ADSP-21369KBPZ-ENG [ADI]

IC 32-BIT, 66.66 MHz, OTHER DSP, PBGA256, LEAD FREE, MO-192-BAL-2, SBGA-256, Digital Signal Processor;
ADSP-21369KBPZ-ENG
型号: ADSP-21369KBPZ-ENG
厂家: ADI    ADI
描述:

IC 32-BIT, 66.66 MHz, OTHER DSP, PBGA256, LEAD FREE, MO-192-BAL-2, SBGA-256, Digital Signal Processor

文件: 总52页 (文件大小:2317K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
SHARC® Processor  
ADSP-21369  
a
Preliminary Technical Data  
SUMMARY  
The ADSP-21369 is available with a 400 MHz core instruction  
rate with unique audio centric peripherals such as the Digi-  
tal Audio Interface, S/PDIF transceiver, serial ports, 8-  
channel asynchronous sample rate converter, precision  
clock generators and more. For complete ordering infor-  
mation, see Ordering Guide on Page 52  
High performance 32-bit/40-bit floating point processor  
optimized for high performance audio processing  
Single-Instruction Multiple-Data (SIMD) computational  
architecture  
On-chip memory—2M bit of on-chip SRAM and 6M bit of on-  
chip mask programmable ROM  
Code compatible with all other members of the SHARC family  
CORE PROCESSOR  
INSTRUCTION  
4 BLOCKS OF  
ON-CHIP MEMORY  
JTAG TEST & EMULATION  
CACHE  
TI MER  
32 X 48-BI T  
2M BIT RAM,  
6M BIT ROM (*Reserved)  
FLAGS  
4-15  
DAG2  
8X4X32  
DAG1  
8X4X32  
PROGRAM  
SEQUENCER  
ADDR  
DATA  
PWM  
32  
EXTERNAL PORT  
DATA  
8
P M ADDRE SS BUS  
DM ADDRES S BUS  
32  
SDRAM  
CONTROLLER  
11  
32  
3
ASYNCHRONOUS  
MEMO RY  
INTERFACE  
CONTROL  
24  
64  
64  
PM DATA BUS  
IOA(24)  
IOD(32)  
ADDRESS  
DM DATA BUS  
DMA  
CONTROLLER  
PROCESSING  
ELEMENT  
(P EX)  
PX REGISTER  
PROCESSING  
ELEMENT  
(P EY)  
IOP REGISTER (MEMORY MAPPED)  
CONTROL, STATUS, & DATA BUFFERS  
34 CHANNE LS  
MEMORY-TO-  
MEMORY DMA (2)  
PRECISION CLOCK  
GENERATORS (4)  
SERIAL PORTS (8)  
SPI PORT (2)  
4
UART (2)  
GPIO FLAGS/  
INPUT DATA PORT/  
PDAP  
IRQ/TIMEXP  
TWO WIRE  
INTERFACE  
SRC (8 CHANNELS)  
SPDIF (RX/TX)  
TIMERS (3)  
DAI PINS  
DPI PINS  
S
DIGITAL PERIP HERAL INTE RFACE  
DIGITAL AUDIO INTERFACE  
I/O PROCESSOR  
14  
20  
*THE ADSP-21369 PROCESSOR INCLUDES A CUSTOMER-DEFINABLE ROM BLOCK.  
PLEASE CONTACT YOUR ANALOG DEVICES SALE S REPRESENTATIVE FOR ADDITIONAL DETAILS  
Figure 1. Functional Block Diagram  
SHARC and the SHARC logo are registered trademarks of Analog Devices, Inc.  
Rev. PrB  
Information furnished by Analog Devices is believed to be accurate and reliable.  
However, no responsibility is assumed by Analog Devices for its use, nor for any  
infringements of patents or other rights of third parties that may result from its use.  
Specifications subject to change without notice. No license is granted by implication  
or otherwise under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 U.S.A.  
Tel:781.329.4700  
Fax:781.326.8703  
www.analog.com  
© 2005 Analog Devices, Inc. All rights reserved.  
ADSP-21369  
Preliminary Technical Data  
Up to 16 TDM stream support, each with 128 channels per  
frame  
Companding selection on a per channel basis in TDM mode  
Input data port, configurable as eight channels of serial data  
or seven channels of serial data and up to a 20-bit wide  
parallel data channel  
Signal routing unit provides configurable and flexible con-  
nections between all DAI/DPI components  
2 Muxed Flag/IRQ lines  
1 Muxed Flag/Timer expired line /MS pin  
1 Muxed Flag/IRQ /MS pin  
KEY FEATURES – PROCESSOR CORE  
At 400 MHz (2.5 ns) core instruction rate, the ADSP-21369  
performs 2.4 GFLOPS/800 MMACS  
2M bit on-chip, SRAM (0.75M Bit in blocks 0 and 1, and 250K  
bit in blocks 2 and 3) for simultaneous access by the core  
processor and DMA  
6M bit on-chip, mask-programmable, ROM (3M bit in block 0  
and 3M bit in block 1)  
Dual data address generators (DAGs) with modulo and bit-  
reverse addressing  
Zero-overhead looping with single-cycle loop setup, provid-  
ing efficient program sequencing  
Single Instruction Multiple Data (SIMD) architecture  
provides:  
Two computational processing elements  
Concurrent execution  
Code compatibility with other SHARC family members at  
the assembly level  
DEDICATED AUDIO COMPONENTS  
S/PDIF Compatible Digital Audio receiver/transmitter sup-  
ports EIAJ CP-340 (CP-1201), IEC-958, AES/EBU standards  
Left-justified, I2S or right-justified serial data input with  
16, 18, 20 or 24-bit word widths (transmitter)  
Four independent Asynchronous Sample Rate Converters  
(SRC). Each converter has separate serial input and output  
ports, a deemphasis filter providing up to -128dB SNR per-  
formance, stereo sample rate converter (SRC) and supports  
left-justified, I2S, TDM and right-justified modes and 24,  
20, 18 and 16 audio data word lengths.  
Parallelism in buses and computational units allows: Sin-  
gle cycle executions (with or without SIMD) of a multiply  
operation, an ALU operation, a dual memory read or  
write, and an instruction fetch  
Transfers between memory and core at a sustained 6.4G  
bytes/s bandwidth at 400 MHz core instruction rate  
Pulse Width Modulation provides:  
16 PWM outputs configured as four groups of four outputs  
supports center-aligned or edge-aligned PWM waveforms  
ROM Based Security features include:  
JTAG access to memory permitted with a 64-bit key  
Protected memory regions that can be assigned to limit  
access under program control to sensitive code  
PLL has a wide variety of software and hardware multi-  
plier/divider ratios  
INPUT/OUTPUT FEATURES  
DMA controller supports:  
34 zero-overhead DMA channels for transfers between  
ADSP-21369 internal memory and a variety of  
peripherals  
32-bit DMA transfers at peripheral clock speed, in parallel  
with full-speed processor execution  
32-Bit wide external port provides glueless connection to  
both synchronous (SDRAM) and asynchronous memory  
devices  
Dual voltage: 3.3 V I/O, 1.3 V core  
Available in 256-ball SBGA and 208-lead MQFP Packages (see  
Ordering Guide on Page 52)  
Programmable wait state options: 2 to 31 SCLK cycles  
Delay-line DMA engine maintains circular buffers in exter-  
nal memory with tap/offset based reads  
SDRAM accesses at 166MHz and asynchronous accesses at  
66MHz  
4 memory select lines allows multiple external memory  
devices  
Digital audio interface (DAI) includes eight serial ports, four  
precision clock generators, an input data port, an S/PDIF  
transceiver, an 8-channel asynchronous sample rate con-  
verter, and a signal routing unit  
Digital peripheral interface (DPI) includes, three timers, two  
UARTs, two SPI ports, and a two wire interface port  
Outputs of PCG's C and D can be driven on to DPI pins  
Eight dual data line serial ports that operate at up to 50M  
bits/s on each data line — each has a clock, frame sync and  
two data lines that can be configured as either a receiver or  
transmitter pair  
TDM support for telecommunications interfaces including  
128 TDM channel support for newer telephony interfaces  
such as H.100/H.110  
Rev. PrB  
|
Page 2 of 52  
|
June 2005  
Preliminary Technical Data  
ADSP-21369  
TABLE OF CONTENTS  
Summary ................................................................1  
Key Features – Processor Core ..................................2  
Input/Output Features ............................................2  
Dedicated Audio Components ..................................2  
General Description ..................................................4  
ADSP-21369 Family Core Architecture .......................4  
ADSP-21369 Memory .............................................5  
External Memory ...................................................5  
ADSP-21369 Input/Output Features ...........................7  
System Design .......................................................9  
Development Tools .............................................. 10  
Pin Function Descriptions ........................................ 12  
Data Modes ........................................................ 15  
Boot Modes ........................................................ 15  
Core Instruction Rate to CLKIN Ratio Modes ............. 15  
ADSP-21369 Specifications ....................................... 16  
Recommended Operating Conditions ....................... 16  
Electrical Characteristics ........................................ 16  
Absolute Maximum Ratings ................................... 17  
Maximum Power Dissipation ................................. 17  
ESD Sensitivity .................................................... 17  
Timing Specifications ........................................... 17  
Output Drive Currents .......................................... 46  
Test Conditions ................................................... 46  
Thermal Characteristics ........................................ 46  
Capacitive Loading ............................................... 46  
256-Ball SBGA Pinout .............................................. 48  
208-Lead MQFP Pinout ............................................ 50  
Package Dimensions ................................................ 51  
Ordering Guide ...................................................... 52  
REVISION HISTORY  
6/05–Data sheet changed from REV. PrA to REV. PrB  
This revision corrects the pin assignments on the SBGA Ball  
Grid Array package. Pin V13 is now correctly identified as  
IOVDD, and pin V14 is GND. See Table 43 on page 48.  
Rev. PrB  
|
Page 3 of 52  
|
June 2005  
ADSP-21369  
Preliminary Technical Data  
GENERAL DESCRIPTION  
The ADSP-21369 SHARC processor is a members of the SIMD  
SHARC family of DSPs that feature Analog Devices' Super Har-  
vard Architecture. The ADSP-21369 is source code compatible  
with the ADSP-2126x, and ADSP-2116x, DSPs as well as with  
first generation ADSP-2106x SHARC processors in SISD (Sin-  
gle-Instruction, Single-Data) mode. The ADSP-21369 is a 32-  
bit/40-bit floating point processors optimized for high perfor-  
mance automotive audio applications with its large on-chip  
SRAM, and mask-programmable ROM, multiple internal buses  
to eliminate I/O bottlenecks, and an innovative Digital Audio  
Interface (DAI).  
• On-Chip mask-programmable ROM (6M bit)  
• JTAG test access port  
The block diagram of the ADSP-21369 on Page 1 also illustrates  
the following architectural features:  
• DMA controller  
• Eight full duplex serial ports  
• Digital audio interface that includes four precision clock  
generators (PCG), an input data port (IDP), an S/PDIF  
receiver/transmitter, eight channels asynchronous sample  
rate converters, eight serial ports, eight serial interfaces, a  
16-bit parallel input port (PDAP), a flexible signal routing  
unit (DAI SRU).  
As shown in the functional block diagram on Page 1, the  
ADSP-21369 uses two computational units to deliver a signifi-  
cant performance increase over the previous SHARC processors  
on a range of DSP algorithms. Fabricated in a state-of-the-art,  
high speed, CMOS process, the ADSP-21369 processor achieves  
an instruction cycle time of 2.5 ns at 400 MHz. With its SIMD  
computational hardware, the ADSP-21369 can perform 2.4  
GFLOPS running at 400 MHz.  
• Digital peripheral interface that includes three timers, an  
I2C interface, two UARTs, two serial peripheral interfaces  
(SPI), and a flexible signal routing unit (DPI SRU).  
ADSP-21369 FAMILY CORE ARCHITECTURE  
The ADSP-21369 is code compatible at the assembly level with  
the ADSP-2126x, ADSP-21160 and ADSP-21161, and with the  
first generation ADSP-2106x SHARC processors. The ADSP-  
21369 shares architectural features with the ADSP-2126x and  
ADSP-2116x SIMD SHARC processors, as detailed in the fol-  
lowing sections.  
Table 1 shows performance benchmarks for the ADSP-21369.  
Table 1. ADSP-21369 Benchmarks (at 400 MHz)  
Benchmark Algorithm  
Speed  
(at 400 MHz)  
1024 Point Complex FFT (Radix 4, with reversal) 23.25 µs  
SIMD Computational Engine  
FIR Filter (per tap)1  
1.25 ns  
5.0 ns  
The ADSP-21369 contains two computational processing ele-  
ments that operate as a Single-Instruction Multiple-Data  
(SIMD) engine. The processing elements are referred to as PEX  
and PEY and each contains an ALU, multiplier, shifter and reg-  
ister file. PEX is always active, and PEY may be enabled by  
setting the PEYEN mode bit in the MODE1 register. When this  
mode is enabled, the same instruction is executed in both pro-  
cessing elements, but each processing element operates on  
different data. This architecture is efficient at executing math  
intensive DSP algorithms.  
IIR Filter (per biquad)1  
Matrix Multiply (pipelined)  
[3x3] × [3x1]  
[4x4] × [4x1]  
11.25 ns  
20.0 ns  
Divide (y/×)  
8.75 ns  
13.5 ns  
Inverse Square Root  
1 Assumes two files in multichannel SIMD mode  
The ADSP-21369 continues SHARC’s industry leading stan-  
dards of integration for DSPs, combining a high performance  
32-bit DSP core with integrated, on-chip system features.  
Entering SIMD mode also has an effect on the way data is trans-  
ferred between memory and the processing elements. When in  
SIMD mode, twice the data bandwidth is required to sustain  
computational operation in the processing elements. Because of  
this requirement, entering SIMD mode also doubles the band-  
width between memory and the processing elements. When  
using the DAGs to transfer data in SIMD mode, two data values  
are transferred with each access of memory or the register file.  
The block diagram of the ADSP-21369 on Page 1, illustrates the  
following architectural features:  
• Two processing elements, each of which comprises an  
ALU, Multiplier, Shifter and Data Register File  
• Data Address Generators (DAG1, DAG2)  
• Program sequencer with instruction cache  
Independent, Parallel Computation Units  
Within each processing element is a set of computational units.  
The computational units consist of an arithmetic/logic unit  
(ALU), multiplier, and shifter. These units perform all opera-  
tions in a single cycle. The three units within each processing  
element are arranged in parallel, maximizing computational  
throughput. Single multifunction instructions execute parallel  
ALU and multiplier operations. In SIMD mode, the parallel  
ALU and multiplier operations occur in both processing ele-  
• PM and DM buses capable of supporting four 32-bit data  
transfers between memory and the core at every core pro-  
cessor cycle  
• Three Programmable Interval Timers with PWM Genera-  
tion, PWM Capture/Pulse width Measurement, and  
External Event Counter Capabilities  
• On-Chip SRAM (2M bit)  
Rev. PrB  
|
Page 4 of 52  
|
June 2005  
Preliminary Technical Data  
ADSP-21369  
ments. These computation units support IEEE 32-bit single-  
precision floating-point, 40-bit extended precision floating-  
point, and 32-bit fixed-point data formats.  
On-Chip Memory  
The ADSP-21369 contains two megabits of internal RAM and  
six megabits of internal mask-programmable ROM. Each block  
can be configured for different combinations of code and data  
storage (see Table 2). Each memory block supports single-cycle,  
independent accesses by the core processor and I/O processor.  
The ADSP-21369 memory architecture, in combination with its  
separate on-chip buses, allow two data transfers from the core  
and one from the I/O processor, in a single cycle.  
Data Register File  
A general-purpose data register file is contained in each pro-  
cessing element. The register files transfer data between the  
computation units and the data buses, and store intermediate  
results. These 10-port, 32-register (16 primary, 16 secondary)  
register files, combined with the ADSP-2136x enhanced Har-  
vard architecture, allow unconstrained data flow between  
computation units and internal memory. The registers in PEX  
are referred to as R0-R15 and in PEY as S0-S15.  
The ADSP-21369’s, SRAM can be configured as a maximum of  
64K words of 32-bit data, 128K words of 16-bit data, 42K words  
of 48-bit instructions (or 40-bit data), or combinations of differ-  
ent word sizes up to two megabits. All of the memory can be  
accessed as 16-bit, 32-bit, 48-bit, or 64-bit words. A 16-bit float-  
ing-point storage format is supported that effectively doubles  
the amount of data that may be stored on-chip. Conversion  
between the 32-bit floating-point and 16-bit floating-point for-  
mats is performed in a single instruction. While each memory  
block can store combinations of code and data, accesses are  
most efficient when one block stores data using the DM bus for  
transfers, and the other block stores instructions and data using  
the PM bus for transfers.  
Single-Cycle Fetch of Instruction and Four Operands  
The ADSP-21369 features an enhanced Harvard architecture in  
which the data memory (DM) bus transfers data and the pro-  
gram memory (PM) bus transfers both instructions and data  
(see Figure 1 on page 1). With the ADSP-21369’s separate pro-  
gram and data memory buses and on-chip instruction cache,  
the processor can simultaneously fetch four operands (two over  
each data bus) and one instruction (from the cache), all in a sin-  
gle cycle.  
Using the DM bus and PM buses, with one bus dedicated to  
each memory block, assures single-cycle execution with two  
data transfers. In this case, the instruction must be available in  
the cache.  
Instruction Cache  
The ADSP-21369 includes an on-chip instruction cache that  
enables three-bus operation for fetching an instruction and four  
data values. The cache is selective—only the instructions whose  
fetches conflict with PM bus data accesses are cached. This  
cache allows full-speed execution of core, looped operations  
such as digital filter multiply-accumulates, and FFT butterfly  
processing.  
EXTERNAL MEMORY  
The External Port on the ADSP-21369 SHARC provides a high  
performance, glueless interface to a wide variety of industry-  
standard memory devices. The 32-bit wide bus may be used to  
interface to synchronous and/or asynchronous memory devices  
through the use of it's separate internal memory controllers: the  
first is an SDRAM controller for connection of industry-stan-  
dard synchronous DRAM devices and DIMMs (Dual Inline  
Memory Module), while the second is an asynchronous mem-  
ory controller intended to interface to a variety of memory  
devices. Four memory select pins enable up to four separate  
devices to coexist, supporting any desired combination of syn-  
chronous and asynchronous device types. Non SDRAM  
external memory address space is shown in Table 3.  
Data Address Generators With Zero-Overhead Hardware  
Circular Buffer Support  
The ADSP-21369’s two data address generators (DAGs) are  
used for indirect addressing and implementing circular data  
buffers in hardware. Circular buffers allow efficient program-  
ming of delay lines and other data structures required in digital  
signal processing, and are commonly used in digital filters and  
Fourier transforms. The two DAGs of the ADSP-21369 contain  
sufficient registers to allow the creation of up to 32 circular buff-  
ers (16 primary register sets, 16 secondary). The DAGs  
SDRAM Controller  
automatically handle address pointer wraparound, reduce over-  
head, increase performance, and simplify implementation.  
Circular buffers can start and end at any memory location.  
The SDRAM controller provides an interface to up to four sepa-  
rate banks of industry-standard SDRAM devices or DIMMs, at  
speeds up to fSCLK. Fully compliant with the SDRAM standard,  
each bank can has it's own memory select line (MS0–MS3), and  
can be configured to contain between 16M bytes and  
128M bytes of memory. SDRAM external memory address  
space is shown in Table 4.  
Flexible Instruction Set  
The 48-bit instruction word accommodates a variety of parallel  
operations, for concise programming. For example, the  
ADSP-21369 can conditionally execute a multiply, an add, and a  
subtract in both processing elements while branching and fetch-  
ing up to four 32-bit values from memory—all in a single  
instruction.  
The controller maintains all of the banks as a contiguous  
address space so that the processor sees this as a single address  
space, even if different size devices are used in the different  
banks.  
ADSP-21369 MEMORY  
The ADSP-21369 adds the following architectural features to  
the SIMD SHARC family core.  
Rev. PrB  
|
Page 5 of 52  
|
June 2005  
ADSP-21369  
Preliminary Technical Data  
Table 2. ADSP-21369 Internal Memory Space 1  
IOP Registers 0x0000 0000–0x0003 FFFF  
Long Word (64 bits)  
ExtendedPrecisionNormalor Normal Word (32 bits)  
Short Word (16 bits)  
Instruction Word (48 bits)  
BLOCK 0 ROM (Reserved)  
0x0004 0000–0x0004 BFFF  
BLOCK 0 ROM (Reserved)  
0x0008 0000–0x0008 FFFF  
BLOCK 0 ROM (Reserved)  
0x0008 0000–0x0009 7FFF  
BLOCK 0 ROM (Reserved)  
0x0010 0000–0x0012 FFFF  
Reserved  
Reserved  
Reserved  
Reserved  
0x0004 F000–0x0004 FFFF  
0x0009 4000–0x0009 FFFF  
0x0009 E0000–0x0009 FFFF  
0x0013 C000–0x0013 FFFF  
BLOCK 0 RAM  
BLOCK 0 RAM  
BLOCK 0 RAM  
BLOCK 0 RAM  
0x0004 C000–0x0004 EFFF  
0x0009 0000–0x0009 3FFF  
0x0009 8000–0x0009 DFFF  
0x0013 0000–0x0013 BFFF  
BLOCK 1 ROM (Reserved)  
0x0005 0000–0x0005 BFFF  
BLOCK 1 ROM (Reserved)  
0x000A 0000–0x000A FFFF  
BLOCK 1 ROM (Reserved)  
0x000A 0000–0x000B 7FFF  
BLOCK 1 ROM (Reserved)  
0x0014 0000–0x0016 FFFF  
Reserved  
Reserved  
Reserved  
Reserved  
0x0005 F000–0x0005 FFFF  
0x000B 4000–0x000B FFFF  
0x000B E000–0x000B FFFF  
0x0017 C000–0x0017 FFFF  
BLOCK 1 RAM  
BLOCK 1 RAM  
BLOCK 1 RAM  
BLOCK 1 RAM  
0x0005 C000–0x0005 EFFF  
0x000B 0000–0x000B 3FFF  
0x000B 8000–0x000B DFFF  
0x0017 0000–0x0017 BFFF  
BLOCK 2 RAM  
BLOCK 2 RAM  
BLOCK 2 RAM  
BLOCK 2 RAM  
0x0006 0000–0x0006 0FFF  
0x000C 0000–0x000C 1554  
0x000C 0000–0x000C 1FFF  
0x0018 0000–0x0018 3FFF  
Reserved  
Reserved  
Reserved  
Reserved  
0x0006 1000–0x0006 FFFF  
0x000C 1555–0x000D FFFF  
0x000C 2000–0x000D FFFF  
0x0018 4000–0x001B FFFF  
BLOCK 3 RAM  
BLOCK 3 RAM  
BLOCK 3 RAM  
BLOCK 3 RAM  
0x0007 0000–0x0007 0FFF  
0x000E 0000–0x000E 1554  
0x000E 0000–0x000E 1FFF  
0x001C 0000–0x001C 3FFF  
Reserved  
Reserved  
Reserved  
Reserved  
0x0007 1000–0x0007 FFFF  
0x000E 1555–0x000F FFFF  
0x000E 2000–0x000F FFFF  
0x001C 4000–0x001F FFFF  
1 The ADSP-21369 processor includes a customer-definable ROM block. Please contact your Analog Devices sales representative for additional details.  
Table 3. External Memory for Non SDRAM Addresses  
Table 4. External Memory for SDRAM Addresses  
Bank  
Size in  
words  
Address Range  
Bank  
Size in  
words  
Address Range  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
12M  
16M  
16M  
16M  
0x0020 0000 – 0x00FF FFFF  
0x0400 0000 – 0x04FF FFFF  
0x0800 0000 – 0x08FF FFFF  
0x0C00 0000 – 0x0CFF FFFF  
Bank 0  
Bank 1  
Bank 2  
Bank 3  
60M  
64M  
64M  
64M  
0x0020 0000 – 0x03FF FFFF  
0x0400 0000 – 0x07FF FFFF  
0x0800 0000 – 0x0BFF FFFF  
0x0C00 0000 – 0x0FFF FFFF  
A set of programmable timing parameters is available to config-  
ure the SDRAM banks to support slower memory devices. The  
memory banks can be configured as either 32 bits wide for max-  
imum performance and bandwidth or 16 bits wide for  
minimum device count and lower system cost.  
Asynchronous Controller  
The asynchronous memory controller provides a configurable  
interface for up to four separate banks of memory or I/O  
devices. Each bank can be independently programmed with dif-  
ferent timing parameters, enabling connection to a wide variety  
of memory devices including SRAM, ROM, flash, and EPROM,  
as well as I/O devices that interface with standard memory con-  
trol lines. Bank0 occupies a 14.7M word window and banks 1, 2,  
and 3 occupy a 16M word window in the processor’s address  
space but, if not fully populated, these windows are not made  
contiguous by the memory controller logic. The banks can also  
be configured as 8-bit, 16-bit, or 32-bit wide buses for ease of  
interfacing to a range of memories and I/O devices tailored  
either to high performance or to low cost and power.  
The SDRAM controller address, data, clock, and command pins  
can drive loads up to 30 pF. For larger memory systems, the  
SDRAM controller external buffer timing should be selected  
and external buffering should be provided so that the load on  
the SDRAM controller pins does not exceed 30 pF.  
Rev. PrB  
|
Page 6 of 52  
|
June 2005  
Preliminary Technical Data  
ADSP-21369  
The asynchronous memory controller is capable of a maximum  
throughput of 267M bytes/sec using a 66MHz external bus  
speed. Other features include 8 to 32-bit and 16 to 32-bit pack-  
ing and unpacking, booting from Bank Select 1, and support for  
delay line DMA.  
The SRU is a matrix routing unit (or group of multiplexers) that  
enables the peripherals provided by the DAI to be intercon-  
nected under software control. This allows easy use of the DAI  
associated peripherals for a much wider variety of applications  
by using a larger set of algorithms than is possible with non con-  
figurable signal paths.  
ADSP-21369 INPUT/OUTPUT FEATURES  
The DAI also includes eight serial ports, an S/PDIF  
The ADSP-21369 I/O processor provides 34 channels of DMA,  
as well as an extensive set of peripherals. These include a 20 pin  
Digital Audio Interface which controls:  
receiver/transmitter, four precision clock generators (PCG),  
eight channels of synchronous sample rate converters, and an  
input data port (IDP). The IDP provides an additional input  
path to the ADSP-21369 core, configurable as either eight chan-  
nels of I2S serial data or as seven channels plus a single 20-bit  
wide synchronous parallel data acquisition port. Each data  
channel has its own DMA channel that is independent from the  
ADSP-21369's serial ports.  
• Eight serial ports  
• S/PDIF Receiver/Transmitter  
• Four precision clock generators  
• Four stereo sample rate converters  
• Internal data port/parallel data acquisition port  
For complete information on using the DAI, see the ADSP-  
2136x SHARC Processor Hardware Reference for the ADSP-  
21367/8/9 Processors.  
The ADSP-21369 processor also contains a 14 pin Digital  
Peripheral Interface which controls:  
Serial Ports  
• Three general-purpose timers  
• Two Serial Peripheral Interfaces  
The ADSP-21369 features eight synchronous serial ports that  
provide an inexpensive interface to a wide variety of digital and  
mixed-signal peripheral devices such as Analog devices AD183x  
family of audio codecs, ADCs, and DACs. The serial ports are  
made up of two data lines, a clock and frame sync. The data  
lines can be programmed to either transmit or receive and each  
data line has a dedicated DMA channel.  
• Two universal asynchronous receiver/transmitters  
(UARTs)  
• A two wire interface/I2C  
DMA Controller  
The ADSP-21369’s on-chip DMA controller allows data trans-  
fers without processor intervention. The DMA controller  
operates independently and invisibly to the processor core,  
allowing DMA operations to occur while the core is simulta-  
neously executing its program instructions. DMA transfers can  
occur between the ADSP-21369’s internal memory and its serial  
ports, the SPI-compatible (Serial Peripheral Interface) ports, the  
IDP (Input Data Port), the Parallel Data Acquisition Port  
(PDAP) or the UART. Thirty-four channels of DMA are avail-  
able on the ADSP-21369—sixteen via the serial ports, eight via  
the Input Data Port, four for the UARTs, two for the SPI inter-  
face, two for the external port, and two for memory-to-memory  
transfers. Programs can be downloaded to the ADSP-21369  
using DMA transfers. Other DMA features include interrupt  
generation upon completion of DMA transfers, and DMA  
chaining for automatic linked DMA transfers.  
Serial ports are enabled via 16 programmable and simultaneous  
receive or transmit pins that support up to 32 transmit or 32  
receive channels of audio data when all eight SPORTS are  
enabled, or eight full duplex TDM streams of 128 channels per  
frame.  
The serial ports operate at a maximum data rate of 50M bits/s.  
Serial port data can be automatically transferred to and from  
on-chip memory via dedicated DMA channels. Each of the  
serial ports can work in conjunction with another serial port to  
provide TDM support. One SPORT provides two transmit sig-  
nals while the other SPORT provides the two receive signals.  
The frame sync and clock are shared.  
Serial ports operate in five modes:  
• Standard DSP serial mode  
• Multichannel (TDM) mode with support for Packed I2S  
mode  
• I2S mode  
• Packed I2S mode  
Delay Line DMA  
The ADSP-21369 processor provides Delay Line DMA func-  
tionality. This allows processor reads and writes to external  
Delay Line Buffers (and hence to external memory) with limited  
core interaction.  
• Left-justified sample pair mode  
Left-justified sample pair mode is a mode where in each frame  
sync cycle two samples of data are transmitted/received—one  
sample on the high segment of the frame sync, the other on the  
low segment of the frame sync. Programs have control over var-  
ious attributes of this mode.  
Digital Audio Interface (DAI)  
The Digital Audio Interface (DAI) provides the ability to con-  
nect various peripherals to any of the DSPs DAI pins  
(DAI_P20–1).  
Programs make these connections using the Signal Routing  
Unit (SRU, shown in Figure 1.  
Each of the serial ports supports the left-justified sample pair  
and I2S protocols (I2S is an industry standard interface com-  
monly used by audio codecs, ADCs and DACs such as the  
Rev. PrB  
|
Page 7 of 52  
|
June 2005  
ADSP-21369  
Preliminary Technical Data  
Analog Devices AD183x family), with two data pins, allowing  
four left-justified sample pair or I2S channels (using two stereo  
devices) per serial port, with a maximum of up to 32 I2S chan-  
nels. The serial ports permit little-endian or big-endian  
transmission formats and word lengths selectable from 3 bits to  
32 bits. For the left-justified sample pair and I2S modes, data-  
word lengths are selectable between 8 bits and 32 bits. Serial  
ports offer selectable synchronization and transmit modes as  
well as optional µ-law or A-law companding selection on a per  
channel basis. Serial port clocks and frame syncs can be inter-  
nally or externally generated.  
device. The ADSP-21369 SPI compatible peripheral implemen-  
tation also features programmable baud rate and clock phase  
and polarities. The ADSP-21369 SPI compatible port uses open  
drain drivers to support a multimaster configuration and to  
avoid data contention.  
UART Port  
The ADSP-21369 processor provides a full-duplex Universal  
Asynchronous Receiver/Transmitter (UART) port, which is  
fully compatible with PC-standard UARTs. The UART port  
provides a simplified UART interface to other peripherals or  
hosts, supporting full-duplex, DMA-supported, asynchronous  
transfers of serial data. The UART also has multiprocessor com-  
munication capability using 9-bit address detection. This allows  
it to be used in multidrop networks through the RS-485 data  
interface standard. The UART port also includes support for 5  
to 8 data bits, 1 or 2 stop bits, and none, even, or odd parity. The  
UART port supports two modes of operation:  
The serial ports also contain frame sync error detection logic  
where the serial ports detect frame syncs that arrive early (for  
example frame syncs that arrive while the transmission/recep-  
tion of the previous word is occurring). All the serial ports also  
share one dedicated error interrupt.  
S/PDIF Compatible Digital Audio Receiver/Transmitter  
and Synchronous/Asynchronous Sample Rate Converter  
• PIO (Programmed I/O) – The processor sends or receives  
data by writing or reading I/O-mapped UART registers.  
The data is double-buffered on both transmit and receive.  
The S/PDIF receiver/transmitter has no separate DMA chan-  
nels. It receives audio data in serial format and converts it into a  
biphase encoded signal. The serial data input to the  
• DMA (Direct Memory Access) – The DMA controller  
transfers both transmit and receive data. This reduces the  
number and frequency of interrupts required to transfer  
data to and from memory. The UART has two dedicated  
DMA channels, one for transmit and one for receive. These  
DMA channels have lower default priority than most DMA  
channels because of their relatively low service rates.  
receiver/transmitter can be formatted as left justified, I2S or  
right justified with word widths of 16, 18, 20, or 24 bits.  
The serial data, clock, and frame sync inputs to the S/PDIF  
receiver/transmitter are routed through the Signal Routing Unit  
(SRU). They can come from a variety of sources such as the  
SPORTs, external pins, the precision clock generators (PCGs),  
or the sample rate converters (SRC) and are controlled by the  
SRU control registers.  
The UART port's baud rate, serial data format, error code gen-  
eration and status, and interrupts are programmable:  
The sample rate converter (SRC) contains four SRC blocks and  
is the same core as that used in the AD1896 192 kHz Stereo  
Asynchronous Sample Rate Converter and provides up to  
128dB SNR. The SRC block is used to perform synchronous or  
asynchronous sample rate conversion across independent stereo  
channels, without using internal processor resources. The four  
SRC blocks can also be configured to operate together to con-  
vert multichannel audio data without phase mismatches.  
Finally, the SRC is used to clean up audio data from jittery clock  
sources such as the S/PDIF receiver.  
• Supporting bit rates ranging from (fSCLK/ 1,048,576) to  
(fSCLK/16) bits per second.  
• Supporting data formats from 7 to12 bits per frame.  
• Both transmit and receive operations can be configured to  
generate maskable interrupts to the processor.  
Where the 16-bit UART_Divisor comes from the DLH register  
(most significant 8 bits) and DLL register (least significant  
8 bits).  
In conjunction with the general-purpose timer functions, auto-  
baud detection is supported.  
Digital Peripheral Interface (DPI)  
The Digital Peripheral Interface provides connections to two  
serial peripheral interface ports (SPI), two universal asynchro-  
nous receiver-transmitters (UARTs), a Two Wire Interface  
(TWI), 12 Flags, and three general-purpose timers.  
Timers  
The ADSP-21369 has a total of four timers: a core timer that can  
generate periodic software interrupts and three general purpose  
timers that can generate periodic interrupts and be indepen-  
dently set to operate in one of three modes:  
Serial Peripheral (Compatible) Interface  
The ADSP-21369 SHARC processor contains two Serial Periph-  
eral Interface ports (SPIs). The SPI is an industry standard  
synchronous serial link, enabling the ADSP-21369 SPI compati-  
ble port to communicate with other SPI compatible devices. The  
SPI consists of two data pins, one device select pin, and one  
clock pin. It is a full-duplex synchronous serial interface, sup-  
porting both master and slave modes. The SPI port can operate  
in a multimaster environment by interfacing with up to four  
other SPI compatible devices, either acting as a master or slave  
• Pulse Waveform Generation mode  
• Pulse Width Count /Capture mode  
• External Event Watchdog mode  
The core timer can be configured to use FLAG3 as a Timer  
Expired signal, and each general purpose timer has one bidirec-  
tional pin and four registers that implement its mode of  
operation: a 6-bit configuration register, a 32-bit count register,  
Rev. PrB  
|
Page 8 of 52  
|
June 2005  
Preliminary Technical Data  
ADSP-21369  
a 32-bit period register, and a 32-bit pulse width register. A sin-  
gle control and status register enables or disables all three  
general purpose timers independently.  
SYSTEM DESIGN  
The following sections provide an introduction to system design  
options and power supply issues.  
Two Wire Interface Port (TWI)  
Program Booting  
The TWI is a bi-directional 2-wire, serial bus used to move 8-bit  
data while maintaining compliance with the I2C bus protocol.  
The TWI Master incorporates the following features:  
The internal memory of the ADSP-21369 boots at system  
power-up from an 8-bit EPROM via the external port, an SPI  
master, an SPI slave or an internal boot. Booting is determined  
by the Boot Configuration (BOOTCFG1–0) pins (see Table 7 on  
page 15). Selection of the boot source is controlled via the SPI as  
either a master or slave device, or it can immediately begin exe-  
cuting from ROM.  
• Simultaneous Master and Slave operation on multiple  
device systems with support for multi master data  
arbitration  
• Digital filtering and timed event processing  
• 7 and 10 bit addressing  
Power Supplies  
• 100K bits/s and 400K bits/s data rates  
• Low interrupt rate  
The ADSP-21369 has separate power supply connections for the  
internal (VDDINT), external (VDDEXT), and analog (AVDD/AVSS  
)
power supplies. The internal and analog supplies must meet the  
1.3V requirement. The external supply must meet the 3.3V  
requirement. All external supply pins must be connected to the  
same power supply.  
Pulse Width Modulation  
The PWM module is a flexible, programmable, PWM waveform  
generator that can be programmed to generate the required  
switching patterns for various applications related to motor and  
engine control or audio power control. The PWM generator can  
generate either center-aligned or edge-aligned PWM wave-  
forms. In addition, it can generate complementary signals on  
two outputs in paired mode or independent signals in non  
paired mode (applicable to a single group of four PWM  
waveforms).  
Note that the analog supply pin (AVDD) powers the ADSP-  
21369’s internal clock generator PLL. To produce a stable clock,  
it is recommended that PCB designs use an external filter circuit  
for the AVDD pin. Place the filter components as close as possi-  
ble to the AVDD/AVSS pins. For an example circuit, see Figure 2.  
(A recommended ferrite chip is the muRata  
BLM18AG102SN1D). To reduce noise coupling, the PCB  
should use a parallel pair of power and ground planes for  
The entire PWM module has four groups of four PWM outputs  
each. Therefore, this module generates 16 PWM outputs in  
total. Each PWM group produces two pairs of PWM signals on  
the four PWM outputs.  
VDDINT and GND. Use wide traces to connect the bypass capac-  
itors to the analog power (AVDD) and ground (AVSS) pins. Note  
that the AVDD and AVSS pins specified in Figure 2 are inputs to  
the processor and not the analog ground plane on the board—  
the AVSS pin should connect directly to digital ground (GND) at  
the chip.  
The PWM generator is capable of operating in two distinct  
modes while generating center-aligned PWM waveforms: single  
update mode or double update mode. In single update mode the  
duty cycle values are programmable only once per PWM period.  
This results in PWM patterns that are symmetrical about the  
mid-point of the PWM period. In double update mode, a sec-  
ond updating of the PWM registers is implemented at the mid-  
point of the PWM period. In this mode, it is possible to produce  
asymmetrical PWM patterns that produce lower harmonic dis-  
tortion in three-phase PWM inverters.  
ADSP-213xx  
100nF  
10nF  
1nF  
A
V
VDD  
DDINT  
HI Z FERRITE  
BEAD CHIP  
A
VSS  
ROM Based Security  
LOCATE ALL COMPONENTS  
CLOSE TO A AND A PINS  
The ADSP-21369 has a ROM security feature that provides  
hardware support for securing user software code by preventing  
unauthorized reading from the internal code when enabled.  
When using this feature, the processor does not boot-load any  
external code, executing exclusively from internal SRAM/ROM.  
Additionally, the processor is not freely accessible via the JTAG  
port. Instead, a unique 64-bit key, which must be scanned in  
through the JTAG or Test Access Port will be assigned to each  
customer. The device will ignore a wrong key. Emulation fea-  
tures and external boot modes are only available after the  
correct key is scanned.  
VDD  
VSS  
Figure 2. Analog Power (AVDD) Filter Circuit  
Target Board JTAG Emulator Connector  
Analog Devices DSP Tools product line of JTAG emulators uses  
the IEEE 1149.1 JTAG test access port of the ADSP-21369 pro-  
cessor to monitor and control the target board processor during  
emulation. Analog Devices DSP Tools product line of JTAG  
emulators provides emulation at full processor speed, allowing  
inspection and modification of memory, registers, and proces-  
sor stacks. The processor's JTAG interface ensures that the  
emulator will not affect target system loading or timing.  
Rev. PrB  
|
Page 9 of 52  
|
June 2005  
ADSP-21369  
Preliminary Technical Data  
For complete information on Analog Devices’ SHARC DSP  
Tools product line of JTAG emulator operation, see the appro-  
priate “Emulator Hardware User's Guide”.  
The VisualDSP++ IDDE lets programmers define and manage  
DSP software development. Its dialog boxes and property pages  
let programmers configure and manage all of the SHARC devel-  
opment tools, including the color syntax highlighting in the  
VisualDSP++ editor. This capability permits programmers to:  
DEVELOPMENT TOOLS  
The ADSP-21369 is supported with a complete set of  
CROSSCORE® software and hardware development tools,  
including Analog Devices emulators and VisualDSP++® devel-  
opment environment. The same emulator hardware that  
supports other SHARC processors also fully emulates the  
ADSP-21369.  
• Control how the development tools process inputs and  
generate outputs  
• Maintain a one-to-one correspondence with the tool’s  
command line switches  
The VisualDSP++ Kernel (VDK) incorporates scheduling and  
resource management tailored specifically to address the mem-  
ory and timing constraints of DSP programming. These  
capabilities enable engineers to develop code more effectively,  
eliminating the need to start from the very beginning, when  
developing new application code. The VDK features include  
Threads, Critical and Unscheduled regions, Semaphores,  
Events, and Device flags. The VDK also supports Priority-based,  
Preemptive, Cooperative, and Time-Sliced scheduling  
The VisualDSP++ project management environment lets pro-  
grammers develop and debug an application. This environment  
includes an easy to use assembler (which is based on an alge-  
braic syntax), an archiver (librarian/library builder), a linker, a  
loader, a cycle-accurate instruction-level simulator, a C/C++  
compiler, and a C/C++ runtime library that includes DSP and  
mathematical functions. A key point for these tools is C/C++  
code efficiency. The compiler has been developed for efficient  
translation of C/C++ code to DSP assembly. The SHARC has  
architectural features that improve the efficiency of compiled  
C/C++ code.  
approaches. In addition, the VDK was designed to be scalable. If  
the application does not use a specific feature, the support code  
for that feature is excluded from the target system.  
Because the VDK is a library, a developer can decide whether to  
use it or not. The VDK is integrated into the VisualDSP++  
development environment, but can also be used via standard  
command line tools. When the VDK is used, the development  
environment assists the developer with many error-prone tasks  
and assists in managing system resources, automating the gen-  
eration of various VDK based objects, and visualizing the  
system state, when debugging an application that uses the VDK.  
The VisualDSP++ debugger has a number of important fea-  
tures. Data visualization is enhanced by a plotting package that  
offers a significant level of flexibility. This graphical representa-  
tion of user data enables the programmer to quickly determine  
the performance of an algorithm. As algorithms grow in com-  
plexity, this capability can have increasing significance on the  
designer’s development schedule, increasing productivity. Sta-  
tistical profiling enables the programmer to non intrusively poll  
the processor as it is running the program. This feature, unique  
to VisualDSP++, enables the software developer to passively  
gather important code execution metrics without interrupting  
the real-time characteristics of the program. Essentially, the  
developer can identify bottlenecks in software quickly and effi-  
ciently. By using the profiler, the programmer can focus on  
those areas in the program that impact performance and take  
corrective action.  
VisualDSP++ Component Software Engineering (VCSE) is  
Analog Devices’ technology for creating, using, and reusing  
software components (independent modules of substantial  
functionality) to quickly and reliably assemble software applica-  
tions. Download components from the Web and drop them into  
the application. Publish component archives from within  
VisualDSP++. VCSE supports component implementation in  
C/C++ or assembly language.  
Use the Expert Linker to visually manipulate the placement of  
code and data on the embedded system. View memory utiliza-  
tion in a color-coded graphical form, easily move code and data  
to different areas of the processor or external memory with the  
drag of the mouse, examine run time stack and heap usage. The  
Expert Linker is fully compatible with the existing Linker Defi-  
nition File (LDF), allowing the developer to move between the  
graphical and textual environments.  
Debugging both C/C++ and assembly programs with the  
VisualDSP++ debugger, programmers can:  
• View mixed C/C++ and assembly code (interleaved source  
and object information)  
• Insert breakpoints  
• Set conditional breakpoints on registers, memory,  
and stacks  
In addition to the software and hardware development tools  
available from Analog Devices, third parties provide a wide  
range of tools supporting the SHARC processor family. Hard-  
ware tools include SHARC processor PC plug-in cards. Third  
party software tools include DSP libraries, real-time operating  
systems, and block diagram design tools.  
• Trace instruction execution  
• Perform linear or statistical profiling of program execution  
• Fill, dump, and graphically plot the contents of memory  
• Perform source level debugging  
• Create custom debugger windows  
Rev. PrB  
|
Page 10 of 52  
|
June 2005  
Preliminary Technical Data  
ADSP-21369  
Designing an Emulator-Compatible DSP Board (Target)  
Evaluation Kit  
The Analog Devices family of emulators are tools that every  
DSP developer needs to test and debug hardware and software  
systems. Analog Devices has supplied an IEEE 1149.1 JTAG  
Test Access Port (TAP) on each JTAG DSP. Nonintrusive in-  
circuit emulation is assured by the use of the processor’s JTAG  
interface—the emulator does not affect target system loading or  
timing. The emulator uses the TAP to access the internal fea-  
tures of the processor, allowing the developer to load code, set  
breakpoints, observe variables, observe memory, and examine  
registers. The processor must be halted to send data and com-  
mands, but once an operation has been completed by the  
emulator, the DSP system is set running at full speed with no  
impact on system timing.  
Analog Devices offers a range of EZ-KIT Lite evaluation plat-  
forms to use as a cost effective method to learn more about  
developing or prototyping applications with Analog Devices  
processors, platforms, and software tools. Each EZ-KIT Lite  
includes an evaluation board along with an evaluation suite of  
the VisualDSP++ development and debugging environment  
with the C/C++ compiler, assembler, and linker. Also included  
are sample application programs, power supply, and a USB  
cable. All evaluation versions of the software tools are limited  
for use only with the EZ-KIT Lite product.  
The USB controller on the EZ-KIT Lite board connects the  
board to the USB port of the user’s PC, enabling the  
VisualDSP++ evaluation suite to emulate the on-board proces-  
sor in-circuit. This permits the customer to download, execute,  
and debug programs for the EZ-KIT Lite system. It also allows  
in-circuit programming of the on-board Flash device to store  
user-specific boot code, enabling the board to run as a standal-  
one unit without being connected to the PC.  
To use these emulators, the target board must include a header  
that connects the DSP’s JTAG port to the emulator.  
For details on target board design issues including mechanical  
layout, single processor connections, signal buffering, signal ter-  
mination, and emulator pod logic, see the EE-68: Analog Devices  
JTAG Emulation Technical Reference on the Analog Devices  
website (www.analog.com)—use site search on “EE-68.” This  
document is updated regularly to keep pace with improvements  
to emulator support.  
With a full version of VisualDSP++ installed (sold separately),  
engineers can develop software for the EZ-KIT Lite or any cus-  
tom defined system. Connecting one of Analog Devices JTAG  
emulators to the EZ-KIT Lite board enables high-speed, non-  
intrusive emulation.  
ADDITIONAL INFORMATION  
This data sheet provides a general overview of the ADSP-21369  
architecture and functionality. For detailed information on the  
ADSP-2136x Family core architecture and instruction set, refer  
to the ADSP-2136x SHARC Processor Hardware Reference for  
the ADSP-21367/8/9 Processors and the ADSP-2136x SHARC  
Processor Programming Reference.  
Rev. PrB  
|
Page 11 of 52  
|
June 2005  
ADSP-21369  
Preliminary Technical Data  
PIN FUNCTION DESCRIPTIONS  
The following symbols appear in the Type column of Table 5:  
A = Asynchronous, G = Ground, I = Input, O = Output,  
P = Power Supply, S = Synchronous, (A/D) = Active Drive,  
(O/D) = Open Drain, and T = Three-State, (pd) = pull-down  
resistor, (pu) = pull-up resistor.  
Table 5. Pin List  
Name  
Type  
State During  
and After  
Reset  
Description  
ADDR23–0  
I/O with program-  
mable pu1  
Three state  
with pull-up  
enabled,  
External Address. The ADSP-21369 outputs addresses for external memory and  
peripherals on these pins.  
driven low  
DATA31–0  
I/O with program-  
mable pu  
Three-state  
with pull-up  
enabled  
External Data. The data pins can be multiplexed to support the external memory  
interface data (I/O), the PDAP (I), FLAGS (I/O), and PWM (O). After reset, all DATA pins will  
be in EMIF mode and FLAG(0-3) pins will be in FLAGS mode (default). When configured  
in the IDP_PDAP_CTL register, IDP Channel 0 scans the DATA31–8 pins for parallel  
input data.  
DAI _P20–1  
I/O with program-  
mable pu2  
Three-state  
with program-  
mable pull-up  
Digital Audio Interface Pins. These pins provide the physical interface to the DAI SRU.  
The DAI SRU configuration registers define the combination of on-chip audio centric  
peripheral inputs or outputs connected to the pin and to the pin’s output enable. The  
configuration registers of these peripherals then determines the exact behavior of the  
pin. Any input or output signal present in the DAI SRU may be routed to any of these  
pins. The DAI SRU provides the connection from the serial ports (8), the SRC module, the  
PWM module, the S/PDIF module, input data ports (2), and the precision clock genera-  
tors (4), to the DAI_P20–1 pins.  
DPI _P14–1  
I/O with program-  
mable pu2  
Three-state  
with program-  
mable pull-up  
Digital Peripheral Interface. These pins provide the physical interface to the DPI SRU.  
TheDPISRUconfigurationregistersdefinethecombinationofon-chipperipheralinputs  
or outputs connected to the pin and to the pin’s output enable. The configuration  
registers of these peripherals then determines the exact behavior of the pin. Any input  
or output signal present in the DPI SRU may be routed to any of these pins. The DPI SRU  
provides the connection from the timers (3), SPIs (2), UARTs (2), flags (12) I2C (1), and  
general-purpose I/O (9) to the DPI_P14–1 pins. The I2C output is an open-drain output—  
so the pins used for I2C data and clock should be connected to logic level 0.  
ACK  
Input with pro-  
grammable pu1  
Memory Acknowledge. External devices can deassert ACK (low) to add wait states to  
an external memory access. ACK is used by I/O devices, memory controllers, or other  
peripherals to hold off completion of an external memory access.  
RD  
Output with pro-  
grammable pu1  
Pull-up, driven  
high  
External Port Read Enable. RD is asserted whenever the ADSP-21369 reads a word  
from external memory. RD has a 22.5 kinternal pull-up resistor.  
WR  
Output with pu1  
Output with pu1  
Output with pu1  
Output with pu1  
Pull-up, driven  
high  
External Port Write Enable. WR is asserted when the ADSP-21369 writes a word to  
external memory. WR has a 22.5 k internal pull-up resistor.  
SDRAS  
SDCAS  
SDWE  
Pull-up, driven  
high  
SDRAM Row Address Strobe. Connect to SDRAM’s RAS pin. In conjunction with other  
SDRAM command pins, defines the operation for the SDRAM to perform.  
Pull-up, driven  
high  
SDRAM Column Address Select. Connect to SDRAM's CAS pin. In conjunction with  
other SDRAM command pins, defines the operation for the SDRAM to perform.  
Pull-up, driven  
high  
SDRAM Write Enable. Connect to SDRAM’s WE or W buffer pin.  
Rev. PrB  
|
Page 12 of 52  
|
June 2005  
Preliminary Technical Data  
ADSP-21369  
Table 5. Pin List  
Name  
Type  
State During  
and After  
Reset  
Description  
SDCKE  
SDA10  
Output with pu1  
Output with pu1  
I/O  
Pull-up, driven  
high  
SDRAM Clock Enable. Connect to SDRAM’s CKE pin. Enables and disables the CLK  
signal. For details, see the data sheet supplied with the SDRAM device.  
Pull-up, driven  
high  
SDRAM A10 Pin. Enables applications to refresh an SDRAM in parallel with a non-  
SDRAM accesses. This pin replaces the DSP’s A10 pin only during SDRAM accesses.  
SDCLK0  
MS0–1  
SDRAM Clock Configure.  
I/O with program-  
mable pu1  
Memory Select Lines 0–1. These lines are asserted (low) as chip selects for the corre-  
sponding banks of external memory. The MS3-0 lines are decoded memory address lines  
that change at the same time as the other address lines. When no external memory  
access is occurring the MS3-0 lines are inactive; they are active however when a condi-  
tional memory access instruction is executed, whether or not the condition is true.  
FLAG[0]/IRQ0  
FLAG[1]/IRQ1  
I/O  
I/O  
FLAG0/Interrupt Request0.  
FLAG1/Interrupt Request1.  
FLAG[2]/IRQ2/  
MS2  
I/O with  
FLAG2/Interrupt Request/Memory Select2.  
programmable1  
pu (for MS mode)  
FLAG[3]/TIMEXP/  
MS3  
I/O with  
FLAG3/Timer Expired/Memory Select3.  
programmable1  
pull-up (for MS  
mode)  
TDI  
Input with pu  
Test Data Input (JTAG). Provides serial data for the boundary scan logic. TDI has a 22.5  
kinternal pull-up resistor.  
TDO  
TMS  
Output  
Test Data Output (JTAG). Serial scan output of the boundary scan path.  
Input with pu  
Test Mode Select (JTAG). Used to control the test state machine. TMS has a 22.5 kΩ  
internal pull-up resistor.  
TCK  
Input  
Test Clock (JTAG). Provides a clock for JTAG boundary scan. TCK must be asserted  
(pulsed low) after power-up or held low for proper operation of the ADSP-21369.  
TRST  
Input with pu  
Test Reset (JTAG). Resets the test state machine. TRST must be asserted (pulsed low)  
after power-up or held low for proper operation of the ADSP-21369. TRST has a 22.5 k  
internal pull-up resistor.  
EMU  
Output with pu  
Input  
Emulation Status. Must be connected to the ADSP-21369 Analog Devices DSP Tools  
product line of JTAG emulators target board connector only. EMU has a 22.5 k  
pull-up resistor.  
internal  
CLK_CFG1–0  
Core/CLKIN Ratio Control. These pins set the start up clock frequency. See Table 8 for  
a description of the clock configuration modes.  
Note that the operating frequency can be changed by programming the PLL multiplier  
and divider in the PMCTL register at any time after the core comes out of reset.  
BOOT_CFG1–0  
Input  
Boot Configuration Select. These pins select the boot mode for the processor. The  
BOOTCFG pins must be valid before reset is asserted. See Table 7 for a description of the  
boot modes.  
Rev. PrB  
|
Page 13 of 52  
|
June 2005  
ADSP-21369  
Preliminary Technical Data  
Table 5. Pin List  
Name  
Type  
State During  
and After  
Reset  
Description  
RESET  
Input  
Processor Reset. Resets the ADSP-21369 to a known state. Upon deassertion, there is  
a 4096 CLKIN cycle latency for the PLL to lock. After this time, the core begins program  
execution from the hardware reset vector address. The RESET input must be asserted  
(low) at power-up.  
XTAL  
Output  
Input  
CrystalOscillatorTerminal. Used in conjunctionwith CLKINtodriveanexternalcrystal.  
CLKIN  
Local Clock In. Used in conjunction with XTAL. CLKIN is the ADSP-21369 clock input. It  
configures the ADSP-21369 to use either its internal clock generator or an external clock  
source. Connecting the necessary components to CLKIN and XTAL enables the internal  
clock generator. Connecting the external clock to CLKIN while leaving XTAL uncon-  
nected configures the ADSP-21369 to use the external clock source such as an external  
clock oscillator. CLKIN may not be halted, changed, or operated below the specified  
frequency.  
CLKOUT  
Output  
Local Clock Out. CLKOUT can also be configured as a reset out pin.The functionality  
can be switched between the PLL output clock and reset out by setting bit 12 of the  
PMCTREG register. The default is reset out.  
1 Pull-up is always enabled  
2 Pull-up can be enabled/disabled, value of pull-up cannot be programmed.  
Rev. PrB  
|
Page 14 of 52  
|
June 2005  
Preliminary Technical Data  
ADSP-21369  
DATA MODES  
The upper 32 data pins of the external memory interface are  
muxed (using bits in the SYSCTL register) to support the exter-  
nal memory interface data (input/output), the PDAP (input  
only), the FLAGS (input/output), and the PWM channels (out-  
put). Table 6 provides the pin settings.  
Table 6. Function of Data Pins  
DATA PIN MODE  
DATA31–16  
DATA15–8  
DATA7–0  
000  
001  
010  
011  
100  
101  
110  
111  
EPDATA32–0  
FLAGS/PWM15–01  
FLAGS/PWM15–01  
FLAGS/PWM15–01  
PDAP (DATA + CTRL)  
PDAP (DATA + CTRL)  
Reserved  
EPDATA15–0  
FLAGS15–8  
FLAGS15–0  
EPDATA7–0  
EPDATA7–0  
FLAGS7–0  
Three-state all pins  
1 These signals can be FLAGS or PWM or a mix of both. However, they can be selected only in groups of four. Their function is determined by the control signals  
FLAGS/PWM_SEL. For more information, see the ADSP-2136x SHARC Processor Hardware Reference for the ADSP-21367/8/9 Processors.  
BOOT MODES  
Table 7. Boot Mode Selection  
BOOTCFG1–0  
Booting Mode  
SPI Slave Boot  
00  
01  
10  
SPI Master Boot  
EPROM/FLASH Boot  
CORE INSTRUCTION RATE TO CLKIN RATIO MODES  
For details on processor timing, see Timing Specifications and  
Figure 3 on Page 18.  
Table 8. Core Instruction Rate/ CLKIN Ratio Selection  
CLKCFG1–0  
Core to CLKIN Ratio  
00  
01  
10  
6:1  
32:1  
16:1  
Rev. PrB  
|
Page 15 of 52  
|
June 2005  
ADSP-21369  
Preliminary Technical Data  
ADSP-21369 SPECIFICATIONS  
RECOMMENDED OPERATING CONDITIONS  
K Grade  
Min  
B Grade2  
Parameter1  
Max  
Min  
Max  
Unit  
VDDINT  
AVDD  
Internal (Core) Supply Voltage  
1.235  
1.235  
3.13  
2.0  
1.365  
1.235  
1.235  
3.13  
2.0  
1.365  
V
V
V
V
V
V
V
°C  
Analog (PLL) Supply Voltage  
1.365  
1.365  
VDDEXT  
External (I/O) Supply Voltage  
3.47  
3.47  
3
VIH  
High Level Input Voltage @ VDDEXT = max  
Low Level Input Voltage @ VDDEXT = min  
High Level Input Voltage @ VDDEXT = max  
Low Level Input Voltage @ VDDEXT = min  
Ambient Operating Temperature  
VDDEXT + 0.5  
+0.8  
VDDEXT + 0.5  
+0.8  
3
VIL  
–0.5  
1.74  
–0.5  
0
–0.5  
1.74  
–0.5  
–40  
4
VIH_CLKIN  
VIL_CLKIN  
VDDEXT + 0.5  
+1.19  
VDDEXT + 0.5  
+1.19  
5, 6  
TAMB  
+70  
+85  
1
Specifications subject to change without notice.  
2 Pending package qualification.  
3 Applies to input and bidirectional pins: AD23–0, DATA31–0, FLAG3–0, DAI_Px, DPI_Px, SPIDS, BOOTCFGx, CLKCFGx, RESET, TCK, TMS, TDI, TRST.  
4 Applies to input pin CLKIN.  
5 See Thermal Characteristics on Page 46 for information on thermal specifications.  
6 See Engineer-to-Engineer Note (No. TBD) for further information.  
ELECTRICAL CHARACTERISTICS  
Parameter1  
Test Conditions  
Min  
Max  
Unit  
2
VOH  
High Level Output Voltage  
Low Level Output Voltage  
High Level Input Current  
Low Level Input Current  
@ VDDEXT = min, IOH = –1.0 mA3  
@ VDDEXT = min, IOL = 1.0 mA3  
@ VDDEXT = max, VIN = VDDEXT max  
@ VDDEXT = max, VIN = 0 V  
@ VDDEXT = max, VIN = 0 V  
@ VDDEXT= max, VIN = VDDEXT max  
@ VDDEXT = max, VIN = 0 V  
@ VDDEXT = max, VIN = 0 V  
tCCLK = 5.0 ns, VDDINT = 1.3  
AVDD = max  
2.4  
V
2
VOL  
0.4  
10  
V
4, 5  
IIH  
µA  
µA  
µA  
µA  
µA  
µA  
mA  
mA  
pF  
4
IIL  
10  
5
IILPU  
Low Level Input Current Pull-up  
Three-State Leakage Current  
Three-State Leakage Current  
Three-State Leakage Current Pull-up  
Supply Current (Internal)  
Supply Current (Analog)  
200  
10  
6, 7  
IOZH  
6
IOZL  
10  
7
IOZLPU  
200  
500  
10  
8, 9  
IDD-INTYP  
10  
AIDD  
11, 12  
CIN  
Input Capacitance  
fIN=1 MHz, TCASE=25°C, VIN=1.3V  
4.7  
1
Specifications subject to change without notice.  
2 Applies to output and bidirectional pins: ADDR23-0, DATA31-0, RD, WR, ALE, FLAG3–0, DAI_Px, DPI_Px, EMU, TDO, CLKOUT, XTAL.  
3 See Output Drive Currents on Page 46 for typical drive current capabilities.  
4 Applies to input pins: BOOTCFGx, CLKCFGx, TCK, RESET, CLKIN.  
5 Applies to input pins with 22.5 kinternal pull-ups: TRST, TMS, TDI.  
6 Applies to three-statable pins: FLAG3–0.  
7 Applies to three-statable pins with 22.5 kpull-ups: DAI_Px, DPI_Px, EMU.  
8 Typical internal current data reflects nominal operating conditions.  
9 See Engineer-to-Engineer Note (No. TBD) for further information.  
10Characterized, but not tested.  
11Applies to all signal pins.  
12Guaranteed, but not tested.  
Rev. PrB  
|
Page 16 of 52  
|
June 2005  
Preliminary Technical Data  
ADSP-21369  
ABSOLUTE MAXIMUM RATINGS  
Parameter  
Rating  
1
Internal (Core) Supply Voltage (VDDINT  
)
–0.3 V to +1.5 V  
–0.3 V to +1.5 V  
–0.3 V to +4.6 V  
+0.5 V  
1
Analog (PLL) Supply Voltage (AVDD  
)
1
External (I/O) Supply Voltage (VDDEXT  
)
1
Input Voltage –0.5 V to VDDEXT  
1
Output Voltage Swing –0.5 V to VDDEXT  
Load Capacitance1  
+0.5 V  
200 pF  
Storage Temperature Range1  
–65°C to +150°C  
125°C  
Junction Temperature under Bias  
1 Stresses greater than those listed above may cause permanent damage to the device. These  
are stress ratings only; functional operation of the device at these or any other conditions  
greater than those indicated in the operational sections of this specification is not implied.  
Exposure to absolute maximum rating conditions for extended periods may affect device  
reliability.  
MAXIMUM POWER DISSIPATION  
The data in this table is based on theta JA (θJA) established per  
JEDEC standards JESD51-2 and JESD51-6. See Engineer-to-  
Engineer note (EE-TBD) for further information. For informa-  
tion on package thermal specifications, see Thermal  
Characteristics on Page 46.  
Max Ambient Temp1  
208 LQFP  
TBD W  
256 SBGA  
TBD W  
70°C  
85°C  
TBD W  
TBD W  
1 Power Dissipation greater than that listed above may cause permanent damage  
to the device. For more information, see Thermal Characteristics on page 46.  
ESD SENSITIVITY  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000V readily  
accumulate on the human body and test equipment and can discharge without detection.  
AlthoughtheADSP-21369featuresproprietaryESDprotectioncircuitry,permanentdamagemay  
occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD  
precautions are recommended to avoid performance degradation or loss of functionality.  
TIMING SPECIFICATIONS  
The ADSP-21369’s internal clock (a multiple of CLKIN) pro-  
vides the clock signal for timing internal memory, processor  
core, and serial ports. During reset, program the ratio between  
the processor’s internal clock frequency and external (CLKIN)  
clock frequency with the CLKCFG1–0 pins (see Table 8 on  
page 15). To determine switching frequencies for the serial  
ports, divide down the internal clock, using the programmable  
divider control of each port (DIVx for the serial ports).  
The ADSP-21369’s internal clock switches at higher frequencies  
than the system input clock (CLKIN). To generate the internal  
clock, the processor uses an internal phase-locked loop (PLL).  
This PLL-based clocking minimizes the skew between the sys-  
tem clock (CLKIN) signal and the processor’s internal clock.  
Rev. PrB  
|
Page 17 of 52  
|
June 2005  
ADSP-21369  
Preliminary Technical Data  
Figure 3 shows Core to CLKIN ratios of 6:1, 16:1 and 32:1 with  
external oscillator or crystal. Note that more ratios are possible  
and can be set through software using the power management  
control register (PMCTL). For more information, see the ADSP-  
2136x SHARC Processor Programming Reference.  
PLLICLK  
CLKOUT  
CLKIN  
XTAL  
OSC  
INDIV  
÷1, 2  
DIVEN  
÷2, 4, 8, 16  
CCLK  
(CORE CLOCK)  
PLLM  
XTAL  
PCLK, SDCLK  
(PERIPHERAL CLOCK,  
SDRAM CLOCK)  
CLK-CFG [1:0]  
(6:1, 16:1, 32:1)  
Figure 3. Core Clock and System Clock Relationship to CLKIN  
Note the definitions of various clock periods shown in Table 10  
which are a function of CLKIN and the appropriate ratio con-  
trol shown in Table 9.  
Use the exact timing information given. Do not attempt to  
derive parameters from the addition or subtraction of others.  
While addition or subtraction would yield meaningful results  
for an individual device, the values given in this data sheet  
reflect statistical variations and worst cases. Consequently, it is  
not meaningful to add parameters to derive longer times. See  
Figure 38 on page 46 under Test Conditions for voltage refer-  
ence levels.  
Table 9. ADSP-21369 CLKOUT and CCLK Clock  
Generation Operation  
Timing  
Description  
Calculation  
Requirements  
Switching Characteristics specify how the processor changes its  
signals. Circuitry external to the processor must be designed for  
compatibility with these signal characteristics. Switching char-  
acteristics describe what the processor will do in a given  
circumstance. Use switching characteristics to ensure that any  
timing requirement of a device connected to the processor (such  
as memory) is satisfied.  
CLKIN  
CCLK  
Input Clock  
Core Clock  
1/tCK  
1/tCCLK  
Table 10. Clock Periods  
Timing  
Requirements  
Description1  
Timing Requirements apply to signals that are controlled by cir-  
cuitry external to the processor, such as the data input for a read  
operation. Timing requirements guarantee that the processor  
operates correctly with other devices.  
tCK  
CLKIN Clock Period  
tCCLK  
tPCLK  
tSCLK  
(Processor) Core Clock Period  
(Peripheral) Clock Period = 2 × tCCLK  
Serial Port Clock Period = (tPCLK) × SR  
SDRAM Clock Period = (tCCLK) × SDR  
SPI Clock Period = (tPCLK) × SPIR  
tSDCLK  
tSPICLK  
1 where:  
SR = serial port-to-core clock ratio (wide range, determined by SPORT CLKDIV  
bits in DIVx register)  
SPIR = SPI-to-Core Clock Ratio (wide range, determined by SPIBAUD register  
setting)  
SPICLK = SPI Clock  
SDR=SDRAM-to-Core Clock Ratio (Values determined by bits 20-18 of the  
PMCTL register)  
Rev. PrB  
|
Page 18 of 52  
|
June 2005  
Preliminary Technical Data  
ADSP-21369  
Power-Up Sequencing  
The timing requirements for processor startup are given in  
Table 11.  
Table 11. Power Up Sequencing Timing Requirements (Processor Startup)  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tRSTVDD  
RESET Low Before VDDINT/VDDEXT On  
VDDINT on Before VDDEXT  
0
ns  
tIVDDEVDD  
–50  
0
102  
203  
200  
200  
ms  
ms  
µs  
1
tCLKVDD  
CLKIN Valid After VDDINT/VDDEXT Valid  
CLKIN Valid Before RESET Deasserted  
PLL Control Setup Before RESET Deasserted  
tCLKRST  
tPLLRST  
µs  
Switching Characteristic  
4, 5  
tCORERST  
Core Reset Deasserted After RESET Deasserted  
4096tCK + 2 tCCLK  
1 Valid VDDINT/VDDEXT assumes that the supplies are fully ramped to their 1.3 and 3.3 volt rails. Voltage ramp rates can vary from microseconds to hundreds of milliseconds  
depending on the design of the power supply subsystem.  
2 Assumes a stable CLKIN signal, after meeting worst-case startup timing of crystal oscillators. Refer to your crystal oscillator manufacturer's datasheet for startup time.  
Assume a 25 ms maximum oscillator startup time if using the XTAL pin and internal oscillator circuit in conjunction with an external crystal.  
3 Based on CLKIN cycles  
4 Applies after the power-up sequence is complete. Subsequent resets require a minimum of 4 CLKIN cycles for RESET to be held low in order to properly initialize and  
propagate default states at all I/O pins.  
5 The 4096 cycle count depends on tSRST specification in Table 13. If setup time is not met, 1 additional CLKIN cycle may be added to the core reset time, resulting in 4097  
cycles maximum.  
RESET  
tRSTVDD  
V
DDINT  
tIVDDEVDD  
V
tCLKVDD  
DDEXT  
CLKIN  
tCLKRST  
CLK_CFG1-0  
tCORERST  
tPLLRST  
RSTOUT  
Figure 4. Power-Up Sequencing  
Rev. PrB  
|
Page 19 of 52  
|
June 2005  
ADSP-21369  
Preliminary Technical Data  
Clock Input  
Table 12. Clock Input  
Parameter  
400 MHz  
Min  
Unit  
Max  
Timing Requirements  
tCK  
CLKIN Period  
151  
61  
61  
3202  
1502  
1502  
TBD  
10  
ns  
ns  
ns  
ns  
ns  
tCKL  
tCKH  
tCKRF  
tCCLK  
CLKIN Width Low  
CLKIN Width High  
CLKIN Rise/Fall (0.4V–2.0V)  
CCLK Period  
3
2.51  
1 Applies only for CLKCFG1–0 = 00 and default values for PLL control bits in PMCTL.  
2 Applies only for CLKCFG1–0 = 01 and default values for PLL control bits in PMCTL.  
3 Any changes to PLL control bits in the PMCTL register must meet core clock timing specification tCCLK  
.
tCK  
CLKIN  
tCKH  
tCKL  
Figure 5. Clock Input  
Clock Signals  
The ADSP-21369 can use an external clock or a crystal. See the  
CLKIN pin description in Table 5. The programmer can config-  
ure the ADSP-21369 to use its internal clock generator by  
connecting the necessary components to CLKIN and XTAL.  
Figure 6 shows the component connections used for a crystal  
operating in fundamental mode. Note that the clock rate is  
achieved using a 16.67 MHz crystal and a PLL multiplier ratio  
16:1 (CCLK:CLKIN achieves a clock speed of 400 MHz). To  
achieve the full core clock rate, programs need to configure the  
multiplier bits in the PMCTL register.  
ADSP-2136X  
R1  
1M*  
XTAL  
CLKIN  
R2  
47*  
C1  
22pF  
C2  
22pF  
Y1  
24.576MHz  
R2 SHOULD BE CHOSEN TO LIMIT CRYSTAL  
DRIVE POWER. REFER TO CRYSTAL  
MANUFACTURER’S SPECIFICATIONS  
*TYPICAL VALUES  
Figure 6. 400 MHz Operation (Fundamental Mode Crystal)  
Rev. PrB  
|
Page 20 of 52  
|
June 2005  
Preliminary Technical Data  
ADSP-21369  
Reset  
Table 13. Reset  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
1
tWRST  
tSRST  
RESET Pulse Width Low  
4tCK  
8
ns  
ns  
RESET Setup Before CLKIN Low  
1 Applies after the power-up sequence is complete. At power-up, the processor’s internal phase-locked loop requires no more than 100 µs while RESET is low, assuming  
stable VDD and CLKIN (not including start-up time of external clock oscillator).  
CLKIN  
tSRST  
tWRST  
RESET  
Figure 7. Reset  
Interrupts  
The following timing specification applies to the FLAG0,  
FLAG1, and FLAG2 pins when they are configured as IRQ0,  
IRQ1, and IRQ2 interrupts.  
Table 14. Interrupts  
Parameter  
Min  
2 × tPCLK +2  
Max  
Unit  
Timing Requirement  
tIPW  
IRQx Pulse Width  
ns  
DAI_P20-1  
DPI_14-1  
FLAG2-0  
(IRQ2-0)  
tIPW  
Figure 8. Interrupts  
Rev. PrB  
|
Page 21 of 52  
|
June 2005  
ADSP-21369  
Preliminary Technical Data  
Core Timer  
The following timing specification applies to FLAG3 when it is  
configured as the core timer (CTIMER).  
Table 15. Core Timer  
Parameter  
Min  
Max  
Unit  
Switching Characteristic  
tWCTIM  
CTIMER Pulse width  
4 × tPCLK – 1  
ns  
tWCTIM  
FLAG3  
(CTIMER)  
Figure 9. Core Timer  
Timer PWM_OUT Cycle Timing  
The following timing specification applies to Timer0, Timer1,  
and Timer2 in PWM_OUT (pulse width modulation) mode.  
Timer signals are routed to the DPI_P14–1 pins through the  
SRU. Therefore, the timing specifications provided below are  
valid at the DPI_P14–1 pins.  
Table 16. Timer PWM_OUT Timing  
Parameter  
Min  
2 tPCLK – 1  
Max  
2(231 – 1) tPCLK  
Unit  
Switching Characteristic  
tPWMO  
Timer Pulse Width Output  
ns  
tPWMO  
DPI14-1  
(TIMER2-0)  
Figure 10. Timer PWM_OUT Timing  
Rev. PrB  
|
Page 22 of 52  
|
June 2005  
Preliminary Technical Data  
ADSP-21369  
Timer WDTH_CAP Timing  
The following timing specification applies to Timer0, Timer1,  
and Timer2 in WDTH_CAP (pulse width count and capture)  
mode. Timer signals are routed to the DPI_P14–1 pins through  
the SRU. Therefore, the timing specification provided below are  
valid at the DPI_P14–1 pins.  
Table 17. Timer Width Capture Timing  
Parameter  
Min  
2 tPCLK  
Max  
Unit  
Timing Requirement  
tPWI  
Timer Pulse Width  
2(231– 1) tPCLK  
ns  
tPWI  
DPI_14-1  
(TIMER2-0)  
Figure 11. Timer Width Capture Timing  
Pin to Pin Direct Routing (DAI and DPI)  
For direct pin connections only (for example DAI_PB01_I to  
DAI_PB02_O).  
Table 18. DAI Pin to Pin Routing  
Parameter  
Min  
Max  
Unit  
Timing Requirement  
tDPIO  
Delay DAI/DPI Pin Input Valid to DAI Output Valid  
1.5  
10  
ns  
DAI_Pn  
DPI_Pn  
DAI_pm  
DPI_Pm  
tDPIO  
Figure 12. DAI Pin to Pin Direct Routing  
Rev. PrB  
|
Page 23 of 52  
|
June 2005  
ADSP-21369  
Preliminary Technical Data  
inputs and outputs are not directly routed to/from DAI pins (via  
pin buffers) there is no timing data available. All Timing Param-  
eters and Switching Characteristics apply to external DAI pins  
(DAI_P01 – DAI_P20).  
Precision Clock Generator (Direct Pin Routing)  
This timing is only valid when the SRU is configured such that  
the Precision Clock Generator (PCG) takes its inputs directly  
from the DAI pins (via pin buffers) and sends its outputs  
directly to the DAI pins. For the other cases, where the PCG’s  
Table 19. Precision Clock Generator (Direct Pin Routing)  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tPCGIW  
tSTRIG  
Input Clock Period  
24  
ns  
ns  
PCG Trigger Setup Before Falling Edge of PCG Input 2  
Clock  
tHTRIG  
PCG Trigger Hold After Falling Edge of PCG Input  
Clock  
2
ns  
Switching Characteristics  
tDPCGIO  
PCGOutputClockandFrameSyncActiveEdgeDelay  
After PCG Input Clock  
2.5  
10  
ns  
ns  
ns  
ns  
tDTRIGCLK  
tDTRIGFS  
tPCGOW  
PCG Output Clock Delay After PCG Trigger  
PCG Frame Sync Delay After PCG Trigger  
Output Clock Period  
2.5 + ((2.5 + D) × tPCGIW  
)
10 + ((2.5 + D) × tPCGIW)  
2.5 + ((2.5 + D – PH) × tPCGIW  
)
10 + ((2.5 + D – PH) × tPCGIW)  
1
2 × tPCGIW  
D = FSxDIV, PH = FSxPHASE. For more information, see the ADSP-2136x SHARC Processor Hardware Reference for the ADSP-21367/8/9 Processors,  
“Precision Clock Generators” chapter.  
1 Normal mode of operation.  
tSTRIG  
tHTRIG  
DAI_Pn  
DPI_Pn  
PCG_TRIGx_I  
tPCGIW  
DAI_Pm  
DPI_Pm  
PCG_EXTx_I  
(CLKIN)  
tDPCGIO  
DAI_Py  
DPI_Py  
PCG_CLKx_O  
tDTRIGCLK  
tDPCGIO  
tPCGOW  
DAI_Pz  
DPI_Pz  
PCG_FSx_O  
tDTRIGFS  
Figure 13. Precision Clock Generator (Direct Pin Routing)  
Rev. PrB  
|
Page 24 of 52  
|
June 2005  
Preliminary Technical Data  
ADSP-21369  
Flags  
The timing specifications provided below apply to the FLAG3–0  
and DPI_P14–1 pins, and the serial peripheral interface (SPI).  
See Table 5 for more information on flag use.  
Table 20. Flags  
Parameter  
Min  
Max  
Unit  
Timing Requirement  
tFIPW  
FLAG3–0 IN Pulse Width  
2 × tPCLK + 3  
ns  
Switching Characteristic  
tFOPW FLAG3–0 OUT Pulse Width  
2 × tPCLK – 1  
ns  
DPI_P14-1  
(FLAG3-0  
)
IN  
(DATA31-0)  
tFIPW  
DPI_P14-1  
(FLAG3-0  
)
OUT  
(DATA31-0)  
tFOPW  
Figure 14. Flags  
Rev. PrB  
|
Page 25 of 52  
|
June 2005  
ADSP-21369  
Preliminary Technical Data  
SDRAM Interface Timing (166 MHz SDCLK)  
The 166MHz mode on the SDRAM interface is available on the  
333 MHz processor only. It is not available on the 400 MHz and  
266 MHz processors.  
Table 21. SDRAM Interface Timing1  
Parameter  
Minimum  
Maximum  
Unit  
Timing Requirement  
tSSDAT  
tHSDAT  
DATA Setup Before SDCLK  
DATA Hold After SDCLK  
0
ns  
ns  
1.0  
Switching Characteristic  
tSCLK  
SDCLK Period  
6.0  
2.9  
2.9  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSCLKH  
tSCLKL  
tDCAD  
tHCAD  
tDSDAT  
tENSDAT  
SDCLK Width High  
SDCLK Width Low  
Command, ADDR, Data Delay After SDCLK2  
Command, ADDR, Data Hold After SDCLK2  
Data Disable After SDCLK  
4.0  
5.3  
1.47  
2.6  
Data Enable After SDCLK  
1 For FCCLK = 333 MHz (SDCK ratio 1:2).  
2 Command pins include: SDCAS, SDRAS, SDWE, MSx, SDA10, SDCKE.  
tSCLK  
tSCLKH  
SDCLK  
tSSDAT  
tSCLKL  
tHSDAT  
DATA (IN)  
tDCAD  
tDSDAT  
tENSDAT  
tHCAD  
DATA(OUT)  
tDCAD  
CMND ADDR  
(OUT)  
tHCAD  
NOTE: COMMAND = S DCAS , SDR AS, S DWE , MS x, SDA10, SDCKE.  
Figure 15. SDRAM Interface Timing for 166 MHz SDCLK  
Rev. PrB  
|
Page 26 of 52  
|
June 2005  
Preliminary Technical Data  
ADSP-21369  
SDRAM Interface Timing (133 MHz SDCLK)  
Table 22. SDRAM Interface Timing1  
Parameter  
Minimum  
Maximum  
Unit  
Timing Requirement  
tSSDAT  
tHSDAT  
DATA Setup Before SDCLK  
DATA Hold After SDCLK  
0.0  
1.0  
ns  
ns  
Switching Characteristic  
tSCLK  
SDCLK Period  
7.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSCLKH  
tSCLKL  
tDCAD  
tHCAD  
tDSDAT  
tENSDAT  
SDCLK Width High  
3.65  
3.65  
SDCLK Width Low  
Command, ADDR, Data Delay After SDCLK2  
Command, ADDR, Data Hold After SDCLK2  
Data Disable After SDCLK  
4.0  
5.3  
1.5  
2.6  
Data Enable After SDCLK  
1 For FCCLK = 400 MHz (SDCK ratio = 1:3).  
2 Command pins include: SDCAS, SDRAS, SDWE, MSx, SDA10, SDCKE.  
tSCLK  
tSCLKH  
SDCLK  
tSSDAT  
tSCLKL  
tHSDAT  
DATA (IN)  
tDCAD  
tDSDAT  
tENSDAT  
tHCAD  
DATA(OUT)  
tDCAD  
CMND ADDR  
(OUT)  
tHCAD  
NOTE: COMMAND = S DCAS , SDR AS, S DWE , MS x, SDA10, SDCKE.  
Figure 16. SDRAM Interface Timing for 133 MHz SDCLK  
Rev. PrB  
|
Page 27 of 52  
|
June 2005  
ADSP-21369  
Preliminary Technical Data  
Memory Read – Bus Master  
Use these specifications for asynchronous interfacing to memo-  
ries. These specifications apply when the ADSP-21369 is the bus  
master accessing external memory space in asynchronous access  
mode. Note that timing for ACK, DATA, RD, WR, and strobe  
timing parameters only apply to asynchronous access mode.  
Table 23. Memory Read – Bus Master  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tDAD  
Address, Selects Delay to Data Valid1, 2  
RD Low to Data Valid1  
W+tSDCK5.12  
W– 1.5 + tSDCK  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tDRLD  
tSDS  
Data Setup to RD High  
1.79  
0
tHDRH  
tDAAK  
tDSAK  
tHAKC  
Data Hold from RD High3, 4  
ACK Delay from Address, Selects2, 5  
ACK Delay from RD Low4  
tSDCK9.5+ W  
W– 7.0  
ACK Hold After RD High  
0
Switching Characteristics  
tDRHA  
tDARL  
tRW  
Address Selects Hold After RD High  
Address Selects to RD Low2  
RH + 0.44  
tSDCK3.3  
W – 0.5  
ns  
ns  
ns  
ns  
RD Pulsewidth  
tRWR  
RD High to WR, RD, Low  
HI +tSDCK1  
W = (number of wait states specified in AMICTLx register) × tSDCK  
.
HI =RHC + IC (RHC = (number of Read Hold Cycles specified in AMICTLx register) x tSDCK  
IC = (number of Idle Cycles specified in AMICTLx register) x tSDCK).  
H = (number of Hold Cycles specified in AMICTLx register) x tSDCK  
.
1 Data Delay/Setup: User must meet tDAD, tDRLD, or tSDS.  
2 The falling edge of MSx, is referenced.  
3 Note that timing for ACK, DATA, RD, WR, and strobe timing parameters only apply to asynchronous access mode.  
4 Data Hold: User must meet tHDA or tHDRH in asynchronous access mode. See Test Conditions on Page 46 for the calculation of hold times given capacitive and dc loads.  
5 ACK Delay/Setup: User must meet tDAAK, or tDSAK, for deassertion of ACK (Low). For asynchronous assertion of ACK (High) user must meet tDAAK or tDSAK  
.
tHDA  
ADDRESS  
MSx  
tDRHA  
tDARL  
tRW  
RD  
tSDS  
tDRLD  
tDAD  
tHDRH  
DATA  
tDSAK  
tDAAK  
tRWR  
ACK  
WR  
Figure 17. Memory Read – Bus Master  
Rev. PrB  
|
Page 28 of 52  
|
June 2005  
Preliminary Technical Data  
ADSP-21369  
Memory Write – Bus Master  
Use these specifications for asynchronous interfacing to memo-  
ries. These specifications apply when the ADSP-21369 is the bus  
master accessing external memory space in asynchronous access  
mode. Note that timing for ACK, DATA, RD, WR, and strobe  
timing parameters only apply to asynchronous access mode.  
Table 24. Memory Write – Bus Master  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tDAAK  
tDSAK  
tHAKC  
ACK Delay from Address, Selects1, 2  
ACK Delay from WR Low 1, 3  
ACK Hold After WR High1  
tSDCK – 9.7 + W  
W – 7.1  
ns  
ns  
ns  
0
Switching Characteristics  
tDAWH  
tDAWL  
tWW  
Address, Selects to WR Deasserted2  
Address, Selects to WR Low2  
tSDCK – 3.1+ W  
tSDCK – 2.7  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
WR Pulsewidth  
W – 0.4  
tDDWH  
tDWHA  
tDWHD  
tDATRWH  
tWWR  
Data Setup Before WR High  
Address Hold After WR Deasserted  
Data Hold After WR Deasserted  
Data Disable After WR Deasserted4  
WR High to WR, RD Low  
tSDCK – 2.1+ W  
H + 0.3  
H + 0.4  
tSDCK – 1.37+ H  
tSDCK – 0.2+ H  
2tSDCK – 4.11  
tSDCK – 3.5  
tSDCK + 3.9+ H  
tDDWR  
tWDE  
Data Disable Before RD Low  
WR Low to Data Enabled  
W = (number of wait states specified in AMICTLx register) × tSDCK  
H = (number of hold cycles specified in AMICTLx register) x tSDCK  
.
.
1 ACK Delay/Setup: User must meet tDAAK, or tDSAK, for deassertion of ACK (Low). For asynchronous assertion of ACK (High) user must meet tDAAK or tDSAK  
2 The falling edge of MSx is referenced.  
.
3 Note that timing for ACK, DATA, RD, WR, and strobe timing parameters only applies to asynchronous access mode.  
4 See Test Conditions on Page 46 for calculation of hold times given capacitive and dc loads.  
ADDRESS  
MSx  
tDAWH  
tDWHA  
tDAWL  
tWW  
WR  
tWWR  
tWDE  
tDATRWH  
tDDWR  
tDDWH  
DATA  
tDSAK  
tDWHD  
tDAAK  
ACK  
tHAKC  
RD  
Figure 18. Memory Write – Bus Master  
Rev. PrB  
|
Page 29 of 52  
|
June 2005  
ADSP-21369  
Preliminary Technical Data  
Serial Ports  
To determine whether communication is possible between two  
devices at clock speed n, the following specifications must be  
confirmed: 1) frame sync delay and frame sync setup and hold,  
2) data delay and data setup and hold, and 3) SCLK width.  
Serial port signals (SCLK, FS, data channel A, data channel B)  
are routed to the DAI_P20–1 pins using the SRU. Therefore, the  
timing specifications provided below are valid at the  
DAI_P20–1 pins.  
Table 25. Serial Ports—External Clock  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
1
tSFSE  
FS Setup Before SCLK  
(Externally Generated FS in either Transmit or Receive Mode)  
2.5  
ns  
1
tHFSE  
FS Hold After SCLK  
(Externally Generated FS in either Transmit or Receive Mode)  
2.5  
2.5  
2.5  
10  
ns  
ns  
ns  
ns  
ns  
1
tSDRE  
Receive Data Setup Before Receive SCLK  
Receive Data Hold After SCLK  
SCLK Width  
1
tHDRE  
tSCLKW  
tSCLK  
SCLK Period  
20  
Switching Characteristics  
2
tDFSE  
FS Delay After SCLK  
(Internally Generated FS in either Transmit or Receive Mode)  
7
7
ns  
2
tHOFSE  
FS Hold After SCLK  
(Internally Generated FS in either Transmit or Receive Mode)  
2
2
ns  
ns  
ns  
2
tDDTE  
Transmit Data Delay After Transmit SCLK  
2
tHDTE  
Transmit Data Hold After Transmit SCLK  
1 Referenced to sample edge.  
2 Referenced to drive edge.  
Table 26. Serial Ports—Internal Clock  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
1
tSFSI  
FS Setup Before SCLK  
(Externally Generated FS in either Transmit or Receive Mode)  
7
ns  
1
tHFSI  
FS Hold After SCLK  
(Externally Generated FS in either Transmit or Receive Mode)  
2.5  
7
ns  
ns  
ns  
1
tSDRI  
Receive Data Setup Before SCLK  
Receive Data Hold After SCLK  
1
tHDRI  
2.5  
Switching Characteristics  
2
tDFSI  
FS Delay After SCLK (Internally Generated FS in Transmit Mode)  
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
2
tHOFSI  
FS Hold After SCLK (Internally Generated FS in Transmit Mode)  
FS Delay After SCLK (Internally Generated FS in Receive or Mode)  
FS Hold After SCLK (Internally Generated FS in Receive Mode)  
Transmit Data Delay After SCLK  
–1.0  
–1.0  
2
tDFSI  
3
tHOFSI  
2
tDDTI  
3
2
tHDTI  
Transmit Data Hold After SCLK  
–1.0  
tSCLKIW  
Transmit or Receive SCLK Width  
0.5tSCLK – 2  
0.5tSCLK + 2  
1 Referenced to the sample edge.  
2 Referenced to drive edge.  
Rev. PrB  
|
Page 30 of 52  
|
June 2005  
Preliminary Technical Data  
ADSP-21369  
Table 27. Serial Ports—Enable and Three-State  
Parameter  
Min  
2
Max  
Unit  
Switching Characteristics  
1
tDDTEN  
Data Enable from External Transmit SCLK  
Data Disable from External Transmit SCLK  
Data Enable from Internal Transmit SCLK  
ns  
ns  
ns  
1
tDDTTE  
7
1
tDDTIN  
–1  
1 Referenced to drive edge.  
Table 28. Serial Ports—External Late Frame Sync  
Parameter  
Min  
Max  
Unit  
Switching Characteristics  
1
tDDTLFSE  
Data Delay from Late External Transmit FS or External Receive FS  
with MCE = 1, MFD = 0  
7
ns  
ns  
1
tDDTENFS  
Data Enable for MCE = 1, MFD = 0  
0.5  
1 The tDDTLFSE and tDDTENFS parameters apply to Left-justified Sample Pair as well as DSP serial mode, and MCE = 1, MFD = 0.  
EXTERNAL RECEIVE FS WITH MCE = 1, MFD = 0  
DRIVE  
SAMPLE  
DRIVE  
DAI_P20-1  
(SCLK)  
tSFSE/I  
tHFSE/I  
DAI_P20-1  
(FS)  
tDDTE/I  
tDDTENFS  
tHDTE/I  
1ST BIT  
DAI_P20-1  
(DATA CHANNEL A/B)  
2ND BIT  
tDDTLFSE  
LATE EXTERNAL TRANSMIT FS  
DRIVE  
SAMPLE  
DRIVE  
tHFSE/I  
DAI_P20-1  
(SCLK)  
tSFSE/I  
DAI_P20-1  
(FS)  
tDDTE/I  
tDDTENFS  
tHDTE/I  
1ST BIT  
DAI_P20-1  
(DATA CHANNEL A/B)  
2ND BIT  
tDDTLFSE  
NOTE: SERIAL PORT SIGNALS (SCLK, FS, DATA CHANNEL A/B) ARE ROUTED TO THE DAI_P20-1 PINS  
USING THE SRU. THE TIMING SPECIFICATIONS PROVIDED HERE ARE VALID AT THE DAI_P20-1 PINS.  
Figure 19. External Late Frame Sync1  
1 This figure reflects changes made to support Left-justified Sample Pair mode.  
Rev. PrB  
|
Page 31 of 52  
|
June 2005  
ADSP-21369  
Preliminary Technical Data  
DATA RECEIVE— INTERNAL CLOCK  
DRIVE EDGE SAMPLE EDGE  
DATA RECEIVE— EXTERNAL CLOCK  
DRIVE EDGE  
SAMPLE EDGE  
tSCLKIW  
tSCLKW  
DAI_P20-1  
(SCLK)  
DAI_P20-1  
(SCLK)  
tDFSI  
tDFSE  
tHFSE  
tHFSI  
tSFSI  
tSFSE  
tHOFSI  
tHOFSE  
DAI_P20-1  
(FS)  
DAI_P20-1  
(FS)  
tHDRE  
tSDRI  
tHDRI  
tSDRE  
DAI_P20-1  
DAI_P20-1  
(DATA CHANNEL A/B)  
(DATA CHANNEL A/B)  
NOTE: EITHER THE RISING EDGE OR FALLING EDGE OF SCLK (EXTERNAL), SCLK (INTERNAL) CAN BE USED AS THE ACTIVE SAMPLING EDGE.  
DATA TRANSMIT — INTERNAL CLOCK  
DRIVE EDGE SAMPLE EDGE  
DATA TRANSMIT — EXTERNAL CLOCK  
DRIVE EDGE SAMPLE EDGE  
tSCLKIW  
tSCLKW  
DAI_P20-1  
(SCLK)  
DAI_P20-1  
(SCLK)  
tDFSI  
tDFSE  
tHFSI  
tHOFSI  
tSFSI  
tHOFSE  
tSFSE  
tHFSE  
DAI_P20-1  
(FS)  
DAI_P20-1  
(FS)  
tDDTE  
tDDTI  
tHDTE  
tHDTI  
DAI_P20-1  
DAI_P20-1  
(DATA CHANNEL A/B)  
(DATA CHANNEL A/B)  
NOTE: EITHER THE RISING EDGE OR FALLING EDGE OF SCLK (EXTERNAL), SCLK (INTERNAL) CAN BE USED AS THE ACTIVE SAMPLING EDGE.  
DRIVE EDGE  
DRIVE EDGE  
DAI_P20-1  
SCLK  
SCLK (EXT)  
tDDTEN  
tDDTTE  
DAI_P20-1  
(DATA CHANNEL A/B)  
DRIVE EDGE  
DAI_P20-1  
SCLK (INT)  
tDDTIN  
DAI_P20-1  
(DATA CHANNEL A/B)  
Figure 20. Serial Ports  
Rev. PrB  
|
Page 32 of 52  
|
June 2005  
Preliminary Technical Data  
ADSP-21369  
Input Data Port  
The timing requirements for the IDP are given in Table 29.IDP  
Signals (SCLK, FS, SDATA) are routed to the DAI_P20–1 pins  
using the SRU. Therefore, the timing specifications provided  
below are valid at the DAI_P20–1 pins.  
Table 29. IDP  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
1
tSISFS  
FS Setup Before SCLK Rising Edge  
FS Hold After SCLK Rising Edge  
SData Setup Before SCLK Rising Edge  
SData Hold After SCLK Rising Edge  
Clock Width  
2.5  
2.5  
2.5  
2.5  
9
ns  
ns  
ns  
ns  
ns  
ns  
1
tSIHFS  
1
tSISD  
1
tSIHD  
tIDPCLKW  
tIDPCLK  
Clock Period  
24  
1
DATA, SCLK, FS can come from any of the DAI pins. SCLK and FS can also come via PCG or SPORTs. PCG's input can be either CLKIN or any of the DAI pins.  
SAMPLE EDGE  
tIPDCLK  
tIPDCLKW  
DAI_P20-1  
(SCLK)  
tSISFS  
tSIHFS  
DAI_P20-1  
(FS)  
tSISD  
tSIHD  
DAI_P20-1  
(SDATA)  
Figure 21. IDP Master Timing  
Rev. PrB  
|
Page 33 of 52  
|
June 2005  
ADSP-21369  
Preliminary Technical Data  
ence for the ADSP-21367/8/9 Processors. Note that the most  
significant 16 bits of external PDAP data can be provided  
through the DATA31–16 pins. The remaining 4 bits can only be  
sourced through DAI_P4–1. The timing below is valid at the  
DATA31–16 pins.  
Parallel Data Acquisition Port (PDAP)  
The timing requirements for the PDAP are provided in  
Table 30. PDAP is the parallel mode operation of channel 0 of  
the IDP. For details on the operation of the IDP, see the IDP  
chapter of the ADSP-2136x SHARC Processor Hardware Refer-  
Table 30. Parallel Data Acquisition Port (PDAP)  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
1
tSPCLKEN  
PDAP_CLKEN Setup Before PDAP_CLK Sample Edge  
PDAP_CLKEN Hold After PDAP_CLK Sample Edge  
PDAP_DAT Setup Before SCLK PDAP_CLK Sample Edge  
PDAP_DAT Hold After SCLK PDAP_CLK Sample Edge  
Clock Width  
2.5  
2.5  
2.5  
2.5  
7
ns  
ns  
ns  
ns  
ns  
ns  
1
tHPCLKEN  
1
tPDSD  
1
tPDHD  
tPDCLKW  
tPDCLK  
Clock Period  
24  
Switching Characteristics  
tPDHLDD Delay of PDAP Strobe After Last PDAP_CLK Capture Edge for a Word  
tPDSTRB PDAP Strobe Pulse Width  
2 × tPCLK – 1  
2 × tPCLK – 1  
ns  
ns  
1
Source pins of DATA are ADDR7–0, DATA7–0, or DAI pins. Source pins for SCLK and FS are: 1) DAI pins, 2) CLKIN through PCG, or 3) DAI pins through PCG.  
SAMPLE EDGE  
tPDCLK  
tPDCLKW  
DAI_P20-1  
(PDAP_CLK)  
tSPCLKEN  
tHPCLKEN  
DAI_P20-1  
(PDAP_CLKEN)  
tPDSD  
tPDHD  
DATA  
DAI_P20-1  
(PDAP_STROBE)  
tPDSTRB  
tPDHLDD  
Figure 22. PDAP Timing  
Rev. PrB  
|
Page 34 of 52  
|
June 2005  
Preliminary Technical Data  
ADSP-21369  
Pulse Width Modulation Generators  
Table 31. PWM Timing  
Parameter  
Min  
Max  
Unit  
Switching Characteristics  
tPWMW  
tWCTIM  
PWM Output Pulse Width  
PWM Output Period  
tPCLK – 2  
2 × tPCLK  
216 – 2) x tPCLK – 2  
(216 – 1) x tPCLK  
ns  
ns  
tPWMW  
PWM  
OUTPUTS  
tPWMP  
Figure 23. PWM Timing  
Rev. PrB  
|
Page 35 of 52  
|
June 2005  
ADSP-21369  
Preliminary Technical Data  
Sample Rate Converter—Serial Input Port  
The SRC input signals (SCLK, FS, and SDATA) are routed from  
the DAI_P20–1 pins using the SRU. Therefore, the timing spec-  
ifications provided in Table 32 are valid at the DAI_P20–1 pins.  
Table 32. SRC, Serial Input Port  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
1
tSRCSFS  
FS Setup Before SCLK Rising Edge  
FS Hold After SCLK Rising Edge  
SData Setup Before SCLK Rising Edge  
SData Hold After SCLK Rising Edge  
Clock Width  
4
ns  
ns  
ns  
ns  
ns  
ns  
1
tSRCHFS  
5.5  
4
1
tSRCSD  
1
tSRCHD  
tSRCCLKW  
tSRCCLK  
5.5  
9
Clock Period  
20  
1
DATA, SCLK, FS can come from any of the DAI pins. SCLK and FS can also come via PCG or SPORTs. PCG's input can be either CLKIN or any of the DAI pins.  
SAMPLE EDGE  
tSRCCLK  
tSRCCLKW  
DAI_P20-1  
(SCLK)  
tSRCSFS  
tSRCHFS  
DAI_P20-1  
(FS)  
tSRCSD  
tSRCHD  
DAI_P20-1  
(SDATA)  
Figure 24. SRC Serial Input Port Timing  
Rev. PrB  
|
Page 36 of 52  
|
June 2005  
Preliminary Technical Data  
ADSP-21369  
and delay specification with regard to SCLK. Note that SCLK  
rising edge is the sampling edge and the falling edge is the drive  
edge.  
Sample Rate Converter—Serial Output Port  
For the serial output port, the frame-sync is an input and it  
should meet setup and hold times with regard to SCLK on the  
output port. The serial data output, SDATA, has a hold time  
Table 33. SRC, Serial Output Port  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
1
tSRCSFS  
FS Setup Before SCLK Rising Edge  
FS Hold Before SCLK Rising Edge  
4
ns  
ns  
1
tSRCHFS  
5.5  
Switching Characteristics  
1
tSRCTDD  
Transmit Data Delay After SCLK Falling Edge  
Transmit Data Hold After SCLK Falling Edge  
7
ns  
ns  
1
tSRCTDH  
2
1
DATA, SCLK, FS can come from any of the DAI pins. SCLK and FS can also come via PCG or SPORTs. PCG's input can be either CLKIN or any of the DAI pins.  
SAMPLE EDGE  
tSRCCLK  
tSRCCLKW  
DAI_P20-1  
(SCLK)  
tSRCSFS  
tSRCHFS  
DAI_P20-1  
(FS)  
tSRCTDD  
DAI_P20-1  
(SDATA)  
tSRCTDH  
Figure 25. SRC Serial Output Port Timing  
Rev. PrB  
|
Page 37 of 52  
|
June 2005  
ADSP-21369  
Preliminary Technical Data  
SPDIF Transmitter  
Serial data input to the SPDIF transmitter can be formatted as  
left justified, I2S or right justified with word widths of 16, 18, 20,  
or 24 bits. The following sections provide timing for the  
transmitter.  
SPDIF Transmitter—Serial Input Waveforms  
Figure 26 shows the right-justified mode. LRCLK is HI for the  
left channel and LO for the right channel. Data is valid on the  
rising edge of SCLK. The MSB is delayed 12-bit clock periods  
(in 20-bit output mode) or 16-bit clock periods (in 16-bit output  
mode) from an LRCLK transition, so that when there are 64  
SCLK periods per LRCLK period, the LSB of the data will be  
right-justified to the next LRCLK transition.  
DAI_P20-1  
LRCLK  
RIGHT CHANNEL  
LEFT CHANNEL  
DAI_P20-1  
SCLK  
LSB  
MSB-1 MSB-2  
LSB+2 LSB+1  
LSB  
MSB MSB-1 MSB-2  
LSB+2 LSB+1  
LSB  
MSB  
DAI_P20-1  
SDATA  
Figure 26. Right-Justified Mode  
Figure 27 shows the default I2S-justified mode. LRCLK is LO for  
the left channel and HI for the right channel. Data is valid on the  
rising edge of SCLK. The MSB is left-justified to an LRCLK  
transition but with a single SCLK period delay.  
RIGHT CHANNEL  
DAI_P20-1  
LEFT CHANNEL  
LRCLK  
DAI_P20-1  
SCLK  
DAI_P20-1  
MSB  
MSB-1 MSB-2  
LSB+2 LSB+1 LSB  
MSB  
MSB-1 MSB-2  
LSB+2 LSB+1  
LSB  
MSB  
SDATA  
Figure 27. I2S-Justified Mode  
Figure 28 shows the left-justified mode. LRCLK is HI for the left  
channel and LO for the right channel. Data is valid on the rising  
edge of SCLK. The MSB is left-justified to an LRCLK transition  
with no MSB delay.  
DAI_P20-1  
LRCLK  
RIGHT CHANNEL  
LEFT CHANNEL  
DAI_P20-1  
SCLK  
LSB+2 LSB+1 LSB  
MSB  
MSB-1 MSB-2  
LSB+2 LSB+1  
LSB  
MSB  
MSB-1 MSB-2  
MSB MSB+1  
DAI_P20-1  
SDATA  
Figure 28. Left-Justified Mode  
Rev. PrB  
|
Page 38 of 52  
|
June 2005  
Preliminary Technical Data  
ADSP-21369  
SPDIF Transmitter Input Data Timing  
The timing requirements for the Input port are given in  
Table 34. Input Signals (SCLK, FS, SDATA) are routed to the  
DAI_P20–1 pins using the SRU. Therefore, the timing specifica-  
tions provided below are valid at the DAI_P20–1 pins.  
Table 34. SPDIF Transmitter Input Data Timing  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
1
tSIFS  
FS Setup Before SCLK Rising Edge  
FS Hold After SCLK Rising Edge  
SData Setup Before SCLK Rising Edge  
SData Hold After SCLK Rising Edge  
Clock Width  
4
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
tSIHFS  
5.5  
4
1
tSISD  
1
tSIHD  
tSISCLKW  
tSISCLK  
tSITXCLKW  
tSITXCLK  
5.5  
36  
80  
9
Clock Period  
Transmit Clock Width  
Transmit Clock Period  
20  
1
DATA, SCLK, FS can come from any of the DAI pins. SCLK and FS can also come via PCG or SPORTs. PCG's input can be either CLKIN or any of the DAI pins.  
tSITXCLKW  
tSITXCLK  
SAMPLE EDGE  
DAI_P20-1  
(TXCLK)  
tSISCLKW  
DAI_P20-1  
(SCLK)  
tSIHFS  
tSISFS  
DAI_P20-1  
(FS)  
tSISD  
tSIHD  
DAI_P20-1  
(SDATA)  
Figure 29. SPDIF Transmitter Input Timing  
Over Sampling Clock (TXCLK) Switching Characteristics  
The SPDIF transmitter has an over sampling clock. This  
TXCLK input is divided down to generate the biphase clock.  
Table 35. Over Sampling Clock (TXCLK) Switching Characteristics  
Parameter  
Min  
Max  
147.5  
98.4  
Unit  
MHz  
MHz  
MHz  
MHz  
kHz  
TXCLK Frequency for TXCLK = 768 × FS  
TXCLK Frequency for TXCLK = 512 × FS  
TXCLK Frequency for TXCLK = 384 × FS  
TXCLK Frequency for TXCLK = 256 × FS  
Frame Rate  
73.8  
49.2  
192.0  
Rev. PrB  
|
Page 39 of 52  
|
June 2005  
ADSP-21369  
Preliminary Technical Data  
SPDIF Receiver  
The following section describes timing as it relates to the SPDIF  
receiver.  
Internal Digital PLL Mode  
In the internal digital phase-locked loop mode the internal PLL  
(digital PLL) generates the 512 × Fs clock.  
Table 36. SPDIF Receiver Internal Digital PLL Mode Timing  
Parameter  
Min  
Max  
Unit  
Switching Characteristics  
tDFSI  
LRCLK Delay After SCLK  
LRCLK Hold After SCLK  
Transmit Data Delay After SCLK  
Transmit Data Hold After SCLK  
Transmit SCLK Width  
5
5
ns  
ns  
ns  
ns  
ns  
ns  
tHOFSI  
tDDTI  
–2  
tHDTI  
–2  
40  
1
tSCLKIW  
tCCLK  
Core Clock Period  
5
1 SCLK frequency is 64 x FS where FS = the frequency of LRCLK.  
DRIVE EDGE  
SAMPLE EDGE  
tSCLKIW  
DAI_P20-1  
(SCLK)  
tDFSI  
tHOFSI  
DAI_P20-1  
(FS)  
tDDTI  
tHDTI  
DAI_P20-1  
(DATA CHANNEL A/B)  
Figure 30. SPDIF Receiver Internal Digital PLL Mode Timing  
Rev. PrB  
|
Page 40 of 52  
|
June 2005  
Preliminary Technical Data  
ADSP-21369  
SPI Interface—Master  
The ADSP-21369 contains two SPI ports. The primary has dedi-  
cated pins and the secondary is available through the DPI. The  
timing provided in Table 37 and Table 38 on page 42 applies to  
both.  
Table 37. SPI Interface Protocol — Master Switching and Timing Specifications  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tSSPIDM  
tHSPIDM  
Data Input Valid To SPICLK Edge (Data Input Set-up Time)  
SPICLK Last Sampling Edge To Data Input Not Valid  
8
2
ns  
ns  
Switching Characteristics  
tSPICLKM  
tSPICHM  
tSPICLM  
tDDSPIDM  
tHDSPIDM  
tSDSCIM  
tHDSM  
Serial Clock Cycle  
8 × tPCLK  
ns  
ns  
ns  
SErial Clock High Period  
4 × tPCLK  
Serial Clock Low Period  
4 × tPCLK – 2  
SPICLK Edge to Data Out Valid (Data Out Delay Time)  
SPICLK Edge to Data Out Not Valid (Data Out Hold Time)  
FLAG3–0IN (SPI device select) Low to First SPICLK Edge  
Last SPICLK Edge to FLAG3–0IN High  
Sequential Transfer Delay  
0
2
ns  
ns  
ns  
ns  
4 × tPCLK – 2  
4 × tPCLK – 1  
4 × tPCLK – 1  
tSPITDM  
DPI_P14-1  
[FLAG3-0]  
(OUTPUT)  
tSDSCIM  
tSPICHM  
tSPICLM  
tSPICHM  
tDDSPIDM  
tSPICLKM  
tHDSM  
tSPITDM  
DPI_P14-1  
[SPICLK]  
(CP = 0)  
(OUTPUT)  
tSPICLM  
DPI_P14-1  
[SPICLK]  
(CP = 1)  
(OUTPUT)  
tHDSPIDM  
DPI_P14-1  
[MOSI]  
MSB  
LSB  
(OUTPUT)  
tSSPIDM  
tSSPIDM  
CPHASE=1  
tHSPIDM  
tHSSPIDM  
DPI_P14-1  
[MISO]  
MSB  
VALID  
LSB  
VALID  
(INPUT)  
tHDSPIDM  
tDDSPIDM  
DPI_P14-1  
[MOSI]  
MSB  
LSB  
(OUTPUT)  
tSSPIDM  
tHSPIDM  
CPHASE=0  
MSB  
VALID  
LSB  
VALID  
DPI_P14-1  
[MISO]  
(INPUT)  
Figure 31. SPI Master Timing  
Rev. PrB  
|
Page 41 of 52  
|
June 2005  
ADSP-21369  
Preliminary Technical Data  
SPI Interface—Slave  
Table 38. SPI Interface Protocol —Slave Switching and Timing Specifications  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tSPICLKS  
tSPICHS  
tSPICLS  
tSDSCO  
Serial Clock Cycle  
4 × tPCLK  
ns  
ns  
ns  
ns  
Serial Clock High Period  
Serial Clock Low Period  
2 × tPCLK  
2 × tPCLK – 2  
SPIDS Assertion to First SPICLK Edge  
CPHASE = 0  
CPHASE = 1  
2 × tPCLK  
2 × tPCLK  
tHDS  
Last SPICLK Edge to SPIDS Not Asserted, CPHASE = 0  
Data Input Valid to SPICLK edge (Data Input Set-up Time)  
SPICLK Last Sampling Edge to Data Input Not Valid  
SPIDS Deassertion Pulse Width (CPHASE=0)  
2 × tPCLK  
ns  
ns  
ns  
ns  
tSSPIDS  
tHSPIDS  
tSDPPW  
2
2
2 × tPCLK  
Switching Characteristics  
tDSOE  
SPIDS Assertion to Data Out Active  
0
0
4
ns  
ns  
ns  
ns  
ns  
tDSDHI  
tDDSPIDS  
tHDSPIDS  
tDSOV  
SPIDS Deassertion to Data High Impedance  
4
SPICLK Edge to Data Out Valid (Data Out Delay Time)  
SPICLK Edge to Data Out Not Valid (Data Out Hold Time)  
SPIDS Assertion to Data Out Valid (CPHASE=0)  
9.4  
2 × tPCLK  
5 × tPCLK  
DPI_P14-1  
[FLAG3-0]  
(OUTPUT)  
tSPICHS  
tSPICLS  
tSPICLKS  
DPI_P14-1  
[SPICLK]  
(CP = 0)  
tHDS  
tSDPPW  
(OUTPUT)  
tSPICLS  
tSDSCO  
tSPICHS  
DPI_P14-1  
[SPICLK]  
(CP = 1)  
(OUTPUT)  
tDSDHI  
tHDLSBS  
tDDSPIDS  
tDSOE  
tDDSPIDS  
DPI_P14-1  
[MOSI]  
MSB  
LSB  
(OUTPUT)  
tHSPIDS  
CPHASE=1  
tSSPIDS  
tSSPIDS  
DPI_P14-1  
[MISO]  
(INPUT)  
LSB  
VALID  
MSB  
VALID  
tDSOV  
tDSOE  
tHDLSBS  
tDDSPIDS  
tDSDHI  
DPI_P14-1  
[MOSI]  
LSB  
MSB  
(OUTPUT)  
tHSPIDS  
CPHASE=0  
tSSPIDS  
DPI_P14-1  
[MISO]  
(INPUT)  
LSB  
VALID  
MSB  
VALID  
Figure 32. SPI Slave Timing  
Rev. PrB  
|
Page 42 of 52  
|
June 2005  
Preliminary Technical Data  
ADSP-21369  
Universal Asynchronous Receiver-Transmitter  
(UART) Port—Receive and Transmit Timing  
Figure 33 describes UART port receive and transmit operations.  
The maximum baud rate is SCLK/16. As shown in Figure 33  
there is some latency between the generation internal UART  
interrupts and the external data operations. These latencies are  
negligible at the data transmission rates for the UART.  
DPI_P14-1  
[CLKOUT]  
(SAMPLE CLOCK)  
DPI_P14-1  
[RXD]  
DATA(5–8)  
STOP  
RECEIVE  
INTERNAL  
UART RECEIVE  
INTERRUPT  
UART RECEIVE BIT SET BY DATA STOP;  
CLEARED BY FIFO READ  
START  
DPI_P14-1  
[TXD]  
DATA(5–8)  
STOP(1–2)  
TRANSMIT  
INTERNAL  
UART TRANSMIT  
INTERRUPT  
UART TRANSMIT BIT SET BY PROGRAM;  
CLEARED BY WRITE TO TRANSMIT  
Figure 33. UART Port—Receive and Transmit Timing  
Rev. PrB  
|
Page 43 of 52  
|
June 2005  
ADSP-21369  
Preliminary Technical Data  
TWI Controller Timing  
Table 39 and Figure 34 provide timing information for the TWI  
interface. Input Signals (SCL, SDA) are routed to the  
DPI_P14–1 pins using the SRU. Therefore, the timing specifica-  
tions provided below are valid at the DPI_P14–1 pins.  
Table 39. Characteristics of the SDA and SCL Bus Lines for F/S-Mode TWI Bus Devices1  
Parameter  
Standard-mode  
Fast-mode  
Max  
Unit  
Min  
Max  
Min  
fSCL  
SCL Clock Frequency  
0
100  
0
400  
kHz  
tHDSTA  
Hold Time (repeated) START Condition. After this  
Period, the First Clock Pulse is Generated.  
4.0  
4.7  
4.0  
4.7  
0
0.6  
1.3  
0.6  
0.6  
0
µs  
µs  
µs  
µs  
µs  
ns  
µs  
µs  
ns  
tLOW  
LOW Period of the SCL Clock  
HIGH period of the SCL Clock  
Set-up time for a repeated START condition  
Data Hold Time for TWI-bus Devices  
Data Set-up Time  
tHIGH  
tSUSTA  
tHDDAT  
tSUDAT  
tSUSTO  
tBUF  
250  
4.0  
100  
0.6  
1.3  
0
Set-up Time for STOP Condition  
Bus Free Time Between a STOP and START Condition 4.7  
tSP  
Pulse Width of Spikes Suppressed By the Input Filter n/a  
n/a  
50  
1 All values referred to VIHmin and VILmax levels. For more information, see Electrical Characteristics on page 16.  
DPI_P14-1  
SDA  
tSUDAT  
tHDS TA  
tBUF  
tLOW  
tSP  
DPI_P14-1  
SCL  
tSUS TA  
tSUSTO  
tHDS TA  
tHIGH  
S
P
Sr  
S
tH DDAT  
Figure 34. Fast and Standard Mode Timing on the TWI Bus  
Rev. PrB  
|
Page 44 of 52  
|
June 2005  
Preliminary Technical Data  
ADSP-21369  
JTAG Test Access Port and Emulation  
Table 40. JTAG Test Access Port and Emulation  
Parameter  
Min  
Max  
Unit  
Timing Requirements  
tTCK  
TCK Period  
tCK  
5
ns  
ns  
ns  
ns  
ns  
ns  
tSTAP  
tHTAP  
TDI, TMS Setup Before TCK High  
TDI, TMS Hold After TCK High  
System Inputs Setup Before TCK High  
System Inputs Hold After TCK High  
TRST Pulse Width  
6
1
tSSYS  
7
1
tHSYS  
tTRSTW  
18  
4tCK  
Switching Characteristics  
tDTDO TDO Delay from TCK Low  
System Outputs Delay After TCK Low  
7
ns  
ns  
2
tDSYS  
tCK ÷ 2 + 7  
1 System Inputs = AD15–0, SPIDS, CLKCFG1–0, RESET, BOOTCFG1–0, MISO, MOSI, SPICLK, DAI_Px, FLAG3–0.  
2 System Outputs = MISO, MOSI, SPICLK, DAI_Px, AD15–0, RD, WR, FLAG3–0, CLKOUT, EMU, ALE.  
tTCK  
TCK  
tSTAP  
tHTAP  
TMS  
TDI  
tDTDO  
TDO  
tSSYS  
tHSYS  
SYSTEM  
INPUTS  
tDSYS  
SYSTEM  
OUTPUTS  
Figure 35. IEEE 1149.1 JTAG Test Access Port  
Rev. PrB  
|
Page 45 of 52  
|
June 2005  
ADSP-21369  
Preliminary Technical Data  
OUTPUT DRIVE CURRENTS  
CAPACITIVE LOADING  
Figure 36 shows typical I-V characteristics for the output driv-  
ers of the ADSP-21369. The curves represent the current drive  
capability of the output drivers as a function of output voltage.  
Output delays and holds are based on standard capacitive loads:  
30 pF on all pins (see Figure 37). Figure 41 shows graphically  
how output delays and holds vary with load capacitance. The  
graphs of Figure 39, Figure 40, and Figure 41 may not be linear  
outside the ranges shown for Typical Output Delay vs. Load  
Capacitance and Typical Output Rise Time (20%-80%, V=Min)  
vs. Load Capacitance.  
TBD  
TBD  
Figure 36. ADSP-21369 Typical Drive  
TEST CONDITIONS  
The ac signal specifications (timing parameters) appear  
Table 13 on page 21 through Table 40 on page 45. These include  
output disable time, output enable time, and capacitive loading.  
The timing specifications for the SHARC apply for the voltage  
reference levels in Figure 37.  
Figure 39. Typical Output Rise/Fall Time (20%-80%,  
VDDEXT = Max)  
Timing is measured on signals when they cross the 1.5 V level as  
described in Figure 38. All delays (in nanoseconds) are mea-  
sured between the point that the first signal reaches 1.5 V and  
the point that the second signal reaches 1.5 V.  
TBD  
50  
TO  
OUTPUT  
PIN  
1.5V  
30pF  
Figure 40. Typical Output Rise/Fall Time (20%-80%,  
V
DDEXT =Min)  
Figure 37. Equivalent Device Loading for AC Measurements  
(Includes All Fixtures)  
TBD  
INPUT  
OR  
OUTPUT  
1.5V  
1.5V  
Figure 41. Typical Output Delay or Hold vs. Load Capacitance  
(at Ambient Temperature)  
Figure 38. Voltage Reference Levels for AC Measurements  
temperature range specified in Recommended Operating Con-  
ditions on Page 16.  
THERMAL CHARACTERISTICS  
The ADSP-21369 processor is rated for performance over the  
Rev. PrB  
|
Page 46 of 52  
|
June 2005  
Preliminary Technical Data  
ADSP-21369  
Table 41 and Table 42 airflow measurements comply with  
JEDEC standards JESD51-2 and JESD51-6 and the junction-to-  
board measurement complies with JESD51-8. Test board design  
complies with JEDEC standards JESD51-9 (SBGA) and JESD51-  
7 (MQFP). The junction-to-case measurement complies with  
MIL- STD-883. All measurements use a 2S2P JEDEC test board.  
Table 41. Thermal Characteristics for 256 Ball SBGA (No  
thermal vias in PCB)  
Parameter  
θJA  
Condition  
Typical  
12.5  
10.6  
9.9  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Airflow = 0 m/s  
Airflow = 1 m/s  
Airflow = 2 m/s  
θJMA  
θJMA  
θJC  
To determine the Junction Temperature of the device while on  
the application PCB, use:  
0.7  
θJB  
5.3  
T = T  
+ (Ψ × P )  
JT  
D
J
CASE  
ΨJT  
ΨJMT  
ΨJMT  
Airflow = 0 m/s  
Airflow = 1 m/s  
Airflow = 2 m/s  
0.3  
where:  
TJ = Junction temperature °C  
0.3  
0.3  
TCASE = Case temperature (°C) measured at the top center of  
the package  
Table 42. Thermal Characteristics for 208-Lead MQFP  
Parameter  
θJA  
θJMA  
θJMA  
θJC  
ΨJT  
ΨJMT  
ΨJMT  
Condition  
Typical  
25.0  
22.5  
21.6  
9.6  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
ΨJT = Junction-to-Top (of package) characterization parameter  
is the Typical value from Table 41 and Table 42.  
Airflow = 0 m/s  
Airflow = 1 m/s  
Airflow = 2 m/s  
P
D = Power dissipation (see EE Note #TBD)  
Values of θJA are provided for package comparison and PCB  
design considerations. θJA can be used for a first order approxi-  
mation of TJ by the equation:  
Airflow = 0 m/s  
Airflow = 1 m/s  
Airflow = 2 m/s  
0.7  
0.8  
T = T + (θ × P )  
J
A
JA  
D
0.9  
where:  
TA = Ambient Temperature °C  
Values of θJC are provided for package comparison and PCB  
design considerations when an external heatsink is required.  
Values of θJB are provided for package comparison and PCB  
design considerations. Note that the thermal characteristics val-  
ues provided in Table 41 and Table 42 are modeled values.  
Rev. PrB  
|
Page 47 of 52  
|
June 2005  
ADSP-21369  
Preliminary Technical Data  
256-BALL SBGA PINOUT  
Table 43. 256-Ball SBGA Pin Assignment (Numerically by Ball Number)  
Ball No. Signal  
Ball No. Signal  
Ball No. Signal  
Ball No. Signal  
A01  
A02  
A03  
A04  
A05  
A06  
A07  
A08  
A09  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
E01  
E02  
E03  
E04  
E17  
E18  
E19  
E20  
J01  
NC  
B01  
B02  
B03  
B04  
B05  
B06  
B07  
B08  
B09  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
F01  
F02  
F03  
F04  
F17  
F18  
F19  
F20  
K01  
K02  
K03  
K04  
DAI5  
C01  
C02  
C03  
C04  
C05  
C06  
C07  
C08  
C09  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
G01  
G02  
G03  
G04  
G17  
G18  
G19  
G20  
L01  
L02  
L03  
L04  
DAI9  
DAI7  
GND  
D01  
D02  
D03  
D04  
D05  
D06  
D07  
D08  
D09  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
H01  
H02  
H03  
H04  
H17  
H18  
H19  
H20  
M01  
M02  
M03  
M04  
DAI10  
DAI6  
TDI  
SDCLK1  
TRST  
TMS  
GND  
CLK_CFG0  
CLK_CFG1  
EMU  
TCK  
IOVDD  
GND  
IOVDD  
GND  
BOOTCFG_0  
BOOTCFG_1  
TDO  
GND  
IOVDD  
VDD  
DAI4  
VDD  
DAI1  
DAI3  
GND  
GND  
DPI14  
DPI12  
DPI10  
DPI9  
DAI2  
GND  
IOVDD  
VDD  
DPI13  
DPI11  
DPI8  
VDD  
GND  
GND  
GND  
IOVDD  
VDD  
DPI7  
DPI5  
VDD  
DPI6  
DPI4  
GND  
GND  
DPI3  
DPI1  
GND  
IOVDD  
GND  
DPI2  
RESET  
DATA30  
DATA29  
DATA28  
NC  
VDD  
CLKOUT  
DATA31  
NC  
VDD  
IOVDD  
GND  
VDD  
DATA27  
NC  
DATA26  
DATA24  
DAI17  
DAI16  
VDD  
NC  
DAI11  
DAI8  
DAI14  
DAI12  
GND  
DAI15  
DAI13  
GND  
VDD  
VDD  
GND  
IOVDD  
VDD  
VDD  
GND  
IOVDD  
GND  
IOVDD  
GND  
GND  
VDD  
DATA25  
DATA23  
DAI19  
DAI18  
GND  
GND  
DATA22  
DATA20  
FLAG2  
FLAG1  
VDD  
DATA19  
DATA18  
ACK  
DATA21  
FLAG0  
DAI20  
GND  
J02  
FLAG3  
GND  
J03  
J04  
GND  
IOVDD  
VDD  
GND  
Rev. PrB  
|
Page 48 of 52  
|
June 2005  
Preliminary Technical Data  
ADSP-21369  
Table 43. 256-Ball SBGA Pin Assignment (Numerically by Ball Number) (Continued)  
Ball No. Signal  
Ball No. Signal  
Ball No. Signal  
Ball No. Signal  
IOVDD  
J17  
GND  
K17  
K18  
K19  
K20  
P01  
P02  
P03  
P04  
P17  
P18  
P19  
P20  
V01  
V02  
V03  
V04  
V05  
V06  
V07  
V08  
V09  
V10  
V11  
V12  
V13  
V14  
V15  
V16  
V17  
V18  
V19  
V20  
VDD  
L17  
VDD  
M17  
M18  
M19  
M20  
T01  
T02  
T03  
T04  
T17  
T18  
T19  
T20  
Y01  
Y02  
Y03  
Y04  
Y05  
Y06  
Y07  
Y08  
Y09  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
J18  
GND  
VDD  
L18  
VDD  
GND  
J19  
GND  
GND  
L19  
DATA15  
DATA14  
SDWE  
DATA12  
DATA13  
SDCKE  
SDCAS  
GND  
J20  
DATA17  
RD  
DATA16  
SDA10  
WR  
L20  
N01  
N02  
N03  
N04  
N17  
N18  
N19  
N20  
U01  
U02  
U03  
U04  
U05  
U06  
U07  
U08  
U09  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
U18  
U19  
U20  
R01  
SDCLK0  
GND  
R02  
SDRAS  
GND  
VDD  
R03  
IOVDD  
GND  
VDD  
R04  
GND  
IOVDD  
GND  
VDD  
R17  
IOVDD  
GND  
GND  
VDD  
R18  
GND  
DATA11  
DATA10  
MS0  
DATA8  
DATA9  
ADDR22  
ADDR23  
VDD  
R19  
DATA6  
DATA7  
GND  
DATA5  
DATA4  
GND  
R20  
W01  
W02  
W03  
W04  
W05  
W06  
W07  
W08  
W09  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
W17  
W18  
W19  
W20  
MS1  
ADDR21  
ADDR19  
ADDR20  
ADDR17  
ADDR16  
ADDR15  
ADDR14  
AVDD  
NC  
VDD  
NC  
GND  
GND  
ADDR18  
NC  
IOVDD  
GND  
GND  
GND  
NC  
IOVDD  
VDD  
GND  
XTAL2  
CLKIN  
NC  
VDD  
IOVDD  
GND  
GND  
GND  
AVSS  
NC  
IOVDD  
VDD  
GND  
ADDR13  
ADDR12  
ADDR10  
ADDR8  
ADDR5  
ADDR4  
ADDR1  
ADDR2  
ADDR0  
NC  
NC  
VDD  
NC  
IOVDD  
IOVDD  
VDD  
IOVDD  
GND  
ADDR11  
ADDR9  
ADDR7  
ADDR6  
ADDR3  
GND  
VDD  
IOVDD  
VDD  
GND  
GND  
VDD  
GND  
DATA0  
DATA2  
DATA1  
DATA3  
GND  
NC  
Rev. PrB  
|
Page 49 of 52  
|
June 2005  
ADSP-21369  
Preliminary Technical Data  
208-LEAD MQFP PINOUT  
Table 44. 208-Lead MQFP Pin Assignment (Numerically by Lead Number)  
Pin No.  
1
Signal  
VDD  
Pin No.  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
Signal  
VDD  
Pin No.  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
Signal  
VDD  
Pin No.  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
Signal  
VDD  
2
DATA28  
DATA27  
GND  
GND  
GND  
VDD  
3
IOVDD  
ADDR0  
ADDR2  
ADDR1  
ADDR4  
ADDR3  
ADDR5  
GND  
IOVDD  
SDCAS  
SDRAS  
SDCKE  
SDWE  
WR  
GND  
4
VDD  
5
IOVDD  
DATA26  
DATA25  
DATA24  
DATA23  
GND  
VDD  
6
VDD  
7
TDI  
8
TRST  
9
SDA10  
GND  
TCK  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
GND  
VDD  
VDD  
IOVDD  
SDCLK0  
GND  
VDD  
DATA22  
DATA21  
DATA20  
IOVDD  
GND  
GND  
TMS  
IOVDD  
ADDR6  
ADDR7  
ADDR8  
ADDR9  
ADDR10  
GND  
CLK_CFG0  
BOOTCFG0  
CLK_CFG1  
EMU  
VDD  
RD  
ACK  
DATA19  
DATA18  
VDD  
FLAG3  
FLAG2  
FLAG1  
FLAG0  
DAI20  
GND  
BOOTCFG1  
TDO  
DAI4  
GND  
VDD  
DAI2  
DATA17  
VDD  
GND  
DAI3  
IOVDD  
ADDR11  
ADDR12  
ADDR13  
GND  
DAI1  
GND  
VDD  
IOVDD  
GND  
VDD  
GND  
GND  
IOVDD  
DAI19  
DAI18  
DAI17  
DAI16  
DAI15  
DAI14  
DAI13  
DAI12  
VDD  
VDD  
DATA16  
DATA15  
DATA14  
DATA13  
DATA12  
IOVDD  
GND  
GND  
VDD  
DPI14  
DPI13  
DPI12  
DPI11  
DPI10  
DPI9  
AVSS  
AVDD  
GND  
CLKIN  
XTAL2  
IOVDD  
GND  
VDD  
DPI8  
GND  
DPI7  
DATA11  
DATA10  
DATA9  
DATA8  
DATA7  
DATA6  
IOVDD  
GND  
VDD  
IOVDD  
GND  
IOVDD  
GND  
ADDR14  
GND  
VDD  
VDD  
IOVDD  
ADDR15  
ADDR16  
ADDR17  
ADDR18  
GND  
GND  
GND  
DAI11  
DAI10  
DAI8  
DPI6  
DPI5  
DPI4  
DAI9  
DPI3  
VDD  
DAI6  
DPI1  
DATA4  
IOVDD  
DAI7  
DPI2  
Rev. PrB  
|
Page 50 of 52  
|
June 2005  
Preliminary Technical Data  
ADSP-21369  
Table 44. 208-Lead MQFP Pin Assignment (Numerically by Lead Number) (Continued)  
Pin No.  
45  
Signal  
DATA5  
DATA2  
DATA3  
DATA0  
DATA1  
IOVDD  
GND  
Pin No.  
97  
Signal  
ADDR19  
ADDR20  
ADDR21  
ADDR23  
ADDR22  
MS1  
Pin No.  
149  
Signal  
DAI5  
IOVDD  
GND  
VDD  
Pin No.  
201  
Signal  
CLKOUT  
RESET  
46  
98  
150  
202  
47  
99  
151  
203  
IOVDD  
GND  
48  
100  
101  
102  
103  
104  
152  
204  
49  
153  
GND  
VDD  
205  
DATA30  
DATA31  
DATA29  
VDD  
50  
154  
206  
51  
MS0  
155  
GND  
VDD  
207  
52  
VDD  
VDD  
156  
208  
PACKAGE DIMENSIONS  
The ADSP-21369 is available in a 208-lead, Pb-free MQFP pack-  
age and 256-ball Pb-free and leaded SBGA packages  
A1 CORNER  
INDEX AREA  
20 18 16 14 12 10  
19 17 15 13 11  
8
6
4
2
9
7
5
3
1
A
B
C
D
E
F
A1 BALL  
INDICATOR  
G
H
J
K
L
BOTTOM  
VIEW  
27.00  
TOP VIEW  
BSC SQ  
M
N
P
R
T
U
V
W
Y
24.13  
REF SQ  
1.00  
0.80  
0.60  
1.70 MAX  
0.70  
1.27  
0.60  
NOM  
0.10  
MIN  
0.50  
0.20  
COPLANARITY  
SEATING  
PLANE  
0.90  
0.75  
0.60  
BALL  
DIAMETER  
0.25 MIN 4X  
DIMENSIONS ARE IN MILLIMETERS AND COMPLY  
WITH JEDEC STANDARDS MO-192-BAL-2.  
Figure 42. 256-Lead SBGA, Thermally Enhanced (BP-256)  
Rev. PrB  
|
Page 51 of 52  
|
June 2005  
ADSP-21369  
Preliminary Technical Data  
30.85  
30.60 SQ  
30.35  
0.75  
0.60  
0.45  
4.10  
MAX  
208  
1
157  
156  
SEATING  
PLANE  
PIN 1 INDICATOR  
28.20  
28.00 SQ  
27.80  
TOP VIEW  
(PINS DOWN)  
3.60  
3.40  
3.20  
VIEW A  
105  
104  
52  
0.20  
0.09  
53  
0.50  
BSC  
0.27  
0.17  
0.50  
0.25  
0.08 MAX  
(LEAD COPLANARITY)  
(LEAD PITCH)  
(LEAD WIDTH)  
VIEW A  
ROTATED 90° CCW  
NOTES:  
1. THE ACTUAL POSITION OF EACH LEAD IS WITHIN 0.08 FROM ITS IDEAL  
POSITION WHEN MEASURED IN THE LATERAL DIRECTION.  
2. CENTER DIMENSIONS ARE TYPICAL UNLESS OTHERWISE NOTED.  
3. DIMENSIONS ARE IN MILLIMETERS AND COMPLY WITH JEDEC  
STANDARD MS-029, FA-1.  
Figure 43. 208-Lead MQFP (S-208-2)  
ORDERING GUIDE  
Part Number1, 2  
Ambient Temper- On-Chip ROM  
Operating Voltage Packages  
ature Range  
0°C to +70°C  
0°C to +70°C  
0°C to +70°C  
SRAM  
2M bit  
2M bit  
2M bit  
(Reserved)3  
6M bit  
ADSP-21369KSZ-ENG  
ADSP-21369KBP-ENG  
1.2 INT/3.3 EXT V  
1.2 INT/3.3 EXT V  
1.2 INT/3.3 EXT V  
208-Lead MQFP, Pb-Free  
6M bit  
256-Ball SBGA, Pb-Bearing  
256-Ball SBGA, Pb-Free  
ADSP-21369KBPZ-ENG  
1 B indicates Ball Grid Array package.  
6M bit  
2 Z indicates Lead Free package. For more information about lead free package offerings, please visit www.analog.com.  
3 The ADSP-21369 processor includes a customer-definable ROM block. Please contact your Analog Devices sales representative for additional details.  
©
2005 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
PR05525-0-6/05(PrB)  
Rev. PrB  
|
Page 52 of 52  
|
June 2005  

相关型号:

ADSP-21369KBPZ-X

IC 32-BIT, 55.55 MHz, OTHER DSP, PBGA256, LEAD FREE, MO-192BAL-2, SBGA-256, Digital Signal Processor
ADI

ADSP-21369KSWZ-1A

SHARC Processors
ADI

ADSP-21369KSWZ-2A

SHARC Processors
ADI

ADSP-21369KSWZ-4A

SHARC Processors
ADI

ADSP-21369KSWZ-5A

SHARC Processors
ADI

ADSP-21369KSWZ-6A

High-Performance 32-bit Floating-Point SHARC Processor for General Purpose Applications
ADI

ADSP-21369KSZ-1A

SHARC Processors
ADI

ADSP-21369KSZ-ENG

IC 32-BIT, 66.66 MHz, OTHER DSP, PQFP208, LEAD FREE, MS-029FA-1, MQFP-208, Digital Signal Processor
ADI

ADSP-21371

SHARC Processor
ADI

ADSP-21371BSWZ-2B

High-Performance 32-bit Floating-Point SHARC Processor for Automotive Audio
ADI

ADSP-21371BSWZ-2B2

SHARC Processor optimized for high performance audio processing
ADI

ADSP-21371KSWZ-2A

32-BIT, 16.67MHz, OTHER DSP, PQFP208, ROHS COMPLIANT, MS-026BJB-HD, LQFP-208
ADI