptions (Continued)  
State During  
and After  
Reset  
Name  
Type  
Description  
RESET  
I
Processor Reset. Resets the processor to a known state. Upon deassertion, there is a  
4096 CLKIN cycle latency for the PLL to lock. After this time, the core begins program  
execution from the hardware reset vector address. The RESET input must be asserted  
(low) at power-up.  
XTAL  
O
I
CrystalOscillatorTerminal. Usedinconjunctionwith CLKINtodrivean externalcrystal.  
CLKIN  
Local Clock In. Used in conjunction with XTAL. CLKIN is the processor clock input. It  
configures the processor to use either its internal clock generator or an external clock  
source. Connecting the necessary components to CLKIN and XTAL enables the internal  
clock generator. Connecting the external clock to CLKIN while leaving XTAL uncon-  
nected configures the processor to use the external clock source such as an external  
clock oscillator. CLKIN may not be halted, changed, or operated below the specified  
frequency.  
RESETOUT/  
RUNRSTIN  
I/O (pu)  
Reset Out/Running Reset In. The default setting is reset out. This pin also has a second  
function as RUNRSTIN, which is enabled by setting bit 0 of the RUNRSTCTL register. For  
more information, see the ADSP-2137x SHARC Processor Hardware Reference  
.
1 Pull-up can be enabled/disabled, value of pull-up cannot be programmed.  
Rev. D  
| Page 15 of 56 | April 2013  
ADSP-21371/ADSP-21375  
ADSP-21371/ADSP-21375 SPECIFICATIONS  
OPERATING CONDITIONS  
1.0 V, 200 MHz  
Max  
1.2 V, 266 MHz  
Max  
Parameter1 Description  
Min  
Min  
Unit  
VDDINT  
VDDEXT  
Internal (Core) Supply Voltage  
0.95  
3.13  
2.0  
1.05  
1.14  
3.13  
2.0  
1.26  
V
V
V
V
V
V
ºC  
External (I/O) Supply Voltage  
3.47  
3.47  
2
VIH  
High Level Input Voltage @ VDDEXT = Max  
Low Level Input Voltage @ VDDEXT = Min  
High Level Input Voltage @ VDDEXT = Max  
Low Level Input Voltage @ VDDEXT = Min  
VDDEXT + 0.5  
+0.8  
VDDEXT + 0.5  
+0.8  
2
VIL  
–0.5  
1.74  
–0.5  
N/A  
–0.5  
1.74  
–0.5  
0
3
VIH  
_
VDDEXT + 0.5  
+1.10  
VDDEXT + 0.5  
+1.10  
95  
CLKIN  
3
VIL  
_
CLKIN  
TJUNCTION  
TJUNCTION  
TJUNCTION  
Junction Temperature 208-Lead LQFP_EP @ TAMBIENT  
0°C to +70°C  
N/A  
Junction Temperature 208-Lead LQFP_EP @ TAMBIENT  
–40°C to +85°C  
N/A  
–40  
N/A  
–40  
N/A  
+110  
N/A  
ºC  
ºC  
Junction Temperature 208-Lead LQFP_EP @ TAMBIENT  
–40°C to +105°C  
+120  
1 Specifications subject to change without notice.  
2 Applies to inputandbidirectionalpins:ADDR23–0, DATA31–0 (DATA15–0 onADSP-21375), FLAG3–0, DAI_Px, DPI_Px, SPIDS, BOOT_CFGx, CLK_CFGx, RUNRSTIN,  
RESET, TCK, TMS, TDI, TRST.  
3 Applies to input pin CLKIN.  
Rev. D  
| Page 16 of 56 | April 2013  
 
ADSP-21371/ADSP-21375  
ELECTRICAL CHARACTERISTICS  
1.0 V, 200 MHz  
1.2 V, 266 MHz  
Parameter1 Description  
Test Conditions  
Min Typ  
2.4  
Max  
Min Typ  
2.4  
Max  
Unit  
2
VOH  
High Level Output Voltage @ VDDEXT = Min, IOH = –1.0 mA3  
V
2
VOL  
Low Level Output Voltage  
High Level Input Current  
Low Level Input Current  
@ VDDEXT = Min, IOL = 1.0 mA3  
@ VDDEXT = Max, VIN = VDDEXT max  
@ VDDEXT = Max, VIN = 0 V  
0.4  
10  
0.4  
10  
V
4, 5  
IIH  
μA  
μA  
μA  
4
IIL  
10  
10  
5
IILPU  
Low Level Input Current  
Pull-up  
@ VDDEXT = Max, VIN = 0 V  
200  
200  
6, 7  
IOZH  
Three-State Leakage Current @ VDDEXT = Max, VIN = VDDEXT Max  
Three-State Leakage Current @ VDDEXT= Max, VIN = 0 V  
10  
10  
μA  
μA  
μA  
6
IOZL  
10  
10  
7
IOZLPU  
Three-State Leakage Current @ VDDEXT= Max, VIN = 0 V  
Pull-up  
200  
200  
8, 9  
IDD  
-
Supply Current (Internal)  
1.0V, 200 MHz: tCCLK = 5.00 ns,  
VDDINT = 1.0 V, 25ºC  
INTYP  
400  
mA  
1.2V, 266 MHz: tCCLK = 3.75 ns,  
VDDINT = 1.2 V, 25ºC  
600  
mA  
pF  
10, 11  
CIN  
Input Capacitance  
fIN = 1 MHz, TCASE = 25°C, VIN= 1.2 V  
4.7  
4.7  
1
Specifications subject to change without notice.  
2 Applies to output and bidirectional pins: ADDR23–0, DATA31–0 (DATA15–0 on ADSP-21375), RD, WR, FLAG3–0, DAI_Px, DPI_Px, EMU, TDO, SDRAS, SDCAS, SDWE,  
SDCKE, SDA10, and SDCLK.  
3 See Output Drive Currents on Page 49 for typical drive current capabilities.  
4 Applies to input pins: BOOT_CFGx, CLKCFGx, TCK, RESET, CLKIN.  
5 Applies to input pins with 22.5 kinternal pull-ups: TRST, TMS, TDI.  
6 Applies to three-statable pins: FLAG3–0.  
7 Applies to three-statable pins with 22.5 kpull-ups: DAI_Px, DPI_Px, EMU.  
8 Typical internal current data reflects nominal operating conditions.  
9 See Engineer-to-Engineer Note “Estimating Power Dissipation for ADSP-2137x SHARC Processors” (EE-318) for further information.  
10Applies to all signal pins.  
11Guaranteed, but not tested.  
Rev. D  
| Page 17 of 56 | April 2013  
 
ADSP-21371/ADSP-21375  
PACKAGE INFORMATION  
Table 11. Absolute Maximum Ratings (Continued)  
The information presented in Figure 3 provides details about  
the package branding for the ADSP-21371/ADSP-21375 proces-  
sor. For a complete listing of product availability, see Ordering  
Guide on Page 56.  
Parameter  
Rating  
Load Capacitance  
200 pF  
Storage Temperature Range  
Junction Temperature under Bias  
–65C to +150C  
125C  
ESD SENSITIVITY  
ESD (electrostatic discharge) sensitive device.  
Charged devices and circuit boards can discharge  
without detection. Although this product features  
patented or proprietary protection circuitry, damage  
may occur on devices subjected to high energy ESD.  
Therefore, proper ESD precautions should be taken to  
avoid performance degradation or loss of functionality.  
a
ADSP-2137x  
tppZ-cc  
vvvvvv.x n.n  
yyww country_of_origin  
S
TIMING SPECIFICATIONS  
Use the exact timing information given. Do not attempt to  
derive parameters from the addition or subtraction of others.  
While addition or subtraction would yield meaningful results  
for an individual device, the values given in this data sheet  
reflect statistical variations and worst cases. Consequently, it is  
not meaningful to add parameters to derive longer times. See  
Figure 38 on Page 49 under Test Conditions for voltage refer-  
ence levels.  
Figure 3. Typical Package Brand  
Table 10. Package Brand Information  
Brand Key  
Field Description  
Temperature Range  
Package Type  
t
pp  
Z
RoHS Compliant Part  
See Ordering Guide  
Assembly Lot Code  
Silicon Revision  
Switching Characteristics specify how the processor changes its  
signals. Circuitry external to the processor must be designed for  
compatibility with these signal characteristics. Switching char-  
acteristics describe what the processor will do in a given  
circumstance. Use switching characteristics to ensure that any  
timing requirement of a device connected to the processor (such  
as memory) is satisfied.  
cc  
vvvvvv.x  
n.n  
yyww  
Date Code  
MAXIMUM POWER DISSIPATION  
Timing Requirements apply to signals that are controlled by cir-  
cuitry external to the processor, such as the data input for a read  
operation. Timing requirements guarantee that the processor  
operates correctly with other devices.  
See Engineer-to-Engineer Note “Estimating Power Dissipation  
for ADSP-2137x SHARC Processors” (EE-318) for detailed ther-  
mal and power information regarding maximum power  
dissipation. For information on package thermal specifications,  
see Thermal Characteristics on Page 50.  
Core Clock Requirements  
The processor’s internal clock (a multiple of CLKIN) provides  
the clock signal for timing internal memory, processor core, and  
serial ports. During reset, program the ratio between the proces-  
sor’s internal clock frequency and external (CLKIN) clock  
frequency with the CLK_CFG1–0 pins.  
ABSOLUTE MAXIMUM RATINGS  
Stresses greater than those listed in Table 11 may cause perma-  
nent damage to the device. These are stress ratings only;  
functional operation of the device at these or any other condi-  
tions greater than those indicated in the operational sections of  
this specification is not implied. Exposure to absolute maximum  
rating conditions for extended periods may affect device  
reliability.  
The processor’s internal clock switches at higher frequencies  
than the system input clock (CLKIN). To generate the internal  
clock, the processor uses an internal phase-locked loop (PLL,  
see Figure 4). This PLL-based clocking minimizes the skew  
between the system clock (CLKIN) signal and the processor’s  
internal clock.  
Table 11. Absolute Maximum Ratings  
Parameter  
Rating  
Internal (Core) Supply Voltage (VDDINT  
)
–0.3 V to +1.5 V  
–0.3 V to +4.6 V  
+0.5 V  
External (I/O) Supply Voltage (VDDEXT  
Input Voltage –0.5 V to VDDEXT  
)
Output Voltage Swing –0.5 V to VDDEXT  
+0.5 V  
Rev. D  
| Page 18 of 56 | April 2013  
 
 
ADSP-21371/ADSP-21375  
Voltage Controlled Oscillator  
f
f
INPUT = CLKIN when the input divider is disabled or  
In application designs, the PLL multiplier value should be  
selected in such a way that the VCO frequency never exceeds  
fVCO specified in Table 14.  
INPUT = CLKIN 2 when the input divider is enabled  
Note the definitions of the clock periods that are a function of  
CLKIN and the appropriate ratio control shown in Table 12. All  
of the timing specifications for the ADSP-2137x peripherals are  
defined in relation to tPCLK. See the peripheral specific section  
for each peripheral’s timing information.  
• The product of CLKIN and PLLM must never exceed 1/2  
f
VCO (max) in Table 14 if the input divider is not enabled  
(INDIV = 0).  
• The product of CLKIN and PLLM must never exceed fVCO  
(max) in Table 14 if the input divider is enabled  
(INDIV = 1).  
Table 12. Clock Periods  
Timing  
The VCO frequency is calculated as follows:  
Requirements  
Description  
tCK  
CLKIN Clock Period  
f
f
VCO = 2 × PLLM × fINPUT  
CCLK = (2 × PLLM × fINPUT) (2 × PLLD)  
tCCLK  
tPCLK  
Processor Core Clock Period  
Peripheral Clock Period = 2 × tCCLK  
where:  
VCO = VCO output  
f
Figure 4 shows core to CLKIN relationships with external oscil-  
lator or crystal. The shaded divider/multiplier blocks denote  
where clock ratios can be set through hardware or software  
using the power management control register (PMCTL). For  
more information, see the ADSP-2137x SHARC Processor Hard-  
ware Reference.  
PLLM = Multiplier value programmed in the PMCTL register.  
During reset, the PLLM value is derived from the ratio selected  
using the CLK_CFG pins in hardware.  
PLLD = 1, 2, 4, 8 based on the PLLD value programmed on the  
PMCTL register. During reset this value is 1.  
f
INPUT = Input frequency to the PLL.  
PMCTL  
(SDCKR)  
PMCTL  
(PLLBP)  
PLL  
f
VCO  
f
CCLK  
CLKIN  
BUF  
INPUT  
SDRAM  
DIVIDER  
CLKIN  
DIVIDER  
LOOP  
FILTER  
PLL  
DIVIDER  
VCO  
SDCLK  
f
CCLK  
XTAL  
PMCTL  
(2xPLLD)  
PMCTL  
(INDIV)  
PCLK  
DIVIDE  
BY 2  
PLL  
MULTIPLIER  
PMCTL  
(PLLBP)  
PCLK  
CLK_CFGx/PMCTL (2xPLLM)  
CCLK  
CLKOUT (TEST ONLY)  
DELAY OF  
4096 CLKIN  
CYCLES  
RESETOUT  
CORERST  
RESETOUT  
BUF  
RESET  
Figure 4. Core Clock and System Clock Relationship to CLKIN  
Rev. D  
| Page 19 of 56 | April 2013  
 
 
ADSP-21371/ADSP-21375  
Power-Up Sequencing  
The timing requirements for processor startup are given in  
Table 13.  
Note that during power-up, a leakage current of approximately  
200 μA may be observed on the RESET pin. This leakage current  
results from the weak internal pull-up resistor on this pin being  
enabled during power-up.  
Table 13. Power Up Sequencing Timing Requirements (Processor Startup)  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tRSTVDD  
RESET Low Before VDDINT/VDDEXT On  
VDDINT on Before VDDEXT  
0
ns  
tIVDDEVDD  
–50  
0
102  
203  
+200  
200  
ms  
ms  
μs  
1
tCLKVDD  
CLKIN Valid After VDDINT/VDDEXT Valid  
CLKIN Valid Before RESET Deasserted  
PLL Control Setup Before RESET Deasserted  
tCLKRST  
tPLLRST  
μs  
Switching Characteristic  
4, 5  
tCORERST  
Core Reset Deasserted After RESET Deasserted  
4096 × tCK + 2 × tCCLK  
1 Valid VDDINT/VDDEXT assumes that the supplies are fully ramped to their 1.2 and 3.3 volt rails. Voltage ramp rates can vary from microseconds to hundreds of milliseconds  
depending on the design of the power supply subsystem.  
2 Assumes a stable CLKIN signal, after meeting worst-case startup timing of crystal oscillators. Refer to your crystal oscillator manufacturer's datasheet for startup time. Assume  
a 25 ms maximum oscillator startup time if using the XTAL pin and internal oscillator circuit in conjunction with an external crystal.  
3 Based on CLKIN cycles.  
4 Applies after the power-up sequence is complete. Subsequent resets require a minimum of four CLKIN cycles for RESET to be held low in order to properly initialize and  
propagate default states at all I/O pins.  
5 The 4096 cycle count depends on tSRST specification in Table 15. If setup time is not met, one additional CLKIN cycle may be added to the core reset time, resulting in 4097  
cycles maximum.  
tRSTVDD  
RESET  
V
DDINT  
tIVDDEVDD  
V
DDEXT  
tCLKVDD  
CLKIN  
tCLKRST  
CLK_CFG1–0  
RESETOUT  
tPLLRST  
tCORERST  
Figure 5. Power-Up Sequencing  
Rev. D  
| Page 20 of 56 | April 2013  
 
ADSP-21371/ADSP-21375  
Clock Input  
Table 14. Clock Input  
200 MHz  
Max  
266 MHz  
Unit  
Parameter  
Min  
Min  
Max  
Timing Requirements  
tCK  
CLKIN Period  
301  
151  
151  
100  
45  
45  
6
22.51  
11.251  
11.251  
100  
45  
45  
6
ns  
tCKL  
tCKH  
tCKRF  
CLKIN Width Low  
CLKIN Width High  
CLKIN Rise/Fall (0.4 V to 2.0 V)  
CCLK Period  
ns  
ns  
ns  
2
tCCLK  
fVCO  
5
10  
800  
3.75  
200  
10  
800  
ns  
VCO Frequency  
200  
MHz  
1 Applies only for CLKCFG1–0 = 00 and default values for PLL control bits in the PMCTL register.  
2 Any changes to PLL control bits in the PMCTL register must meet core clock timing specification tCCLK  
.
tCK  
CLKIN  
tCKH  
tCKL  
Figure 6. Clock Input  
Clock Signals  
The processor can use an external clock or a crystal. See the  
CLKIN pin description in Table 9. Programs can configure the  
processor to use its internal clock generator by connecting the  
necessary components to CLKIN and XTAL. Figure 7 shows the  
component connections used for a crystal operating in funda-  
mental mode. Note that the clock rate is achieved using a  
16.67 MHz crystal and a PLL multiplier ratio 16:1  
ADSP-2137x  
R1  
XTAL  
CLKIN  
1M*  
R2  
47*  
C1  
C2  
22pF  
22pF  
(CCLK:CLKIN achieves a clock speed of 266 MHz). To achieve  
the full core clock rate, programs need to configure the multi-  
plier bits in the PMCTL register.  
Y1  
16.67 MHz  
R2 SHOULD BE CHOSEN TO LIMIT CRYSTAL  
DRIVE POWER. REFER TO CRYSTAL  
MANUFACTURER’S SPECIFICATIONS  
*TYPICAL VALUES  
Figure 7. 266 MHz Operation (Fundamental Mode Crystal)  
Rev. D  
| Page 21 of 56 | April 2013  
 
ADSP-21371/ADSP-21375  
Reset  
Table 15. Reset  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
1
tWRST  
tSRST  
RESET Pulse Width Low  
4 × tCK  
8
ns  
ns  
RESET Setup Before CLKIN Low  
1 Applies after the power-up sequence is complete. At power-up, the processor’s internal phase-locked loop requires no more than 100 s while RESET is low, assuming stable  
VDD and CLKIN (not including start-up time of external clock oscillator).  
CLKIN  
tWRST  
tSRST  
RESET  
Figure 8. Reset  
Running Reset  
The following timing specification applies to the RESETOUT/  
RUNRSTIN pin when it is configured as RUNRSTIN.  
Table 16. Running Reset  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tWRUNRST  
tSRUNRST  
Running RESET Pulse Width Low  
4 × tCK  
8
ns  
ns  
Running RESET Setup Before CLKIN High  
CLKIN  
tWRUNRST  
tSRUNRST  
RUNRSTIN  
Figure 9. Running Reset  
Rev. D  
| Page 22 of 56 | April 2013  
 
ADSP-21371/ADSP-21375  
Core Timer  
The following timing specification applies to FLAG3 when it is  
configured as the core timer (TMREXP pin).  
Table 17. Core Timer  
Parameter  
Min  
Max  
Unit  
Switching Characteristic  
tWCTIM  
TMREXP Pulse Width  
4 × tPCLK – 1  
ns  
tWCTIM  
FLAG3  
(TMREXP)  
Figure 10. Core Timer  
Interrupts  
The following timing specification applies to the FLAG0,  
FLAG1, and FLAG2 pins when they are configured as IRQ0,  
IRQ1, and IRQ2 interrupts as well as the DAI_P201 and  
DPI_P141 pins when they are configured as interrupts.  
Table 18. Interrupts  
Parameter  
Min  
Max  
Unit  
Timing Requirement  
tIPW  
IRQx Pulse Width  
2 × tPCLK +2  
ns  
INTERRUPT  
INPUTS  
tIPW  
Figure 11. Interrupts  
Rev. D  
| Page 23 of 56 | April 2013  
ADSP-21371/ADSP-21375  
Timer PWM_OUT Cycle Timing  
The following timing specification applies to Timer0 and  
Timer1 in PWM_OUT (pulse-width modulation) mode. Timer  
signals are routed to the DPI_P14–1 pins through the DPI SRU.  
Therefore, the specifications provided below are valid at the  
DPI_P14–1 pins.  
Table 19. Timer PWM_OUT Timing  
Parameter  
Min  
Max  
Unit  
Switching Characteristic  
tPWMO  
Timer Pulse Width Output  
2 × tPCLK – 2  
2 × (231 – 1) × tPCLK  
ns  
tPWMO  
PWM  
OUTPUTS  
Figure 12. Timer PWM_OUT Timing  
Timer WDTH_CAP Timing  
The following timing specification applies to Timer0 and  
Timer1 in WDTH_CAP (pulse width count and capture) mode.  
Timer signals are routed to the DPI_P14–1 pins through the  
SRU. Therefore, the specifications provided below are valid at  
the DPI_P14–1 pins.  
Table 20. Timer Width Capture Timing  
Parameter  
Min  
Max  
Unit  
ns  
Timing Requirement  
tPWI  
Timer Pulse Width  
2 × tPCLK  
2 × (231– 1) × tPCLK  
tPWI  
TIMER  
CAPTURE  
INPUTS  
Figure 13. Timer Width Capture Timing  
Rev. D  
| Page 24 of 56 | April 2013  
ADSP-21371/ADSP-21375  
Pin to Pin Direct Routing (DAI and DPI)  
For direct pin connections only (for example, DAI_PB01_I to  
DAI_PB02_O).  
Table 21. DAI/DPI Pin to Pin Routing  
Parameter  
Min  
Max  
Unit  
Timing Requirement  
tDPIO  
Delay DAI/DPI Pin Input Valid to DAI/DPI Output Valid  
1.5  
10  
ns  
DAI_Pn  
DPI_Pn  
tDPIO  
DAI_Pm  
DPI_Pm  
Figure 14. DAI/DPI Pin to Pin Direct Routing  
Rev. D  
| Page 25 of 56 | April 2013  
ADSP-21371/ADSP-21375  
inputs and outputs are not directly routed to/from DAI pins (via  
pin buffers) there is no timing data available. All timing param-  
eters and switching characteristics apply to external DAI pins  
(DAI_P01 through DAI_P20).  
Precision Clock Generator (Direct Pin Routing)  
This timing is only valid when the SRU is configured such that  
the precision clock generator (PCG) takes its inputs directly  
from the DAI pins (via pin buffers) and sends its outputs  
directly to the DAI pins. For the other cases, where the PCG’s  
Table 22. Precision Clock Generator (Direct Pin Routing)  
1.0 V, 200 MHz  
1.2 V, 266 MHz  
Parameter  
Min  
Max  
Min  
Max  
Unit  
Timing Requirements  
tPCGIP  
tSTRIG  
Input Clock Period  
tPCLK × 4  
4.5  
tPCLK × 4  
4.5  
ns  
ns  
PCG Trigger Setup Before  
Falling Edge of PCG Input Clock  
tHTRIG  
PCG Trigger Hold After Falling 3  
Edge of PCG Input Clock  
3
ns  
Switching Characteristics  
tDPCGIO  
PCG Output Clock and Frame  
Sync Active Edge Delay After 2.5  
PCG Input Clock  
12.8  
2.5  
10  
ns  
ns  
ns  
ns  
tDTRIGCLK  
tDTRIGFS  
PCG Output Clock Delay After 2.5 + ((2.5) × tPCGIW  
PCG Trigger  
)
12.8 + ((2.5) × tPCGIW  
)
2.5 + ((2.5) × tPCGIW  
)
10 + ((2.5) × tPCGIW)  
PCG Frame Sync Delay After  
PCG Trigger  
2.5 + ((2.5 + D – PH) 12.8 + ((2.5 + D – PH) 2.5 + ((2.5 + D – PH) 10 + ((2.5 + D – PH)  
× tPCGIW × tPCGIW × tPCGIW × tPCGIW  
2 × tPCGIW – 1 2 × tPCGIW – 1  
)
)
)
)
1
tPCGOW  
Output Clock Period  
D = FSxDIV, PH = FSxPHASE. For more information, see the ADSP-2137x SHARC Processor Hardware Reference, “Precision Clock Generators” chapter.  
1 Normal mode of operation.  
tSTRIG  
tHTRIG  
DAI_Pn  
DPI_Pn  
PCG_TRIGx_I  
DAI_Pm  
DPI_Pm  
PCG_EXTx_I  
(CLKIN)  
tDPCGIO  
tPCGIP  
DAI_Py  
DPI_Py  
PCG_CLKx_O  
tDTRIGCLK  
tPCGOW  
tDPCGIO  
DAI_Pz  
DPI_Pz  
PCG_FSx_O  
tDTRIGFS  
Figure 15. Precision Clock Generator (Direct Pin Routing)  
Rev. D  
| Page 26 of 56 | April 2013  
ADSP-21371/ADSP-21375  
Flags  
The timing specifications provided below apply to the FLAG3–0  
and DPI_P14–1 pins, and the DATA31–0 pins. See Table 9 on  
Page 13 for more information on flag use.  
Table 23. Flags  
Parameter  
Min  
Max  
Unit  
ns  
Timing Requirement  
tFIPW  
Switching Characteristic  
tFOPW DPI_P14–1, DATA31–0, FLAG3–0 OUT Pulse Width  
DPI_P14–1, DATA31–0, FLAG3–0 IN Pulse Width  
2 × tPCLK + 3  
2 × tPCLK – 2  
ns  
FLAG  
INPUTS  
tFIPW  
FLAG  
OUTPUTS  
tFOPW  
Figure 16. Flags  
Rev. D  
| Page 27 of 56 | April 2013  
ADSP-21371/ADSP-21375  
SDRAM Interface Timing  
Maximum SDRAM frequency for 1.2 V is 133 MHz SDCLK.  
Table 24. SDRAM Interface Timing1  
1.0 V, 200 MHz  
Max  
1.2 V, 266 MHz  
Max  
Parameter  
Min  
Min  
Unit  
Timing Requirements  
tSSDAT  
tHSDAT  
DATA Setup Before SDCLK  
DATA Hold After SDCLK  
0.58  
2.2  
0.58  
2.2  
ns  
ns  
Switching Characteristics  
tSDCLK  
tSDCLKH  
tSDCLKL  
tDCAD  
SDCLK Period  
10  
4
7.5  
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SDCLK Width High  
SDCLK Width Low  
4
3
Command, ADDR, Data Delay After SDCLK2  
Command, ADDR, Data Hold After SDCLK2  
Data Disable After SDCLK  
6.4  
5.3  
5.3  
5.3  
tHCAD  
1.3  
1.6  
1.3  
1.6  
tDSDAT  
tENSDAT  
Data Enable After SDCLK  
1 For FCCLK = 133 MHz (SDCLK ratio = 1:2).  
2 Command pins include: SDCAS, SDRAS, SDWE, MSx, SDA10, and SDCKE.  
tSDCLKH  
tSDCLK  
SDCLK  
tSSDAT  
tHSDAT  
tSDCLKL  
DATA (IN)  
tDCAD  
tHCAD  
tDSDAT  
tENSDAT  
DATA (OUT)  
tDCAD  
tHCAD  
COMMAND/ADDR  
(OUT)  
Figure 17. SDRAM Interface Timing for 133 MHz SDCLK  
Rev. D  
| Page 28 of 56 | April 2013  
ADSP-21371/ADSP-21375  
Memory Read—Bus Master  
Use these specifications for asynchronous interfacing to memo-  
ries. Note that timing for ACK, DATA, RD, WR, and strobe  
timing parameters only apply to asynchronous access mode.  
Table 25. Memory Read—Bus Master  
1.0 V, 200 MHz  
Max  
1.2 V, 266 MHz  
Parameter  
Min  
Min  
Max  
Unit  
Timing Requirements  
tDAD  
Address, Selects Delay to Data Valid1, 2, 3  
RD Low to Data Valid1, 3  
W + tSDCLK – 5.12  
W + tSDCLK – 5.12 ns  
tDRLD  
tSDS  
W – 3  
W – 3  
ns  
ns  
ns  
Data Setup to RD High  
2.2  
0
2.2  
0
tHDRH  
tDAAK  
tDSAK  
Data Hold from RD High4, 5  
ACK Delay from Address, Selects2, 6  
ACK Delay from RD Low5  
tSCDCLK – 11.4 + W  
W – 7.25  
tSCDCLK – 10.1 + W ns  
W – 7.0  
ns  
Switching Characteristics  
tDRHA  
tDARL  
tRW  
Address Selects Hold After RD High  
Address Selects to RD Low2  
RHC + 0.38  
tSDCLK – 3.8  
RHC + 0.38  
tSDCLK – 3.3  
ns  
ns  
ns  
ns  
RD Pulse Width  
W – 1.4  
W – 1.4  
tRWR  
RD High to WR, RD, Low  
HI + tSDCLK – 0.8  
HI + tSDCLK – 0.8  
W = (number of wait states specified in AMICTLx register) × tSDCLK  
HI = RHC + IC (RHC = (number of Read Hold Cycles specified in AMICTLx register) × tSDCLK  
IC = (number of idle cycles specified in AMICTLx register) × tSDCLK  
)
H = (number of hold cycles specified in AMICTLx register) × tSDCLK  
1 Data delay/setup: System must meet tDAD, tDRLD, or tSDS.  
2 The falling edge of MSx, is referenced.  
3 The maximum limit of timing requirement values for tDAD and tDRLD parameters are applicable for the case where AMI_ACK is always high and when the ACK feature is not  
used.  
4 Note that timing for ACK, DATA, RD, WR, and strobe timing parameters only apply to asynchronous access mode.  
5 Data hold: User must meet tHDRH in asynchronous access mode. See Test Conditions on Page 49 for the calculation of hold times given capacitive and dc loads.  
6 ACK delay/setup: User must meet tDAAK, or tDSAK, for deassertion of ACK (low). For asynchronous assertion of ACK (high) user must meet tDAAK or tDSAK  
.
Rev. D  
| Page 29 of 56 | April 2013  
 
 
 
ADSP-21371/ADSP-21375  
ADDR  
MSx  
tDARL  
tRW  
tDRHA  
RD  
tDRLD  
tSDS  
tDAD  
tHDRH  
DATA  
tDSAK  
tRWR  
tDAAK  
ACK  
WR  
Figure 18. Memory Read—Bus Master  
Rev. D  
| Page 30 of 56 | April 2013  
ADSP-21371/ADSP-21375  
Memory Write—Bus Master  
Use these specifications for asynchronous interfacing to memo-  
ries. Note that timing for ACK, DATA, RD, WR, and strobe  
timing parameters only apply to asynchronous access mode.  
Table 26. Memory Write—Bus Master  
1.0 V, 200 MHz  
Max  
1.2 V, 266 MHz  
Parameter  
Min  
Min  
Max  
Unit  
Timing Requirements  
tDAAK  
tDSAK  
Switching Characteristics  
ACK Delay from Address, Selects1, 2  
ACK Delay from WR Low 1, 3  
tSDCLK – 11 + W  
tSDCLK – 10.1 + W  
W – 7.1  
ns  
ns  
W – 7.35  
tDAWH  
tDAWL  
tWW  
Address, Selects to WR Deasserted2  
Address, Selects to WR Low2  
tSDCLK – 4.3 + W  
tSDCLK – 2.7  
tSDCLK – 3.6 + W  
tSDCLK – 2.7  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
WR Pulse Width  
W – 1.3  
W – 1.3  
tDDWH  
tDWHA  
tDWHD  
tDATRWH  
tWWR  
Data Setup Before WR High  
Address Hold After WR Deasserted  
Data Hold After WR Deasserted  
Data Disable After WR Deasserted4  
WR High to WR, RD Low  
tSDCLK – 3.0 + W  
H + 0.15  
tSDCLK – 3.0 + W  
H + 0.15  
H + 0.02  
H + 0.02  
tSDCLK – 1.37 + H  
tSDCLK – 1.5+ H  
2tSDCLK – 12  
tSDCLK – 4.1  
tSDCLK + 10.7+ H  
tSDCLK – 1.37 + H  
tSDCLK – 1.5+ H  
2tSDCLK – 5.1  
tSDCLK – 4.1  
tSDCLK + 4.9+ H  
tDDWR  
tWDE  
Data Disable Before RD Low  
WR Low to Data Enabled  
W = (number of wait states specified in AMICTLx register) × tSDCLK, H = (number of hold cycles specified in AMICTLx register) × tSDCLK  
1 ACK delay/setup: System must meet tDAAK, or tDSAK, for deassertion of ACK (low). For asynchronous assertion of ACK (high) user must meet tDAAK or tDSAK  
2 The falling edge of MSx is referenced.  
.
3 Note that timing for ACK, DATA, RD, WR, and strobe timing parameters only applies to asynchronous access mode.  
4 See Test Conditions on Page 49 for calculation of hold times given capacitive and dc loads.  
Rev. D  
| Page 31 of 56 | April 2013  
 
ADSP-21371/ADSP-21375  
ADDR  
MSx  
tDAWH  
tDWHA  
tDAWL  
tWW  
WR  
tWWR  
tWDE  
tDATRWH  
tDDWH  
tDDWR  
DATA  
tDSAK  
tDWHD  
tDAAK  
ACK  
RD  
Figure 19. Memory Write—Bus Master  
Rev. D  
| Page 32 of 56 | April 2013  
ADSP-21371/ADSP-21375  
Serial Ports  
To determine whether communication is possible between two  
devices at clock speed n, the following specifications must be  
confirmed: 1) frame sync delay and frame sync setup and hold,  
2) data delay and data setup and hold, and 3) serial clock  
(SCLK) width.  
Serial port signals are routed to the DAI_P20–1 pins using the  
SRU. Therefore, the timing specifications provided below are  
valid at the DAI_P20–1 pins.  
Table 27. Serial Ports—External Clock  
1.0 V, 200 MHz  
Max  
1.2 V, 266 MHz  
Max  
Parameter  
Min  
Min  
Unit  
Timing Requirements  
1
tSFSE  
Frame Sync Setup Before SCLK  
(Externally Generated Frame Sync in either Transmit 2.8  
or Receive Mode)  
2.5  
2.5  
ns  
ns  
1
1
tHFSE  
Frame Sync Hold After SCLK  
(Externally Generated Frame Sync in either Transmit 2.5  
or Receive Mode)  
tSDRE  
Receive Data Setup Before Receive SCLK  
Receive Data Hold After SCLK  
SCLK Width  
3.1  
2.5  
2.5  
2.5  
ns  
ns  
ns  
ns  
1
tHDRE  
tSCLKW  
tSCLK  
(tPCLK × 4) ÷ 2 – 1.5  
tPCLK × 4  
(tPCLK × 4) ÷ 2 – 1.5  
tPCLK × 4  
SCLK Period  
Switching Characteristics  
2
tDFSE  
Frame Sync Delay After SCLK (Internally Generated  
Frame Sync in either Transmit or Receive Mode)  
13.5  
13.9  
10.5  
11  
ns  
2
tHOFSE  
Frame Sync Hold After SCLK (Internally Generated  
Frame Sync in either Transmit or Receive Mode)  
2
2
2
2
ns  
ns  
ns  
2
2
tDDTE  
tHDTE  
Transmit Data Delay After Transmit SCLK  
Transmit Data Hold After Transmit SCLK  
1 Referenced to sample edge.  
2 Referenced to drive edge.  
Rev. D  
| Page 33 of 56 | April 2013  
ADSP-21371/ADSP-21375  
Table 28. Serial Ports—Internal Clock  
1.0 V, 200 MHz  
Max  
1.2 V, 266 MHz  
Max  
Parameter  
Min  
Min  
Unit  
Timing Requirements  
1
tSFSI  
Frame Sync Setup Before SCLK (Externally Generated Frame  
Sync in either Transmit or Receive Mode)  
7
7
ns  
1
tHFSI  
Frame Sync Hold After SCLK (Externally Generated Frame Sync  
in either Transmit or Receive Mode)  
2.5  
7
2.5  
7
ns  
ns  
ns  
1
tSDRI  
Receive Data Setup Before SCLK  
Receive Data Hold After SCLK  
1
tHDRI  
2.5  
2.5  
Switching Characteristics  
2
tDFSI  
FrameSyncDelayAfterSCLK(InternallyGeneratedFrameSync  
in Transmit Mode)  
4
4
ns  
ns  
ns  
ns  
2
tHOFSI  
Frame Sync Hold After SCLK (Internally Generated Frame Sync –1.0  
in Transmit Mode)  
–1.0  
2
tDFSIR  
FrameSyncDelayAfterSCLK(InternallyGeneratedFrameSync  
in Receive Mode)  
13.5  
4.6  
10.7  
3.6  
2
tHOFSIR  
Frame Sync Hold After SCLK (Internally Generated Frame Sync –1.0  
in Receive Mode)  
–1.0  
–1.0  
2
tDDTI  
Transmit Data Delay After SCLK  
ns  
ns  
2
tHDTI  
Transmit Data Hold After SCLK  
Transmit or Receive SCLK Width  
–1.0  
3
tSCKLIW  
2 × tPCLK – 1.5  
2 × tPCLK + 1.5 2 × tPCLK – 1.5 2 × tPCLK + 1.5 ns  
1 Referenced to the sample edge.  
2 Referenced to drive edge.  
3 Minimum SPORT divisor register value.  
Rev. D  
| Page 34 of 56 | April 2013  
ADSP-21371/ADSP-21375  
DATA RECEIVE—INTERNAL CLOCK  
DRIVE EDGE SAMPLE EDGE  
DATA RECEIVE—EXTERNAL CLOCK  
DRIVE EDGE  
SAMPLE EDGE  
tSCLKIW  
tSCLKW  
DAI_P20–1  
(SCLK)  
DAI_P20–1  
(SCLK)  
tDFSI  
tDFSE  
tHOFSI  
tSFSI  
tHFSI  
tHOFSE  
tSFSE  
tHFSE  
DAI_P20–1  
(FS)  
DAI_P20–1  
(FS)  
tSDRI  
tHDRI  
tSDRE  
tHDRE  
DAI_P20–1  
(DATA  
CHANNEL A/B)  
DAI_P20–1  
(DATA  
CHANNEL A/B)  
DATA TRANSMIT—INTERNAL CLOCK  
DRIVE EDGE SAMPLE EDGE  
DATA TRANSMIT—EXTERNAL CLOCK  
DRIVE EDGE SAMPLE EDGE  
tSCLKIW  
tSCLKW  
DAI_P20–1  
(SCLK)  
DAI_P20–1  
(SCLK)  
tDFSI  
tDFSE  
tHOFSI  
tSFSI  
tHFSI  
tHOFSE  
tSFSE  
tHFSE  
DAI_P20–1  
(FS)  
DAI_P20–1  
(FS)  
tDDTI  
tDDTE  
tHDTI  
tHDTE  
DAI_P20–1  
(DATA  
CHANNEL A/B)  
DAI_P20–1  
(DATA  
CHANNEL A/B)  
Figure 20. Serial Ports  
Rev. D  
| Page 35 of 56 | April 2013  
ADSP-21371/ADSP-21375  
Table 29. Serial Ports—Enable and Three-State  
1.0 V, 200 MHz  
Max  
1.2 V, 266 MHz  
Max  
Parameter  
Min  
2
Min  
2
Unit  
Switching Characteristics  
1
tDDTEN  
Data Enable from External Transmit SCLK  
Data Disable from External Transmit SCLK  
Data Enable from Internal Transmit SCLK  
ns  
ns  
ns  
1
tDDTTE  
11.3  
10  
1
tDDTIN  
–1  
–1  
1 Referenced to drive edge.  
DRIVE EDGE  
DRIVE EDGE  
DAI_P20–1  
(SCLK, EXT)  
tDDTEN  
tDDTTE  
DAI_P20–1  
(DATA  
CHANNEL A/B)  
DRIVE EDGE  
DAI_P20–1  
(SCLK, INT)  
tDDTIN  
DAI_P20–1  
(DATA  
CHANNEL A/B)  
Figure 21. Enable and Three-State  
Rev. D  
| Page 36 of 56 | April 2013  
ADSP-21371/ADSP-21375  
Table 30. Serial Ports—External Late Frame Sync  
1.0 V, 200 MHz  
1.2 V, 266 MHz  
Max  
Parameter  
Min  
Max  
Min  
Unit  
Switching Characteristics  
1
tDDTLFSE  
Data Delay from Late External Transmit Frame Sync  
12.7  
10  
ns  
or External Receive Frame Sync with  
MCE = 1, MFD = 0  
1
tDDTENFS  
Data Enable for MCE = 1, MFD = 0  
0.5  
0.5  
ns  
1 The tDDTLFSE and tDDTENFS parameters apply to left-justified sample pair as well as DSP serial mode, and MCE = 1, MFD = 0.  
EXTERNAL RECEIVE FS WITH MCE = 1, MFD = 0  
DRIVE  
SAMPLE  
DRIVE  
DAI_P20–1  
(SCLK)  
tHFSE/I  
tSFSE/I  
DAI_P20–1  
(FS)  
tDDTE/I  
tDDTENFS  
tHDTE/I  
DAI_P20–1  
(DATA CHANNEL  
A/B)  
1ST BIT  
2ND BIT  
tDDTLFSE  
LATE EXTERNAL TRANSMIT FS  
SAMPLE DRIVE  
DRIVE  
DAI_P20–1  
(SCLK)  
tHFSE/I  
tSFSE/I  
DAI_P20–1  
(FS)  
tDDTE/I  
tDDTENFS  
tHDTE/I  
DAI_P20–1  
(DATA CHANNEL  
A/B)  
1ST BIT  
2ND BIT  
tDDTLFSE  
Figure 22. External Late Frame Sync1  
1 This figure reflects changes made to support left-justified sample pair mode.  
Rev. D  
| Page 37 of 56 | April 2013  
ADSP-21371/ADSP-21375  
Input Data Port (IDP)  
The timing requirements for the IDP are given in Table 31. IDP  
signals are routed to the DAI_P20–1 pins using the SRU. There-  
fore, the timing specifications provided below are valid at the  
DAI_P20–1 pins.  
Table 31. Input Data Port (IDP)  
1.0 V, 200 MHz  
Max  
1.2 V, 266 MHz  
Max  
Parameter  
Min  
Min  
Unit  
Timing Requirements  
1
tSISFS  
Frame Sync Setup Before Serial Clock Rising Edge  
Frame Sync Hold After Serial Clock Rising Edge  
Data Setup Before Serial Clock Rising Edge  
Data Hold After Serial Clock Rising Edge  
Clock Width  
4.95  
2.5  
3.8  
2.5  
2.5  
2.5  
ns  
ns  
ns  
ns  
ns  
ns  
1
tSIHFS  
1
tSISD  
3.35  
2.5  
1
tSIHD  
tIDPCLKW  
tIDPCLK  
(tPCLK × 4) ÷ 2 – 1  
tPCLK × 4  
(tPCLK × 4) ÷ 2 – 1  
tPCLK × 4  
Clock Period  
1
The data, serial clock, and frame sync signals can come from any of the DAI pins. Serial clock and frame sync can also come via PCG or SPORTs. PCG’s input can be either  
CLKIN or any of the DAI pins.  
SAMPLE EDGE  
tIDPCLK  
tIDPCLKW  
DAI_P20–1  
(SCLK)  
tSISFS  
tSIHFS  
DAI_P20–1  
(FS)  
tSISD  
tSIHD  
DAI_P20–1  
(SDATA)  
Figure 23. IDP Master Timing  
Rev. D  
| Page 38 of 56 | April 2013  
 
ADSP-21371/ADSP-21375  
Note that the 20-bits of external PDAP data can be provided  
through the external port DATA31–12 pins. On the  
ADSP-21375 processors, PDAP can not be multiplexed on the  
external port (since only DATA15–0). Use the SRU DAI  
instead.  
Parallel Data Acquisition Port (PDAP)  
The timing requirements for the PDAP are provided in  
Table 32. PDAP is the parallel mode operation of Channel 0 of  
the IDP. For details on the operation of the PDAP, see the  
PDAP chapter of the ADSP-2137x SHARC Processor Hardware  
Reference.  
Table 32. Parallel Data Acquisition Port (PDAP)  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
1
tSPCLKEN  
PDAP_CLKEN Setup Before PDAP_CLK Sample Edge  
PDAP_CLKEN Hold After PDAP_CLK Sample Edge  
PDAP_DAT Setup Before Serial Clock PDAP_CLK Sample Edge  
PDAP_DAT Hold After Serial Clock PDAP_CLK Sample Edge  
Clock Width  
2.5  
ns  
ns  
ns  
ns  
ns  
ns  
1
tHPCLKEN  
2.5  
1
tPDSD  
3.85  
1
tPDHD  
2.5  
tPDCLKW  
tPDCLK  
(tPCLK × 4) ÷ 2 – 3  
tPCLK × 4  
Clock Period  
Switching Characteristics  
tPDHLDD Delay of PDAP Strobe After Last PDAP_CLK Capture Edge for a Word  
tPDSTRIB PDAP Strobe Pulse Width  
2 × tPCLK + 3  
2 × tPCLK – 1  
ns  
ns  
1 Data source pins are DATA31–12 or DAI pins. Source pins for serial clock and frame sync are: 1) DATA11–10 pins, 2) DAI pins.  
SAMPLE EDGE  
tPDCLK  
tPDCLKW  
DAI_P20–1  
(PDAP_CLK)  
tHPHOLD  
tSPHOLD  
DAI_P20–1  
(PDAP_HOLD)  
tPDHD  
tPDSD  
DAI_P20–1/  
ADDR23–4  
(PDAP_DATA)  
tPDHLDD  
tPDSTRB  
DAI_P20–1  
(PDAP_STROBE)  
Figure 24. PDAP Timing  
Rev. D  
| Page 39 of 56 | April 2013  
 
ADSP-21371/ADSP-21375  
Pulse-width modulation generator information does not apply  
to the ADSP-21375.  
Pulse-Width Modulation Generators (PWM)  
For the ADSP-21371, the following timing specifications apply  
when the DATA31–16 pins are configured as PWM.  
Table 33. Pulse-Width Modulation (PWM) Timing  
Parameter  
Min  
Max  
Unit  
Switching Characteristics  
tPWMW  
tPWMP  
PWM Output Pulse Width  
PWM Output Period  
tPCLK – 2.5  
(216 – 2) × tPCLK  
(216 – 1) × tPCLK  
ns  
ns  
2 × tPCLK – 2.5  
tPWMW  
PWM  
OUTPUTS  
tPWMP  
Figure 25. PWM Timing  
Rev. D  
| Page 40 of 56 | April 2013  
ADSP-21371/ADSP-21375  
output mode) from an LRCLK transition, so that when there are  
64 serial clock periods per LRCLK period, the LSB of the data  
will be right-justified to the next LRCLK transition.  
S/PDIF Transmitter  
For the ADSP-21371, serial data input to the S/PDIF transmitter  
can be formatted as left-justified, I2S, or right-justified with  
word widths of 16-, 18-, 20-, or 24-bits. The following sections  
provide timing for the transmitter.  
S/PDIF transmitter information does not apply to the  
ADSP-21375.  
Figure 27 shows the default I2S-justified mode. LRCLK is low  
for the left channel and high for the right channel. Data is valid  
on the rising edge of serial clock. The MSB is left-justified to an  
LRCLK transition but with a single serial clock period delay.  
S/PDIF Transmitter-Serial Input Waveforms  
Figure 26 shows the right-justified mode. LRCLK is high for the  
left channel and low for the right channel. Data is valid on the  
rising edge of serial clock. The MSB is delayed 12-bit clock peri-  
ods (in 20-bit output mode) or 16-bit clock periods (in 16-bit  
Figure 28 shows the left-justified mode. LRCLK is high for the  
left channel and low for the right channel. Data is valid on the  
rising edge of serial clock. The MSB is left-justified to an LRCLK  
transition with no MSB delay.  
LEFT/RIGHT CHANNEL  
DAI_P20–1  
FS  
DAI_P20–1  
SCLK  
tRJD  
DAI_P20–1  
LSB  
MSB  
MSB–1 MSB–2  
LSB+2 LSB+1  
LSB  
SDATA  
Figure 26. Right-Justified Mode  
LEFT/RIGHT CHANNEL  
DAI_P20–1  
FS  
DAI_P20–1  
SCLK  
tI2SD  
DAI_P20–1  
SDATA  
MSB  
MSB–1 MSB–2  
LSB+2 LSB+1  
LSB  
Figure 27. I2S-Justified Mode  
DAI_P20–1  
FS  
LEFT/RIGHT CHANNEL  
DAI_P20–1  
SCLK  
tLJD  
DAI_P20–1  
SDATA  
MSB  
MSB–1 MSB–2  
LSB+2 LSB+1  
LSB  
Figure 28. Left-Justified Mode  
Rev. D  
| Page 41 of 56 | April 2013  
 
 
 
ADSP-21371/ADSP-21375  
S/PDIF Transmitter Input Data Timing  
The timing requirements for the S/PDIF transmitter are given  
in Table 34. Input signals are routed to the DAI_P20–1 pins  
using the SRU. Therefore, the timing specifications provided  
below are valid at the DAI_P20–1 pins.  
Table 34. S/PDIF Transmitter Input Data Timing  
1.0 V, 200 MHz  
Max  
1.2 V, 266 MHz  
Max  
Parameter  
Min  
Min  
Unit  
Timing Requirements  
1
tSISFS  
Frame Sync Setup Before Serial Clock Rising Edge  
Frame Sync Hold After Serial Clock Rising Edge  
Data Setup Before Serial Clock Rising Edge  
Data Hold After Serial Clock Rising Edge  
Transmit Clock Width  
3
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
tSIHRS  
3
3
1
1
tSISD  
3.2  
3
3
tSIHD  
3
tSITXCLKW  
tSITXCLK  
tSISCLKW  
tSISCLK  
9
9
Transmit Clock Period  
20  
36  
80  
20  
36  
80  
Clock Width  
Clock Period  
1
The data, serial clock, and frame sync can come from any of the DAI pins. Serial clock and frame sync can also come via PCG or SPORTs. PCG’s input can be either CLKIN  
or any of the DAI pins.  
SAMPLE EDGE  
tSITXCLKW  
tSITXCLK  
DAI_P20–1  
(TxCLK)  
tSISCLK  
tSISCLKW  
DAI_P20–1  
(SCLK)  
tSISFS  
tSIHFS  
DAI_P20–1  
(FS)  
tSISD  
tSIHD  
DAI_P20–1  
(SDATA)  
Figure 29. S/PDIF Transmitter Input Timing  
Oversampling Clock (HFCLK) Switching Characteristics  
The S/PDIF transmitter has an oversampling clock. This  
HFCLK input is divided down to generate the biphase clock.  
Table 35. Oversampling Clock HFxCLK) Switching Characteristics  
Parameter  
Max  
Unit  
MHz  
MHz  
kHz  
HFCLK Frequency for HFCLK = 384 × Frame Sync  
HFCLK Frequency for HFCLK = 256 × Frame Sync  
Frame Rate (FS)  
Oversampling Ratio × Frame Sync <= 1/tSITXCLK  
49.2  
192.0  
Rev. D  
| Page 42 of 56 | April 2013  
 
ADSP-21371/ADSP-21375  
Internal Digital PLL Mode  
S/PDIF Receiver  
In the internal digital phase-locked loop mode the internal PLL  
(digital PLL) generates the 512 × Frame Sync clock. The S/PDIF  
receiver information does not apply to the ADSP-21375.  
For the ADSP-21371, the following section describes timing as it  
relates to the S/PDIF receiver.  
Table 36. S/PDIF Receiver Internal Digital PLL Mode Timing  
1.0 V, 200 MHz  
Max  
1.2 V, 266 MHz  
Max  
Parameter  
Min  
Min  
Unit  
Switching Characteristics  
tDFSI  
LRCLK Delay After Serial Clock  
LRCLK Hold After Serial Clock  
5
5
5
5
ns  
ns  
ns  
ns  
ns  
tHOFSI  
tDDTI  
–2  
–2  
Transmit Data Delay After Serial Clock  
Transmit Data Hold After Serial Clock  
Transmit Serial Clock Width  
tHDTI  
–2  
52  
–2  
1
tSCLKIW  
38.5  
1 Serial lock frequency is 64 × Frame Sync where FS = the frequency of LRCLK.  
DRIVE EDGE  
SAMPLE EDGE  
tSCLKIW  
DAI_P20–1  
(SCLK)  
tDFSI  
tHOFSI  
DAI_P20–1  
(FS)  
tDDTI  
tHDTI  
DAI_P20–1  
(DATA CHANNEL  
A/B)  
Figure 30. S/PDIF Receiver Internal Digital PLL Mode Timing  
Rev. D  
| Page 43 of 56 | April 2013  
ADSP-21371/ADSP-21375  
SPI Interface—Master  
The processor contains two SPI ports. Both primary and sec-  
ondary are available through DPI only. The timing provided in  
Table 37 and Table 38 applies to both.  
Table 37. SPI Interface Protocol—Master Switching and Timing Specifications  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tSSPIDM  
tHSPIDM  
Switching Characteristics  
Data Input Valid To SPICLK Edge (Data Input Setup Time)  
8.2  
2
ns  
ns  
SPICLK Last Sampling Edge To Data Input Not Valid  
tSPICLKM  
tSPICHM  
tSPICLM  
tDDSPIDM  
tHDSPIDM  
tSDSCIM  
tHDSM  
Serial Clock Cycle  
8 × tPCLK – 2  
4 × tPCLK – 2  
4 × tPCLK – 2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Serial Clock High Period  
Serial Clock Low Period  
SPICLK Edge to Data Out Valid (Data Out Delay Time)  
SPICLK Edge to Data Out Not Valid (Data Out Hold Time)  
DPI Pin (SPI Device Select) Low to First SPICLK Edge  
Last SPICLK Edge to DPI Pin (SPI Device Select) High  
Sequential Transfer Delay  
2.5  
4 × tPCLK – 2  
4 × tPCLK – 2  
4 × tPCLK – 2  
4 × tPCLK – 1  
tSPITDM  
DPI  
(OUTPUT)  
tSDSCIM  
tSPICHM  
tSPICLM  
tSPICLKM  
tHDSM  
tSPITDM  
SPICLK  
(CP = 0,  
CP = 1)  
(OUTPUT)  
tHDSPIDM  
tDDSPIDM  
MOSI  
(OUTPUT)  
tSSPIDM  
tHSPIDM  
tSSPIDM  
CPHASE = 1  
tHSPIDM  
MISO  
(INPUT)  
tDDSPIDM  
tHDSPIDM  
MOSI  
(OUTPUT)  
tSSPIDM  
tHSPIDM  
CPHASE = 0  
MISO  
(INPUT)  
Figure 31. SPI Master Timing  
Rev. D  
| Page 44 of 56 | April 2013  
 
ADSP-21371/ADSP-21375  
SPI Interface—Slave  
Table 38. SPI Interface Protocol—Slave Switching and Timing Specifications  
1.0 V, 200 MHz  
1.2 V, 266 MHz  
Max  
Parameter  
Min  
Max  
Min  
Unit  
Timing Requirements  
tSPICLKS  
tSPICHS  
tSPICLS  
tSDSCO  
Serial Clock Cycle  
4 × tPCLK – 2  
2 × tPCLK – 2  
2 × tPCLK – 2  
4 × tPCLK – 2  
2 × tPCLK – 2  
2 × tPCLK – 2  
ns  
ns  
ns  
ns  
Serial Clock High Period  
Serial Clock Low Period  
SPIDS Assertion to First SPICLK Edge  
CPHASE = 0  
CPHASE = 1  
2 × tPCLK  
2 × tPCLK  
2 × tPCLK  
2 × tPCLK  
tHDS  
Last SPICLK Edge to SPIDS Not Asserted (CPHASE=0)  
Data Input Valid to SPICLK edge (Data Input Set-up Time)  
SPICLK Last Sampling Edge to Data Input Not Valid  
SPIDS Deassertion Pulse Width (CPHASE=0)  
2 × tPCLK  
2 × tPCLK  
ns  
ns  
ns  
ns  
tSSPIDS  
tHSPIDS  
tSDPPW  
2
2
2
2
2 × tPCLK  
2 × tPCLK  
Switching Characteristics  
tDSOE  
SPIDS Assertion to Data Out Active  
0
0
6.8  
9.9  
9.5  
0
0
6.8  
6.8  
9.5  
ns  
ns  
ns  
ns  
ns  
tDSDHI  
tDDSPIDS  
tHDSPIDS  
tDSOV  
SPIDS Deassertion to Data High Impedance  
SPICLK Edge to Data Out Valid (Data Out Delay Time)  
SPICLK Edge to Data Out Not Valid (Data Out Hold Time)  
SPIDS Assertion to Data Out Valid (CPHASE = 0)  
2 × tPCLK  
2 × tPCLK  
5 × tPCLK  
5 × tPCLK  
SPIDS  
(INPUT)  
tSPICHS  
tSPICLS  
tSPICLKS  
tHDS  
tSDPPW  
SPICLK  
(CP = 0,  
CP = 1)  
(INPUT)  
tSDSCO  
tDSOE  
tDSDHI  
tDDSPIDS  
tDDSPIDS  
tHDSPIDS  
MISO  
(OUTPUT)  
tSSPIDS tHSPIDS  
CPHASE = 1  
MOSI  
(INPUT)  
tHDSPIDS  
tDSDHI  
MISO  
(OUTPUT)  
tDSOV  
tHSPIDS  
CPHASE = 0  
tSSPIDS  
MOSI  
(INPUT)  
Figure 32. SPI Slave Timing  
Rev. D  
| Page 45 of 56 | April 2013  
ADSP-21371/ADSP-21375  
generation of internal UART interrupts and the external data  
operations. These latencies are negligible at the data transmis-  
sion rates for the UART.  
Universal Asynchronous Receiver-Transmitter  
(UART) Port—Receive and Transmit Timing  
Figure 33 describes UART port receive and transmit operations.  
The maximum baud rate is PCLK/16 where PCLK = 1/tPCLK. As  
shown in Figure 33 there is some latency between the  
Table 39. UART Port  
Parameter  
Min  
Max  
Unit  
ns  
Timing Requirement  
1
tTXD  
Incoming Data Pulse Width  
16tPCLK–1  
16tPCLK–1  
Switching Characteristic  
1
tRXD  
Incoming Data Pulse Width  
ns  
1 UART signals TXD and RXD are routed through DPI P14-1 pins using the SRU.  
DPI_P14–1  
[RxD]  
DATA (5–8)  
STOP  
RECEIVE  
tRXD  
INTERNAL  
UART RECEIVE  
INTERRUPT  
UART RECEIVE BIT SET BY DATA STOP;  
CLEARED BY FIFO READ  
START  
DPI_P14–1  
[TxD]  
DATA (5–8)  
STOP (1–2)  
TRANSMIT  
tTXD  
INTERNAL  
UART TRANSMIT BIT SET BY PROGRAM;  
CLEARED BY WRITE TO TRANSMIT  
UART TRANSMIT  
INTERRUPT  
Figure 33. UART Port—Receive and Transmit Timing  
Rev. D  
| Page 46 of 56 | April 2013  
 
ADSP-21371/ADSP-21375  
TWI Controller Timing  
Table 40 and Figure 34 provide timing information for the TWI  
interface. Input signals (SCL, SDA) are routed to the  
DPI_P14–1 pins using the SRU. Therefore, the timing specifica-  
tions provided below are valid at the DPI_P14–1 pins.  
Table 40. Characteristics of the SDA and SCL Bus Lines for F/S-Mode TWI Bus Devices1  
Standard Mode  
Fast Mode  
Max  
400  
Parameter  
fSCL  
Min  
Max  
Min  
Unit  
SCL Clock Frequency  
0
100  
0
kHz  
tHDSTA  
Hold Time (repeated) Start Condition. After This  
Period, the First Clock Pulse is Generated.  
4.0  
4.7  
4.0  
4.7  
0
0.6  
1.3  
0.6  
0.6  
0
μs  
μs  
μs  
μs  
μs  
ns  
μs  
μs  
ns  
tLOW  
Low Period of the SCL Clock  
tHIGH  
tSUSTA  
tHDDAT  
tSUDAT  
tSUSTO  
tBUF  
High Period of the SCL Clock  
Setup Time for a Repeated Start Condition  
Data Hold Time for TWI-Bus Devices  
Data Setup Time  
250  
4.0  
4.7  
100  
0.6  
1.3  
0
Setup Time for Stop Condition  
Bus Free Time Between a Stop and Start Condition  
tSP  
Pulse Width of Spikes Suppressed By the Input Filter N/A  
N/A  
50  
1 All values referred to VIHmin and VILmax levels. For more information, see Electrical Characteristics on page 17.  
DPI_P14–1  
SDA  
tBUF  
tSUDAT  
tHDSTA  
tSP  
tLOW  
DPI_P14–1  
SCL  
tSUSTA  
tSUSTO  
tHDSTA  
tHIGH  
S
Sr  
P
S
tHDDAT  
Figure 34. Fast and Standard Mode Timing on the TWI Bus  
Rev. D  
| Page 47 of 56 | April 2013  
 
 
ADSP-21371/ADSP-21375  
JTAG Test Access Port and Emulation  
Table 41. JTAG Test Access Port and Emulation  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tTCK  
TCK Period  
tCK  
ns  
ns  
ns  
ns  
ns  
ns  
tSTAP  
tHTAP  
TDI, TMS Setup Before TCK High  
TDI, TMS Hold After TCK High  
System Inputs Setup Before TCK High  
System Inputs Hold After TCK High  
TRST Pulse Width  
5
6
1
tSSYS  
7
1
tHSYS  
tTRSTW  
Switching Characteristics  
tDTDO TDO Delay from TCK Low  
System Outputs Delay After TCK Low  
18  
4 × tCK  
7
ns  
ns  
2
tDSYS  
tCK 2 + 7  
1 System Inputs = ADDR15–0, CLKCFG1–0, RESET, BOOT_CFG1–0, DAI_Px, and FLAG3–0.  
2 System Outputs = DAI_Px, ADDR15–0, RD, WR, FLAG3–0, EMU, and ALE.  
tTCK  
TCK  
tSTAP  
tHTAP  
TMS  
TDI  
tDTDO  
TDO  
tSSYS  
tHSYS  
SYSTEM  
INPUTS  
tDSYS  
SYSTEM  
OUTPUTS  
Figure 35. IEEE 1149.1 JTAG Test Access Port  
Rev. D  
| Page 48 of 56 | April 2013  
 
ADSP-21371/ADSP-21375  
CAPACITIVE LOADING  
OUTPUT DRIVE CURRENTS  
Figure 36 shows typical I-V characteristics for the output driv-  
ers of the processors. The curves represent the current drive  
capability of the output drivers as a function of output voltage.  
Output delays and holds are based on standard capacitive loads:  
30 pF on all pins (see Figure 37). Figure 41 shows graphically  
how output delays and holds vary with load capacitance. The  
graphs of Figure 39, Figure 40, and Figure 41 may not be linear  
outside the ranges shown for Typical Output Delay vs. Load  
Capacitance and Typical Output Rise Time (20% to 80%,  
V = Min) vs. Load Capacitance.  
40  
V
OH  
30  
3.3V, 25°C  
20  
3.47V, -45°C  
12  
10  
10  
0
3.11V, 125°C  
RISE  
y = 0.0467x + 1.6323  
FALL  
-
-
10  
8
3.11V, 125°C  
20  
6
3.3V, 25°C  
3.5  
V
-
-
30  
OL  
3.47V,  
-
45°C  
4
40  
y = 0.045x + 1.524  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
SWEEP (V  
) VOLTAGE (V)  
DDEXT  
2
0
Figure 36. Typical Drive at Junction Temperature  
50  
100  
150  
200  
250  
0
LOAD CAPACITANCE (pF)  
TEST CONDITIONS  
The ac signal specifications (timing parameters) appear in  
Table 15 on Page 22 through Table 41 on Page 48. These include  
output disable time, output enable time, and capacitive loading.  
The timing specifications for the SHARC apply for the voltage  
reference levels in Figure 37.  
Figure 39. Typical Output Rise/Fall Time (20% to 80%,  
VDDEXT = Max)  
12  
Timing is measured on signals when they cross the 1.5 V level as  
described in Figure 38. All delays (in nanoseconds) are mea-  
sured between the point that the first signal reaches 1.5 V and  
the point that the second signal reaches 1.5 V.  
RISE  
10  
y = 0.049x + 1.5105  
FALL  
8
6
y = 0.0482x + 1.4604  
TO  
OUTPUT  
PIN  
4
ꢀꢁȍ  
V
LOAD  
30pF  
2
0
0
50  
100  
150  
200  
250  
Figure 37. Equivalent Device Loading for AC Measurements  
(Includes All Fixtures)  
LOAD CAPACITANCE (pF)  
Figure 40. Typical Output Rise/Fall Time (20% to 80%,  
VDDEXT = Min)  
INPUT  
OR  
1.5V  
1.5V  
OUTPUT  
Figure 38. Voltage Reference Levels for AC Measurements  
Rev. D  
| Page 49 of 56 | April 2013  
 
 
 
 
 
ADSP-21371/ADSP-21375  
Values of JB are provided for package comparison and PCB  
design considerations. Note that the thermal characteristics val-  
ues provided in Table 42 are modeled values.  
10  
8
Table 42. Thermal Characteristics for 208-Lead LQFP  
E_PAD (With Exposed Pad Soldered to PCB)  
Y = 0.0488X - 1.5923  
6
4
Parameter  
JA  
Condition  
Typical  
17.1  
14.7  
14.0  
9.6  
Unit  
Airflow = 0 m/s  
Airflow = 1 m/s  
Airflow = 2 m/s  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
C/W  
2
0
JMA  
JMA  
JC  
-2  
-4  
JT  
Airflow = 0 m/s  
Airflow = 1 m/s  
Airflow = 2 m/s  
Airflow = 0 m/s  
Airflow = 1 m/s  
Airflow = 2 m/s  
0.23  
0.39  
0.45  
11.5  
11.2  
11.0  
JMT  
JMT  
JB  
JMB  
JMB  
0
50  
100  
150  
200  
LOAD CAPACITANCE (pF)  
Figure 41. Typical Output Delay or Hold vs. Load Capacitance  
(at Ambient Temperature)  
THERMAL CHARACTERISTICS  
The processor is rated for performance over the temperature  
range specified in Operating Conditions on Page 16.  
Table 42 airflow measurements comply with JEDEC standards  
JESD51-2 and JESD51-6 and the junction-to-board measure-  
ment complies with JESD51-8. Test board design complies with  
JEDEC standard JESD51-7 (LQFP_EP). The junction-to-case  
measurement complies with MIL- STD-883. All measurements  
use a 2S2P JEDEC test board.  
To determine the junction temperature of the device while on  
the application PCB, use  
T
= T  
+ P   
CASE JT  
D
J
where:  
TJ = junction temperature C  
T
CASE = case temperature (C) measured at the top center of the  
package  
JT = junction-to-top (of package) characterization parameter  
is the Typical value from Table 42.  
PD = power dissipation  
Values of JA are provided for package comparison and PCB  
design considerations. JA can be used for a first order approxi-  
mation of TJ by the equation  
T
= T + P   
A JA D  
J
where:  
TA = ambient temperature C  
Values of JC are provided for package comparison and PCB  
design considerations when an external heatsink is required.  
Rev. D  
| Page 50 of 56 | April 2013  
 
ADSP-21371/ADSP-21375  
208-LEAD LQFP_EP PINOUT  
Table 43. ADSP-21371, 208-Lead LQFP_EP Pin Assignment (Numerical by Lead Number)  
Pin No.  
1
Signal  
VDDINT  
Pin No.  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
Signal  
VDDINT  
Pin No.  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
Signal  
Pin No.  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
Signal  
VDDINT  
VDDINT  
2
DATA28  
DATA27  
GND  
GND  
GND  
VDDINT  
3
VDDEXT  
VDDEXT  
GND  
4
ADDR0  
ADDR2  
ADDR1  
ADDR4  
ADDR3  
ADDR5  
GND  
SDCAS  
VDDINT  
5
VDDEXT  
SDRAS  
VDDINT  
6
DATA26  
DATA25  
DATA24  
DATA23  
GND  
SDCKE  
VDDINT  
7
SDWE  
TDI  
8
WR  
TRST  
9
SDA10  
TCK  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
GND  
GND  
VDDINT  
VDDINT  
VDDEXT  
VDDINT  
DATA22  
DATA21  
DATA20  
VDDEXT  
GND  
SDCLK  
TMS  
VDDEXT  
GND  
CLK_CFG0  
BOOT_CFG0  
CLK_CFG1  
EMU  
ADDR6  
ADDR7  
ADDR8  
ADDR9  
ADDR10  
GND  
VDDINT  
RD  
GND  
ACK  
DATA19  
DATA18  
VDDINT  
FLAG3  
BOOT_CFG1  
TDO  
FLAG2  
FLAG1  
DAI_P4 (SFS0)  
DAI_P2 (SD0B)  
DAI_P3 (SCLK0)  
DAI_P1 (SD0A)  
VDDEXT  
GND  
VDDINT  
FLAG0  
DATA17  
VDDINT  
GND  
DAI_P20 (SFS5)  
GND  
VDDEXT  
GND  
ADDR11  
ADDR12  
ADDR13  
GND  
VDDINT  
VDDINT  
GND  
GND  
GND  
VDDEXT  
VDDINT  
DATA16  
DATA15  
DATA14  
DATA13  
DATA12  
VDDEXT  
DAI_P19 (SCLK5)  
DAI_P18 (SD5B)  
DAI_P17 (SD5A)  
DAI_P16 (SD4B)  
DAI_P15 (SD4A)  
DAI_P14 (SFS3)  
DAI_P13 (SCLK3)  
DAI_P12 (SD3B)  
VDDINT  
GND  
VDDINT  
DPI_P14 (TIMER1)  
DPI_P13 (TIMER0)  
DPI_P12 (TWI_CLK)  
DPI_P11 (TWI_DATA)  
DPI_P10 (UART0RX)  
DPI_P09 (UART0TX)  
DPI_P08 (SPIFLG3)  
DPI_P07 (SPIFLG2)  
VDDEXT  
NC  
NC  
GND  
CLKIN  
XTAL  
GND  
VDDINT  
VDDEXT  
GND  
GND  
DATA11  
DATA10  
DATA9  
DATA8  
DATA7  
DATA6  
VDDEXT  
VDDINT  
VDDEXT  
ADDR14  
GND  
GND  
GND  
VDDINT  
VDDINT  
VDDEXT  
GND  
GND  
ADDR15  
ADDR16  
ADDR17  
ADDR18  
GND  
DAI_P11 (SD3A)  
DAI_P10 (SD2B)  
DAI_P8 (SFS1)  
DAI_P9 (SD2A)  
DAI_P6 (SD1B)  
DAI_P7 (SCLK1)  
DPI_P06 (SPIFLG1)  
DPI_P05 (SPIFLG0)  
DPI_P04 (SPIDS)  
DPI_P03 (SPICLK)  
DPI_P01 (SPIMOSI)  
DPI_P02 (SPIMISO)  
GND  
VDDINT  
DATA4  
VDDEXT  
Rev. D  
| Page 51 of 56 | April 2013  
ADSP-21371/ADSP-21375  
Table 43. ADSP-21371, 208-Lead LQFP_EP Pin Assignment (Numerical by Lead Number) (Continued)  
Pin No.  
Signal  
Pin No.  
Signal  
Pin No.  
Signal  
Pin No.  
Signal  
45  
DATA5  
97  
ADDR19  
149  
DAI_P5 (SD1A)  
201  
RESETOUT/  
RUNRSTIN  
46  
47  
48  
49  
50  
51  
52  
DATA2  
DATA3  
DATA0  
DATA1  
VDDEXT  
98  
ADDR20  
ADDR21  
ADDR23  
ADDR22  
MS1  
150  
151  
152  
153  
154  
155  
156  
VDDEXT  
GND  
VDDINT  
GND  
VDDINT  
GND  
VDDINT  
202  
203  
204  
205  
206  
207  
208  
RESET  
VDDEXT  
99  
100  
101  
102  
103  
104  
GND  
DATA30  
DATA31  
DATA29  
VDDINT  
GND  
MS0  
VDDINT  
VDDINT  
Rev. D  
| Page 52 of 56 | April 2013  
ADSP-21371/ADSP-21375  
Table 44. ADSP-21375, 208-Lead LQFP_EP Pin Assignment (Numerical by Lead Number)  
Pin No.  
1
Signal  
VDDINT  
NC  
Pin No.  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
Signal  
VDDINT  
Pin No.  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
Signal  
Pin No.  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
Signal  
VDDINT  
VDDINT  
2
GND  
GND  
VDDINT  
3
NC  
VDDEXT  
VDDEXT  
GND  
4
GND  
VDDEXT  
NC  
ADDR0  
ADDR2  
ADDR1  
ADDR4  
ADDR3  
ADDR5  
GND  
SDCAS  
VDDINT  
5
SDRAS  
VDDINT  
6
SDCKE  
VDDINT  
7
NC  
SDWE  
TDI  
8
NC  
WR  
TRST  
9
NC  
SDA10  
TCK  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
GND  
VDDINT  
NC  
GND  
GND  
VDDINT  
VDDEXT  
VDDINT  
GND  
SDCLK  
TMS  
NC  
VDDEXT  
GND  
CLK_CFG0  
BOOT_CFG0  
CLK_CFG1  
EMU  
NC  
ADDR6  
ADDR7  
ADDR8  
ADDR9  
ADDR10  
GND  
VDDINT  
NC  
RD  
NC  
ACK  
NC  
FLAG3  
BOOT_CFG1  
TDO  
NC  
FLAG2  
NC  
FLAG1  
DAI_P4 (SFS0)  
DAI_P2 (SD0B)  
DAI_P3 (SCLK0)  
DAI_P1 (SD0A)  
VDDEXT  
NC  
VDDINT  
FLAG0  
NC  
GND  
DAI_P20 (SFS5)  
GND  
VDDINT  
GND  
VDDINT  
GND  
NC  
VDDEXT  
ADDR11  
ADDR12  
ADDR13  
GND  
VDDINT  
GND  
GND  
VDDEXT  
VDDINT  
DAI_P19 (SCLK5)  
DAI_P18 (SD5B)  
DAI_P17 (SD5A)  
DAI_P16 (SD4B)  
DAI_P15 (SD4A)  
DAI_P14 (SFS3)  
DAI_P13 (SCLK3)  
DAI_P12 (SD3B)  
VDDINT  
GND  
DATA15  
DATA14  
DATA13  
DATA12  
VDDEXT  
GND  
VDDINT  
GND  
DATA11  
DATA10  
DATA9  
DATA8  
DATA7  
DATA6  
VDDEXT  
GND  
VDDINT  
DATA4  
VDDINT  
DPI_P14 (TIMER1)  
DPI_P13 (TIMER0)  
DPI_P12 (TWI_CLK)  
DPI_P11 (TWI_DATA)  
DPI_P10 (UART0RX)  
DPI_P09 (UART0TX)  
DPI_P08 (SPIFLG3)  
DPI_P07 (SPIFLG2)  
VDDEXT  
NC  
NC  
GND  
CLKIN  
XTAL  
VDDEXT  
GND  
VDDINT  
VDDEXT  
ADDR14  
GND  
GND  
GND  
VDDINT  
VDDINT  
VDDEXT  
GND  
GND  
ADDR15  
ADDR16  
ADDR17  
ADDR18  
GND  
DAI_P11 (SD3A)  
DAI_P10 (SD2B)  
DAI_P8 (SFS1)  
DAI_P9 (SD2A)  
DAI_P6 (SD1B)  
DAI_P7 (SCLK1)  
DPI_P06 (SPIFLG1)  
DPI_P05 (SPIFLG0)  
DPI_P04 (SPIDS)  
DPI_P03 (SPICLK)  
DPI_P01 (SPIMOSI)  
DPI_P02 (SPIMISO)  
VDDEXT  
Rev. D  
| Page 53 of 56 | April 2013  
ADSP-21371/ADSP-21375  
Table 44. ADSP-21375, 208-Lead LQFP_EP Pin Assignment (Numerical by Lead Number) (Continued)  
Pin No.  
Signal  
Pin No.  
Signal  
Pin No.  
Signal  
Pin No.  
Signal  
45  
DATA5  
97  
ADDR19  
149  
DAI_P5 (SD1A)  
201  
RESETOUT/  
RUNRSTIN  
46  
47  
48  
49  
50  
51  
52  
DATA2  
DATA3  
DATA0  
DATA1  
VDDEXT  
98  
ADDR20  
ADDR21  
ADDR23  
ADDR22  
MS1  
150  
151  
152  
153  
154  
155  
156  
VDDEXT  
GND  
VDDINT  
GND  
VDDINT  
GND  
VDDINT  
202  
203  
204  
205  
206  
207  
208  
RESET  
VDDEXT  
99  
100  
101  
102  
103  
104  
GND  
DATA30  
DATA31  
DATA29  
VDDINT  
GND  
MS0  
VDDINT  
VDDINT  
Rev. D  
| Page 54 of 56 | April 2013  
ADSP-21371/ADSP-21375  
PACKAGE DIMENSIONS  
The processors are available in a 208-lead RoHS compliant  
LQFP_EP package.  
30.20  
30.00 SQ  
29.80  
25.50  
REF  
28.10  
28.00 SQ  
27.90  
1.60 MAX  
0.75  
0.60  
8.712  
REF  
0.45  
208  
157  
156  
157  
156  
208  
1
1
1.00 REF  
PIN 1  
SEATING  
PLANE  
8.890  
REF  
TOP VIEW  
(PINS DOWN)  
*
EXPOSED  
PAD  
1.45  
1.40  
1.35  
0.20  
0.15  
0.09  
0.15  
0.10  
0.05  
7°  
3.5°  
0°  
BOTTOM VIEW  
(PINS UP)  
0.08  
COPLANARITY  
105  
104  
105  
104  
52  
52  
53  
53  
VIEW A  
0.27  
0.22  
0.17  
VIEW A  
ROTATED 90° CCW  
0.50  
BSC  
LEAD PITCH  
COMPLIANT TO JEDEC STANDARDS MS-026-BJB-HD  
*
NOTE:  
THE EXPOSED PAD IS REQUIRED TO BE ELECTRICALLY AND THERMALLY CONNECTED TO GND.  
THIS SHOULD BE IMPLEMENTED BY SOLDERING THE EXPOSED PAD TO A GND PCB LAND THAT IS THE SAME SIZE  
AS THE EXPOSED PAD. THE GND PCB LAND SHOULD BE ROBUSTLY CONNECTED TO THE GND PLANE IN THE PCB  
WITH AN ARRAY OF THERMAL VIAS FOR BEST PERFORMANCE.  
Figure 42. 208-Lead Low Profile Quad Flat Package, Exposed Pad [LQFP_EP]  
(SW-208-1)  
Dimensions shown in millimeters  
Rev. D  
| Page 55 of 56 | April 2013  
ADSP-21371/ADSP-21375  
AUTOMOTIVE PRODUCTS  
Some ADSP-21371/ADSP-21375 models are available for automotive applications with controlled manufacturing. Note that this special  
model may have specifications that differ from the general release models.  
The automotive grade products shown in Table 45 are available for use in automotive applications. Contact your local ADI account repre-  
sentative or authorized ADI product distributor for specific product ordering information. Note that all automotive products are RoHS  
compliant.  
Table 45. Automotive Products  
Temperature  
Range1  
Instruction  
Rate  
On-Chip  
SRAM  
Model  
ROM  
Package Description  
208-Lead LQFP_EP  
208-Lead LQFP_EP  
208-Lead LQFP_EP  
208-Lead LQFP_EP  
Package Option  
SW-208-1  
AD21371WBSWZ2xx  
AD21371WYSWZ1xx  
AD21375WBSWZ2xx  
AD21375WYSWZ1xx  
–40ºC to 85ºC  
–40ºC to 105ºC  
–40ºC to 85ºC  
–40ºC to 105ºC  
266 MHz  
200 MHz  
266 MHz  
200 MHz  
1M bit  
4M bit  
4M bit  
2M bit  
2M bit  
1M bit  
SW-208-1  
0.5M bit  
0.5M bit  
SW-208-1  
SW-208-1  
1 Referenced temperature is ambient temperature.  
ORDERING GUIDE  
Temperature  
Instruction  
Rate  
On-Chip  
Model  
Notes Range1  
SRAM  
1M bit  
1M bit  
1M bit  
0.5M bit  
0.5M bit  
ROM  
Package Description  
208-Lead LQFP_EP  
208-Lead LQFP_EP  
208-Lead LQFP_EP  
208-Lead LQFP_EP  
208-Lead LQFP_EP  
Package Option  
SW-208-1  
2
ADSP-21371KSWZ-2A  
ADSP-21371KSWZ-2B  
ADSP-21371BSWZ-2B  
ADSP-21375KSWZ-2B  
ADSP-21375BSWZ-2B  
0ºC to +70ºC  
0ºC to +70ºC  
–40ºC to +85ºC  
0ºC to +70ºC  
–40ºC to +85ºC  
266 MHz  
266 MHz  
266 MHz  
266 MHz  
266 MHz  
4M bit  
4M bit  
4M bit  
2M bit  
2M bit  
2
SW-208-1  
2, 3  
2
SW-208-1  
SW-208-1  
2, 3  
SW-208-1  
1 Referenced temperature is ambient temperature.  
2 Z = RoHS Compliant Part.  
3 Available with a wide variety of audio algorithm combinations sold as part of a chipset and bundled with necessary software.  
For a complete list, visit our website at www.analog.com/SHARC.  
©2013 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07170-0-4/13(D)  
Rev. D  
| Page 56 of 56 | April 2013  
 
 
 

相关型号:

ADSP-21371KSWZ-2A2

SHARC Processor optimized for high performance audio processing
ADI

ADSP-21371KSWZ-2B

High-Performance 32-bit Floating-Point SHARC Processor for Automotive Audio
ADI

ADSP-21371KSWZ-2B2

SHARC Processor optimized for high performance audio processing
ADI

ADSP-21371KSZ-ENG

SHARC Processor
ADI

ADSP-21371_07

SHARC㈢ Processor
ADI

ADSP-21371_09

SHARC Processor optimized for high performance audio processing
ADI

ADSP-21375

SHARC Processor
ADI

ADSP-21375BSWZ-2B

High-Performance 32-bit Floating-Point SHARC Processor
ADI

ADSP-21375BSWZ-2B2

SHARC Processor optimized for high performance audio processing
ADI

ADSP-21375KSWZ-2B

High-Performance 32-bit Floating-Point SHARC Processor
ADI

ADSP-21375KSWZ-2B2

SHARC Processor optimized for high performance audio processing
ADI

ADSP-21375KSZ-ENG

SHARC Processor
ADI