ADP5042ACPZ-2-R7 [ADI]

Micro PMU with 0.8 A Buck, Two 300 mA LDOs, Supervisory, Watchdog and Manual Reset;
ADP5042ACPZ-2-R7
型号: ADP5042ACPZ-2-R7
厂家: ADI    ADI
描述:

Micro PMU with 0.8 A Buck, Two 300 mA LDOs, Supervisory, Watchdog and Manual Reset

文件: 总33页 (文件大小:1425K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Micro PMU with 0.8 A Buck, Two 300 mA LDOs  
Supervisory, Watchdog and Manual Reset  
Data Sheet  
ADP5042  
FEATURES  
HIGH LEVEL BLOCK DIAGRAM  
Input voltage range: 2.3 V to 5.5 V  
One 0.8 A buck regulator  
Two 300 mA LDOs  
20-lead, 4 mm × 4 mm LFCSP package  
Initial regulator accuracy: 1%  
Overcurrent and thermal protection  
Soft start  
R
= 30Ω  
FILT  
AVIN  
L1  
1µH  
AVIN  
VIN1  
SW  
V
AT  
OUT1  
800mA  
VOUT1  
PGND  
VIN1 = 2.3V  
TO 5.5V  
C6  
BUCK  
EN_BK  
10µF  
C5  
4.7µF  
ON  
FPWM  
MODE  
EN1  
OFF  
OFF  
PSM/PWM  
VOUT2  
V
AT  
OUT2  
300mA  
LDO1  
(DIGITAL)  
VIN2  
VIN2 = 1.7V  
TO 5.5V  
C1  
1µF  
C2  
1µF  
EN_LDO1  
ON  
ON  
WSTAT  
nRSTO  
EN2  
AVIN  
Undervoltage lockout  
WDI1  
WDI2  
MR  
Open drain processor reset with threshold monitoring  
1.5% threshold accuracy over the full temperate range  
Guaranteed reset output valid to VCC = 1 V  
Dual watchdog for secure systems  
Watchdog 1 controls reset  
EN3  
OFF  
EN_LDO2  
VOUT3  
VIN3  
V
AT  
VIN3 = 1.7V  
TO 5.5V  
OUT3  
300mA  
LDO2  
(ANALOG)  
C3  
1µF  
C4  
1µF  
AGND  
Watchdog 2 controls reset and regulators power cycle  
Buck key specifications  
Figure 1.  
Current mode topology for excellent transient response  
3 MHz operating frequency  
Uses tiny multilayer inductors and capacitors  
Mode pin selects forced PWM or auto PFM/PSM modes  
100% duty cycle low dropout mode  
LDOs key specifications  
Low VIN from 1.7 V to 5.5 V  
Stable with1 µF ceramic output capacitors  
High PSRR, 60 dB PSRR up to 1 kHz/10 kHz  
Low output noise  
110 µV rms typical output noise at VOUT = 2.8 V  
Low dropout voltage: 150 mV at 300 mA load  
−40°C to +125°C junction temperature range  
GENERAL DESCRIPTION  
The ADP5042 combines one high performance buck regulator  
and two low dropout regulators (LDO) in a small 20-lead  
LFCSP to meet demanding performance and board space  
requirements.  
The low quiescent current, low dropout voltage, and wide input  
voltage range of the ADP5042 LDOs extend the battery life of  
portable devices. The two LDOs maintain power supply  
rejection greater than 60 dB for frequencies as high as 10 kHz  
while operating with a low headroom voltage.  
The high switching frequency of the buck regulator enables  
use of tiny multilayer external components and minimizes the  
board space.  
Each regulator is activated by a high level on the respective  
enable pin. The ADP5042 is available with factory programmable  
default output voltages and can be set to a wide range of options.  
The MODE pin selects the buck mode of operation. When set  
to logic high, the buck regulators operate in forced PWM mode.  
When the MODE pin is set to logic low, the buck regulators  
operate in PWM mode when the load is around the nominal  
value. When the load current falls below a predefined threshold  
the regulator operates in power save mode (PSM) improving  
the light-load efficiency.  
The ADP5042 contains supervisory circuits that monitor  
power supply voltage levels and code execution integrity in  
microprocessor-based systems. They also provide power-on  
reset signals. An on-chip dual watchdog timer can reset the  
microprocessor or power cycle the system (Watchdog 2) if it  
fails to strobe within a preset timeout period.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registered trademarks are the property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2010-2011 Analog Devices, Inc. All rights reserved.  
 
 
 
ADP5042* PRODUCT PAGE QUICK LINKS  
Last Content Update: 02/23/2017  
COMPARABLE PARTS  
View a parametric search of comparable parts.  
DESIGN RESOURCES  
ADP5042 Material Declaration  
PCN-PDN Information  
DOCUMENTATION  
Data Sheet  
Quality And Reliability  
Symbols and Footprints  
ADP5042: Micro PMU with 0.8 A Buck, Two 300 mA LDOs  
Supervisory, Watchdog and Manual Reset  
DISCUSSIONS  
View all ADP5042 EngineerZone Discussions.  
TOOLS AND SIMULATIONS  
ADI Linear Regulator Design Tool and Parametric Search  
SAMPLE AND BUY  
Visit the product page to see pricing options.  
• ADIsimPower™ Voltage Regulator Design Tool  
REFERENCE MATERIALS  
Solutions Bulletins & Brochures  
TECHNICAL SUPPORT  
Submit a technical question or find your regional support  
number.  
Integrated Power Solutions for Altera FPGAs  
Integrated, High Power Solutions for Xilinx FPGAs  
DOCUMENT FEEDBACK  
Submit feedback for this data sheet.  
This page is dynamically generated by Analog Devices, Inc., and inserted into this data sheet. A dynamic change to the content on this page will not  
trigger a change to either the revision number or the content of the product data sheet. This dynamic page may be frequently modified.  
ADP5042  
Data Sheet  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Power Management Unit........................................................... 18  
Buck Section................................................................................ 19  
LDO Section ............................................................................... 20  
Supervisory Section ................................................................... 20  
Applications Information.............................................................. 23  
Buck External Component Selection....................................... 23  
LDO Capacitor Selection .......................................................... 24  
Supervisory Section ................................................................... 25  
PCB Layout Guidelines.............................................................. 26  
Evaluation Board Schematics and Artwork............................ 27  
Suggested Layout........................................................................ 27  
Bill of Materials........................................................................... 28  
Application Diagram ................................................................. 28  
Factory Programmable Options................................................... 29  
Outline Dimensions....................................................................... 30  
Ordering Guide .......................................................................... 30  
High Level Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
General Specification................................................................... 3  
Supervisory Specification............................................................ 3  
Buck Specifications....................................................................... 5  
LDO1, LDO2 Specifications ....................................................... 5  
Input and Output Capacitor, Recommended Specifications.. 6  
Absolute Maximum Ratings............................................................ 7  
Thermal Data................................................................................ 7  
Thermal Resistance ...................................................................... 7  
ESD Caution.................................................................................. 7  
Pin Configuration and Function Descriptions............................. 8  
Theory of Operation ...................................................................... 18  
REVISION HISTORY  
10/11—Rev. 0 to Rev. A  
Updated Outline Dimensions....................................................... 30  
Changes to Ordering Guide .......................................................... 30  
12/10—Revision 0: Initial Version  
Rev. A | Page 2 of 32  
 
Data Sheet  
ADP5042  
SPECIFICATIONS  
GENERAL SPECIFICATION  
AVIN, VIN1 = (VOUT1+ 0.5 V) or 2.3 V, whichever is greater, AVIN, VIN1 ≥ VIN2, VIN3, TA = 25°C, unless otherwise noted. Regulators  
are enabled.  
Table 1.  
Parameter  
Symbol  
Description  
Min Typ Max Unit  
AVIN UNDERVOLTAGE LOCKOUT  
Input Voltage Rising  
Input Voltage Falling  
SHUTDOWN CURRENT  
UVLOAVIN  
UVLOAVINRISE  
UVLOAVINFALL  
IGND-SD  
TJ = −40°C to +125°C  
2.25  
2
V
V
1.95  
1.2  
ENx = GND  
ENx = GND, TJ = −40°C to +125°C  
TJ rising  
0.1  
µA  
µA  
°C  
°C  
Thermal Shutdown Threshold  
Thermal Shutdown Hysteresis  
TSSD  
TSSD-HYS  
150  
20  
MR  
ENx, WDIx, MODE, WMOD,  
Input Logic High  
INPUTS  
VIH  
VIL  
VI-LEAKAGE  
2.5 V ≤ AVIN ≤ 5.5 V  
2.5 V ≤ AVIN ≤ 5.5 V  
ENx = AVIN or GND  
V
V
µA  
Input Logic Low  
Input Leakage Current (WMOD  
Excluded)  
0.4  
0.05  
30  
ENx = AVIN or GND, TJ = −40°C to +125°C  
VWMOD = 3.6 V, TJ = −40°C to +125°C  
1
50  
µA  
µA  
WMOD Input Leakage Current  
OPEN-DRAIN OUTPUTS  
nRSTO, WSTAT Output Voltage  
VI-LKG-WMOD  
VOL  
AVIN = 2.3 V to 5.5 V, InRSTO/WSTAT = 3 mA  
mV  
Open-Drain Reset Output Leakage  
Current  
1
µA  
SUPERVISORY SPECIFICATION  
AVIN, VIN1 = full operating range, TJ = −40°C to +125°C, unless otherwise noted.  
Table 2.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
SUPPLY  
Supply Current (Supervisory Circuit Only)  
45  
43  
55  
52  
µA  
µA  
V
AVIN = 5.5 V, EN1 = EN2 = EN3 = VIN  
AVIN = 3.6 V, EN1 = EN2 = EN3 = VIN  
TA = 25°C, sensed on VOUTx  
TJ = −40°C to +125°C, sensed on  
VOUTx  
RESET THRESHOLD ACCURACY  
VTH − 0.8%  
VTH − 1.5%  
VTH  
VTH  
VTH + 0.8%  
VTH + 1.5%  
V
RESET THRESHOLD TO OUTPUT DELAY  
50  
125  
400  
µs  
VTH = VUOT − 50 mV  
GLITCH IMMUNITY (tUOD  
)
RESET TIMEOUT PERIOD WATCHDOG1 (tRP1  
Option A  
Option B  
)
)
24  
160  
30  
200  
36  
240  
ms  
ms  
RESET TIMEOUT PERIOD WATCHDOG2 (tRP2  
3.5  
5
7
ms  
µs  
VCC TO RESET DELAY (tRD)  
150  
2
VIN1 falling at 1 mV/µs  
REGULATORS SEQUENCING DELAY (tD1, tD2)  
WATCHDOG INPUTS  
ms  
Watchdog 1 Timeout Period (tWD1  
)
Option A  
Option B  
81.6  
1.28  
102  
1.6  
122.4  
1.92  
ms  
sec  
Rev. A | Page 3 of 32  
 
 
 
ADP5042  
Data Sheet  
Parameter  
Watchdog 2 Timeout Period (tWD2  
Option A  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
)
6
7.5  
9
sec  
Option B  
Watchdog 2 disabled  
Option C  
Option D  
Option E  
Option F  
Option G  
Option H  
3.2  
6.4  
11.2  
25.6  
51.2  
102.4  
4
8
16  
32  
64  
128  
4.8  
9.6  
19.2  
38.4  
76.8  
153.8  
min  
min  
min  
min  
min  
min  
Watchdog 2 Power Off Period (tPOFF  
Option A  
Option B  
WDI1 Pulse Width  
WDI2 Pulse Width  
)
210  
400  
ms  
ms  
ns  
80  
8
VIL = 0.4 V, VIH = 1.2 V  
VIL = 0.4 V, VIH = 1.2 V  
µs  
Watchdog Status Timeout Period (tWDCLEAR  
WDI1 Input Current (Source)  
WDI1 Input Current (Sink)  
WDI2 Internal Pull-Down  
MANUAL RESET INPUT  
)
11.2  
15  
−25  
45  
sec  
µA  
µA  
kΩ  
8
−30  
20  
−14  
VWDI1 = VCC, time average  
VWDI1 = 0, time average  
MR Input Pulse Width  
1
µs  
ns  
kΩ  
ns  
MR Glitch Rejection  
220  
52  
MR Pull-Up Resistance  
25  
80  
MR to Reset Delay  
280  
VCC = 5 V  
Rev. A | Page 4 of 32  
Data Sheet  
ADP5042  
BUCK SPECIFICATIONS  
AVIN, VIN1 = 3.6 V, VOUT1 = 1.8 V, TJ= −40°C to +125°C for minimum/maximum specifications, L = 1 µH, COUT = 10 µF, and TA = 25°C  
for typical specifications, unless otherwise noted.1  
Table 3.  
Parameter  
Test Conditions/Comments  
Min  
Typ  
Max  
Unit  
INPUT CHARACTERISTICS  
Input Voltage Range (VIN1)  
OUTPUT CHARACTERISTICS  
Output Voltage Accuracy  
2.3  
5.5  
V
PWM mode, TA= 25 °C , ILOAD = 100 mA  
PWM mode  
VIN1 = 2.3 V to 5.5 V, PWM mode,  
ILOAD = 1 to 800 mA  
−1  
−2  
−3  
+1  
+2  
+3  
%
%
%
PWM TO POWER SAVE MODE CURRENT THRESHOLD  
INPUT CURRENT CHARACTERISTICS  
DC Operating Current  
100  
mA  
ILOAD = 0 mA, device not switching  
ENx = 0 V, TA = TJ = −40°C to +125°C  
21  
0.2  
35  
1.0  
μA  
μA  
Shutdown Current  
SW CHARACTERISTICS  
SW On Resistance  
PFET  
180  
140  
170  
150  
1360  
75  
240  
190  
235  
210  
1600  
mΩ  
mΩ  
mΩ  
mΩ  
mA  
Ω
PFET, AVIN = VIN1 = 5 V  
NFET  
NFET, AVIN = VIN1 = 5 V  
PFET switch peak current limit  
EN1 = 0 V  
Current Limit  
1100  
2.5  
ACTIVE PULL-DOWN  
OSCILLATOR FREQUENCY  
START-UP TIME  
3.0  
3.5  
MHz  
μs  
250  
1 All limits at temperature extremes are guaranteed via correlation using standard statistical quality control (SQC).  
LDO1, LDO2 SPECIFICATIONS  
AVIN = 3.6 V, VIN2, VIN3 = (VOUT3 + 0.2 V) or 2.3 V, whichever is greater; AVIN, VIN1 ≥ VIN2, VIN3; IOUT = 10 mA; CIN = COUT = 1 µF;  
TA = 25°C, unless otherwise noted.  
Table 4.  
Parameter  
Symbol  
VIN2, VIN3  
IGND  
Conditions  
Min  
Typ  
Max  
Unit  
V
INPUT VOLTAGE RANGE  
TJ = −40°C to +125°C  
IOUT = 0 µA, VOUT = 3.3 V  
1.7  
5.5  
OPERATING SUPPLY CURRENT (per  
LDO)  
15  
µA  
IOUT = 0 µA, VOUT = 3.3 V, TJ = −40°C to +125°C  
IOUT = 10 mA  
IOUT = 10 mA, TJ = −40°C to +125°C  
IOUT = 200 mA  
IOUT = 200 mA, TJ = −40°C to +125°C  
IOUT = 10 mA  
100 µA < IOUT < 300 mA  
50  
µA  
µA  
µA  
µA  
µA  
%
67  
105  
100  
245  
+1  
+2  
FIXED OUTPUT VOLTAGE ACCURACY  
VOUT2, VOUT3  
−1  
−2  
%
VIN2, VIN3 = (VOUT2, VOUT3 + 0.5 V) to 5.5 V  
100 µA < IOUT < 300 mA  
−3  
+3  
%
VIN2, VIN3 = (VOUT2, VOUT3 + 0.5 V) to 5.5 V  
TJ = −40°C to +125°C  
REGULATION  
Line Regulation  
∆VOUT2/∆VIN2  
∆VOUT3/∆VIN3  
V
IN2, VIN3 = (VOUT2, VOUT3 + 0.5 V) to 5.5 V  
−0.03  
+0.03  
%/V  
IOUT3 = 1 mA  
TJ = −40°C to +125°C  
Rev. A | Page 5 of 32  
 
 
ADP5042  
Data Sheet  
Parameter  
Load Regulation1  
Symbol  
Conditions  
OUT2, VOUT3 = 1 mA to 200 mA  
Min  
Typ  
Max  
Unit  
∆VOUT2/∆IOUT2  
∆VOUT3/∆IOUT3  
I
0.002  
%/mA  
IOUT2, VOUT3 = 1 mA to 200 mA  
TJ = −40°C to +125°C  
0.0075  
%/mA  
DROPOUT VOLTAGE2  
VDROPOUT  
VOUT2, VOUT3 = 3.3 V  
IOUT2, IOUT3 = 10 mA  
IOUT2, IOUT3 = 10 mA, TJ = −40°C to +125°C  
IOUT2, IOUT3 = 200 mA  
IOUT2, IOUT3 = 200 mA, TJ = −40°C to +125°C  
EN2/EN3 = 0 V  
4
mV  
mV  
mV  
mV  
Ω
5
60  
100  
ACTIVE PULL-DOWN  
START-UP TIME  
CURRENT-LIMIT THRESHOLD3  
RPDLDO  
600  
85  
TSTART-UP  
ILIMIT  
VOUT2, VOUT3 = 3.3 V  
µs  
TJ = −40°C to +125°C  
335  
470  
123  
110  
59  
140  
129  
66  
mA  
OUTPUT NOISE  
OUTLDO2NOISE  
10 Hz to 100 kHz, VIN3 = 5 V, VOUT3 = 3.3 V  
10 Hz to 100 kHz, VIN3 = 5 V, VOUT3 = 2.8 V  
10 Hz to 100 kHz, VIN3 = 5 V, VOUT3 = 1.5 V  
10 Hz to 100 kHz, VIN2 = 5 V, VOUT2 = 3.3 V  
10 Hz to 100 kHz, VIN2 = 5 V, VOUT2 = 2.8 V  
10 Hz to 100 kHz, VIN2 = 5 V, VOUT2 = 1.5 V  
µV rms  
µV rms  
µV rms  
µV rms  
µV rms  
µV rms  
OUTLDO1NOISE  
POWER SUPPLY REJECTION RATIO  
PSRR  
1 kHz, VIN2, VIN3 = 3.3 V, VOUT2, OUT3 = 2.8 V,  
IOUT = 100 mA  
100 kHz, VIN2,VIN3 = 3.3 V, VOUT2,VOUT3 = 2.8 V,  
IOUT = 100 mA  
1 MHz, VIN2, VIN3 = 3.3 V, VOUT2, VOUT3 = 2.8 V,  
IOUT = 100 mA  
66  
dB  
dB  
dB  
57  
60  
1 Based on an end-point calculation using 1 mA and 100 mA loads.  
2 Dropout voltage is defined as the input-to-output voltage differential when the input voltage is set to the nominal output voltage. This applies only for output  
voltages above 2.3 V.  
3 Current-limit threshold is defined as the current at which the output voltage drops to 90% of the specified typical value. For example, the current limit for a 3.0 V  
output voltage is defined as the current that causes the output voltage to drop to 90% of 3.0 V, or 2.7 V.  
INPUT AND OUTPUT CAPACITOR, RECOMMENDED SPECIFICATIONS  
Table 5.  
Parameter  
Symbol  
CMIN1  
Conditions  
Min  
7
Typ  
Max  
Unit  
µF  
MINIMUM OUTPUT CAPACITANCE (BUCK)1  
MINIMUM INPUT AND OUTPUT CAPACITANCE2 (LDO1, LDO2)  
CAPACITOR ESR  
TJ = −40°C to +125°C  
TJ = −40°C to +125°C  
TJ = −40°C to +125°C  
40  
CMIN23  
RESR  
0.70  
0.001  
µF  
1
Ω
1 The minimum output capacitance should be greater than 4.7 µF over the full range of operating conditions. The full range of operating conditions in the application  
must be considered during device selection to ensure that the minimum capacitance specification is met.  
2 The minimum input and output capacitance should be greater than 0.70 µF over the full range of operating conditions. The full range of operating conditions in the  
application must be considered during device selection to ensure that the minimum capacitance specification is met. X7R and X5R type capacitors are recommended,  
Y5V and Z5U capacitors are not recommended for use with LDOs or the buck.  
Rev. A | Page 6 of 32  
 
 
Data Sheet  
ADP5042  
ABSOLUTE MAXIMUM RATINGS  
Junction-to-ambient thermal resistance (θJA) of the package is  
based on modeling and calculation using a 4-layer board. The  
junction-to-ambient thermal resistance is highly dependent on  
the application and board layout. In applications where high  
maximum power dissipation exists, close attention to thermal  
board design is required. The value of θJA may vary, depending on  
PCB material, layout, and environmental conditions. The specified  
value of θJA is based on a four-layer, 4” × 3, 2.5 oz copper board,  
as per JEDEC standard. For additional information, see the  
AN-772 Application Note, A Design and Manufacturing Guide  
for the Lead Frame Chip Scale (LFCSP).  
Table 6.  
Parameter  
Rating  
AVIN, VINx, VOUTx, ENx, MODE, MR, WDIx,  
WMOD, WSTAT, nRSTO to GND  
Storage Temperature Range  
Operating Junction Temperature Range  
Soldering Conditions  
−0.3 V to +6 V  
−65°C to +150°C  
−40°C to +125°C  
JEDEC J-STD-020  
3000 V  
ESD Human Body Model  
ESD Charged Device Model  
ESD Machine Model  
1500 V  
100 V  
Stresses above those listed under absolute maximum ratings  
may cause permanent damage to the device. This is a stress  
rating only and functional operation of the device at these or  
any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
THERMAL RESISTANCE  
θJA is specified for the worst-case conditions, that is, a device  
soldered in a circuit board for surface-mount packages.  
Table 7. Thermal Resistance  
Package Type  
20-Lead, 0.5 mm pitch LFCSP  
θJA  
θJC  
Unit  
38  
4.2  
°C/W  
THERMAL DATA  
Absolute maximum ratings apply individually only, not in  
combination.  
ESD CAUTION  
The ADP5042 can be damaged when the junction temperature  
limits are exceeded. Monitoring ambient temperature does not  
guarantee that the junction temperature is within the specified  
temperature limits. In applications with high power dissipation  
and poor thermal resistance, the maximum ambient  
temperature may have to be derated. In applications with  
moderate power dissipation and low PCB thermal resistance,  
the maximum ambient temperature can exceed the maximum  
limit as long as the junction temperature is within specification  
limits. The junction temperature of the device is dependent on  
the ambient temperature, the power dissipation of the device  
(PD), and the junction-to-ambient thermal resistance of the  
package. Maximum junction temperature is calculated from the  
ambient temperature and power dissipation using the formula  
TJ = TA + (PD × θJA)  
Rev. A | Page 7 of 32  
 
 
 
ADP5042  
Data Sheet  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
15 WSTAT  
14 VOUT2  
13 VIN2  
NC  
VOUT3  
VIN3  
1
2
3
4
5
ADP5042  
TOP VIEW  
(Not to Scale)  
EN3  
12 WDI2  
nRSTO  
11 VOUT1  
NOTES  
1. EXPOSED PAD SHOULD BE CONNECTED TO AGND.  
2. NC = NO CONNECT. DO NOT CONNECT TO THIS PIN.  
Figure 2. Pin Configuration—View from Top of the Die  
Table 8. Preliminary Pin Function Descriptions  
Pin No.  
Mnemonic Description  
1
2
3
NC  
VOUT3  
VIN3  
Do not connect to this pin.  
LDO2 Output Voltage and Sensing Input.  
LDO2 Input Supply (1.7 V to 5.5 V).  
4
5
6
7
EN3  
Enable LDO2. EN3 = high: turn on LDO2; EN3 = low: turn off LDO2.  
Open-Drain Reset Output, Active Low.  
Regulators Housekeeping and Supervisory Input Supply (2.3 V to 5.5 V).  
Buck Input Supply (2.3 V to 5.5 V).  
nRSTO  
AVIN  
VIN1  
8
SW  
Buck Switching Node.  
9
PGND  
EN1  
VOUT1  
WDI2  
VIN2  
Dedicated Power Ground for Buck Regulator.  
Enable Buck. EN1 = high: turn on buck; EN1 = low: turn off buck.  
Buck Sensing Node.  
Watchdog 2 (Long Timeout) Refresh Input from Processor. Can be disabled only by factory option.  
LDO1 Input Supply (1.7 V to 5.5 V).  
LDO1 Output Voltage and Sensing Input.  
Open-Drain Watchdog Timeout Status. WSTAT = high: Watchdog 1 timeout or power-on reset; WSTAT = low:  
Watchdog 2 timeout. Auto cleared after one second.  
10  
11  
12  
13  
14  
15  
VOUT2  
WSTAT  
16  
17  
EN2  
MODE  
Enable LDO1. EN2 = high: turn on LDO1. EN2 = low: turn off LDO1.  
Buck Mode. MODE = high: buck regulator operates in fixed PWM mode; MODE = low: buck regulator operates  
in pulse skipping mode (PSM) at light load and in constant PWM at higher load.  
18  
WMOD  
Watchdog Mode. WMOD = low: Watchdog 1 normal mode; WMOD = high: Watchdog 1 cannot be disabled by  
a three-state condition applied on WDI1.  
19  
20  
TP  
WDI1  
MR  
Watchdog 1 Refresh Input from Processor. If WDI1 is in high-Z and WMOD is low, Watchdog 1 is disabled.  
Manual Reset Input, Active Low.  
AGND  
Analog Ground (TP = Thermal Pad). Exposed pad should be connected to AGND.  
Rev. A | Page 8 of 32  
 
Data Sheet  
ADP5042  
TYPICAL PERFORMANCE CHARACTERISTICS  
VIN1 = VIN2 = VIN3 = AVIN = 5.0 V, TA = 25°C, unless otherwise noted.  
SW  
4
2
VOUT1  
1
VOUT1  
VOUT2  
2
VOUT3  
3
EN  
1
3
LOAD  
B
B
B
B
CH1 4.0V/DIV  
CH2 3.0V/DIV  
CH3 200mA/DIV 1MΩ  
CH4 5.0V/DIV 1MΩ  
1MΩ  
1MΩ  
20.0M  
500M  
20.0M  
500M  
A
CH1  
2.24V  
50µs/DIV  
20.0MS/s  
50.0ns/pt  
W
W
W
W
B
CH1 2.0V/DIV 1MΩ  
CH2 2.0V/DIV 1MΩ  
CH3 2.0V/DIV 1MΩ  
20.0M  
500M  
20.0M  
A
CH1  
1.76V  
200µs/DIV  
50.0MS/s  
20.0ns/pt  
W
W
W
B
B
Figure 3. 3-Channel Start-Up Waveforms  
Figure 6. Buck Startup, VOUT1 = 1.8 V, IOUT2 = 20 mA  
1.0  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
3.34  
3.32  
3.30  
3.28  
3.26  
3.24  
3.22  
–40°C  
+25°C  
+85°C  
VOUT1 = 1.8V,  
VOUT2 = VOUT = 3.3V  
2.3  
2.8  
3.3  
3.8  
4.3  
4.8  
5.3  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
1.0  
INPUT VOLTAGE (V)  
OUTPUT CURRENT (A)  
Figure 4. System Quiescent Current (Sum of All the Input Currents) vs. Input Voltage,  
VOUT1 = 1.8 V, VOUT2 = VOUT3 = 3.3 V  
Figure 7. Buck Load Regulation Across Temperature, VOUT1 = 3.3 V, Auto Mode  
1.830  
SW  
4
–40°C  
+25°C  
+85°C  
1.825  
1.820  
1.815  
1.810  
1.805  
1.800  
1.795  
1.790  
1.785  
1.780  
1.775  
VOUT1  
2
EN  
1
IIN  
3
B
CH1 2.0V/DIV  
CH2 2.0V/DIV  
CH3 100mA/DIV 1MΩ  
1MΩ  
1MΩ  
20.0M  
500M  
20.0M  
500M  
A
CH1  
2.92V  
50µs/DIV  
50.0MS/s  
20.0ns/pt  
W
W
B
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
B
B
W
CH4 5.0V/DIV  
1MΩ  
W
OUTPUT CURRENT (A)  
Figure 8. Buck Load Regulation Across Temperature, VOUT1 = 1.8 V, Auto Mode  
Figure 5. Buck Startup, VOUT1 = 1.8 V, IOUT1 = 20 mA  
Rev. A | Page 9 of 32  
ADP5042  
Data Sheet  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
1.795  
1.794  
1.793  
1.792  
1.791  
1.790  
1.789  
1.788  
1.787  
1.786  
1.785  
3.6V  
4.5V  
5.5V  
+85°C  
+25°C  
–40°C  
0.3  
1.784  
0
0.001  
0.01  
0.1  
1
0.1  
0.2  
0.4  
0.5  
0.6  
0.7  
0.8  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 12. Buck Efficiency vs. Load Current, Across Input Voltage, VOUT1 = 3.3 V,  
PWM Mode  
Figure 9. Buck Load Regulation Across Temperature, VOUT1 = 1.8 V, PWM Mode  
1.797  
1.796  
100  
90  
80  
70  
60  
50  
40  
30  
1.795  
VIN = 5.5V  
1.794  
VIN = 4.5V  
1.793  
VIN = 3.6V  
1.792  
20  
2.4V  
1.791  
1.790  
3.6V  
4.5V  
5.5V  
10  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.0001  
0.001  
0.01  
0.1  
1
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 10. Buck Load Regulation Across Input Voltage, VOUT1 = 1.8 V, PWM Mode  
Figure 13. Buck Efficiency vs. Load Current, Across Input Voltage, VOUT1 = 1.8 V,  
Auto Mode  
100  
90  
80  
70  
60  
50  
40  
30  
100  
2.4V  
3.6V  
4.5V  
5.5V  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
20  
3.6V  
10  
4.5V  
5.5V  
0
0.0001  
0.001  
0.01  
0.1  
1
0.001  
0.01  
0.1  
1
OUTPUT CURRENT (A)  
I
(A)  
OUT  
Figure 11. Buck Efficiency vs. Load Current, Across Input Voltage, VOUT1 = 3.3 V,  
Auto Mode  
Figure 14. Buck Efficiency vs. Load Current, Across Input Voltage, VOUT2 = 1.8 V,  
PWM Mode  
Rev. A | Page 10 of 32  
Data Sheet  
ADP5042  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
1.7  
1.6  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
–40ºC  
+25ºC  
+85ºC  
0
0.001  
0.01  
0.1  
1
2.6  
3.6  
4.6  
5.6  
OUTPUT CURRENT (A)  
INPUT VOLTAGE (V)  
Figure 15. Buck Efficiency vs. Load Current, Across Temperature, VOUT1 = 1.8 V,  
PWM Mode  
Figure 18. Buck DC Current Capability vs. Input Voltage, VOUT1 = 1.8 V  
3.10  
100  
–40°C  
+25°C  
+85°C  
80  
90  
–40°C  
3.05  
+25°C  
70  
60  
50  
40  
30  
20  
10  
0
3.00  
2.95  
+85°C  
2.90  
2.85  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.0001  
0.001  
0.01  
0.1  
1
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 19. Buck Switching Frequency vs. Output Current, Across Temperature,  
VOUT1 = 1.8 V, PWM Mode  
Figure 16. Buck Efficiency vs. Load Current, Across Temperature, VOUT1 = 3.3 V,  
Auto Mode  
VOUT  
100  
–40°C  
+25°C  
+85°C  
80  
90  
1
70  
60  
50  
40  
30  
20  
10  
0
I
SW  
2
SW  
3
B
B
B
CH1 20.0mV/DIV  
CH2 200mA/DIV 1MΩ  
CH3 2.0V/DIV  
20.0M  
20.0M  
20.0M  
A
CH1 2.4mV 5.0µs/DIV  
20.0MS/s  
W
W
0.0001  
0.001  
0.01  
0.1  
1
50.0ns/pt  
1MΩ  
W
OUTPUT CURRENT (A)  
Figure 20. Typical Waveforms, VOUT1 = 3.3 V, IOUT1 = 30 mA, Auto Mode  
Figure 17. Buck Efficiency vs. Load Current, Across Temperature, VOUT1 = 1.8 V,  
Auto Mode  
Rev. A | Page 11 of 32  
ADP5042  
Data Sheet  
VOUT  
2
VIN  
I
SW  
3
VOUT  
SW  
2
SW  
1
3
1
B
B
B
CH1 2.0V/DIV 1MΩ  
CH2 50.0mV/DIV  
CH3 500mA/DIV  
20.0M  
20.0M  
20.0M  
A
CH1 1.56mV 5.0µs/DIV  
200MS/s  
CH1 3V/DIV  
CH2 50mV/DIV  
CH3 900mV/DIV 1MΩ  
20.0M A CH3 4.79V  
20.0M  
20.0M  
100µs/DIV  
10.0MS/s  
100ns/pt  
W
W
W
B
B
W
5.0ns/pt  
B
W
W
Figure 21. Typical Waveforms, VOUT1 = 1.8 V, IOUT2 = 30 mA, Auto Mode  
Figure 24. Buck Response to Line Transient, Input Voltage from 4.5 V to 5.0 V,  
VOUT1 = 3.3 V, PWM Mode  
VOUT  
2
I
SW  
3
VOUT  
2
SW  
SW  
3
4
1
B
B
CH1 2.0V/DIV 1MΩ  
CH2 50.0mV/DIV  
CH3 500mA/DIV  
20.0M  
20.0M  
20.0M  
A
CH1 1.56mV 500ns/DIV  
200MS/s  
B
W
W
CH2 50mV/DIV  
CH3 1V/DIV  
CH4 2V/DIV  
20.0M  
20.0M  
20.0M  
A
CH3 4.96mV 100µs/DIV  
20MS/s  
W
W
W
B
B
1MΩ  
1MΩ  
5.0ns/pt  
B
100ns/pt  
W
Figure 22. Typical Waveforms, VOUT1 = 1.8 V, IOUT1 = 30 mA, PWM Mode  
Figure 25. Buck Response to Line Transient, VIN = 4.5 V to 5.0 V, VOUT1 = 1.8 V,  
PWM Mode  
VOUT  
1
1
I
SW  
2
VOUT  
2
SW  
3
3
B
B
B
CH1 20.0mV/DIV  
CH2 200mA/DIV 1MΩ  
CH3 2.0V/DIV  
20.0M  
20.0M  
20.0M  
A
CH1 2.4mV  
200ns/DIV  
500MS/s  
2.0ns/pt  
B
W
W
CH1 4V/DIV  
CH2 50mV/DIV 1MΩ  
CH3 50mA/DIV 1MΩ  
20.0M  
20.0M  
20.0M  
A
CH3 44mA 200µs/DIV  
10MS/s  
W
W
B
100ns/pt  
1MΩ  
B
W
W
Figure 23. Typical Waveforms, VOUT1 = 3.3 V, IOUT2 = 30 mA, PWM Mode  
Figure 26. Buck Response to Load Transient, IOUT1 from 1 mA to 50 mA,  
VOUT1 = 3.3 V, Auto Mode  
Rev. A | Page 12 of 32  
Data Sheet  
ADP5042  
SW  
1
3
VOUT  
2
1
2
LOAD  
3
B
B
B
CH1 4V/DIV  
CH2 50mV/DIV  
CH3 50mA/DIV 1MΩ  
20.0M  
20.0M  
20.0M  
A
CH3 28mA 200µs/DIV  
5MS/s  
CH1 1V/DIV  
CH2 3V/DIV  
CH3 50mA/DIV 1MΩ  
1MΩ  
1MΩ  
500M A CH2  
500M  
20.0M  
1.14V  
50µs/DIV  
2MS/s  
500ns/pt  
W
W
W
B
B
W
W
200ns/pt  
B
W
Figure 27. Buck Response to Load Transient, IOUT2 from 1 mA to 50 mA,  
VOUT2 = 1.8 V, Auto Mode  
Figure 30. LDO1 Startup, VOUT3=1.5 V, IOUT3 = 5 mA  
1
3
2
1
2
3
B
B
CH1 4V/DIV  
CH2 50mV/DIV  
CH3 50mA/DIV 1MΩ  
20.0M A CH3  
20.0M  
20.0M  
86mA  
200µs/DIV  
10MS/s  
100ns/pt  
CH1 1V/DIV  
CH2 3V/DIV  
CH3 50mA/DIV 1MΩ  
1MΩ  
1MΩ  
500M A CH2  
500M  
20.0M  
1.14V  
100µs/DIV  
1MS/s  
1.0µs/pt  
W
W
W
B
B
W
W
B
B
W
Figure 28. Buck Response to Load Transient, IOUT1 from 20 mA to 140 mA,  
VOUT1 = 3.3 V, Auto Mode  
Figure 31. LDO2 Startup, VOUT3=3.3 V, IOUT3 = 5 mA  
1.510  
1.508  
1.506  
1.504  
1.502  
1.500  
2
3
4
3.3V  
4.5V  
5.0V  
5.5V  
B
A CH3  
145mA 200µs/DIV  
50MS/s  
CH2 4V/DIV  
CH3 50mV/DIV 1MΩ  
CH4 50mA/DIV 1MΩ  
1MΩ  
20.0M  
20.0M  
20.0M  
W
0.0001  
0.001  
0.01  
0.1  
B
W
20ns/pt  
B
W
OUTPUT CURRENT (A)  
Figure 29. Buck Response to Load Transient, IOUT2 from 20 mA to 180 mA,  
VOUT1 = 1.8 V, PWM Mode  
Figure 32. LDO1 Load Regulation Across Input Voltage, VOUT2 = 1.5 V  
Rev. A | Page 13 of 32  
ADP5042  
Data Sheet  
1.53  
1.52  
1.51  
1.5  
3.35  
3.34  
3.33  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
3.25  
+85°C  
+25°C  
–40°C  
+85°C  
+25°C  
–40°C  
1.49  
1.48  
1.47  
0.0001  
0.001  
0.01  
0.1  
0.0001  
0.001  
0.01  
0.1  
OUTPUT CURRENT (A)  
OUTPUT CURRENT (A)  
Figure 33. LDO1 Load Regulation Across Temperature, VIN2 = 3.3 V, VOUT2 = 1.5 V  
Figure 36. LDO2 Load Regulation Across Temperature, VIN3 = 3.6 V, VOUT3 = 3.3 V  
1.520  
100µA  
1mA  
3.325  
100µA  
1mA  
3.320  
10mA  
10mA  
1.515  
1.510  
1.505  
1.500  
1.495  
1.490  
1.485  
1.480  
100mA  
150mA  
100mA  
150mA  
3.315  
3.310  
3.305  
3.300  
3.295  
3.290  
3.285  
3.280  
3.6  
4.5  
5.0  
5.5  
3.6  
4.5  
5.0  
5.5  
INPUT VOLTAGE (V)  
INPUT VOLTAGE (V)  
Figure 37. LDO2 Line Regulation Across Output Load, VOUT3 = 3.3 V  
Figure 34. LDO1 Line Regulation Across Output Load, VOUT2 = 1.5 V  
3.35  
3.6V  
250  
4.5V  
3.34  
5.0V  
5.5V  
3.33  
200  
150  
100  
50  
3.32  
3.31  
3.30  
3.29  
3.28  
3.27  
3.26  
3.25  
0
0.0001  
0.001  
0.01  
0.1  
0
0.05  
0.10  
0.15  
OUTPUT CURRENT (A)  
LOAD (A)  
Figure 35. LDO2 Load Regulation Across Input Voltage, VOUT3 = 3.3 V  
Figure 38. LDO2 Ground Current vs. Output Load, VOUT3 = 2.8 V  
Rev. A | Page 14 of 32  
Data Sheet  
ADP5042  
0.50  
1µA  
100µA  
0.45  
0.40  
0.35  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0
1mA  
10mA  
100mA  
150mA  
VIN  
VOUT  
1
2
2.3  
2.8  
3.3  
3.8  
4.3  
4.8  
5.3  
5.8  
B
B
20.0M  
20.0M  
CH1 10.0mV/DIV  
CH2 800mV/DIV  
A CH2  
5.33V  
W
W
INPUT VOLTAGE (V)  
1MΩ  
Figure 39. LDO2 Ground Current vs. Input Voltage, Across Output Load,  
VOUT3 = 2.8 V  
Figure 42. LDO2 Response to Line Transient, Input Voltage from 4.5 V to 5.5 V,  
VOUT3 = 3.3 V  
VIN  
IOUT  
3
VOUT  
1
VOUT  
1
2
B
B
B
A CH3  
28mA 200µs/DIV  
500kS/s  
CH1 50mV/DIV 1MΩ  
CH3 50mA/DIV 1MΩ  
500M  
20.0M  
20.0M  
20.0M  
CH1 10.0mV/Div  
CH2 800mV/Div  
A CH2  
5.33V  
W
W
W
B
1MΩ  
W
2.0µs/pt  
Figure 40. LDO2 Response to Load Transient, IOUT3 from 1 mA to 80 mA,  
VOUT3 = 3.3 V  
Figure 43. LDO1 Line Transient VIN = 4.5 V to 5.5 V, VOUT2 = 1.5 V  
3.0  
2.5  
2.0  
1.5  
1.0  
IOUT  
3
VOUT  
1
0.5  
5.5V  
4.5V  
3.6V  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
B
A CH3  
50mA  
200µs/DIV  
500kS/s  
2.0µs/pt  
CH1 50mV/DIV 1MΩ  
CH3 50mA/DIV 1MΩ  
500M  
20.0M  
LOAD CURRENT (A)  
W
B
W
Figure 41. LDO1 Response to Load Transient, IOUT3 from 1 mA to 80 mA,  
VOUT2 = 1.5 V  
Figure 44. LDO1, LDO2 Output Current Capability vs. Input Voltage  
Rev. A | Page 15 of 32  
ADP5042  
Data Sheet  
100  
10  
VOUT3 = 3.3V, VIN3 = 3.6V, I  
VOUT3 = 1.5V, VIN3 = 1.8V, I  
VOUT3 = 2.8V, VIN3 = 3.1V, I  
= 300mA  
= 300mA  
= 300mA  
LOAD  
LOAD  
LOAD  
100  
1
CH2; V  
CH2; V  
CH2; V  
CH2; V  
CH2; V  
= 3.3V; VIN = 5V  
= 3.3V; VIN = 3.6V  
= 2.8V; VIN = 3.1V  
= 1.5V; VIN = 5V  
= 1.5V; VIN = 1.8V  
OUT  
OUT  
OUT  
OUT  
OUT  
0.1  
0.01  
10  
0.0001 0.001  
0.01  
0.1  
1
10  
100  
1k  
1
10  
100  
1k  
10k  
100k  
1M  
LOAD (mA)  
FREQUENCY (Hz)  
Figure 45. LDO1 Output Noise vs. Load Current, Across Input and Output Voltage  
Figure 48. LDO2 Noise Spectrum Across Output Voltage, VIN = VOUT + 0.3 V  
100  
VOUT2 = 3.3V, VIN2 = 3.6V, I  
VOUT3 = 3.3V, VIN3 = 3.6V, I  
VOUT2 = 1.5V, VIN2 = 1.8V, I  
= 300mA  
= 300mA  
= 300mA  
LOAD  
LOAD  
LOAD  
10  
100  
1.0  
0.1  
CH3; VOUT = 3.3V; VIN = 5V  
CH3; VOUT = 3.3V; VIN = 3.6V  
CH3; VOUT = 2.8V; VIN = 3.1V  
CH3; VOUT = 1.5V; VIN = 5V  
CH3; VOUT = 1.5V; VIN = 1.8V  
10  
VOUT3 = 1.5V, VIN3 = 1.8V, I  
VOUT2 = 2.8V, VIN2 = 3.1V, I  
VOUT3 = 2.8V, VIN3 = 3.1V, I  
= 300mA  
= 300mA  
= 300mA  
LOAD  
LOAD  
LOAD  
0.01  
10  
100  
1k  
10k  
100k  
1M  
10M  
0.0001 0.001  
0.01  
0.1  
1
10  
100  
1k  
FREQUENCY (Hz)  
LOAD (mA)  
Figure 49. LDO1 vs. LDO2 Noise spectrum  
Figure 46. LDO2 Output Noise vs. Load Current, Across Input and Output Voltage  
100  
VOUT2 = 3.3V, VIN2 = 3.6V, I  
VOUT2 = 1.5V, VIN2 = 1.8V, I  
VOUT2 = 2.8V, VIN2 = 3.1V, I  
= 300mA  
= 300mA  
= 300mA  
LOAD  
LOAD  
LOAD  
–10  
–20  
1mA  
10mA  
100mA  
200mA  
300mA  
10  
1.0  
–30  
–40  
–50  
–60  
–70  
–80  
0.1  
–90  
0.01  
10  
100  
1k  
10k  
100k  
1M  
10M  
–100  
FREQUENCY (Hz)  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 50. LDO2 PSRR Across Output Load, VIN3 = 3.3 V, VOUT3 = 2.8 V  
Figure 47. LDO1 Noise Spectrum Across Output Voltage, VIN = VOUT + 0.3 V  
Rev. A | Page 16 of 32  
Data Sheet  
ADP5042  
–10  
–20  
–10  
–20  
1mA  
1mA  
10mA  
100mA  
200mA  
300mA  
10mA  
100mA  
200mA  
300mA  
–30  
–40  
–30  
–40  
–50  
–60  
–70  
–80  
–50  
–60  
–70  
–80  
–90  
–90  
–100  
–100  
10  
10  
100  
1k  
10k  
100k  
1M  
10M  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 54. LDO1 PSRR Across Output Load, VIN2 = 5.0 V, VOUT2 = 1.5 V  
Figure 51. LDO2 PSRR Across Output Load, VIN3 = 3.1 V, VOUT3 = 2.8 V  
–10  
–10  
1mA  
10mA  
100mA  
200mA  
1mA  
10mA  
100mA  
–20  
–20  
200mA  
–30  
–30  
–40  
300mA  
–40  
–50  
–60  
–70  
–80  
–50  
–60  
–70  
–80  
–90  
–90  
–100  
–100  
10  
100  
1k  
10k  
100k  
1M  
10M  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
FREQUENCY (Hz)  
Figure 52. LDO2 PSRR Across Output Load, VIN3 = 5 V, VOUT3 = 3.3 V  
Figure 55. LDO1 PSRR Across Output Load, VIN2 = 1.8 V, VOUT2 = 1.5 V  
–10  
1mA  
10mA  
100mA  
–20  
200mA  
300mA  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
10  
100  
1k  
10k  
100k  
1M  
10M  
FREQUENCY (Hz)  
Figure 53. LDO2 PSRR Across Output Load, VIN3 = 3.6 V, VOUT3 = 3.3 V  
Rev. A | Page 17 of 32  
ADP5042  
Data Sheet  
THEORY OF OPERATION  
VOUT1  
WMOD  
WDI1  
WDI2  
MR  
40kΩ  
60Ω  
ENWD1  
ENWD2  
ENBK  
VDDA  
52kΩ  
WATCHDOG  
DETECTOR1  
WATCHDOG  
DETECTOR2  
VDDA  
AVIN  
VIN1  
GM ERROR  
AMP  
POFF  
200kΩ  
PWM  
COMP  
WATCHDOG  
WSTAT  
STATUS  
MONITOR  
SOFT START  
I
LIMIT  
DEBOUNCE  
R1  
PSM  
COMP  
R0  
PWM/  
PSM  
CONTROL  
BUCK1  
LOW  
CURRENT  
VDDA  
A
nRSTO  
SW  
B
C
Y
RESET  
GENERATOR  
D
OSCILLATOR  
DRIVER  
AND  
ANTISHOOT  
THROUGH  
V
REF  
SYSTEM  
UNDERVOLTAGE  
LOCK OUT  
500Ω  
PGND  
ENLDO2  
THERMAL  
SHUTDOWN  
POFF  
MODE  
MODE  
EN1  
ENABLE  
AND MODE  
CONTROL  
ENBK  
ENLDO1  
ENLDO2  
EN2  
R1  
R2  
R3  
R4  
EN3  
SEL  
LDO1  
CONTROL  
LDO2  
CONTROL  
VDDA  
VDDA  
OPMODE_FUSES  
ADP5042  
500Ω  
ENLDO1  
VIN2  
AGND VOUT2 VIN3  
VOUT3  
Figure 56. Functional Block Diagram  
The buck regulator can operate in forced PWM mode if the  
MODE pin is at a logic high level. In forced PWM mode, the  
switching frequency of the buck is always constant and does not  
change with the load current. If the MODE pin is at logic low  
level, the switching regulator operates in auto PWM/PSM mode.  
In this mode, the regulator operates at fixed PWM frequency  
when the load current is above the power saving current threshold.  
When the load current falls below the power saving current  
threshold, the regulator enters power saving mode, where the  
switching occurs in bursts. The burst repetition is a function of  
the current load and the output capacitor value. This operating  
mode reduces the switching and quiescent current losses.  
POWER MANAGEMENT UNIT  
The ADP5042 is a micro power management unit (micro PMU)  
combing one step-down (buck) dc-to-dc convertor, two low  
dropout linear regulators (LDOs), and a supervisory circuit, with  
dual watchdog, for processor control. The regulators are activated  
by a logic level high applied to the respective EN pin. The EN1  
controls the buck regulator, the EN2 controls LDO1, and the  
EN3 controls LDO2. The ADP5042 has factory programmed  
output voltages and reset voltage threshold. Other features  
available in this device are the mode pin to control the buck  
switching operation, a status pin informing the external processor  
which watchdog caused a reset and push-button reset input.  
When a regulator is turned on, the output voltage is controlled  
through a soft start circuit to avoid a large inrush current due to  
the discharged output capacitors.  
Rev. A | Page 18 of 32  
 
 
Data Sheet  
ADP5042  
Thermal Protection  
PWM Mode  
In the event that the junction temperature rises above 150°C,  
the thermal shutdown circuit turns off the buck and the LDOs.  
Extreme junction temperatures can be the result of high current  
operation, poor circuit board design, or high ambient temperature.  
A 20°C hysteresis is included so that when thermal shutdown  
occurs, the buck and LDOs do not return to operation until the  
on-chip temperature drops below 130°C. When coming out of  
thermal shutdown, soft start is initiated.  
In PWM mode, the buck operates at a fixed frequency of 3 MHz,  
set by an internal oscillator. At the start of each oscillator cycle,  
the PFET switch is turned on, sending a positive voltage across  
the inductor. Current in the inductor increases until the current  
sense signal crosses the peak inductor current threshold that  
turns off the PFET switch and turns on the NFET synchronous  
rectifier. This sends a negative voltage across the inductor,  
causing the inductor current to decrease. The synchronous  
rectifier stays on for the rest of the cycle. The buck regulates the  
output voltage by adjusting the peak inductor current threshold.  
Undervoltage Lockout  
To protect against battery discharge, undervoltage lockout  
(UVLO) circuitry is integrated in the system. If the input  
voltage on AVIN drops below a typical 2.15 V UVLO threshold,  
all channels shut down. In the buck channel, both the power  
switch and the synchronous rectifier turn off. When the voltage  
on AVIN rises above the UVLO threshold, the part is enabled  
once more.  
Power Save Mode (PSM)  
The buck smoothly transitions to PSM operation when the load  
current decreases below the PSM current threshold. When the  
buck enters power save mode, an offset is induced in the PWM  
regulation level, which makes the output voltage rise. When the  
output voltage reaches a level that is approximately 1.5% above  
the PWM regulation level, PWM operation is turned off. At this  
point, both power switches are off, and the buck enters an idle  
mode. The output capacitor discharges until the output voltage  
falls to the PWM regulation voltage, at which point the device  
drives the inductor to make the output voltage rise again to the  
upper threshold. This process is repeated while the load current  
is below the PSM current threshold.  
Alternatively, the user can select device models with a UVLO  
set at a higher level, suitable for 5 V applications. For these  
models, the device hits the turn-off threshold when the input  
supply drops to 3.65 V typical.  
Enable/Shutdown  
The ADP5042 has individual control pins for each regulator. A  
logic level high applied to the ENx pin activates a regulator, a  
logic level low turns off a regulator.  
PSM Current Threshold  
The PSM current threshold is set to 100 mA. The buck employs  
a scheme that enables this current to remain accurately con-  
trolled, independent of input and output voltage levels. This  
scheme also ensures that there is very little hysteresis between  
the PSM current threshold for entry to and exit from the PSM.  
The PSM current threshold is optimized for excellent efficiency  
over all load currents.  
When regulators are turned off after a Watchdog 2 event (see  
the Watchdog 2 Input section), the reactivation of the regulator  
occurs with a factory programmed order (see Table 9). The  
delay between the regulator activation (tD1, tD2) is 2 ms.  
Table 9. ADP5042 Regulators Sequencing  
REGSEQ[1:0] Regulators Sequence (First to Last)  
Short-Circuit Protection  
0
0
1
1
0
1
0
1
LDO1 LDO2 Buck  
Buck LDO1 LDO2  
LDO1 Buck LDO2  
No sequence, all regulators start at same time  
The buck includes frequency foldback to prevent output current  
runaway on a hard short. When the voltage at the feedback pin  
falls below half the target output voltage, indicating the possi-  
bility of a hard short at the output, the switching frequency is  
reduced to half the internal oscillator frequency. The reduction  
in the switching frequency allows more time for the inductor to  
discharge, preventing a runaway of output current.  
BUCK SECTION  
The buck uses a fixed frequency and high speed current mode  
architecture. The buck operates with an input voltage of 2.3 V  
to 5.5 V.  
Soft Start  
Control Scheme  
The buck has an internal soft start function that ramps the  
output voltage in a controlled manner upon startup, thereby  
limiting the inrush current. This prevents possible input voltage  
drops when a battery or a high impedance power source is  
connected to the input of the converter.  
The buck operates with a fixed frequency, current mode PWM  
control architecture at medium to high loads for high efficiency  
but shift to a power save mode (PSM) control scheme at light  
loads to lower the regulation power losses. When operating in  
fixed frequency PWM mode, the duty cycle of the integrated  
switches is adjusted and regulates the output voltage. When  
operating in PSM at light loads, the output voltage is controlled  
in a hysteretic manner, with higher output voltage ripple. During  
part of this time, the converter is able to stop switching and  
enters an idle mode, which improves conversion efficiency.  
Current Limit  
The buck has protection circuitry to limit the amount of  
positive current flowing through the PFET switch and the  
amount of negative current flowing through the synchronous  
rectifier. The positive current limit on the power switch limits  
Rev. A | Page 19 of 32  
 
 
ADP5042  
Data Sheet  
the amount of current that can flow from the input to the  
output. The negative current limit prevents the inductor  
current from reversing direction and flowing out of the load.  
Reset Output  
The ADP5042 has an active-low, open-drain reset output. This  
output structure requires an external pull-up resistor to connect  
the reset output to a voltage rail that is no higher than 6 V. The  
resistor should comply with the logic low and logic high voltage  
level requirements of the microprocessor while supplying input  
current and leakage paths on the nRSTO pin. A 10 kΩ resistor is  
adequate in most situations.  
100% Duty Operation  
With a dropping input voltage or with an increase in load  
current, the buck may reach a limit where, even with the PFET  
switch on 100% of the time, the output voltage drops below the  
desired output voltage. At this limit, the buck transitions to a  
mode where the PFET switch stays on 100% of the time. When  
the input conditions change again and the required duty cycle  
falls, the buck immediately restarts PWM regulation without  
allowing overshoot on the output voltage.  
The reset output is asserted when the monitored rail is below  
the reset threshold (VTH), when WDI1 or WDI2 is not serviced  
within the watchdog timeout period (tWD1 and tWD12). Reset remains  
asserted for the duration of the reset active timeout period (tRP)  
after VCC rises above the reset threshold or after the watchdog  
timer times out. Figure 57 illustrates the behavior of the reset  
output, nRSTO, and it assumes that VOUT2 is selected as the  
rail to be monitored and supplies the external pull-up connected  
to the nRSTO output.  
LDO SECTION  
The ADP5042 contains two LDOs with low quiescent current,  
low dropout linear regulator, and provides up to 300 mA of  
output current. Drawing a low 15 μA quiescent current (typical)  
at no load makes the LDO ideal for battery-operated portable  
equipment.  
VOUT2  
V
V
TH  
TH  
1V  
0V  
VOUT2  
nRSTO  
The LDO operates with an input voltage range of 1.7 V to 5.5 V.  
The wide operating range makes these LDOs suitable for  
cascading configurations where the LDO supply voltage is  
provided from the buck regulator.  
VOUT2  
tRP1  
tRD  
0V  
RSTO  
tRP1  
1V  
0V  
tRD  
The LDOs also provide high power supply rejection ratio (PSRR),  
low output noise, and excellent line and load transient response  
with just a small 1 µF ceramic input and output capacitor.  
Figure 57. Reset Timing Diagram  
The reset threshold voltage and the sensed rail (VOUT1,  
LDO2 is optimized to supply analog circuits because it offers  
better noise performance compared to LDO1. LDO1 should be  
used in applications where noise performance is not critical.  
VOUT2, VOUT3, or AVIN) are factory programmed. Refer to  
Table 16 for a complete list of the reset thresholds available for  
the ADP5042.  
Internally, one LDO consists of a reference, an error amplifier,  
a feedback voltage divider, and a PMOS pass transistor. Output  
current is delivered via the PMOS pass device, which is con-  
trolled by the error amplifier. The error amplifier compares  
the reference voltage with the feedback voltage from the output  
and amplifies the difference. If the feedback voltage is lower  
than the reference voltage, the gate of the PMOS device is  
pulled lower, allowing more current to flow and increasing  
the output voltage. If the feedback voltage is higher than the  
reference voltage, the gate of the PMOS device is pulled higher,  
reducing the current flowing to the output.  
When monitoring the input supply voltage, AVIN, if the  
selected reset threshold is below the UVLO level (factory  
programmable to 2.25 V or 3.6 V) the reset output, nRSTO, is  
asserted low as soon as the input voltage falls below the UVLO  
threshold. Below the UVLO threshold, the reset output is  
maintained low down to ~1 V VIN. This it to ensure that the reset  
output is not released when there is sufficient voltage on the rail  
supplying a processor to restart the processor operations.  
Manual Reset Input  
MR  
The ADP5042 features a manual reset input ( ) which, when  
MR  
transitions from  
SUPERVISORY SECTION  
driven low, asserts the reset output. When  
low to high, reset remains asserted for the duration of the reset  
MR  
The ADP5042 provides microprocessor supply voltage super-  
vision by controlling the reset input of the microprocessor.  
Code execution errors are avoided during power-up, power-  
down, and brownout conditions by asserting a reset signal when  
the supply voltage is below a preset threshold and by allowing  
supply voltage stabilization with a fixed timeout reset pulse  
after the supply voltage rises above the threshold. In addition,  
problems with microprocessor code execution can be monitored  
and corrected with a dual-watchdog timer.  
active timeout period before deasserting. The  
input has a  
52 kΩ, internal pull-up, connected to AVIN, so that the input is  
always high when unconnected. An external push-button  
MR  
switch can be connected between  
user can generate a reset. Debounce circuitry for this purpose is  
MR  
and ground so that the  
integrated on chip. Noise immunity is provided on the  
input,  
and fast, negative-going transients of up to 100 ns (typical) are  
MR  
ignored. A 0.1 µF capacitor between  
additional noise immunity.  
and ground provides  
Rev. A | Page 20 of 32  
 
 
 
Data Sheet  
ADP5042  
Watchdog 1 Input  
V
V
SENSED  
TH  
1V  
0V  
The ADP5042 features a watchdog timer that monitors micro-  
processor activity. A timer circuit is cleared with every low-to-  
high or high-to-low logic transition on the watchdog input pin  
(WDI1), which detects pulses as short as 80 ns. If the timer  
counts through the preset watchdog timeout period (tWD1), reset  
is asserted. The microprocessor is required to toggle the WDI1  
pin to avoid being reset. Failure of the microprocessor to toggle  
WDI1 within the timeout period, therefore, indicates a code  
execution error, and the reset pulse generated restarts the  
microprocessor in a known state.  
nRSTO  
tRP1  
tWD1  
tRP1  
0V  
0V  
WDI1  
Figure 58. Watchdog 1 Timing Diagram  
Watchdog 2 Input  
The ADP5042 features an additional watchdog timer that  
monitors microprocessor activity in parallel to the first watchdog  
with a much longer timeout. This provides additional security  
and safety in case Watchdog 1 is incorrectly strobed. A timer  
circuit is cleared with every low-to-high or high-to-low logic  
transition on the watchdog input pin (WDI2), which detects pulses  
as short as 8 µs. If the timer counts through the preset watchdog  
timeout period (tWD2), reset is asserted, followed by a power  
cycle of all regulators . The microprocessor is required to toggle  
the WDI2 pin to avoid being reset and powered down. Failure  
of the microprocessor to toggle WDI2 within the timeout period,  
therefore, indicates a code execution error, and the reset output  
nRSTO is forced low for tRP2. Then, all the regulators are turned  
off for the tPOFF time. After the tPOFF period, the regulators are re-  
activated according to a predefined sequence (see Table 9). Finally,  
the reset line (nRSTO) is asserted for tRP1. This guarantees a  
clean power-up of the system and proper reset.  
As well as logic transitions on WDI1, the watchdog timer is also  
cleared by a reset assertion due to an undervoltage condition on  
the monitored rail. When reset is asserted, the watchdog timer  
is cleared and does not begin counting again until reset deasserts.  
Watchdog 1 timer can be disabled by leaving WDI1 floating or  
by three-stating the WDI1 driver. The pin WMOD controls the  
Watchdog 1 operating mode. If WMOD is set to logic level low,  
Watchdog 1 is enabled as long as WDI1 is not in three-state. If  
WMOD is set to logic level high, Watchdog 1 is always active  
and cannot be disabled by a three-state condition. WMOD  
input has an internal 200 kΩ pull-down resistor.  
Watchdog 1 timeout is factory set to two possible values as  
indicated in Table 18.  
As well as logic transitions on WDI2, the watchdog timer is also  
cleared by a reset assertion due to an undervoltage condition on  
the VTH monitored rail which can be factory programmable  
between VOUT1, VOUT2, VOUT3, and AVIN (see Table 21).  
When reset is asserted, the watchdog timer is cleared and does  
not begin counting again until reset deasserts.  
Watchdog 2 timeout is factory set to seven possible values as  
indicated in Table 19. One additional option allows Watchdog 2  
to be factory disabled.  
AVIN/VINx/ENx  
tPOFF  
VOUT1  
VOUT3  
VOUT2  
0V  
tD1  
tD1  
tD2  
0V  
0V  
tD2  
VTH  
tRP1  
tWD2  
tRP2  
tRP1  
n
RSTO  
0V  
0V  
WDI2  
tWDCLEAR  
WSTAT  
Figure 59. Watchdog 2 Timing Diagram (Assuming That VOUT2 Is the Monitored Rail)  
Rev. A | Page 21 of 32  
 
ADP5042  
Data Sheet  
Watchdog Status Indicator  
situation, WSTAT maintains the previous state (see state flow in  
Figure 60).  
In addition to the dual watchdog function, the ADP5042  
features a watchdog status monitor available on the WSTAT pin.  
This pin can be queried by the external processor to determine  
the origin of a reset. WSTAT is an open-drain output.  
The external processor can further distinguish a reset caused by  
a Watchdog 1 timeout from a power failure, status monitor  
WSTAT indicating a high level, by implementing a RAM check  
or signature verification after reset. A RAM check or signature  
failure indicates that a power failure has occurred, whereas a  
RAM check or signature validation indicates that a Watchdog 1  
timeout has occurred.  
WSTAT outputs a logic level depending on the condition that  
has generated a reset. WSTAT is forced low if the reset was  
generated because of a Watchdog 2 timeout. WSTAT is pulled  
high, through external pull-up, for any other reset cause (Watchdog  
1 timeout, power failure or monitored voltage below threshold).  
The status monitor is automatically cleared (set to logic level  
high) 10 seconds after the nRSTO low to high transition (tWDCLEAR),  
processor firmware must be designed being able to read the  
WSTAT flag before tWDCLEAR expiration after a Watchdog 2 reset.  
Table 10 shows the possible watchdog decoded statuses.  
Table 10. Watchdog Status Decoding  
WSTAT  
High  
High  
Low  
RAM CHECKSUM  
RESET ORIGIN  
Power failure  
Watchdog 1  
Watchdog 2  
Failed  
Ok  
Don't care  
The WSTAT flag is not updated in the event of a reset due to a  
low voltage threshold detection or Watchdog 1 event occurring  
within 10 seconds after nRSTO low to high transition. In this  
NO POWER APPLIED TO AVIN.  
ALL REGULATORS AND SUPERVISORY  
TURNED OFF  
NO POWER  
AVIN > VUVLO  
AVIN < VUVLO  
AVIN < VUVLO  
TRANSITION  
STATE  
POR  
INTERNAL CIRCUIT BIASED  
REGULATORS AND  
SUPERVISORY NOT ACTIVATED  
END OF POR  
STANDBY  
AVIN < VUVLO  
ALL ENx = HIGH  
ALL ENx = LOW  
AVIN < VUVLO  
TRANSITION  
WSTAT  
TIMEOUT  
(t  
WDOG2  
STATE  
TIMEOUT  
TRANSITION  
STATE  
WSTAT = HIGH  
WSTAT = 1  
)
(t  
)
WSTAT = 0  
WDCLEAR  
WD2  
WSTAT = LOW  
ALL REGULATORS AND  
SUPERVISOR ACTIVATED  
ACTIVE  
RESET SHORT  
END OF RESET  
WDOG1 TIMEOUT  
(t ) AND  
WD1  
WSTAT TIMEOUT  
PULSE (t  
)
RP2  
WDOG1 TIMEOUT  
(t  
END OF RESET  
PULSE (t  
)
)
RP1  
WD1  
TRANSITION  
STATE  
WSTAT = HIGH  
POWER OFF  
VMON < VTH  
WSTAT = 1  
END OF (t  
POFF  
)
PULSE  
RESET  
NORMAL  
Figure 60. ADP5042 State Flow  
Rev. A | Page 22 of 32  
 
 
Data Sheet  
ADP5042  
APPLICATIONS INFORMATION  
BUCK EXTERNAL COMPONENT SELECTION  
Output Capacitor  
Trade-offs between performance parameters such as efficiency  
and transient response can be made by varying the choice of  
external components in the applications circuit, as shown in  
Figure 66.  
Higher output capacitor values reduce the output voltage ripple  
and improve load transient response. When choosing this value,  
it is also important to account for the loss of capacitance due to  
output voltage dc bias.  
Inductor  
Ceramic capacitors are manufactured with a variety of dielec-  
trics, each with a different behavior over temperature and  
applied voltage. Capacitors must have a dielectric adequate  
to ensure the minimum capacitance over the necessary  
temperature range and dc bias conditions. X5R or X7R  
dielectrics with a voltage rating of 6.3 V or 10 V are recom-  
mended for best performance. Y5V and Z5U dielectrics are  
not recommended for use with any dc-to-dc converter because  
of their poor temperature and dc bias characteristics.  
The high switching frequency of the ADP5042 buck allows for  
the selection of small chip inductors. For best performance, use  
inductor values between 0.7 μH and 3 μH. Suggested inductors  
are shown in Table 11.  
The peak-to-peak inductor current ripple is calculated using  
the following equation:  
VOUT ×(VIN VOUT  
)
IRIPPLE  
=
V
IN × fSW ×L  
The worst-case capacitance accounting for capacitor variation  
over temperature, component tolerance, and voltage is calcu-  
lated using the following equation:  
where:  
SW is the switching frequency.  
L is the inductor value.  
f
C
EFF = COUT × (1 − TEMPCO) × (1 − TOL)  
The minimum dc current rating of the inductor must be greater  
than the inductor peak current. The inductor peak current is  
calculated using the following equation:  
where:  
C
EFF is the effective capacitance at the operating voltage.  
TEMPCO is the worst-case capacitor temperature coefficient.  
TOL is the worst-case component tolerance.  
IRIPPLE  
2
IPEAK = ILOAD(MAX)  
+
In this example, the worst-case temperature coefficient (TEMPCO)  
over −40°C to +85°C is assumed to be 15% for an X5R dielectric.  
The tolerance of the capacitor (TOL) is assumed to be 10%, and  
Inductor conduction losses are caused by the flow of current  
through the inductor, which has an associated internal dc  
resistance (DCR). Larger sized inductors have smaller DCR,  
which may decrease inductor conduction losses. Inductor core  
losses are related to the magnetic permeability of the core material.  
Because the buck is high switching frequency dc-to-dc converters,  
shielded ferrite core material is recommended for its low core  
losses and low EMI.  
C
OUT is 9.2481 μF at 1.8 V, as shown in Figure 61.  
Substituting these values in the equation yields  
EFF = 9.2481 μF × (1 − 0.15) × (1 − 0.1) = 7.0747 μF  
C
To guarantee the performance of the buck, it is imperative  
that the effects of dc bias, temperature, and tolerances on the  
behavior of the capacitors be evaluated for each application.  
12  
Table 11. Suggested 1.0 μH Inductors  
Dimensions  
(mm)  
ISAT  
(mA)  
DCR  
(mΩ)  
Vendor  
Murata  
Murata  
Model  
10  
8
LQM2MPN1R0NG0B 2.0 × 1.6 × 0.9  
LQM18FN1R0M00B 1.6 × 0.8 × 0.8  
1.6 × 0.8 × 0.8  
2.0 × 2.0 × 1.4  
GLFR1608T1R0M-LR 1.6 × 0.8 × 0.8  
1400  
150  
290  
900  
230  
85  
26  
90  
59  
80  
81  
85  
Taiyo Yuden CBMF1608T1R0M  
Coilcraft  
TDK  
Coilcraft  
Toko  
EPL2014-102ML  
6
0603LS-102  
MDT2520-CN  
1.8 × 1.69 × 1.1 400  
2.5 × 2.0 × 1.2  
4
1350  
2
0
0
1
2
3
4
5
6
DC BIAS VOLTAGE (V)  
Figure 61. Typical Capacitor Performance  
Rev. A | Page 23 of 32  
 
 
 
 
ADP5042  
Data Sheet  
The peak-to-peak output voltage ripple for the selected output  
capacitor and inductor values is calculated using the following  
equation:  
Input Capacitor  
Higher value input capacitors help to reduce the input voltage  
ripple and improve transient response. Maximum input  
capacitor current is calculated using the following equation:  
VIN  
×2×L×COUT  
IRIPPLE  
8× fSW ×COUT  
VRIPPLE  
=
=
(
2π × fSW  
)
VOUT (VIN VOUT  
)
ICIN ILOAD(MAX)  
Capacitors with lower equivalent series resistance (ESR) are  
preferred to guarantee low output voltage ripple, as shown in  
the following equation:  
VIN  
To minimize supply noise, place the input capacitor as close  
to the VIN pin of the buck as possible. As with the output  
capacitor, a low ESR capacitor is recommended.  
VRIPPLE  
IRIPPLE  
ESRCOUT  
The effective capacitance needed for stability, which includes  
temperature and dc bias effects, is a minimum of 3 µF and a  
maximum of 10 µF. A list of suggested capacitors is shown in  
Table 13.  
The effective capacitance needed for stability, which includes  
temperature and dc bias effects, is a minimum of 7 µF and a  
maximum of 40 µF.  
Table 13. Suggested 4.7 μF Capacitors  
Table 12. Suggested 10 μF Capacitors  
Voltage  
Case Rating  
Size (V)  
GRM188R60J475ME19D 0603 6.3  
Case  
Size  
Voltage  
Rating (V)  
Vendor  
Murata  
Taiyo Yuden  
TDK  
Type  
X5R  
X5R  
X5R  
X5R  
Model  
Vendor  
Type Model  
X5R  
GRM188R60J106  
JMK107BJ475  
C1608JB0J106K  
ECJ1VB0J106M  
0603  
0603  
0603  
0603  
6.3  
6.3  
6.3  
6.3  
Murata  
Taiyo Yuden X5R  
Panasonic X5R  
JMK107BJ475  
0603 6.3  
0402 6.3  
ECJ-0EB0J475M  
Panasonic  
LDO CAPACITOR SELECTION  
Output Capacitor  
The buck regulator requires 10 µF output capacitors to guaran-  
tee stability and response to rapid load variations and to transition  
in and out the PWM/PSM modes. In certain applications, where  
the buck regulator powers a processor, the operating state is  
known because it is controlled by software. In this condition,  
the processor can drive the MODE pin according to the operating  
state; consequently, it is possible to reduce the output capacitor  
from 10 µF to 4.7 µF because the regulator does not expect a  
large load variation when working in PSM mode (see Figure 62).  
The ADP5042 LDOs are designed for operation with small,  
space-saving ceramic capacitors, but they function with most  
commonly used capacitors as long as care is taken with the ESR  
value. The ESR of the output capacitor affects stability of the  
LDO control loop. A minimum of 0.70 µF capacitance with an  
ESR of 1 Ω or less is recommended to ensure stability of the  
ADP5042. Transient response to changes in load current is also  
affected by output capacitance. Using a larger value of output  
capacitance improves the transient response of the ADP5042 to  
large changes in load current.  
ADP5042  
R
FLT  
30Ω  
MICRO PMU  
L1  
1µH  
AVIN  
PROCESSOR  
VCORE  
SW  
Input Bypass Capacitor  
VOUT1  
PGND  
C6  
4.7µF  
VIN1  
Connecting a 1 µF capacitor from VIN2 and VIN3 to GND  
reduces the circuit sensitivity to printed circuit board (PCB)  
layout, especially when long input traces or high source  
impedance is encountered. If greater than 1 µF of output  
capacitance is required, increase the input capacitor to match it.  
V
IN  
2.3V TO 5.5V  
C2  
4.7µF  
VOUT2  
VDDIO  
RESET  
VIN2  
C4  
R1  
100kΩ  
1µF  
C1  
1µF  
nRSTO  
VIN3  
WDI  
GPIO1  
C3  
1µF  
Table 14. Suggested 1.0 μF Capacitors  
MODE  
ENx  
GPIO2  
3
Voltage  
Case Rating  
GPIO[x:y]  
Vendor  
Murata  
TDK  
Panasonic  
Taiyo Yuden X5R  
Type Model  
Size  
(V)  
VOUT3  
VANA  
0402 10.0  
0402 6.3  
0402 6.3  
0402 10.0  
X5R  
X5R  
X5R  
GRM155R61A105ME15  
C1005JB0J105KT  
ECJ0EB0J105K  
C5  
1µF  
ANALOG  
SUB-SYSTEM  
Figure 62. Processor System Power Management with PSM/PWM Control  
LMK105BJ105MV-F  
Rev. A | Page 24 of 32  
 
 
 
Data Sheet  
ADP5042  
Input and Output Capacitor Properties  
To guarantee the performance of the ADP5042, it is imperative  
that the effects of dc bias, temperature, and tolerances on the  
behavior of the capacitors be evaluated for each application.  
Use any good quality ceramic capacitors with the ADP5042 as  
long as they meet the minimum capacitance and maximum ESR  
requirements. Ceramic capacitors are manufactured with a variety  
of dielectrics, each with a different behavior over temperature  
and applied voltage. Capacitors must have a dielectric adequate  
to ensure the minimum capacitance over the necessary tempe-  
rature range and dc bias conditions. X5R or X7R dielectrics  
with a voltage rating of 6.3 V or 10 V are recommended for best  
performance. Y5V and Z5U dielectrics are not recommended  
for use with any LDO because of their poor temperature and dc  
bias characteristics.  
SUPERVISORY SECTION  
Watchdog 1 Input Current  
To minimize watchdog input current (and minimize overall  
power consumption), leave WDI1 low for the majority of the  
watchdog timeout period. When driven high, WDI1 can draw  
as much as 25 µA. Pulsing WDI1 low-to-high-to-low at a low  
duty cycle reduces the effect of the large input current. When  
WDI1 is unconnected and WMOD is set to logic level low, a  
window comparator disconnects the watchdog timer from the  
reset output circuitry so that reset is not asserted when the  
watchdog timer times out.  
Figure 63 depicts the capacitance vs. voltage bias characteristic  
of a 0402 1 µF, 10 V, X5R capacitor. The voltage stability of a  
capacitor is strongly influenced by the capacitor size and voltage  
rating. In general, a capacitor in a larger package or higher voltage  
rating exhibits better stability. The temperature variation of the  
X5R dielectric is about 15% over the −40°C to +85°C tempera-  
ture range and is not a function of package or voltage rating.  
1.2  
Negative-Going VCC Transients  
To avoid unnecessary resets caused by fast power supply transients,  
the ADP5042 is equipped with glitch rejection circuitry. The typical  
performance characteristic in Figure 64 plots the monitored rail  
voltage, VTH , transient duration vs. the transient magnitude.  
The curve shows combinations of transient magnitude and  
duration for which a reset is not generated for a 2.93 V reset  
threshold part. For example, with the 2.93 V threshold, a  
transient that goes 100 mV below the threshold and lasts 8 µs  
typically does not cause a reset, but if the transient is any larger  
in magnitude or duration, a reset is generated.  
1.0  
0.8  
0.6  
1000  
0.4  
0.2  
0
900  
800  
700  
600  
500  
400  
300  
200  
100  
0
0
1
2
3
4
5
6
DC BIAS VOLTAGE (V)  
Figure 63. Capacitance vs. Voltage Characteristic  
Use the following equation to determine the worst-case capa-  
citance accounting for capacitor variation over temperature,  
component tolerance, and voltage.  
C
EFF = CBIAS × (1 − TEMPCO) × (1 − TOL)  
0.1  
1
10  
100  
COMPARATOR OVERDRIVE (% OF V  
)
TH  
where:  
Figure 64. Maximum VTH Transient Duration vs. Reset  
Threshold Overdrive  
CBIAS is the effective capacitance at the operating voltage.  
TEMPCO is the worst-case capacitor temperature coefficient.  
TOL is the worst-case component tolerance.  
Watchdog Software Considerations  
In implementing the watchdog strobe code of the micro-  
processor, quickly switching WDI1 low to high and then high  
to low (minimizing WDI1 high time) is desirable for current  
consumption reasons. However, a more effective way of using  
the watchdog function can be considered.  
In this example, the worst-case temperature coefficient  
(TEMPCO) over −40°C to +85°C is assumed to be 15% for an  
X5R dielectric. The tolerance of the capacitor (TOL) is assumed  
to be 10%, and CBIAS is 0.94 μF at 1.8 V as shown in Figure 63.  
Substituting these values into the following equation yields:  
A low-to-high-to-low WDI1 pulse within a given subroutine  
prevents the watchdog from timing out. However, if the sub-  
routine becomes stuck in an infinite loop, the watchdog cannot  
detect this because the subroutine continues to toggle WDI1. A  
more effective coding scheme for detecting this error involves  
C
EFF = 0.94 μF × (1 − 0.15) × (1 − 0.1) = 0.719 μF  
Therefore, the capacitor chosen in this example meets the  
minimum capacitance requirement of the LDO over  
temperature and tolerance at the chosen output voltage.  
Rev. A | Page 25 of 32  
 
 
 
ADP5042  
Data Sheet  
V
CC  
using a slightly longer watchdog timeout. In the program that  
calls the subroutine, WDI1 is set high. The subroutine sets  
WDI1 low when it is called. If the program executes without error,  
WDI1 is toggled high and low with every loop of the program.  
If the subroutine enters an infinite loop, WDI1 is kept low, the  
watchdog times out, and the microprocessor is reset (see  
Figure 65).  
VIN1  
VOUT1  
VCORE  
VDDIO  
VOUT2  
nRSTO  
WDI1  
RESET  
I/O  
WDI2  
I/O  
MICROPROCESSOR  
ADP5042  
START  
Figure 66. Typical Applications Circuit  
SET WDI  
HIGH  
RESET  
PCB LAYOUT GUIDELINES  
Poor layout can affect ADP5042 performance, causing electro-  
magnetic interference (EMI) and electromagnetic compatibility  
(EMC) problems, ground bounce, and voltage losses. Poor  
layout can also affect regulation and stability. A good layout is  
implemented using the following guidelines:  
PROGRAM  
CODE  
INFINITE LOOP:  
WATCHDOG  
TIMES OUT  
SUBROUTINE  
SET WDI  
LOW  
Place the inductor, input capacitor, and output capacitor  
close to the IC using short tracks. These components carry  
high switching frequencies, and large tracks act as antennas.  
Route the output voltage path away from the inductor and  
SW node to minimize noise and magnetic interference.  
Maximize the size of ground metal on the component side  
to help with thermal dissipation.  
RETURN  
Figure 65. Watchdog Flow Diagram  
The second watchdog, refreshed through the WDI2 pin, is  
useful in applications where safety is a very critical factor and  
the system must recover from unwanted operations, for example, a  
processor stuck in a continuous loop where Watchdog 1 is kept  
refreshed or environmental conditions that may unset or damage  
the processor port controlling the WDI1 pin. In the event of a  
Watchdog 2 timeout, the ADP5042 power cycles all the supplied  
rails to guarantee a clean processor start.  
Use a ground plane with several vias connecting to the  
component side ground to further reduce noise interference  
on sensitive circuit nodes.  
Rev. A | Page 26 of 32  
 
 
 
Data Sheet  
ADP5042  
EVALUATION BOARD SCHEMATICS AND ARTWORK  
R
FILT  
30Ω  
AVIN  
AVIN  
L1  
1µH  
TP4  
TP1  
SW  
VOUT1 AT  
800mA  
VOUT1  
PGND  
C6  
10µF  
TP5  
BUCK  
EN_BK  
VIN1 = 2.3V  
TO 5.5V  
VIN1  
C5  
4.7µF  
TP12  
MODE  
EN1  
TP2  
VOUT2  
TP6  
VOUT2 AT  
300mA  
LDO1  
VIN2  
VIN2 = 1.7V  
C2  
1µF  
TO 5.5V  
EN_LDO1  
TP11  
C1  
1µF  
WSTAT  
nRSTO  
WDI1  
TP9  
EN2  
AVIN  
TP10  
TP7  
WDI2  
EN3  
TP8  
EN_LDO2  
LDO2  
TP3  
VOUT3  
VIN3  
VOUT3 AT  
300mA  
VIN3 = 1.7V  
TO 5.5V  
C3  
1µF  
C4  
1µF  
AGND  
Figure 67. Evaluation Board Schematic  
SUGGESTED LAYOUT  
5.5  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
PPL  
6.0  
6.5  
7.0  
mm  
3.3V  
GPL  
C3 – 1µF  
6.3V/XR5  
0402  
C4 – 1µF  
6.3V/XR5  
0402  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
GPL  
PIN 1  
PPL PPL PPL  
MODE  
MR  
VIN1  
SW  
WDI1  
GPL  
GPL  
GPL  
AGND  
WMOD  
GPL  
PGND  
EN1  
NC  
ADP5042  
EN2  
GPL GPL  
GPL  
GPL  
VIAs LEGEND  
PPL = POWER PLANE (+4V)  
GPL = GROUND PLANE  
C6 - 10µF  
6.3V/XR5 0603  
C1 – 1µF  
10V/XR5  
0402  
C2 – 1µF  
10V/XR5  
0402  
TOP LAYER  
SECOND LAYER  
1.8V  
6.0  
mm  
1.5V  
Figure 68. Layout  
Rev. A | Page 27 of 32  
 
 
ADP5042  
Data Sheet  
BILL OF MATERIALS  
Table 15.  
Reference  
Value  
Part Number  
Vendor  
Package  
C1, C2, C3, C4  
1 µF, X5R, 6.3 V  
LMK105BJ105MV-F  
LMK107BJ475MA-T  
JMK107BJ106MA-T  
Taiyo Yuden  
Taiyo Yuden  
Taiyo Yuden  
0402  
0603  
0603  
0201/0402  
0603  
C5  
C6  
RFILT  
L1  
4.7 µF, X5R, 10 V  
10 µF, X5R, 6.3 V  
30 Ω  
1 µH, 0.09 Ω, 290 mA  
1 µH, 0.08 Ω, 230 mA  
3-regulator micro PMU  
BRC1608T1R0M  
GLFR1608T1R0M-LR  
ADP5042  
Taiyo Yuden  
TDK  
Analog Devices  
0603  
20-Lead LFCSP  
IC1  
APPLICATION DIAGRAM  
AVIN  
L1  
1µH  
R
30Ω  
FILT  
AVIN  
VIN1  
SW  
VOUT1 AT  
6
7
8
800mA  
VOUT1  
PGND  
C6  
10µF  
11  
9
BUCK  
EN_BK  
V
IN1 = 2.3V  
TO 5.5V  
C5  
4.7µF  
FPWM  
MODE  
ON  
17  
14  
PWM/PSM  
EN1  
10  
13  
OFF  
VOUT2  
VOUT2 AT  
300mA  
LDO1  
VIN2  
VIN2 = 1.7V  
TO 5.5V  
(DIGITAL)  
C2  
1µF  
C1  
1µF  
EN_LDO1  
V
DD  
ON  
AVIN  
EN2  
MR  
SUPERVISOR  
16  
20  
OFF  
R1 R2  
WSTAT  
15  
5
nRSTO  
RESET  
POFF  
PUSH-BUTTON  
RESET  
WDI2  
WDI1  
12  
19  
WDOG2  
WDOG1  
V
DD  
ON  
EN3  
ON  
WMOD  
4
3
OFF  
17  
OFF  
EN2  
NC  
16  
1
EN_LDO2  
VIN3  
VOUT3  
VOUT3 AT  
300mA  
VIN3 = 1.7V  
TO 5.5V  
LDO2  
(ANALOG)  
2
C3  
1µF  
C4  
1µF  
AGND  
Figure 69. Application Diagram  
Rev. A | Page 28 of 32  
 
 
Data Sheet  
ADP5042  
FACTORY PROGRAMMABLE OPTIONS  
Table 16. Reset Voltage Threshold Options1  
TA = +25°C  
Typ  
TA = −40°C to +85°C  
Selection  
Min  
Max  
Min  
Max  
Unit  
V
V
V
V
V
V
V
V
111 (For VIN = 5 V − 6%)  
110 (For VOUT = 3.3 V)  
101 (For VOUT = 3.3 V)  
100 (For VOUT = 2.8 V)  
011 (For VOUT = 2.8 V)  
010 (For VOUT = 2.5 V − 6%)  
001 (For VOUT = 2.2 V − 6%)  
000 (For VOUT = 1.8 V − 6%)  
4.630  
3.080  
2.930  
2.630  
2.500  
2.350  
2.068  
1.692  
4.700  
3.157  
3.000  
2.696  
2.563  
2.385  
2.099  
1.717  
3.034  
2.886  
2.591  
2.463  
3.126  
2.974  
2.669  
2.538  
3.003  
2.857  
2.564  
2.438  
Table 17. Reset Timeout Options  
Selection  
Min  
Typ  
Max  
Unit  
0
1
24  
160  
30  
200  
36  
240  
ms  
ms  
Table 18. Watchdog 1 Timer Options  
Selection  
Min  
81.6  
1.12  
Typ  
102  
1.6  
Max  
122.4  
1.92  
Unit  
ms  
sec  
0
1
Table 19. Watchdog 2 Timer Options  
Selection  
Min  
Typ  
Max  
Unit  
000  
6
7.5  
9
sec  
001  
Watchdog 2 disabled  
010  
011  
100  
101  
110  
111  
3.2  
6.4  
12.8  
25.6  
51.2  
102.4  
4
8
16  
32  
64  
128  
4.8  
9.6  
19.2  
38.4  
76.8  
153.6  
min  
min  
min  
min  
min  
min  
Table 20. Power-Off Timing Options  
Selection  
Min  
140  
280  
Typ  
200  
400  
Max  
280  
560  
Unit  
ms  
ms  
0
1
Table 21. Reset Sensing Options  
Selection  
Monitored Rail  
VOUT1 pin  
VOUT2 pin  
VOUT3 pin  
AVIN1 pin  
00  
01  
10  
11  
1 When monitoring AVIN, the reset threshold selected, by fuse option or by the external resistor divided, must be higher than the UVLO threshold (2.25 V or 3.6 V).  
Rev. A | Page 29 of 32  
 
 
 
 
 
 
 
ADP5042  
Data Sheet  
OUTLINE DIMENSIONS  
4.10  
4.00 SQ  
3.90  
0.30  
0.25  
0.20  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
16  
15  
20  
0.50  
BSC  
1
EXPOSED  
PAD  
2.65  
2.50 SQ  
2.35  
5
11  
6
10  
0.50  
0.40  
0.30  
0.25 MIN  
TOP VIEW  
BOTTOM VIEW  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.80  
0.75  
0.70  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WGGD.  
Figure 70. 20-Lead, Lead Frame Chip Scale Package [LFCSP_WQ]  
4 mm × 4 mm Body, Very Very Thin Quad  
(CP-20-10)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Package  
Option  
Model1, 2  
Regulator Settings  
Supervisory Settings Temperature Range  
Package Description  
ADP5042ACPZ-1-R7  
VOUT1 = 1.8 V  
WD1 tOUT = 1.6 sec  
TJ = −40°C to +125°C  
20-Lead, Lead Frame  
Scale Package  
CP-20-10  
[LFCSP_WQ]  
VOUT2 = 1.5 V  
VOUT3 = 3.3 V  
UVLO = 2.2 V  
WD2 tOUT = 128 min  
Reset tOUT = 200 ms  
POFF = 200 ms  
Sequencing: LDO1,  
LDO2, buck  
VTH Sensing =  
VOUT3, 2.93 V  
ADP5042ACPZ-2-R7  
VOUT1 = 1.5 V  
WD1 tOUT = 1.6 sec  
TJ = −40°C to +125°C  
20-Lead, Lead Frame  
Scale Package  
CP-20-10  
[LFCSP_WQ]  
VOUT2 = 1.8 V  
VOUT3 = 3.3 V  
UVLO = 2.2 V  
WD2 tOUT = 128 min  
Reset tOUT = 200 ms  
POFF = 200 ms  
Sequencing: LDO1,  
LDO2, buck  
VTH Sensing =  
VOUT3, 2.93 V  
ADP5042CP-1-EVALZ  
ADP5042CP-2-EVALZ  
Evaluation Board  
Evaluation Board  
1 Z = RoHS Compliant Part.  
2 Monitoring ambient temperature does not guarantee that the junction temperature (TJ) is within the specified temperature limits.  
Rev. A | Page 30 of 32  
 
 
 
Data Sheet  
NOTES  
ADP5042  
Rev. A | Page 31 of 32  
ADP5042  
NOTES  
Data Sheet  
©2010-2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D08811-0-11/11(A)  
Rev. A | Page 32 of 32  

相关型号:

ADP5043

Micro PMU with 800 mA Buck, 300 mA LDO, Supervisory, Watchdog, and Manual Reset
ADI

ADP5043ACPZ-1-R7

Micro PMU with 800 mA Buck, 300 mA LDO, Supervisory, Watchdog, and Manual Reset
ADI

ADP5043CP-1-EVALZ

Micro PMU with 800 mA Buck, 300 mA LDO, Supervisory, Watchdog, and Manual Reset
ADI

ADP50460008CBZR

POWER SUPPLY SUPPORT CKT
ADI

ADP5050

5-Channel Integrated Power Solution with Quad Buck Regulators and 200 mA LDO Regulator
ADI

ADP5050-EVALZ

5-Channel Integrated Power Solution with Quad Buck Regulators and 200 mA LDO Regulator
ADI

ADP5050ACPZ-R7

5-Channel Integrated Power Solution with Quad Buck Regulators and 200 mA LDO Regulator
ADI

ADP5051

Integrated Power Solution with Quad Buck
ADI

ADP5051ACPZ-R7

Integrated Power Solution with Quad Buck Regulators, Supervisory, and I<sup>2</sup>C Interface
ADI

ADP5052

5-Channel Integrated Power Solution with Quad Buck Regulators and 200 mA LDO Regulator
ADI

ADP5052-EVALZ

5-Channel Integrated Power Solution with Quad Buck Regulators and 200 mA LDO Regulator
ADI

ADP5052ACPZ-R7

5-Channel Integrated Power Solution with Quad Buck Regulators and 200 mA LDO Regulator
ADI