ADP5040 [ADI]

Micro PMU with 1.2 A Buck Regulator; 微型PMU与1.2 A降压稳压器
ADP5040
型号: ADP5040
厂家: ADI    ADI
描述:

Micro PMU with 1.2 A Buck Regulator
微型PMU与1.2 A降压稳压器

稳压器
文件: 总40页 (文件大小:3565K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Micro PMU with 1.2 A Buck Regulator  
and Two 300 mA LDOs  
Data Sheet  
ADP5040  
FEATURES  
GENERAL DESCRIPTION  
Input voltage range: 2.3 V to 5.5 V  
One 1.2 A buck regulator  
Two 300 mA LDOs  
20-lead, 4 mm × 4 mm LFCSP package  
Overcurrent and thermal protection  
Soft start  
The ADP5040 combines one high performance buck regulator  
and two low dropout regulators (LDO) in a small 20-lead  
LFCSP to meet demanding performance and board space  
requirements.  
The high switching frequency of the buck regulator enables the use  
of tiny multilayer external components and minimizes board space.  
Undervoltage lockout  
When the MODE pin is set to logic high, the buck regulator  
operates in forced pulse width modulation (PWM) mode.  
When the MODE pin is set to logic low, the buck regulator  
operates in PWM mode when the load is around the nominal  
value. When the load current falls below a predefined threshold  
the regulator operates in power save mode (PSM) improving  
the light-load efficiency. The low quiescent current, low  
dropout voltage, and wide input voltage range of the ADP5040  
LDOs extend the battery life of portable devices. The ADP5040  
LDOs maintain a power supply rejection greater than 60 dB for  
frequencies as high as 10 kHz while operating with a low headroom  
voltage.  
Buck key specifications  
Output voltage range: 0.8 V to 3.8 V  
Current mode topology for excellent transient response  
3 MHz operating frequency  
Peak efficiency up to 96%  
Uses tiny multilayer inductors and capacitors  
Mode pin selects forced PWM or auto PWM/PSM modes  
100% duty cycle low dropout mode  
LDOs key specifications  
Output voltage range: 0.8 V to 5.2 V  
Low VIN from 1.7 V to 5.5 V  
Stable with 2.2 µF ceramic output capacitors  
High PSRR  
Low output noise  
Each regulator in the ADP5040 is activated by a high level on  
the respective enable pin. The output voltages of the regulators  
are programmed though external resistor dividers to address a  
variety of applications.  
Low dropout voltage  
−40°C to +125°C junction temperature range  
FUNCTIONAL BLOCK DIAGRAM  
VOUT1  
R
= 30Ω  
L1  
1µH  
FILT  
AVIN  
SW  
V
AT  
OUT1  
1.2A  
FB1  
BUCK  
AVIN  
C6  
10µF  
R1  
R2  
VIN1  
V
= 2.3V TO  
5.5V  
IN1  
PGND  
MODE  
C5  
4.7µF  
EN_BK  
ON  
FPWM  
R3  
EN1  
OFF  
PSM/PWM  
VOUT2  
FB2  
V
AT  
LDO1  
(DIGITAL)  
OUT2  
VIN2  
V
= 1.7V  
TO 5.5V  
IN2  
300mA  
C1  
1µF  
C2  
2.2µF  
EN_LDO1  
R4  
ON  
ON  
EN2  
EN3  
OFF  
OFF  
EN_LDO2  
VOUT3  
FB3  
VIN3  
V
AT  
V
= 1.7V  
TO 5.5V  
OUT3  
IN3  
LDO2  
(ANALOG)  
300mA  
C3  
1µF  
C4  
2.2µF  
R7  
R3  
AGND  
Figure 1.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2011 Analog Devices, Inc. All rights reserved.  
 
 
 
 
ADP5040  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Power Management Unit........................................................... 25  
Buck Section................................................................................ 26  
LDO Section ............................................................................... 27  
Applications Information.............................................................. 29  
Buck External Component Selection....................................... 29  
LDO External Component Selection ...................................... 30  
Power Dissipation/Thermal Considerations ............................. 31  
Application Diagram ................................................................. 33  
PCB Layout Guidelines.................................................................. 34  
Suggested Layout........................................................................ 34  
Bill of Materials........................................................................... 35  
Factory Programmable Options................................................... 36  
Outline Dimensions....................................................................... 37  
Ordering Guide .......................................................................... 37  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
General Specifications ................................................................. 3  
Buck Specifications....................................................................... 3  
LDO1, LDO2 Specifications ....................................................... 4  
Input and Output Capacitor, Recommended Specifications.. 5  
Absolute Maximum Ratings............................................................ 6  
Thermal Resistance ...................................................................... 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Theory of Operation ...................................................................... 25  
REVISION HISTORY  
12/11—Revision 0: Initial Version  
Rev. 0 | Page 2 of 40  
 
Data Sheet  
ADP5040  
SPECIFICATIONS  
GENERAL SPECIFICATIONS  
AVIN, VIN1 = 2.3 V to 5.5 V; AVIN, VIN1 ≥VIN2, VIN3; VIN2, VIN3 = 1.7 V to 5.5 V, T J = −40°C to +125°C for minimum/maximum  
specifications, and TA = 25°C for typical specifications, unless otherwise noted.  
Table 1.  
Parameter  
Symbol  
Description  
Min  
Typ  
Max  
Unit  
AVIN UNDERVOLTAGE LOCKOUT  
Input Voltage Rising  
Option 0  
UVLOAVIN  
UVLOAVINRISE  
2.275  
3.9  
V
V
Option 1  
Input Voltage Falling  
Option 0  
Option 1  
UVLOAVINFALL  
1.95  
3.1  
V
V
SHUTDOWN CURRENT  
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
START-UP TIME1  
BUCK  
IGND-SD  
TSSD  
TSSD-HYS  
ENx = GND  
TJ rising  
0.1  
150  
20  
2
µA  
°C  
°C  
tSTART1  
tSTART2  
250  
85  
µs  
µs  
LDO1, LDO2  
VOUT2, VOUT3 = 3.3 V  
Enx, MODE, INPUTS  
Input Logic High  
Input Logic Low  
Input Leakage Current  
VIH  
VIL  
VI-LEAKAGE  
2.5 V ≤ AVIN ≤ 5.5 V  
2.5 V ≤ AVIN ≤ 5.5 V  
ENx = AVIN or GND  
1.2  
V
V
µA  
0.4  
1
0.05  
1 Start-up time is defined as the time from the moment EN1 = EN2 = EN3 transfers from 0 V to VAVIN to the moment VOUT1, VOUT2, and VOUT3 reache 90% of their  
nominal level. Start-up times are shorter for individual channels if another channel is already enabled. See the Typical Performance Characteristics section for more  
information.  
BUCK SPECIFICATIONS  
AVIN, VIN1 = 2.3 V to 5.5 V; VOUT1 = 1.8 V; L = 1 µH; CIN = 10 µF; COUT = 10 µF; TJ= −40°C to +125°C for minimum/maximum  
specifications, and TA = 25°C for typical specifications, unless otherwise noted.1  
Table 2.  
Parameter  
Symbol  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Input Voltage Range  
OUTPUT CHARACTERISTICS  
Output Voltage Accuracy  
VIN1  
2.3  
5.5  
V
VOUT1  
PWM mode,  
−3  
+3  
%
ILOAD = 0 mA to 1200 mA  
PWM mode  
(ΔVOUT1/VOUT1)/ΔIOUT1 ILOAD = mA to 1200 mA, PWM mode  
Line Regulation  
Load Regulation  
(ΔVOUT1/VOUT1)/ΔVIN1  
−0.05  
−0.1  
%/V  
%/A  
V
VOLTAGE FEEDBACK  
VFB1  
0.485 0.5  
100  
0.515  
PWM TO POWER SAVE MODE  
CURRENT THRESHOLD  
IPSM_L  
mA  
INPUT CURRENT CHARACTERISTICS  
DC Operating Current  
MODE = ground  
ILOAD = 0 mA, device not switching, all other  
channels disabled  
INOLOAD  
ISHTD  
21  
35  
μA  
μA  
Shutdown Current  
EN1 = 0 V, TA = TJ = −40°C to +125°C  
0.2  
1.0  
Rev. 0 | Page 3 of 40  
 
 
 
 
ADP5040  
Data Sheet  
Parameter  
Symbol  
RPFET  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
SW CHARACTERISTICS  
SW On Resistance  
PFET, AVIN = VIN1 = 3.6 V  
PFET, AVIN = VIN1 = 5 V  
NFET, AVIN = VIN1 = 3.6 V  
NFET, AVIN = VIN1 = 5 V  
PFET switch peak current limit  
EN1 = 0 V  
180  
140  
170  
150  
240  
190  
235  
210  
2300 mA  
Ω
mΩ  
mΩ  
mΩ  
mΩ  
RNFET  
ILIMIT  
Current Limit  
1600 1950  
85  
ACTIVE PULL-DOWN  
OSCILLATOR FREQUENCY  
FOSC  
2.5  
3.0  
3.5  
MHz  
1 All limits at temperature extremes are guaranteed via correlation using standard statistical quality control (SQC).  
LDO1, LDO2 SPECIFICATIONS  
VIN2, VIN3 = (VOUT2,VOUT3 + 0.5 V) or 1.7 V (whichever is greater) to 5.5V; AVIN, VIN1 ≥ VIN2, VIN3; CIN = 1 μF , COUT = 2.2 μF;  
TJ= −40°C to +125°C for minimum/maximum specifications, and TA = 25°C for typical specifications, unless otherwise noted. 1  
Table 3.  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
INPUT VOLTAGE RANGE  
OPERATING SUPPLY CURRENT  
Bias Current per LDO2  
VIN2, VIN3  
TJ = −40°C to +125°C  
1.7  
5.5  
V
IVIN2BIAS /IVIN3BIAS  
IOUT3 = IOUT4 = 0 μA  
10  
60  
30  
100  
μA  
μA  
I
OUT2 = IOUT3 = 10 mA  
165  
245  
μA  
IOUT2 = IOUT3 = 300 mA  
Total System Input Current  
LDO1 or LDO2 Only  
LDO1 and LDO2 Only  
IIN  
Includes all current into AVIN, VIN1, VIN2 and VIN3  
IOUT2 = IOUT3 = 0 μA, all other channels disabled  
IOUT2 = IOUT3 = 0 μA, buck disabled  
53  
74  
μA  
μA  
OUTPUT VOLTAGE ACCURACY  
VOUT2, VOUT3  
100 μA < IOUT2 < 300 mA, 100 μA < IOUT3 < 300 mA  
VIN2 = (VOUT2 + 0.5 V) to 5.5 V,  
−3  
+3  
%
VIN3 = (VOUT3 + 0.5 V) to 5.5 V  
REFERENCE VOLTAGE  
REGULATION  
Line Regulation  
VFB2, VFB3  
0.485 0.500 0.515  
−0.03 +0.03  
V
(ΔVOUT2/VOUT2)/ΔVIN2  
(ΔVOUT3/VOUT3)/ΔVIN3  
VIN2 = (VOUT2 + 0.5 V) to 5.5 V  
%/V  
VIN3 = (VOUT3 + 0.5 V) to 5.5 V  
IOUT2 = IOUT3 = 1 mA  
IOUT2 = IOUT3 = 1 mA to 300 mA  
Load Regulation3  
(ΔVOUT2/VOUT2)/ΔIOUT2  
(ΔVOUT3/VOUT3)/ΔIOUT3  
0.002 0.0075 %/mA  
DROPOUT VOLTAGE4  
VDROPOUT  
VOUT2 = VOUT3 = 5.0 V, IOUT2 = IOUT3 = 300 mA  
VOUT2 = VOUT3 = 3.3 V, IOUT2 = IOUT3 = 300 mA  
VOUT2 = VOUT3 = 2.5 V, IOUT2 = IOUT3 = 300 mA  
VOUT2 = VOUT3 = 1.8 V, IOUT2 = IOUT3 = 300 mA  
EN2/EN3 = 0 V  
72  
86  
mV  
mV  
mV  
mV  
Ω
140  
107  
180  
600  
470  
123  
110  
59  
140  
129  
66  
ACTIVE PULL-DOWN  
CURRENT-LIMIT THRESHOLD5  
OUTPUT NOISE  
RPDLDO  
ILIMIT  
TJ = −40°C to +125°C  
335  
mA  
OUTLDO2NOISE  
10 Hz to 100 kHz, VIN3 = 5 V, VOUT3 = 3.3 V  
10 Hz to 100 kHz, VIN3 = 5 V, VOUT3 = 2.8 V  
10 Hz to 100 kHz, VIN3 = 5 V, VOUT3 = 1.5 V  
10 Hz to 100 kHz, VIN2 = 5 V, VOUT2 = 3.3 V  
10 Hz to 100 kHz, VIN2 = 5 V, VOUT2 = 2.8 V  
10 Hz to 100 kHz, VIN2 = 5 V, VOUT2 = 1.5 V  
μV rms  
μV rms  
μV rms  
μV rms  
μV rms  
μV rms  
OUTLDO1NOISE  
Rev. 0 | Page 4 of 40  
 
 
Data Sheet  
ADP5040  
Parameter  
Symbol  
Conditions  
Min  
Typ  
Max  
Unit  
POWER SUPPLY REJECTION  
RATIO  
PSRR  
1 kHz, VIN2, VIN3 = 3.3 V, VOUT2, VOUT3 = 2.8 V,  
IOUT = 100 mA  
66  
dB  
100 kHz, VIN2,VIN3 = 3.3 V, VOUT2,VOUT3 = 2.8 V,  
IOUT = 100 mA  
1 MHz, VIN2, VIN3 = 3.3 V, VOUT2, VOUT3 = 2.8 V,  
IOUT = 100 mA  
57  
60  
dB  
dB  
1 All limits at temperature extremes are guaranteed via correlation using standard statistical quality control (SQC).  
2 This is the input current into VIN2 and VIN3, which is not delivered to the output load.  
3 Based on an end-point calculation using 1 mA and 300 mA loads.  
4 Dropout voltage is defined as the input-to-output voltage differential when the input voltage is set to the nominal output voltage. This applies only for output  
voltages above 1.7 V.  
5 Current-limit threshold is defined as the current at which the output voltage drops to 90% of the specified typical value. For example, the current limit for a 3.0 V  
output voltage is defined as the current that causes the output voltage to drop to 90% of 3.0 V, or 2.7 V.  
INPUT AND OUTPUT CAPACITOR, RECOMMENDED SPECIFICATIONS  
Table 4.  
Parameter  
Symbol  
CMIN1  
Conditions  
Min  
4.7  
Typ  
Max  
40  
Unit  
µF  
INPUT CAPACITANCE (BUCK)1  
OUTPUT CAPACITANCE (BUCK)2  
INPUT AND OUTPUT CAPACITANCE3 (LDO1, LDO2)  
CAPACITOR ESR  
TJ = −40°C to +125°C  
TJ = −40°C to +125°C  
TJ = −40°C to +125°C  
TJ = −40°C to +125°C  
CMIN2  
7
40  
µF  
CMIN34  
RESR  
0.70  
0.001  
µF  
1
Ω
1 The minimum input capacitance should be greater than 4.7 µF over the full range of operating conditions. The full range of operating conditions in the application  
must be considered during device selection to ensure that the minimum capacitance specification is met. X7R and X5R type capacitors are recommended, whereas  
Y5V and Z5U capacitors are not recommended for use with the buck.  
2 The minimum output capacitance should be greater than 7 µF over the full range of operating conditions. The full range of operating conditions in the application  
must be considered during device selection to ensure that the minimum capacitance specification is met. X7R and X5R type capacitors are recommended, whereas  
Y5V and Z5U capacitors are not recommended for use with the buck.  
3 The minimum input and output capacitance should be greater than 0.70 µF over the full range of operating conditions. The full range of operating conditions in the  
application must be considered during device selection to ensure that the minimum capacitance specification is met. X7R and X5R type capacitors are recommended,  
whereas Y5V and Z5U capacitors are not recommended for use with LDOs.  
Rev. 0 | Page 5 of 40  
 
 
 
ADP5040  
Data Sheet  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 5.  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Parameter  
Rating  
AVIN to AGND  
VIN1 to AVIN  
PGND to AGDN  
−0.3 V to +6 V  
−0.3 V to +0.3 V  
−0.3 V to +0.3 V  
Table 6. Thermal Resistance  
Package Type  
θJA  
θJC  
Unit  
VIN2, VIN3, VOUTx, ENx, MODE, FBx, SW to −0.3 V to (AVIN + 0.3 V)  
AGND  
20-Lead, 0.5 mm pitch LFCSP  
38  
4.2  
°C/W  
SW to PGND  
−0.3 V to (VIN1 + 0.3 V)  
−65°C to +150°C  
−40°C to +125°C  
JEDEC J-STD-020  
3000 V  
Storage Temperature Range  
Operating Junction Temperature Range  
Soldering Conditions  
ESD Human Body Model  
ESD Charged Device Model  
ESD Machine Model  
ESD CAUTION  
1500 V  
200 V  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rev. 0 | Page 6 of 40  
 
 
 
 
Data Sheet  
ADP5040  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
ADP5040  
TOP VIEW  
(Not to Scale)  
15 FB2  
FB3  
VOUT3  
VIN3  
1
2
3
4
5
14 VOUT2  
13 VIN2  
12 FB1  
EN3  
NC  
11 VOUT1  
NOTES  
1. EXPOSED PAD MUST BE CONNECTED TO  
SYSTEM GROUND PLANE.  
Figure 2. Pin Configuration—View from Top of the Die  
Table 7. Preliminary Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
2
3
4
6
7
8
FB3  
LDO2 Feedback Input.  
LDO2 Output Voltage.  
LDO2 Input Supply (1.7 V to 5.5 V).  
Enable LDO2. EN3 = high: turn on LDO2; EN3 = low: turn off LDO2.  
Housekeeping Input Supply (2.3 V to 5.5 V).  
Buck Input Supply (2.3 V to 5.5 V).  
VOUT3  
VIN3  
EN3  
AVIN  
VIN1  
SW  
Buck Switching Node.  
9
PGND  
EN1  
VOUT1  
FB1  
VIN2  
VOUT2  
FB2  
Dedicated Power Ground for Buck Regulator.  
Enable Buck. EN1 = high: turn on buck; EN1 = low: turn off buck.  
Buck Output Sensing Node.  
Buck Feedback Input.  
LDO1 Input Supply (1.7 V to 5.5 V).  
10  
11  
12  
13  
14  
15  
16  
17  
LDO1 Output Voltage.  
LDO1 Feedback Input.  
EN2  
MODE  
Enable LDO1. EN2 = high: turn on LDO1; EN2 = low: turn off LDO1.  
Buck Mode. Mode = high: buck regulator operates in fixed PWM mode; mode = low: buck regulator operates in  
power save mode (PSM) at light load and in constant PWM at higher load.  
5, 18, 19, 20 NC  
EPAD  
Not Connected.  
0
Exposed Pad. ( AGND = Analog Ground). The exposed pad must be connected to the system ground plane.  
Rev. 0 | Page 7 of 40  
 
ADP5040  
Data Sheet  
TYPICAL PERFORMANCE CHARACTERISTICS  
VIN1 = VIN2 = VIN3 = AVIN = 5.0 V, TA = 25°C, unless otherwise noted.  
SW  
4
2
V
OUT1  
2
V
OUT1  
V
OUT2  
3
4
EN  
V
OUT3  
1
3
I
IN  
B
CH1 4.0V/DIV  
1MΩ  
1MΩ  
20.0M A CH1  
500M  
20.0M  
2.32V  
50µs/DIV  
2.0MS/s  
500ns/pt  
W
B
B
B
B
B
B
CH4 2.0V/DIV 1MΩ  
CH2 2.0V/DIV 1MΩ  
CH3 2.0V/DIV 1MΩ  
500M  
20.0M  
500M  
A CH2  
1.88V  
200µs/DIV  
1.0MS/s  
1.0µs/pt  
CH2  
CH3  
3.0V/DIV  
200mA/DIV 1MΩ  
W
W
W
W
W
W
CH4 5.0V/DIV  
1MΩ  
500M  
Figure 3. 3-Channel Start-Up Waveforms  
Figure 6. Buck Startup, VOUT1 = 3.3 V, IOUT2 = 20 mA  
V
OUT3  
SW  
4
2
4
2
V
OUT2  
V
OUT1  
V
OUT1  
1
3
EN  
1
3
I
IN  
I
IN  
B
CH1 2.0V/DIV  
1MΩ  
1MΩ  
20.0M A CH1  
20.0M  
20.0M  
1.08V  
200µs/DIV  
5.0MS/s  
200ns/pt  
B
W
8.0V/DIV  
2.0V/DIV  
200mA/DIV 1MΩ  
1MΩ  
1MΩ  
20.0M  
500.0M  
20.0M  
500.0M  
CH1  
CH2  
CH3  
A CH1  
1.12V  
50µs/DIV  
2.0MS/s  
500ns/pt  
W
B
B
B
CH2  
CH3  
2.0V/DIV  
300mA/DIV 1MΩ  
B
B
B
W
W
W
W
W
W
CH4 2.0V/DIV  
1MΩ  
20.0M  
CH4 5.0V/DIV  
1MΩ  
Figure 4. Total Inrush Current, All Channels Started Simultaneously  
Figure 7. Buck Startup, VOUT1 = 1.8 V, IOUT = 20 mA  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
SW  
4
2
V
OUT1  
EN  
1
3
I
IN  
0.1  
0
2.4  
2.9  
3.4  
3.9  
4.4  
4.9  
5.4  
B
CH1 8.0V/DIV  
1MΩ  
1MΩ  
200mA/DIV 1MΩ  
20.0M A CH1  
500.0M  
20.0M  
640mV 50µs/DIV  
2.0MS/s  
W
B
B
B
CH2  
CH3  
V
(V)  
2.0V/DIV  
IN  
W
W
W
500ns/pt  
CH4 5.0V/DIV  
1MΩ  
500.0M  
Figure 8. Buck Startup, VOUT1 = 1.2 V, IOUT = 20 mA  
Figure 5. System Quiescent Current (Sum of All the Input Currents) vs.  
Input Voltage  
VOUT1 = 1.8 V, VOUT2 = VOUT3 = 3.3 V, (UVLO = 3.3 V)  
Rev. 0 | Page 8 of 40  
Data Sheet  
ADP5040  
1.24  
1.23  
1.22  
1.21  
1.20  
1.19  
1.18  
3.90  
3.88  
3.86  
3.84  
3.82  
3.80  
3.78  
3.76  
3.74  
3.72  
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
3.70  
0.01  
0.01  
0.1  
1
0.1  
1
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 12. Buck Load Regulation Across Temperature, VOUT1 = 1.2 V,  
Auto Mode  
Figure 9. Buck Load Regulation Across Temperature, VOUT1 = 3.8 V,  
Auto Mode  
3.90  
3.39  
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
3.88  
3.86  
3.84  
3.82  
3.80  
3.78  
3.76  
3.74  
3.72  
3.70  
3.37  
3.35  
3.33  
3.31  
3.29  
3.27  
3.25  
0.01  
0.1  
1
0.01  
0.1  
1
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 13. Buck Load Regulation Across Temperature, VOUT1 = 3.8 V,  
PWM Mode  
Figure 10. Buck Load Regulation Across Temperature, VOUT1 = 3.3 V,  
Auto Mode  
3.32  
1.820  
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
1.815  
1.810  
3.31  
3.30  
3.29  
3.28  
1.805  
1.800  
1.795  
1.790  
1.785  
1.780  
3.27  
3.26  
3.25  
0.01  
0.1  
1
0.01  
0.1  
1
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 14. Buck Load Regulation Across Temperature, VOUT1 = 3.3 V,  
PWM Mode  
Figure 11. Buck Load Regulation Across Temperature, VOUT1 = 1.8 V,  
Auto Mode  
Rev. 0 | Page 9 of 40  
ADP5040  
Data Sheet  
1.820  
1.815  
1.810  
1.805  
1.800  
1.795  
1.790  
1.785  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
–40°C  
+25°C  
+85°C  
V
= 4.5V  
IN  
V
= 5.5V  
IN  
1.780  
0.01  
0.1  
1
0.001  
0.01  
0.1  
1
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 15. Buck Load Regulation Across Temperature,  
VOUT1 = 1.8 V, PWM Mode  
Figure 18. Buck Efficiency vs. Load Current, Across Input Voltage,  
OUT1 = 3.8 V, PWM Mode  
V
1.205  
1.200  
1.195  
1.190  
1.185  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
–40°C  
+25°C  
+85°C  
V
= 3.6V  
IN  
V
= 4.5V  
IN  
V
= 5.5V  
IN  
1.180  
0.01  
0.1  
1
0.0001  
0.001  
0.01  
0.1  
1
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 16. Buck Load Regulation Across Temperature,  
Figure 19. Buck Efficiency vs. Load Current, Across Input Voltage,  
VOUT1 = 3.3 V, Auto Mode  
V
OUT1 = 1.2 V, PWM Mode  
100  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 3.6  
IN  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= 4.5  
IN  
V
= 4.5V  
IN  
V
= 5.5V  
IN  
V
= 5.5  
IN  
0.001  
0.01  
0.1  
1
0.0001  
0.001  
0.01  
0.1  
1
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 20. Buck Efficiency vs. Load Current, Across Input Voltage,  
VOUT1 = 3.3 V, PWM Mode  
Figure 17. Buck Efficiency vs. Load Current, Across Input Voltage,  
VOUT1 = 3.8 V, Auto Mode  
Rev. 0 | Page 10 of 40  
Data Sheet  
ADP5040  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
V
V
= 2.4V  
= 3.6V  
= 4.5V  
= 5.5V  
V
V
V
V
= 2.4V  
= 3.6V  
= 4.5V  
= 5.5V  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
0.0001  
0.001  
0.01  
0.1  
1
0.001  
0.01  
0.1  
1
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 21. Buck Efficiency vs. Load Current, Across Input Voltage,  
OUT1 = 1.8 V, Auto Mode  
Figure 24. Buck Efficiency vs. Load Current, Across Input Voltage,  
V
V
OUT1 = 1.2 V, PWM Mode  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
V
V
V
= 2.4V  
= 3.6V  
= 4.5V  
= 5.5V  
IN  
IN  
IN  
IN  
–40°C  
+25°C  
+85°C  
0.001  
0.01  
0.1  
1
0.0001  
0.001  
0.01  
0.1  
1
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 22. Buck Efficiency vs. Load Current, Across Input Voltage,  
VOUT1 = 1.8 V, PWM Mode  
Figure 25. Buck Efficiency vs. Load Current, Across Temperature,  
VIN = 5.0 V, VOUT1 = 3.3 V, Auto Mode  
100  
90  
80  
70  
60  
50  
40  
30  
100  
90  
80  
70  
60  
50  
40  
30  
V
V
V
V
= 2.4V  
= 3.6V  
= 4.5V  
= 5.5V  
IN  
IN  
IN  
IN  
20  
10  
20  
–40°C  
+25°C  
+85°C  
10  
0
0
0.0001  
0.001  
0.01  
0.1  
1
0.001  
0.01  
0.1  
1
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 23. Buck Efficiency vs. Load Current, Across Input Voltage,  
VOUT1 = 1.2 V, Auto Mode  
Figure 26. Buck Efficiency vs. Load Current, Across Temperature,  
VIN = 5.0 V, VOUT1 = 3.3 V, PWM Mode  
Rev. 0 | Page 11 of 40  
ADP5040  
Data Sheet  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
–40°C  
+25°C  
+85°C  
–40°C  
+25°C  
+85°C  
0
0.0001  
0.001  
0.01  
0.1  
1
0.001  
0.01  
0.1  
1
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 27. Buck Efficiency vs. Load Current, Across Temperature,  
IN = 5.0 V, VOUT1 = 1.8 V, Auto Mode  
Figure 30. Buck Efficiency vs. Load Current, Across Temperature,  
IN = 5.0 V, VOUT1 = 1.2 V, PWM Mode  
V
V
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
2.5  
V
= 3.3V  
OUT  
2.0  
1.5  
1.0  
0.5  
0
–40°C  
+25°C  
+85°C  
0.001  
0.01  
0.1  
1
3.4  
3.9  
4.4  
4.9  
5.4  
OUTPUT CURRENT (A)  
V
(V)  
IN  
Figure 28. Buck Efficiency vs. Load Current, Across Temperature,  
VIN = 5.0 V, VOUT1 = 1.8 V, PWM Mode  
Figure 31. Buck DC Current Capability vs. Input Voltage  
2.0  
100  
90  
80  
70  
60  
50  
40  
30  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
V
= 1.8V  
OUT  
20  
–40°C  
+25°C  
+85°C  
10  
0
2.4  
2.9  
3.4  
3.9  
4.4  
4.9  
5.4  
0.0001  
0.001  
0.01  
0.1  
1
V
(V)  
OUTPUT CURRENT (A)  
IN  
Figure 29. Buck Efficiency vs. Load Current, Across Temperature,  
IN = 5.0 V, VOUT1 = 1.2 V, Auto Mode  
Figure 32. Buck DC Current Capability vs. Input Voltage  
V
Rev. 0 | Page 12 of 40  
Data Sheet  
ADP5040  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
V
OUT  
V
= 1.2V  
OUT  
4
2
I
SW  
SW  
3
0
2.4  
B
B
CH2 200mA/DIV 1MΩ  
20.0M A CH1  
20.0M  
20.0M  
640mV 5µs/DIV  
W
W
2.9  
3.4  
3.9  
4.4  
4.9  
5.4  
500MS/s  
2.0ns/pt  
CH3  
CH4  
3.0V/DIV  
40.0mV/DIV  
1MΩ  
V
(V)  
IN  
Figure 33. Buck DC Current Capability vs. Input Voltage  
Figure 36. Typical Waveforms, VOUT1 = 1.8 V, IOUT1 = 30 mA, Auto Mode  
2.94  
2.92  
2.90  
2.88  
2.86  
2.84  
2.82  
2.80  
V
OUT  
4
2
I
SW  
SW  
–40°C  
+25°C  
+85°C  
3
B
B
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
CH2 200mA/DIV 1MΩ  
CH3  
CH4  
20.0M A CH3  
20.0M  
20.0M  
1.14V  
5µs/DIV  
500MS/s  
2.0ns/pt  
W
W
3.0V/DIV  
40.0mV/DIV  
1MΩ  
OUTPUT CURRENT (A)  
Figure 34. Buck Switching Frequency vs. Output Current,  
Across Temperature, VOUT1 = 1.8 V, PWM Mode  
Figure 37. Typical Waveforms, VOUT1 = 1.2 V, IOUT1 = 30 mA, Auto Mode  
V
OUT  
4
2
V
4
2
OUT  
I
SW  
I
SW  
SW  
SW  
3
3
B
B
B
B
CH2 200mA/DIV 1MΩ  
20.0M A CH1  
20.0M  
20.0M  
640mV 5µs/DIV  
500MS/s  
CH2 200mA/DIV 1MΩ  
20.0M A CH1  
20.0M  
20.0M  
640mV 200ns/DIV  
500MS/s  
W
W
W
W
CH3  
CH4  
3.0V/DIV  
40.0mV/DIV  
1MΩ  
CH3  
CH4  
3.0V/DIV  
10.0mV/DIV  
1MΩ  
2.0ns/pt  
2.0ns/pt  
Figure 35. Typical Waveforms, VOUT1 = 3.3 V, IOUT1 = 30 mA, Auto Mode  
Figure 38. Typical Waveforms, VOUT1 = 3.3 V, IOUT1 = 30 mA, PWM Mode  
Rev. 0 | Page 13 of 40  
ADP5040  
Data Sheet  
V
OUT  
4
V
V
IN  
I
OUT  
SW  
2
2
3
1
SW  
SW  
3
B
B
B
CH1 3.0V/DIV  
CH2 30.0mV/DIV  
400M A CH3  
B
20.0M  
W
4.48V  
200µs/DIV  
1.0MS/s  
1.0µs/pt  
CH2 200mA/DIV 1MΩ  
20.0M A CH1  
20.0M  
20.0M  
640mV 200ns/DIV  
500MS/s  
W
W
W
CH3  
CH4  
3.0V/DIV  
20.0mV/DIV  
1MΩ  
2.0ns/pt  
B
1.0V/DIV  
1MΩ  
20.0M  
CH3  
W
Figure 42. Buck Response to Line Transient, Input Voltage from 4.5 V to  
5.0 V, VOUT1 = 1.8 V, IOUT1 = 5 mA, Auto Mode  
Figure 39. Typical Waveforms, VOUT1 = 1.8 V, IOUT1 = 30 mA, PWM Mode  
V
OUT  
V
V
IN  
4
2
I
OUT  
SW  
2
SW  
3
1
SW  
3
B
CH1 3.0V/DIV  
400M A CH3  
20.0M  
20.0M  
4.48V  
200µs/DIV  
1.0MS/s  
1.0µs/pt  
B
B
W
CH2 200mA/DIV 1MΩ  
20.0M A CH3  
20.0M  
20.0M  
1.14V  
200ns/DIV  
500MS/s  
2.0ns/pt  
W
W
B
CH2  
CH3  
50.0mV/DIV  
1.0V/DIV  
W
CH3  
CH4  
3.0V/DIV  
40.0mV/DIV  
1MΩ  
B
1MΩ  
W
Figure 43. Buck Response to Line Transient, Input Voltage from 4.5 V to  
5.0 V, VOUT1 = 1.2 V, IOUT1 = 5 mA, Auto Mode  
Figure 40. Typical Waveforms, VOUT1 = 1.2 V, IOUT1 = 30 mA, PWM Mode  
V
V
IN  
V
V
IN  
OUT  
OUT  
2
2
SW  
3
1
3
1
SW  
B
CH1 3.0V/DIV  
400M A CH3  
20.0M  
20.0M  
4.48V  
200µs/DIV  
1.0MS/s  
1.0µs/pt  
W
B
CH2  
CH3  
50.0mV/DIV  
1.0V/DIV  
W
B
B
1MΩ  
CH1 3.0V/DIV  
400M A CH3  
20.0M  
20.0M  
4.48V  
200µs/DIV  
1.0MS/s  
1.0µs/pt  
W
W
B
CH2  
CH3  
50.0mV/DIV  
1.0V/DIV  
W
B
1MΩ  
W
Figure 44. Buck Response to Line Transient, Input Voltage from 4.5 V to  
5.0 V, VOUT1 = 3.3 V, PWM Mode  
Figure 41. Buck Response to Line Transient, Input Voltage from 4.5 V to  
5.0 V, VOUT1 = 3.3 V, IOUT1 = 5 mA, Auto Mode  
Rev. 0 | Page 14 of 40  
Data Sheet  
ADP5040  
SW  
V
IN  
1
2
V
OUT  
V
OUT  
2
SW  
3
1
I
OUT  
3
B
B
1MΩ  
100mV/DIV  
300mA/DIV 1MΩ  
20.0M  
20.0M  
20.0M  
CH1 3.0V/DIV  
400M A CH3  
20.0M  
20.0M  
4.48V  
200µs/DIV  
1.0MS/s  
1.0µs/pt  
CH1 4.0V/DIV  
CH2  
CH3  
A CH3  
150mA 500µs/DIV  
W
W
B
B
20.0MS/s  
50.0ns/pt  
CH2  
CH3  
20.0mV/DIV  
1.0V/DIV  
W
W
W
B
B
1MΩ  
W
Figure 45. Buck Response to Line Transient, Input Voltage from 4.5 V to  
5.0 V, VOUT1 = 1.8 V, PWM Mode  
Figure 48. Buck Response to Load Transient, IOUT1 = 50 mA to 500 mA,  
VOUT1 = 3.3 V, Auto Mode  
SW  
V
IN  
1
V
V
OUT  
OUT  
2
2
SW  
3
1
I
OUT  
3
B
B
B
B
1MΩ  
100mV/DIV  
300mA/DIV 1MΩ  
20.0M  
20.0M  
20.0M  
CH1 3.0V/DIV  
20.0M A CH3  
20.0M  
20.0M  
4.48V  
200µs/DIV  
1.0MS/s  
1.0µs/pt  
CH1 4.0V/DIV  
CH2  
CH3  
A CH3  
150mA 500µs/DIV  
20.0MS/s  
W
W
W
W
B
B
CH2  
CH3  
50.0mV/DIV  
1.0V/DIV  
W
W
50.0ns/pt  
1MΩ  
Figure 46. Buck Response to Line Transient, Input Voltage from 4.5 V to  
5.0 V, VOUT1 = 1.2 V, PWM Mode  
Figure 49. Buck Response to Load Transient, IOUT1 = 20 mA to 200 mA,  
V
OUT1 = 1.8 V, Auto Mode  
SW  
SW  
1
1
2
V
OUT  
V
OUT  
2
I
I
OUT  
OUT  
3
3
B
B
1MΩ  
100mV/DIV  
300mA/DIV 1MΩ  
20.0M  
20.0M  
20.0M  
1MΩ  
100mV/DIV  
300mA/DIV 1MΩ  
20.0M  
20.0M  
20.0M  
CH1 4.0V/DIV  
CH2  
CH3  
A CH3  
150mA 500µs/DIV  
20.0MS/s  
CH1 4.0V/DIV  
CH2  
CH3  
A CH3  
150mA  
500µs/DIV  
20.0MS/s  
50.0ns/pt  
W
W
B
B
W
W
W
W
B
B
50.0ns/pt  
Figure 47. Buck Response to Load Transient, IOUT1 = 20 mA to 200 mA,  
VOUT1 = 3.3 V, Auto Mode  
Figure 50. Buck Response to Load Transient, IOUT1 = 50 mA to 500 mA,  
VOUT1 = 1.8 V, Auto Mode  
Rev. 0 | Page 15 of 40  
ADP5040  
Data Sheet  
SW  
SW  
1
1
2
V
OUT  
V
OUT  
2
I
I
OUT  
OUT  
3
3
B
B
B
1MΩ  
50.0mV/DIV  
100mA/DIV 1MΩ  
20.0M  
20.0M  
120M  
1MΩ  
50.0mV/DIV  
300mA/DIV 1MΩ  
20.0M  
20.0M  
20.0M  
CH1 4.0V/DIV  
CH2  
CH3  
A CH3  
94.0mA 200µs/DIV  
500kS/s  
CH1 4.0V/DIV  
CH2  
CH3  
A CH3  
150mA 500µs/DIV  
W
W
W
B
20.0MS/s  
50.0ns/pt  
W
W
B
B
2.0µs/pt  
W
Figure 51. Buck Response to Load Transient, IOUT1 = 20 mA to 200 mA,  
VOUT1 = 1.2 V, Auto Mode  
Figure 54. Buck Response to Load Transient, IOUT1 = 50 mA to 500 mA,  
VOUT1 = 3.3 V, PWM Mode  
SW  
SW  
1
1
V
OUT  
V
OUT  
2
2
I
I
OUT  
OUT  
3
3
B
B
B
20.0M  
20.0M  
120M  
4.0V/DIV  
50.0mV/DIV  
1MΩ  
20.0M  
20.0M  
20.0M  
CH1 4.0V/DIV  
A CH3  
92.0mA 200µs/DIV  
500kS/s  
CH1  
CH2  
CH3  
A CH3  
150mA 500µs/DIV  
20.0MS/s  
W
W
W
B
CH2  
CH3  
50.0mV/DIV  
200mA/DIV 1MΩ  
W
W
B
B
2.0µs/pt  
50.0ns/pt  
300mA/DIV 1MΩ  
W
Figure 52. Buck Response to Load Transient, IOUT1 = 50 mA to 500 mA,  
Figure 55. Buck Response to Load Transient, IOUT1 = 20 mA to 200 mA,  
V
OUT1 = 1.2 V, Auto Mode  
V
OUT1 = 1.8 V, PWM Mode  
SW  
SW  
1
2
1
2
V
V
OUT  
OUT  
I
I
OUT  
OUT  
3
3
B
B
1MΩ  
50.0mV/DIV  
300mA/DIV 1MΩ  
20.0M  
20.0M  
20.0M  
1MΩ  
100mV/DIV  
300mA/DIV 1MΩ  
20.0M  
20.0M  
20.0M  
CH1 4.0V/DIV  
CH2  
CH3  
A CH3  
150mA 500µs/DIV  
20.0MS/s  
CH1 4.0V/DIV  
CH2  
CH3  
A CH3  
150mA  
500µs/DIV  
20.0MS/s  
50.0ns/pt  
W
W
B
B
W
W
W
W
B
B
50.0ns/pt  
Figure 53. Buck Response to Load Transient, IOUT1 = 20 mA to 200 mA,  
VOUT1 = 3.3 V, PWM Mode  
Figure 56. Buck Response to Load Transient, IOUT1 = 50 mA to 500 mA,  
VOUT1 = 1.8 V, PWM Mode  
Rev. 0 | Page 16 of 40  
Data Sheet  
ADP5040  
1
SW  
I
IN  
V
OUT  
2
V
OUT  
I
OUT  
EN  
3
B
B
CH1 4.0V/DIV  
20.0M A CH3  
20.0M  
120.0M  
94.0mA 200µs/DIV  
500kS/s  
B
B
B
W
W
CH1 2.0V/DIV  
1MΩ  
1MΩ  
20.0M A CH1  
20.0M  
20.0M  
1.72V  
50.0µs/DIV  
200MS/s  
5.0ns/pt  
W
W
W
CH2  
CH3  
50.0mV/DIV  
100mA/DIV 1MΩ  
CH2  
CH3  
2.0V/DIV  
200mA/DIV  
B
2.0ns/pt  
W
Figure 57. Buck Response to Load Transient, IOUT1 = 20 mA to 200 mA,  
VOUT1 = 1.2 V, PWM Mode  
Figure 60. LDO1, LDO2 Startup, VOUT = 3.3 V, IOUT = 5 mA  
1
I
IN  
3
2
SW  
V
OUT  
2
V
OUT  
I
EN  
OUT  
1
3
CH1 4.0V/DIV  
20.0M A CH3  
20.0M  
20.0M  
92.0mA 200µs/DIV  
500kS/s  
B
B
B
CH1 2.0V/DIV  
1MΩ  
1MΩ  
20.0M A CH1  
20.0M  
20.0M  
760mV 50.0µs/DIV  
200MS/s  
W
W
W
CH2  
CH3  
50.0mV/DIV  
200mA/DIV 1MΩ  
CH2  
CH3  
1.0V/DIV  
200mA/DIV  
B
2.0ns/pt  
W
5.0ns/pt  
Figure 58. Buck Response to Load Transient, IOUT1 = 50 mA to 500 mA,  
Figure 61. LDO1, LDO2 Startup, VOUT = 1.8 V, IOUT = 5 mA  
V
OUT1 = 1.2 V, PWM Mode  
I
IN  
I
IN  
3
3
2
V
OUT  
V
OUT  
2
1
EN  
EN  
1
B
CH1 2.0V/DIV  
1MΩ  
1MΩ  
20.0M A CH1  
20.0M  
20.0M  
1.72V  
50.0µs/DIV  
200MS/s  
5.0ns/pt  
W
W
W
B
B
B
CH1 2.0V/DIV  
1MΩ  
1MΩ  
20.0M A CH1  
20.0M  
20.0M  
1.72V  
50.0µs/DIV  
200MS/s  
5.0ns/pt  
B
B
W
W
W
CH2  
CH3  
2.0V/DIV  
200mA/DIV  
CH2  
CH3  
1.0V/DIV  
200mA/DIV  
Figure 59. LDO1, LDO2 Startup, VOUT = 4.7 V, IOUT = 5 mA  
Figure 62. LDO1, LDO2 Startup, VOUT = 1.2 V, IOUT = 5 mA  
Rev. 0 | Page 17 of 40  
ADP5040  
Data Sheet  
1.220  
1.215  
1.210  
1.205  
1.200  
1.195  
1.190  
1.185  
3.6V  
4.5V  
5.5V  
2.8V  
4.758  
4.708  
4.658  
5.5V  
5.0V  
4.608  
0.001  
1.180  
0.01  
0.1  
0.001  
0.01  
0.1  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 66. LDO1, LDO2 Load Regulation Across Input Voltage, VOUT = 1.2 V  
Figure 63. LDO1, LDO2 Load Regulation Across Input Voltage, VOUT = 4.7 V  
3.40  
3.40  
3.38  
3.36  
3.34  
–40°C  
+25°C  
+85°C  
3.38  
3.36  
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
3.20  
3.32  
5.5V  
3.30  
3.28  
3.26  
4.5V  
3.6V  
3.24  
3.22  
3.20  
0.001  
0.01  
0.1  
0.001  
0.01  
0.1  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 67. LDO1, LDO2 Load Regulation Across Temperature, VIN = 3.6 V,  
OUT = 3.3 V  
Figure 64. LDO1, LDO2 Load Regulation Across Input Voltage, VOUT = 3.3 V  
V
1.800  
3.6V  
4.5V  
1.800  
1.795  
1.790  
1.785  
1.780  
1.775  
–40°C  
+25°C  
+85°C  
5.5V  
2.8V  
1.795  
1.790  
1.785  
1.780  
1.775  
1.770  
1.770  
0.001  
0.01  
0.1  
0.001  
0.01  
0.1  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 65. LDO1, LDO2 Load Regulation Across Input Voltage, VOUT = 1.8 V  
Figure 68. LDO1, LDO2 Load Regulation Across Temperature, VIN = 3.6 V,  
OUT = 1.8 V  
V
Rev. 0 | Page 18 of 40  
Data Sheet  
ADP5040  
1.820  
1.815  
1.810  
1.805  
1.800  
1.795  
1.790  
1.220  
1.215  
1.210  
1.205  
1.200  
1.195  
1.190  
1.185  
–40°C  
+25°C  
+85°C  
100µA  
1mA  
10mA  
100mA  
200mA  
1.180  
0.001  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
0.01  
0.1  
INPUT VOLTAGE (V)  
OUTPUT CURRENT (A)  
Figure 72. LDO1, LDO2 Line Regulation Across Input Voltage, VOUT = 1.8 V  
Figure 69. LDO1, LDO2 Load Regulation Across Temperature, VIN = 3.6 V,  
VOUT = 1.2 V  
1.201  
4.75  
100µA  
1mA  
10mA  
100mA  
200mA  
100µA  
1mA  
10mA  
100mA  
200mA  
1.200  
1.199  
1.198  
1.197  
1.196  
1.195  
1.194  
1.193  
1.192  
4.73  
4.71  
4.69  
4.67  
4.65  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
5.0  
5.1  
5.2  
5.3  
5.4  
5.5  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 70. LDO1, LDO2 Line Regulation Across Input Voltage, VOUT = 4.7 V  
Figure 73. LDO1, LDO2 Line Regulation Across Input Voltage, VOUT = 1.2 V  
3.310  
200  
180  
100µA  
1mA  
3.305  
3.300  
3.295  
3.290  
3.285  
3.280  
10mA  
100mA  
200mA  
160  
140  
120  
100  
80  
60  
40  
20  
0
3.6  
3.9  
4.2  
4.5  
4.8  
5.1  
5.4  
0
0.05  
0.10  
0.15  
0.20  
0.25  
0.30  
INPUT VOLTAGE (V)  
OUTPUT CURRENT (A)  
Figure 71. LDO1, LDO2 Line Regulation Across Input Voltage, VOUT = 3.3 V  
Figure 74. LDO1, LDO2 Ground Current vs. Output Current, VOUT = 3.3 V  
Rev. 0 | Page 19 of 40  
ADP5040  
Data Sheet  
200  
180  
160  
140  
120  
100  
80  
V
OUT  
2
0.000001A  
0.0001A  
0.001A  
0.01A  
60  
40  
I
OUT  
0.1A  
3
20  
0.15A  
0.3A  
0
3.8  
B
CH2 30.0mV/DIV  
CH3  
20.0M A CH3  
120M  
42.0mA 200µs/DIV  
W
4.3  
4.8  
5.3  
B
500kS/s  
2.0µs/pt  
50.0mA/DIV 1MΩ  
W
INPUT VOLTAGE (V)  
Figure 78. LDO1, LDO2 Response to Load Transient, IOUT from 1 mA to  
80 mA, VOUT = 3.3 V  
Figure 75. LDO1, LDO2 Ground Current vs. Input Voltage, Across Output  
Load (A), VOUT = 3.3 V  
V
OUT  
2
V
OUT  
2
I
OUT  
I
OUT  
3
3
B
B
B
CH2 50.0mV/DIV  
CH3  
20.0M A CH3  
120M  
89.6mA 200µs/DIV  
500kS/s  
CH2 30.0mV/DIV  
CH3  
20.0M A CH3  
20.0M  
27.2mA 200µs/DIV  
5.0MS/s  
W
W
W
B
80.0mA/DIV  
1MΩ  
80.0mA/DIV 1MΩ  
W
2.0µs/pt  
200ns/pt  
Figure 79. LDO1, LDO2 Response to Load Transient, IOUT from 10 mA to  
200 mA, VOUT = 3.3 V  
Figure 76. LDO1, LDO2 Response to Load Transient, IOUT from 1 mA to  
80 mA, VOUT = 4.7 V  
V
OUT  
2
V
OUT  
2
I
OUT  
I
OUT  
3
3
B
B
B
CH2 30.0mV/DIV  
CH3  
20.0M A CH3  
120M  
89.6mA 200µs/DIV  
500kS/s  
CH2 30.0mV/DIV  
CH3  
20.0M A CH3  
20.0M  
27.2mA 200µs/DIV  
5.0MS/s  
W
W
W
B
80.0mA/DIV  
1MΩ  
80.0mA/DIV 1MΩ  
W
2.0µs/pt  
200ns/pt  
Figure 80. LDO1, LDO2 Response to Load Transient, IOUT from 1 mA to  
80 mA, VOUT = 1.8 V  
Figure 77. LDO1, LDO2 Response to Load Transient, IOUT from 10 mA to  
200 mA, VOUT = 4.7 V  
Rev. 0 | Page 20 of 40  
Data Sheet  
ADP5040  
V
V
IN  
V
OUT  
2
OUT  
2
3
I
OUT  
3
B
B
B
CH2 50.0mV/DIV  
CH3  
20.0M A CH3  
120M  
89.6mA 200µs/DIV  
500kS/s  
CH2 20.0mV/DIV  
CH3  
1MΩ  
20.0M A CH3  
20.0M  
4.84V  
200µs/DIV  
1.0MS/s  
1.0µs/pt  
W
W
W
B
80.0mA/DIV 1MΩ  
1.0V/DIV  
W
2.0µs/pt  
Figure 81. LDO1, LDO2 Response to Load Transient, IOUT from 10 mA to  
200 mA, VOUT = 1.8 V  
Figure 84. LDO1, LDO2 Response to Line Transient, Input Voltage from  
4.5 V to 5.5 V, VOUT = 3.3 V  
V
OUT  
V
IN  
2
V
OUT  
2
3
I
OUT  
3
B
B
B
B
CH2 30.0mV/DIV  
CH3  
20.0M A CH3  
20.0M  
27.2mA 200µs/DIV  
5.0MS/s  
CH2 20.0mV/DIV  
CH3  
1MΩ  
20.0M A CH3  
20.0M  
4.86V  
500µs/DIV  
1.0MS/s  
1.0µs/pt  
W
W
W
W
80.0mA/DIV 1MΩ  
1.0V/DIV  
200ns/pt  
Figure 82. LDO1, LDO2 Response to Load Transient, IOUT from 1 mA to  
80 mA, VOUT = 1.2 V  
Figure 85. LDO1, LDO2 Response to Line Transient, Input Voltage from  
4.5 V to 5.5 V, VOUT = 1.8 V  
V
OUT  
2
V
IN  
V
OUT  
2
3
I
OUT  
3
B
B
B
B
CH2 30.0mV/DIV  
CH3  
20.0M A CH3  
20.0M  
27.2mA 200µs/DIV  
5.0MS/s  
CH2 20.0mV/DIV  
CH3  
1MΩ  
20.0M A CH3  
20.0M  
4.48V  
200µs/DIV  
1.0MS/s  
1.0µs/pt  
W
W
W
W
80.0mA/DIV 1MΩ  
1.0V/DIV  
200ns/pt  
Figure 83. LDO1, LDO2 Response to Load Transient, IOUT from 10 mA to  
200 mA, VOUT = 1.2 V  
Figure 86. LDO1, LDO2 Response to Line Transient, Input Voltage from  
4.5 V to 5.5 V, VOUT = 1.2 V  
Rev. 0 | Page 21 of 40  
ADP5040  
Data Sheet  
V
IN  
100  
V
OUT  
2
3
CH2; V  
CH2; V  
CH2; V  
CH2; V  
CH2; V  
= 3.3V; V = 5V  
IN  
OUT  
OUT  
OUT  
OUT  
OUT  
= 3.3V; V = 3.6V  
IN  
= 2.8V; V = 3.1V  
IN  
= 1.5V; V = 5V  
IN  
= 1.5V; V = 1.8V  
IN  
10  
0.0001 0.001  
B
B
CH2 20.0mV/DIV  
CH3  
20.0M A CH3  
20.0M  
4.02V  
200µs/DIV  
1.0MS/s  
1.0µs/pt  
0.01  
0.1  
1
10  
100  
1k  
W
W
1.0V/DIV  
1MΩ  
LOAD (mA)  
Figure 87. LDO1, LDO2 Response to Line Transient, Input Voltage from  
3.3 V to 3.8 V, VOUT = 1.8 V  
Figure 90. LDO1 Output Noise vs. Load Current, Across Input and  
Output Voltage  
V
V
IN  
100  
OUT  
2
3
CH3; V  
CH3; V  
CH3; V  
CH3; V  
CH3; V  
= 3.3V; V = 5V  
IN  
OUT  
OUT  
OUT  
OUT  
OUT  
= 3.3V; V = 3.6V  
IN  
= 2.8V; V = 3.1V  
IN  
= 1.5V; V = 5V  
IN  
= 1.5V; V = 1.8V  
IN  
10  
B
B
0.0001 0.001  
0.01  
0.1  
1
10  
100  
1k  
CH2 20.0mV/DIV  
CH3  
20.0M A CH3  
20.0M  
4.84V  
200µs/DIV  
1.0MS/s  
1.0µs/pt  
W
W
1.0V/DIV  
1MΩ  
LOAD (mA)  
Figure 88. LDO1, LDO2 Response to Line Transient, Input Voltage from  
3.3 V to 3.8 V, VOUT = 1.2 V  
Figure 91. LDO2 Output Noise vs. Load Current, Across Input and Output  
Voltage  
0.7  
100  
V
V
V
= 3.3V, V  
= 1.5V, V  
= 2.8V, V  
= 3.6V, I  
= 1.8V, I  
= 3.1V, I  
= 300mA  
= 300mA  
= 300mA  
OUT2  
OUT2  
OUT2  
IN2  
IN2  
IN2  
LOAD  
LOAD  
LOAD  
0.6  
V
= 3.3V  
OUT  
10  
1.0  
0.5  
0.4  
0.3  
0.2  
0.1  
0
0.1  
0.01  
3.6  
4.1  
4.6  
(V)  
5.1  
5.6  
10  
100  
1k  
10k  
100k  
1M  
10M  
V
IN  
FREQUENCY (Hz)  
Figure 92. LDO1 Noise Spectrum Across Output Voltage,  
VIN = VOUT + 0.3 V  
Figure 89. LDO1, LDO2 Output Current Capability vs. Input Voltage  
Rev. 0 | Page 22 of 40  
Data Sheet  
ADP5040  
–10  
–20  
100  
V
V
V
= 3.3V, V  
= 1.5V, V  
= 2.8V, V  
= 3.6V, I  
= 1.8V, I  
= 3.1V, I  
= 300mA  
= 300mA  
= 300mA  
OUT3  
OUT3  
OUT3  
IN3  
IN3  
IN3  
LOAD  
LOAD  
LOAD  
1mA  
10mA  
100mA  
200mA  
300mA  
–30  
–40  
10  
1
–50  
–60  
–70  
–80  
0.1  
0.01  
–90  
–100  
1
10  
100  
1k  
10k  
100k  
1M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 93. LDO2 Noise Spectrum Across Output Voltage,  
VIN = VOUT + 0.3 V  
Figure 96. LDO2 PSRR Across Output Load,  
IN3 = 3.1 V, VOUT3 = 2.8 V  
V
100  
–10  
–20  
V
V
V
= 3.3V, V  
= 3.3V, V  
= 1.5V, V  
= 3.6V, I  
= 3.6V, I  
= 1.8V, I  
= 300mA  
= 300mA  
= 300mA  
1mA  
OUT2  
OUT3  
OUT2  
IN2  
IN3  
IN2  
LOAD  
LOAD  
LOAD  
10mA  
100mA  
200mA  
–30  
–40  
10  
–50  
–60  
–70  
–80  
1.0  
0.1  
V
V
V
= 1.5V, V  
= 2.8V, V  
= 2.8V, V  
= 1.8V, I  
= 3.1V, I  
= 3.1V, I  
= 300mA  
= 300mA  
= 300mA  
OUT3  
OUT2  
OUT3  
IN3  
IN2  
IN3  
LOAD  
LOAD  
LOAD  
–90  
0.01  
–100  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 94. LDO1 vs. LDO2 Noise Spectrum  
Figure 97. LDO2 PSRR Across Output Load,  
VIN3 = 5.0 V, VOUT3 = 3.3 V  
–10  
–20  
–10  
–20  
1mA  
1mA  
10mA  
100mA  
200mA  
300mA  
10mA  
100mA  
200mA  
300mA  
–30  
–40  
–30  
–40  
–50  
–60  
–70  
–80  
–50  
–60  
–70  
–80  
–90  
–90  
–100  
–100  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 95. LDO2 PSRR Across Output Load,  
IN3 = 3.3 V, VOUT3 = 2.8 V  
Figure 98. LDO2 PSRR Across Output Load,  
VIN3 = 3.6 V, VOUT3 = 3.3 V  
V
Rev. 0 | Page 23 of 40  
ADP5040  
Data Sheet  
–10  
–10  
–20  
1mA  
1mA  
10mA  
100mA  
200mA  
10mA  
100mA  
200mA  
300mA  
–20  
–30  
–40  
–30  
300mA  
–40  
–50  
–60  
–70  
–80  
–50  
–60  
–70  
–80  
–90  
–90  
–100  
–100  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 100. LDO1 PSRR Across Output Load,  
VIN2 = 1.8 V, VOUT2 = 1.5 V  
Figure 99. LDO1 PSRR Across Output Load,  
VIN2 = 5.0 V, VOUT2 = 1.5 V  
Rev. 0 | Page 24 of 40  
Data Sheet  
ADP5040  
THEORY OF OPERATION  
VOUT1 FB1  
85Ω  
ENBK  
AVIN  
VIN1  
VDDA  
GM ERROR  
AMP  
ENBK  
ENLDO1  
ENLDO2  
MODE  
EN1  
PWM  
COMP  
ENABLE  
& MODE  
CONTROL  
EN2  
SOFT START  
MODE  
EN3  
PSM  
COMP  
SEL  
I
LIMIT  
OPMODE_FUSES  
PWM/  
PSM  
LOW  
CURRENT  
CONTROL  
BUCK1  
SW  
OSCILLATOR  
SYSTEM  
UNDERVOLTAGE  
LOCK OUT  
DRIVER  
AND  
ANTISHOOT  
THROUGH  
600Ω  
PGND  
ENLDO2  
THERMAL  
SHUTDOWN  
AGND  
LDO2  
CONTROL  
LDO1  
CONTROL  
VDDA  
VDDA  
600Ω  
ENLDO1  
ADP5040  
VIN2  
FB2 VOUT2  
VIN3  
FB3 VOUT3  
Figure 101. Functional Block Diagram  
The buck regulator can operate in forced PWM mode if the  
MODE pin is at a logic high level. In forced PWM mode, the  
switching frequency of the buck is always constant and does not  
change with the load current. If the MODE pin is at a logic low  
level, the switching regulator operates in auto PWM/PSM mode.  
In this mode, the regulator operates at fixed PWM frequency  
when the load current is above the power saving current threshold.  
When the load current falls below the power save current  
threshold, the regulator enters power saving mode, where the  
switching occurs in bursts. The burst repetition rate is a  
function of the current load and the output capacitor value.  
This operating mode reduces the switching and quiescent  
current losses.  
POWER MANAGEMENT UNIT  
The ADP5040 is a micro power management unit (micro PMU)  
combing one step-down (buck) dc-to-dc regulator and two low  
dropout linear regulators (LDOs). The high switching frequency  
and tiny 20-pin LFCSP package allow for a small power  
management solution.  
The regulators are activated by a logic level high applied to the  
respective EN pin. The EN1 pin controls the buck regulator, the  
EN2 pin controls LDO1, and the EN3 pin controls LDO2. The  
MODE pin controls the buck switching operation.  
The regulator output voltages are set through external resistor  
dividers.  
When a regulator is turned on, the output voltage ramp is  
controlled through a soft start circuit to avoid a large inrush  
current due to the discharged output capacitors.  
Rev. 0 | Page 25 of 40  
 
 
ADP5040  
Data Sheet  
VOUT1  
SW  
Thermal Protection  
VIN1  
L1 – 1µH  
In the event that the junction temperature rises above 150°C,  
the thermal shutdown circuit turns off the buck and the LDOs.  
Extreme junction temperatures can be the result of high current  
operation, poor circuit board design, or high ambient temperature.  
A 20°C hysteresis is included in the thermal shutdown circuit so  
that when thermal shutdown occurs, the buck and the LDOs do  
not return to normal operation until the on-chip temperature  
drops below 130°C. When coming out of thermal shutdown, all  
regulators start with soft start control.  
VOUT1  
BUCK  
R1  
R2  
FB1  
C5  
10µF  
AGND  
Undervoltage Lockout  
Figure 102. Buck External Output Voltage Setting  
To protect against battery discharge, undervoltage lockout  
(UVLO) circuitry is integrated in the ADP5040. If the input  
voltage on AVIN drops below a typical 2.15 V UVLO threshold,  
all channels shut down. In the buck channel, both the power  
switch and the synchronous rectifier turn off. When the voltage  
on AVIN rises above the UVLO threshold, the part is enabled  
once more.  
Control Scheme  
The buck operates with a fixed frequency, current mode PWM  
control architecture at medium to high loads for high efficiency,  
but operation shifts to a power save mode (PSM) control  
scheme at light loads to lower the regulation power losses.  
When operating in fixed frequency PWM mode, the duty cycle  
of the integrated switches is adjusted and regulates the output  
voltage. When operating in PSM at light loads, the output  
voltage is controlled in a hysteretic manner, with higher output  
voltage ripple. During part of this time, the converter is able to  
stop switching and enters an idle mode, which improves  
conversion efficiency.  
Alternatively, the user can select device models with a UVLO  
set at a higher level, suitable for 5 V applications. For these  
models, the device reaches the turn-off threshold when the  
input supply drops to 3.65 V typical.  
Enable/Shutdown  
The ADP5040 has individual control pins for each regulator.  
A logic level high applied to the ENx pin activates a regulator,  
whereas a logic level low turns off a regulator.  
PWM Mode  
In PWM mode, the buck operates at a fixed frequency of 3 MHz,  
set by an internal oscillator. At the start of each oscillator cycle,  
the PFET switch is turned on, sending a positive voltage across  
the inductor. Current in the inductor increases until the current  
sense signal crosses the peak inductor current threshold that  
turns off the PFET switch and turns on the NFET synchronous  
rectifier. This sends a negative voltage across the inductor,  
causing the inductor current to decrease. The synchronous  
rectifier stays on for the rest of the cycle. The buck regulates the  
output voltage by adjusting the peak inductor current threshold.  
Active Pull-Down  
The ADP5040 can be purchased with the active pull-down  
option enabled. The pull-down resistors are connected between  
each regulator output and AGND. The pull-downs are enabled,  
when the regulators are turned off. The typical value of the pull-  
down resistor is 600 Ω for the LDOs and 85 Ω for the buck.  
BUCK SECTION  
The buck uses a fixed frequency and high speed current mode  
architecture. The buck operates with an input voltage of 2.3 V  
to 5.5 V.  
Power Save Mode (PSM)  
The buck smoothly transitions to PSM operation when the load  
current decreases below the PSM current threshold. When the  
buck enters power save mode, an offset is introduced in the  
PWM regulation level, which makes the output voltage rise.  
When the output voltage reaches a level that is approximately  
1.5% above the PWM regulation level, PWM operation is  
turned off. At this point, both power switches are off, and the  
buck enters an idle mode. The output capacitor discharges until  
the output voltage falls to the PWM regulation voltage, at which  
point the device drives the inductor to make the output voltage  
rise again to the upper threshold. This process is repeated while  
the load current is below the PSM current threshold.  
The buck output voltage is set though external resistor dividers,  
as shown in Figure 102. VOUT1 must be connected to the  
output capacitor. VFB1 is internally set to 0.5 V. The output  
voltage can be set from 0.8 V to 3.8 V.  
Rev. 0 | Page 26 of 40  
 
 
Data Sheet  
ADP5040  
The ADP5040 has a dedicated MODE pin controlling the PSM  
and PWM operation. A high logic level applied to the MODE  
pin forces the buck to operate in PWM mode. A logic level low  
sets the buck to operate in auto PSM/PWM.  
switch on 100% of the time, the output voltage drops below the  
desired output voltage. At this limit, the buck transitions to a  
mode where the PFET switch stays on 100% of the time. When  
the input conditions change again and the required duty cycle  
falls, the buck immediately restarts PWM regulation without  
allowing overshoot on the output voltage.  
PSM Current Threshold  
The PSM current threshold is set to 100 mA. The buck employs  
a scheme that enables this current to remain accurately con-  
trolled, independent of input and output voltage levels. This  
scheme also ensures that there is very little hysteresis between  
the PSM current threshold for entry to, and exit from, the PSM  
mode. The PSM current threshold is optimized for excellent  
efficiency over all load currents.  
LDO SECTION  
The ADP5040 contains two LDOs with low quiescent current  
that provide output currents up to 300 mA. The low 10 μA  
typical quiescent current at no load makes the LDO ideal for  
battery-operated portable equipment.  
The LDOs operate with an input voltage range of 1.7 V to 5.5 V.  
The wide operating range makes these LDOs suitable for  
cascade configurations where the LDO supply voltage is  
provided from the buck regulator.  
Short-Circuit Protection  
The buck includes frequency foldback to prevent current  
runaway on a hard short at the output. When the voltage at the  
feedback pin falls below half the internal reference voltage,  
indicating the possibility of a hard short at the output, the  
switching frequency is reduced to half the internal oscillator  
frequency. The reduction in the switching frequency allows  
more time for the inductor to discharge, preventing a runaway  
of output current.  
Each LDO output voltage is set though external resistor dividers  
as shown in Figure 103. VFB2 and VFB3 are internally set to 0.5 V. The  
output voltage can be set from 0.8 V to 5.2 V.  
VOUT2, VOUT3  
VIN2, VIN3  
VOUT2,  
VOUT3  
LD01, LD02  
C7  
2.2µF  
R
R
A
B
Soft Start  
FB2, FB3  
The buck has an internal soft start function that ramps the  
output voltage in a controlled manner upon startup, thereby  
limiting the inrush current. This prevents possible input voltage  
drops when a battery or a high impedance power source is  
connected to the input of the converter.  
Figure 103. LDOs External Output Voltage Setting  
Current Limit  
The LDOs also provide high power supply rejection ratio (PSRR),  
low output noise, and excellent line and load transient response  
with small 1 µF ceramic input and output capacitors.  
The buck has protection circuitry to limit the amount of  
positive current flowing through the PFET switch and the  
amount of negative current flowing through the synchronous  
rectifier. The positive current limit on the power switch limits  
the amount of current that can flow from the input to the  
output. The negative current limit prevents the inductor  
current from reversing direction and flowing out of the load.  
LDO2 is optimized to supply analog circuits because it offers  
better noise performance compared to LDO1. LDO1 should be  
used in applications where noise performance is not critical.  
100% Duty Operation  
With a dropping input voltage or with an increase in load  
current, the buck may reach a limit where, even with the PFET  
Rev. 0 | Page 27 of 40  
 
 
ADP5040  
Data Sheet  
NO POWER APPLIED TO AVIN.  
ALL REGULATORS TURNED OFF  
NO POWER  
AVIN > VUVLO  
AVIN < VUVLO  
TRANSITION  
STATE  
POR  
INTERNAL CIRCUIT BIASED  
REGULATORS NOT ACTIVATED  
END OF POR  
STANDBY  
AVIN < VUVLO  
ALL ENx = LOW  
ENx = HIGH  
ACTIVE  
ALL REGULATORS ACTIVATED  
Figure 104. ADP5040 State Flow  
Rev. 0 | Page 28 of 40  
Data Sheet  
ADP5040  
APPLICATIONS INFORMATION  
Ceramic capacitors are manufactured with a variety of dielec-  
trics, each with a different behavior over temperature and  
applied voltage. Capacitors must have a dielectric adequate  
to ensure the minimum capacitance over the necessary  
temperature range and dc bias conditions. X5R or X7R  
dielectrics with a voltage rating of 6.3 V or 10 V are highly  
recommended for best performance. Y5V and Z5U dielectrics  
are not recommended for use with any dc-to-dc converter  
because of their poor temperature and dc bias characteristics.  
BUCK EXTERNAL COMPONENT SELECTION  
Trade-offs between performance parameters such as efficiency  
and transient response are made by varying the choice of  
external components in the applications circuit, as shown in  
Figure 1.  
Feedback Resistors  
Referring to Figure 102, the total combined resistance for R1  
and R2 is not to exceed 400 kΩ.  
Inductor  
The worst-case capacitance accounting for capacitor variation  
over temperature, component tolerance, and voltage is calcu-  
lated using the following equation:  
The high switching frequency of the ADP5040 buck allows for  
the selection of small chip inductors. For best performance, use  
inductor values between 0.7 μH and 3.0 μH. Suggested inductors  
are shown in Table 8.  
C
EFF = COUT × (1 − TEMPCO) × (1 − TOL)  
where:  
The peak-to-peak inductor current ripple is calculated using  
the following equation:  
C
EFF is the effective capacitance at the operating voltage.  
TEMPCO is the worst-case capacitor temperature coefficient.  
TOL is the worst-case component tolerance.  
VOUT ×(VIN VOUT  
)
IRIPPLE  
=
In this example, the worst-case temperature coefficient (TEMPCO)  
over −40°C to +85°C is assumed to be 15% for an X5R dielectric.  
The tolerance of the capacitor (TOL) is assumed to be 10%, and  
V
IN × fSW ×L  
where:  
SW is the switching frequency.  
L is the inductor value.  
f
C
OUT is 9.2481 μF at 1.8 V, as shown in Figure 105.  
Substituting these values in the equation yields  
EFF = 9.24 μF × (1 − 0.15) × (1 − 0.1) = 7.07 μF  
The minimum dc current rating of the inductor must be greater  
than the inductor peak current. The inductor peak current is  
calculated using the following equation:  
C
To guarantee the performance of the buck, it is imperative  
that the effects of dc bias, temperature, and tolerances on the  
behavior of the capacitors be evaluated for each application.  
12  
IRIPPLE  
2
IPEAK = ILOAD(MAX)  
+
Table 8. Suggested 1.0 μH Inductors  
Dimensions ISAT  
DCR  
(mΩ)  
10  
8
Vendor  
Model  
(mm)  
(mA)  
1400  
2300  
2000  
5400  
1800  
1350  
Murata  
LQM2MPN1R0NG0B  
LQM18FN1R0M00B  
CBC322ST1R0MR  
XFL4020-102ME  
XPL2010-102ML  
MDT2520-CN  
2.0 × 1.6 × 0.9  
3.2 × 2.5 × 1.5  
3.2 × 2.5 × 2.5  
4.0 × 4.0 × 2.1  
1.9 × 2.0 × 1.0  
2.5 × 2.0 × 1.2  
85  
54  
71  
11  
89  
85  
Murata  
Tayo Yuden  
Coilcraft  
Coilcraft  
Toko  
6
4
Inductor conduction losses are caused by the flow of current  
through the inductor, which has an associated internal dc  
resistance (DCR). Larger sized inductors have smaller DCR,  
which may decrease inductor conduction losses. Inductor core  
losses are related to the magnetic permeability of the core material.  
Because the buck is high switching frequency dc-to-dc converter,  
shielded ferrite core material is recommended for its low core  
losses and low EMI.  
2
0
0
1
2
3
4
5
6
DC BIAS VOLTAGE (V)  
Figure 105. Typical Capacitor Performance  
The peak-to-peak output voltage ripple for the selected output  
capacitor and inductor values is calculated using the following  
equation:  
Output Capacitor  
IRIPPLE  
VIN  
2 × L ×COUT  
Higher output capacitor values reduce the output voltage ripple  
and improve load transient response. When choosing the  
capacitor value, it is also important to account for the loss of  
capacitance due to output voltage dc bias.  
VRIPPLE  
=
8× fSW ×COUT  
(
2π × fSW  
)
Rev. 0 | Page 29 of 40  
 
 
 
 
ADP5040  
Data Sheet  
Capacitors with lower equivalent series resistance (ESR) are  
preferred to guarantee low output voltage ripple, as shown in  
the following equation:  
To minimize supply noise, place the input capacitor as close  
to the VIN pin of the buck as possible. As with the output  
capacitor, a low ESR capacitor is recommended.  
VRIPPLE  
IRIPPLE  
The effective capacitance needed for stability, which includes  
temperature and dc bias effects, is a minimum of 3 µF and a  
maximum of 10 µF. A list of suggested capacitors is shown in  
Table 10.  
ESRCOUT  
The effective capacitance needed for stability, which includes  
temperature and dc bias effects, is a minimum of 7 µF and a  
maximum of 40 µF.  
Table 10. Suggested 4.7 μF Capacitors  
Voltage  
Case Rating  
Size (V)  
GRM188R60J475ME19D 0603 6.3  
Table 9. Suggested 10 μF Capacitors  
Voltage  
Rating  
(V)  
Vendor  
Type Model  
X5R  
Case  
Size  
Murata  
Taiyo Yuden X5R  
Panasonic X5R  
Vendor  
Murata  
Type  
X5R  
X5R  
X5R  
X5R  
Model  
JMK107BJ475  
ECJ-0EB0J475M  
0603 6.3  
0402 6.3  
GRM188R60J106  
JMK107BJ106MA-T  
C1608JB0J106K  
ECJ1VB0J106M  
0603  
0603  
0603  
0603  
6.3  
6.3  
6.3  
6.3  
Taiyo Yuden  
TDK  
LDO EXTERNAL COMPONENT SELECTION  
Panasonic  
Feedback Resistors  
Referring to Figure 103 the maximum value of Rb is not to  
exceed 200 kΩ.  
The buck regulator requires 10 µF output capacitors to guaran-  
tee stability and response to rapid load variations and to transition  
in and out the PWM/PSM modes. In certain applications, where  
the buck regulator powers a processor, the operating state is  
known because it is controlled by software. In this condition,  
the processor can drive the MODE pin according to the operating  
state; consequently, it is possible to reduce the output capacitor  
from 10 µF to 4.7 µF because the regulator does not expect a  
large load variation when working in PSM mode (see Figure 106).  
Output Capacitor  
The ADP5040 LDOs are designed for operation with small,  
space-saving ceramic capacitors, but they function with most  
commonly used capacitors as long as care is taken with the ESR  
value. The ESR of the output capacitor affects stability of the  
LDO control loop. A minimum of 0.70 µF capacitance with an  
ESR of 1 Ω or less is recommended to ensure stability of the  
LDO. Transient response to changes in load current is also  
affected by output capacitance. Using a larger value of output  
capacitance improves the transient response of the LDO to large  
changes in load current.  
ADP5040  
MICRO PMU  
R
30Ω  
FLT  
AVIN  
L1  
1µH  
PROCESSOR  
VCORE  
SW  
VOUT1  
VIN1  
V
IN  
2.3V TO 5.5V  
R1  
R2  
C4  
4.7µF  
When operating at output currents higher than 200 mA a  
minimum of 2.2 µF capacitance with an ESR of 1 Ω or less is  
recommended to ensure stability of the LDO.  
C1  
10µF  
FB1  
VIN2  
PGND  
C2  
1µF  
VOUT2  
R3  
R4  
VIN3  
VDDIO  
Table 11. Suggested 2.2 μF Capacitors  
C5  
2.2µF  
C3  
1µF  
FB2  
Voltage  
Rating  
(V)  
Case  
Size  
Vendor  
Murata  
Type  
X5R  
X5R  
X5R  
X5R  
Model  
0402  
0402  
0402  
0402  
10.0  
6.3  
GRM188B31A225K  
C1608JB0J225KT  
ECJ1VB0J225K  
JMK107BJ225KK-T  
MODE  
ENx  
TDK  
GPIO1  
3
GPIO[x:y]  
Panasonic  
Taiyo Yuden  
6.3  
6.3  
VOUT3  
R5  
R6  
VANALOG  
C6  
2.2µF  
ANALOG  
SUBSYSTEM  
FB3  
Input Bypass Capacitor  
Connecting 1 µF capacitors from VIN2 and VIN3 to ground  
reduces the circuit sensitivity to printed circuit board (PCB)  
layout, especially when long input traces or high source impedance  
is encountered. If greater than 1 µF of output capacitance is  
required, increase the input capacitor to match it.  
Figure 106. Processor System Power Management with PSM/PWM Control  
Input Capacitor  
A higher value input capacitor helps to reduce the input voltage  
ripple and improve transient response. Maximum input  
capacitor current is calculated using the following equation:  
VOUT (VIN VOUT  
)
ICIN ILOAD(MAX)  
VIN  
Rev. 0 | Page 30 of 40  
 
 
 
Data Sheet  
ADP5040  
X5R dielectric. The tolerance of the capacitor (TOL) is assumed  
to be 10%, and CBIAS is 0.94 μF at 1.8 V as shown in Figure 107.  
Table 12. Suggested 1.0 μF Capacitors  
Voltage  
Rating  
(V)  
Case  
Size  
Substituting these values into the following equation yields:  
Vendor  
Murata  
TDK  
Type  
X5R  
X5R  
X5R  
Model  
CEFF = 0.94 μF × (1 – 0.15) × (1 – 0.1) = 0.72 μF  
GRM155R61A105ME15  
C1005JB0J105KT  
ECJ0EB0J105K  
0402  
0402  
0402  
0402  
10.0  
6.3  
6.3  
Therefore, the capacitor chosen in this example meets the  
minimum capacitance requirement of the LDO over  
temperature and tolerance at the chosen output voltage.  
Panasonic  
Taiyo Yuden X5R  
LMK105BJ105MV-F  
10.0  
Input and Output Capacitor Properties  
To guarantee the performance of the ADP5040, it is imperative  
that the effects of dc bias, temperature, and tolerances on the  
behavior of the capacitors be evaluated for each application.  
Use any good quality ceramic capacitor with the ADP5040 as  
long as it meets the minimum capacitance and maximum ESR  
requirements. Ceramic capacitors are manufactured with a variety  
of dielectrics, each with a different behavior over temperature  
and applied voltage. Capacitors must have a dielectric adequate  
to ensure the minimum capacitance over the necessary tempe-  
rature range and dc bias conditions. X5R or X7R dielectrics  
with a voltage rating of 6.3 V or 10 V are recommended for best  
performance. Y5V and Z5U dielectrics are not recommended  
for use with any LDO because of their poor temperature and dc  
bias characteristics.  
POWER DISSIPATION/THERMAL CONSIDERATIONS  
The ADP5040 is a highly efficient micropower management  
unit (micro PMU), and in most cases the power dissipated in  
the device is not a concern. However, if the device operates at  
high ambient temperatures and with maximum loading  
conditions, the junction temperature can reach the maximum  
allowable operating limit (125°C).  
When the junction temperature exceeds 150°C, the ADP5040  
turns off all the regulators, allowing the device to cool down.  
Once the die temperature falls below 135°C, the ADP5040  
resumes normal operation.  
Figure 107 depicts the capacitance vs. voltage bias characteristic  
of a 0402 1 µF, 10 V, X5R capacitor. The voltage stability of a  
capacitor is strongly influenced by the capacitor size and voltage  
rating. In general, a capacitor in a larger package or higher voltage  
rating exhibits better stability. The temperature variation of the  
X5R dielectric is about 15% over the −40°C to +85°C tempera-  
ture range and is not a function of package or voltage rating.  
1.2  
This section provides guidelines to calculate the power dissi-  
pated in the device and to make sure the ADP5040 operates  
below the maximum allowable junction temperature.  
The efficiency for each regulator on the ADP5040 is given by  
POUT  
PIN  
η =  
×100%  
(1)  
1.0  
0.8  
0.6  
where:  
η is efficiency.  
P
P
IN is the input power.  
OUT is the output power.  
Power loss is given by  
LOSS = PIN POUT  
or  
LOSS = POUT × (1 − η)/η  
0.4  
0.2  
0
P
(2a)  
(2b)  
P
0
1
2
3
4
5
6
Power dissipation can be calculated in several ways. The most  
intuitive and practical way is to measure the power dissipated at  
the input and all the outputs. The measurements should be  
performed at the worst-case conditions (voltages, currents,  
and temperature). The difference between input and output  
power is dissipated in the device and the inductor. Use  
Equation 4 to derive the power lost in the inductor, and from  
this use Equation 3 to calculate the power dissipation in the  
ADP5040 buck regulator.  
DC BIAS VOLTAGE (V)  
Figure 107. Capacitance vs. Voltage Characteristic  
Use the following equation to determine the worst-case capa-  
citance accounting for capacitor variation over temperature,  
component tolerance, and voltage.  
C
EFF = CBIAS × (1 − TEMPCO) × (1 − TOL)  
where:  
CBIAS is the effective capacitance at the operating voltage.  
TEMPCO is the worst-case capacitor temperature coefficient.  
TOL is the worst-case component tolerance.  
A second method to estimate the power dissipation uses the  
efficiency curves provided for the buck regulator, whereas the  
power lost on a LDO is calculated using Equation 12. When the  
buck efficiency is known, use Equation 2b to derive the total  
power lost in the buck regulator and inductor. Use Equation 4  
In this example, the worst-case temperature coefficient  
(TEMPCO) over −40°C to +85°C is assumed to be 15% for an  
Rev. 0 | Page 31 of 40  
 
 
ADP5040  
Data Sheet  
to derive the power lost in the inductor, and then calculate the  
power dissipation in the buck converter using Equation 3. Add  
the power dissipated in the buck and in the LDOs to find the  
total dissipated power.  
The power switch conductive losses are due to the output current,  
I
OUT1, flowing through the PMOSFET and the NMOSFET power  
switches that have internal resistance, RDSON-P and RDSON-N. The  
amount of conductive power loss is found by:  
2
Note that the buck efficiency curves are typical values and may  
not be provided for all possible combinations of VIN, VOUT, and  
IOUT. To account for these variations, it is necessary to include a  
safety margin when calculating the power dissipated in the buck.  
P
COND = [RDSON-P × D + RDSON-N × (1 – D)] × IOUT1  
(9)  
For the ADP5040, at 125°C junction temperature and VIN1  
=
3.6 V, R DSON-P is approximately 0.2 Ω, and RDSON-N is approximately  
0.16 Ω. At VIN1 = 2.3 V, these values change to 0.31 Ω and 0.21 Ω,  
respectively, and at VIN1 = 5.5 V, the values are 0.16 Ω and  
0.14 Ω, respectively.  
A third way to estimate the power dissipation is analytical and  
involves modeling the losses in the buck circuit provided by  
Equation 8 to Equation 11 and the losses in the LDOs provided  
by Equation 12.  
Switching losses are associated with the current drawn by the  
driver to turn on and turn off the power devices at the switching  
frequency. The amount of switching power loss is given by:  
Buck Regulator Power Dissipation  
SW = (CGATE-P + CGATE-N) × VIN12 × fSW  
(10)  
The power loss of the buck regulator is approximated by  
P
P
LOSS = PDBUCK + PL  
(3)  
(4)  
where:  
C
C
GATE-P is the PMOSFET gate capacitance.  
GATE-N is the NMOSFET gate capacitance.  
where:  
P
DBUCK is the power dissipation on the ADP5040 buck regulator.  
PL is the inductor power losses.  
For the ADP5040, the total of (CGATE-P + CGATE-N) is approximately  
150 pF.  
The inductor losses are external to the device and they do not  
have any effect on the die temperature.  
The transition losses occur because the PMOSFET cannot be  
turned on or off instantaneously, and the SW node takes some  
time to slew from near ground to near VOUT1 (and from VOUT1 to  
ground). The amount of transition loss is calculated by:  
The inductor losses are estimated (without core losses) by  
PL IOUT1(RMS)2 × DCRL  
where:  
P
TRAN = VIN1 × IOUT1 × (tRISE + tFALL) × fSW  
(11)  
DCRL is the inductor series resistance.  
where tRISE and tFALL are the rise time and the fall time of the  
switching node, SW. For the ADP5040, the rise and fall times of  
SW are in the order of 5 ns.  
I
OUT1(RMS) is the rms load current of the buck regulator.  
If the preceding equations and parameters are used for  
estimating the converter efficiency, note that the equations do  
not describe all of the converter losses, and the parameter  
values given are typical numbers. The converter performance  
also depends on the choice of passive components and board  
layout; therefore, a sufficient safety margin should be included  
in the estimate.  
IOUT1(RMS) = IOUT1 × 1+r/12  
(5)  
(6)  
where r is the normalized inductor ripple current.  
R VOUT1 × (1 − D)/(IOUT1 × L × fSW  
where:  
L is inductance.  
SW is switching frequency.  
D is duty cycle.  
D = VOUT1/VIN1  
The ADP5040 buck regulator power dissipation, PDBUCK  
)
LDO Regulator Power Dissipation  
F
The power loss of a LDO regulator is given by:  
P
DLDO = [(VIN VOUT) × ILOAD] + (VIN × IGND  
)
(12)  
(7)  
where:  
,
I
V
LOAD is the load current of the LDO regulator.  
IN and VOUT are input and output voltages of the LDO,  
includes the power switch conductive losses, the switch losses,  
and the transition losses of each channel. There are other  
sources of loss, but these are generally less significant at high  
output load currents, where the thermal limit of the application  
is. Equation 8 shows the calculation made to estimate the power  
dissipation in the buck regulator.  
respectively.  
GND is the ground current of the LDO regulator.  
I
Power dissipation due to the ground current is small and it  
can be ignored.  
P
DBUCK = PCOND + PSW + PTRAN  
(8)  
The total power dissipation in the ADP5040 simplifies to:  
PD = {[PDBUCK + PDLDO1 + PDLDO2]}  
(13)  
Rev. 0 | Page 32 of 40  
Data Sheet  
ADP5040  
Junction Temperature  
If the case temperature can be measured, the junction temperature  
is calculated by  
In cases where the board temperature, TA, is known, the  
thermal resistance parameter, θJA, can be used to estimate the  
junction temperature rise. TJ is calculated from TA and PD using  
the formula  
TJ = TC + (PD × θJC)  
where:  
TC is the case temperature.  
(15)  
TJ = TA + (PD × θJA)  
(14)  
θJC is the junction-to-case thermal resistance provided in Table 6.  
The typical θJA value for the 20-lead, 4 mm × 4 mm LFCSP is  
38°C/W (see Table 6). A very important factor to consider is  
that θJA is based on a 4-layer, 4 inch × 3 inch, 2.5 oz copper, as  
per JEDEC standard, and real applications may use different  
sizes and layers. To remove heat from the device, it is important  
to maximize the use of copper. Copper exposed to air dissipates  
heat better than copper used in the inner layers. The exposed  
pad (EP) should be connected to the ground plane with several  
vias as shown in Figure 109.  
When designing an application for a particular ambient  
temperature range, calculate the expected ADP5040 power  
dissipation (PD) due to the losses of all channels by using  
Equation 8 to Equation 13. From this power calculation, the  
junction temperature, TJ, can be estimated using Equation 14.  
The reliable operation of the buck regulator and the LDO  
regulator can be achieved only if the estimated die junction  
temperature of the ADP5040 (Equation 14) is less than 125°C.  
Reliability and mean time between failures (MTBF) is highly  
affected by increasing the junction temperature. Additional  
information about product reliability can be found in the  
Analog Devices, Inc., Reliability Handbook, which is available  
at http://www.analog.com/reliability_handbook.  
APPLICATION DIAGRAM  
R
FILT  
VOUT1  
30Ω AVIN  
11  
L1  
6
1µH  
SW  
V
AT  
OUT1  
8
1.2A  
R1  
FB1  
BUCK  
12  
C4  
10µF  
R2  
VIN1  
C1  
V
V
= 2.3V  
TO 5.5V  
PGND  
IN1  
7
9
EN_BK  
4.7µF  
FPWM  
MODE  
ON  
17  
14  
PWM/PSM  
EN1  
10  
13  
OFF  
VOUT2  
V
AT  
OUT2  
VIN2  
= 1.7V  
TO 5.5V  
IN2  
300mA  
LDO1  
(DIGITAL)  
C5  
2.2µF  
C2  
1µF  
R3  
R4  
FB2  
15  
EN_LDO1  
ON  
ON  
EN2  
EN3  
16  
4
OFF  
OFF  
EN_LDO2  
VOUT3  
FB3  
V
AT  
OUT3  
2
1
300mA  
C6  
2.2µF  
R7  
R8  
VIN3  
V
= 1.7V  
TO 5.5V  
IN3  
LDO2  
(ANALOG)  
3
C3  
1µF  
EP  
AGND  
Figure 108. Application Diagram  
Rev. 0 | Page 33 of 40  
 
ADP5040  
Data Sheet  
PCB LAYOUT GUIDELINES  
Poor layout can affect ADP5040 performance, causing electro-  
magnetic interference (EMI) and electromagnetic compatibility  
(EMC) problems, ground bounce, and voltage losses. Poor  
layout can also affect regulation and stability. A good layout is  
implemented using the following guidelines:  
Maximize the size of ground metal on the component side  
to help with thermal dissipation.  
Use a ground plane with several vias connecting to the  
component side ground to further reduce noise interference  
on sensitive circuit nodes.  
Place the inductor, input capacitor, and output capacitor  
close to the IC using short tracks. These components carry  
high switching frequencies, and large tracks act as antennas.  
Route the output voltage path away from the inductor and  
SW node to minimize noise and magnetic interference.  
SUGGESTED LAYOUT  
See Figure 109 for an example layout.  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
7.0  
mm  
VOUT3  
PPL  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
6.0  
6.5  
GPL  
C3 – 1µF  
10V/XR5  
0402  
C4– 2.2µF  
6.3V/XR5  
0402  
GPL  
R
30Ω  
0402  
FILT  
PPL  
PPL  
PPL  
NC  
AVIN  
NC  
NC  
VIN  
SW  
GPL  
GPL  
C5 – 4.7µF  
10V/XR5 0603  
AGND  
L1 – 1µH  
0603  
GPL  
GPL  
MODE  
EN
PGND  
EN1  
ADP5040  
VIAS LEGEND:  
PPL = POWER PLANE (+4V)  
GPL = GROUND PLANE  
C6 – 10µF  
6.3V/XR5  
0603  
C2 – 1µF  
10V/XR5  
0402  
C5 – 2.2µF  
6.3V/XR5  
0402  
TOP LAYER  
2ND LAYER  
VOUT1  
PPL  
VOUT2  
mm  
Figure 109. Evaluation Board Layout  
Rev. 0 | Page 34 of 40  
 
 
 
Data Sheet  
ADP5040  
BILL OF MATERIALS  
Table 13.  
Reference  
Value  
Part Number  
Vendor  
Package  
0603  
0402  
0603  
0402  
2.0 × 1.6 × 0.9 (mm)  
2.5 × 2.0 × 1.2 (mm)  
1.9 × 2.0 × 1.0 (mm)  
20-Lead LFCSP  
C1  
C2, C3  
C4  
C5, C6  
L1  
4.7 µF, X5R, 6.3 V  
1 µF, X5R, 6.3 V  
10 µF, X5R, 6.3 V  
2.2 µF, X5R, 6.3 V  
1 µH, 85 mΩ, 1400 mA  
1 µH, 85 mΩ, 1350 mA  
1 µH, 89 mΩ, 1800 mA  
3-regulator micro PMU  
JMK107BJ475  
Taiyo-Yuden  
Taiyo-Yuden  
Taiyo-Yuden  
Taiyo-Yuden  
Murata  
Toko  
Coilcraft  
Analog Devices  
LMK105BJ105MV-F  
JMK107BJ106MA-T  
JMK105BJ225MV-F  
LQM2MPN1R0NG0B  
MDT2520-CN  
XPL2010-1102ML  
ADP5040  
IC1  
Rev. 0 | Page 35 of 40  
 
ADP5040  
Data Sheet  
FACTORY PROGRAMMABLE OPTIONS  
Table 14. Regulator Output Discharge Resistor Options  
Selection  
0
1
All discharge resistors disabled  
All discharge resistors enabled  
Table 15. Under Voltage Lockout options  
Selection  
Min  
1.95  
3.10  
Typ  
2.15  
3.65  
Max  
2.275  
3.90  
Unit  
V
V
0
1
Rev. 0 | Page 36 of 40  
 
Data Sheet  
ADP5040  
OUTLINE DIMENSIONS  
4.10  
4.00 SQ  
3.90  
0.30  
0.25  
0.20  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
16  
15  
20  
0.50  
BSC  
1
EXPOSED  
PAD  
2.65  
2.50 SQ  
2.35  
5
11  
6
10  
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WGGD.  
Figure 110. 20-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
4 mm × 4 mm Body, Very Very Thin Quad  
(CP-20-10)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Package  
Option  
Model1  
UVLO Active Pull-Down  
2.15 V Enabled on all channels  
Temperature Range  
Package Description  
ADP5040ACPZ-1-R7  
ADP5040CP-1-EVALZ  
TJ = −40°C to +125°C  
20-Lead LFCSP_WQ  
Evaluation Board  
CP-20-10  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 37 of 40  
 
 
 
ADP5040  
NOTES  
Data Sheet  
Rev. 0 | Page 38 of 40  
Data Sheet  
NOTES  
ADP5040  
Rev. 0 | Page 39 of 40  
ADP5040  
NOTES  
Data Sheet  
©2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D096665-0-12/11(0)  
Rev. 0 | Page 40 of 40  

相关型号:

ADP5040ACPZ-1-R7

Micro PMU with 1.2 A Buck Regulator
ADI

ADP5040CP-1-EVALZ

Micro PMU with 1.2 A Buck Regulator
ADI

ADP5041

Micro PMU with 1.2 A Buck, Two 300 mA LDOs, Supervisory, Watchdog, and Manual Reset
ADI

ADP5041ACPZ-1-R7

Micro PMU with 1.2 A Buck, Two 300 mA LDOs, Supervisory, Watchdog, and Manual Reset
ADI

ADP5041CP-1-EVALZ

Micro PMU with 1.2 A Buck, Two 300 mA LDOs, Supervisory, Watchdog, and Manual Reset
ADI

ADP5042

Micro PMU with 0.8 A Buck, Two 300 mA LDOs Supervisory, Watchdog and Manual Reset
ADI

ADP5042ACPZ-1-R7

Micro PMU with 0.8 A Buck, Two 300 mA LDOs, Supervisory, Watchdog and Manual Reset
ADI

ADP5042ACPZ-2-R7

Micro PMU with 0.8 A Buck, Two 300 mA LDOs, Supervisory, Watchdog and Manual Reset
ADI

ADP5043

Micro PMU with 800 mA Buck, 300 mA LDO, Supervisory, Watchdog, and Manual Reset
ADI

ADP5043ACPZ-1-R7

Micro PMU with 800 mA Buck, 300 mA LDO, Supervisory, Watchdog, and Manual Reset
ADI

ADP5043CP-1-EVALZ

Micro PMU with 800 mA Buck, 300 mA LDO, Supervisory, Watchdog, and Manual Reset
ADI

ADP50460008CBZR

POWER SUPPLY SUPPORT CKT
ADI