ADL5592ACPZ-R71 [ADI]

250 MHz to 2400 MHz RF Variable Gain Amplifier; 250 MHz至2400 MHz的RF可变增益放大器
ADL5592ACPZ-R71
型号: ADL5592ACPZ-R71
厂家: ADI    ADI
描述:

250 MHz to 2400 MHz RF Variable Gain Amplifier
250 MHz至2400 MHz的RF可变增益放大器

放大器
文件: 总20页 (文件大小:1119K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
250 MHz to 2400 MHz  
RF Variable Gain Amplifier  
ADL5592  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
Output frequency range: 250 MHz to 2400 MHz  
Noise figure: 5.7 dB at 1960 MHz  
OIP3 at 1960 MHz: 29 dBm at PIN = 0 dBm per tone  
2 digital attenuators, each with 31 dB range  
1 dB attenuation step size  
RFOUT  
RFIN  
ATTENUATOR  
CONTROL  
CIRCUITRY  
LOIP  
Single SPI port  
LOOP EN  
Single supply: 4.5 V to 5.5 V  
40-lead, 6 mm × 6 mm LFCSP package  
ADL5592  
APPLICATIONS  
LOOP OUT  
SPI PORT*  
*COMPRISES THE DATA, CLK, AND LE PINS.  
GSM/EDGE and cellular communications systems  
Figure 1.  
GENERAL DESCRIPTION  
The ADL5592 is a digitally programmable variable gain  
amplifier (VGA) designed for use from 250 MHz to 2400 MHz.  
Two digitally programmable attenuators are cascaded with a  
high linearity fixed-gain amplifier. The device also includes a  
mixer, which can be used to mix the transmitted signal into an  
adjacent receive band for loopback testing.  
The ADL5592 can be used in conjunction with a direct-to-RF  
modulator, such as ADL537x and ADL539x, in cellular  
communications systems such as GSM/EDGE.  
The ADL5592 is available in a 6 mm × 6 mm, 40-lead exposed-  
paddle LFCSP package. The device operates from the −40°C to  
+85°C temperature range.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2008 Analog Devices, Inc. All rights reserved.  
 
ADL5592  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Fixed-Gain Amplifier................................................................. 11  
Loopback Mixer.......................................................................... 11  
Applications Information.............................................................. 12  
Basic Connections...................................................................... 12  
Programming the SPI Port........................................................ 12  
GSM/EDGE Transmit Application.......................................... 14  
Soldering Information............................................................... 14  
Evaluation Board ............................................................................ 15  
Characterization Setup .............................................................. 15  
Schematic and Layout................................................................ 16  
Configuration Options .............................................................. 18  
Outline Dimensions....................................................................... 19  
Ordering Guide .......................................................................... 19  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 8  
Theory of Operation ...................................................................... 11  
Input Switch ................................................................................ 11  
Digital Attenuator....................................................................... 11  
SPI Interface ................................................................................ 11  
REVISION HISTORY  
6/08—Revision 0: Initial Version  
Rev. 0 | Page 2 of 20  
 
ADL5592  
SPECIFICATIONS  
Measured at VCC = 5.0 V, TA = 25°C, unless otherwise noted.  
Table 1.  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
OPERATING FREQUENCY RANGE  
250  
2400  
MHz  
DIGITAL ATTENUATORS—fRF  
460 MHz to 496 MHz  
=
Attenuation Range  
28  
30.5  
1
−0.02  
0.4  
−0.02  
0.6  
dB  
dB  
dB  
dB  
dB  
dB  
Attenuator Step Size  
Relative Step Accuracy  
Absolute Step Accuracy  
Step Size Variation vs. Frequency  
Dynamic Range Variation vs.  
Temperature  
1.0  
4.0  
Variation within transmit band  
TA = 0°C to 85°C  
VGA RF Output Power  
vs. Frequency  
Gain  
vs. Temperature  
vs. Frequency  
OIP3  
RFIN = 4 dBm, minimum attenuation  
Variation within transmit band  
Minimum attenuation, 270 nH choke inductor  
Variation within TA = 0°C to 85°C  
Variation within transmit band  
Two tones with Δ = 1 MHz, 0 dBm per input tone  
Minimum attenuation  
RFIN at minimum attenuation  
16.3  
0.02  
12.3  
1
0.02  
27.7  
4.3  
dBm  
dB  
dB  
dB  
dB  
dBm  
dB  
dB  
8
Noise Figure  
Return Loss  
−10  
−15  
RFOUT at minimum attenuation  
dB  
Modulation Spectrum  
Relative to carrier in 30 kHz, POUT = 12 dBm, 8 PSK,  
270 nH choke inductor  
400 kHz carrier offset  
600 kHz carrier offset  
1.2 MHz carrier offset  
POUT = 12 dBm, 8 PSK  
RMS  
−72  
−85  
−88  
dBc  
dBc  
dBc  
Error Vector Magnitude (EVM)  
0.7  
2.1  
%
%
Peak  
DIGITAL ATTENUATORS—fRF  
869 MHz to 960 MHz  
=
Attenuation Range  
28  
30.1  
1
−0.03  
0.5  
−0.03  
0.6  
dB  
dB  
dB  
dB  
dB  
dB  
Attenuator Step Size  
Relative Step Accuracy  
Absolute Step Accuracy  
Step Size Variation vs. Frequency  
Dynamic Range Variation vs.  
Temperature  
1.0  
4.0  
Variation within transmit band  
TA = 0°C to 85°C  
RFOUT Power  
vs. Frequency  
Gain  
vs. Temperature  
vs. Frequency  
OIP3  
RFIN = 4 dBm, minimum attenuation  
Variation within transmit band  
Minimum attenuation, 270 nH choke inductor  
Variation within TA = 0°C to 85°C  
Variation within transmit band  
Two tones with Δ = 1 MHz, 0 dBm per input tone  
Minimum attenuation  
RFIN at minimum attenuation  
14.8  
0.2  
10.8  
1.3  
0.2  
28.5  
4.8  
dBm  
dB  
dB  
dB  
dB  
dBm  
dB  
dB  
8
Noise Figure  
Return Loss  
−9.8  
−9.8  
RFOUT at minimum attenuation  
dB  
Modulation Spectrum  
Relative to carrier in 30 kHz, POUT = 12 dBm, 8 PSK  
270 nH choke inductor  
400 kHz carrier offset  
600 kHz carrier offset  
1.2 MHz carrier offset  
Rev. 0 | Page 3 of 20  
−72  
−84  
−88  
dBc  
dBc  
dBc  
 
ADL5592  
Parameter  
Conditions  
POUT = 12 dBm, 8 PSK  
RMS  
Min  
Typ  
Max  
Unit  
Error Vector Magnitude (EVM)  
0.9  
2.7  
%
%
Peak  
DIGITAL ATTENUATORS—fRF  
1805 MHz to 1990 MHz  
=
Attenuation Range  
28  
30.5  
1
−0.02  
0.24  
−0.02  
0.7  
dB  
dB  
dB  
dB  
dB  
dB  
Attenuator Step Size  
Relative Step Accuracy  
Absolute Step Accuracy  
Step Size Variation vs. Frequency  
Dynamic Range Variation vs.  
Temperature  
1.0  
4.0  
Variation within transmit band  
TA = 0°C to 85°C  
RFOUT Power  
vs. Frequency  
Gain  
vs. Temperature  
vs. Frequency  
OIP3  
RFIN = 4 dBm, minimum attenuation  
Variation within transmit band  
Minimum attenuation, 33 nH choke inductor  
Variation within TA = 0°C to 85°C  
Variation within transmit band  
Two tones with Δ = 1 MHz, 0 dBm per input tone  
Minimum attenuation  
RFIN at minimum attenuation  
12.9  
0.2  
8.9  
1.5  
0.2  
29  
5.7  
−16.4  
−11.1  
dBm  
dB  
dB  
dB  
dB  
dBm  
dB  
dB  
8
Noise Figure  
Return Loss  
RFOUT at minimum attenuation  
dB  
Modulation Spectrum  
Relative to carrier in 30 kHz, POUT = 12 dBm, 8 PSK  
33 nH choke inductor  
400 kHz carrier offset  
600 kHz carrier offset  
1.2 MHz carrier offset  
POUT = 12 dBm, 8 PSK  
RMS  
−71  
−86  
−88  
dBc  
dBc  
dBc  
Error Vector Magnitude (EVM)  
0.7  
1.9  
%
%
Peak  
LOGIC INPUTS  
Clock Speed  
13  
MHz  
V
V
Input Logic Low  
Input Logic High  
RF LOOP MIXER  
Input Frequency  
Output Frequency  
Input Return Loss  
DATA, CLK, LE  
0.8  
2.5  
460  
450  
1990  
1910  
MHz  
MHz  
dB  
dB  
dB  
RFIN with loop enable active low at 1960 MHz  
LOIP at 80 MHz  
LOOP OUT at 1880 MHz  
−13  
−16  
−8  
Output Return Loss  
LOIP Frequency Range  
LOIP Power  
10  
−6  
95  
0
MHz  
dBm  
LOOP OUT Power  
RFIN = 5 dBm  
450 MHz to 486 MHz  
824 MHz to 915 MHz  
1710 MHz to 1910 MHz  
−13.0  
−12.1  
−13.1  
dBm  
dBm  
dBm  
Output Power Flatness  
vs. Frequency  
vs. Temperature  
OIP3  
Within a received band  
0.6  
1.1  
dB  
dB  
Variation within TA = 0°C to 85°C  
Two tones with Δ = 1 MHz, 0 dBm per input tone  
450 MHz to 486 MHz  
824 MHz to 915 MHz  
1710 MHz to 1910 MHz  
13.8  
13  
10.1  
−132  
dBm  
dBm  
dBm  
dBc/Hz  
V
Output Noise Density  
Loop Enable Control  
Carrier offset > 400 kHz  
Rev. 0 | Page 4 of 20  
ADL5592  
Parameter  
Input Logic Low  
Conditions  
Min  
Typ  
0
5
Max  
Unit  
V
V
Loopback active  
Loopback inactive  
Enable/disable  
0.8  
Input Logic High  
Switching Time  
2.4  
500  
ns  
ISOLATION  
LOOP OUT to RFOUT  
Loopback mode, at loop output frequency, maximum  
attenuation set on ATTN 1 and ATTN 2. RFIN = 4 dBm,  
RF loop output = −11 dBm  
Loopback mode, at RF input frequency, maximum  
attenuation set on ATTN 1 and ATTN 2. RFIN = 4 dBm,  
RF loop output = −11 dBm  
−68  
−50  
dBm  
dBm  
RFIN to RFOUT  
RFOUT to LOOP OUT  
RFIN to LOOP OUT  
At carrier frequency, transmit mode, minimum  
attenuation set on ATTN 1 and ATTN 2, POUT = 15 dBm  
Transmit mode, maximum attenuation set on ATTN 1  
and ATTN 2, PINATT1 = 4 dBm  
−50  
−50  
dB  
dB  
POWER SUPPLIES  
Voltage  
VCC pins  
4.5  
5.0  
5.5  
V
Supply Current  
Loopback active at TA = 25°C  
TA = −40°C to +85°C  
Loopback inactive at TA = 25°C  
TA = −40°C to +85°C  
230  
255  
189  
208  
mA  
mA  
mA  
mA  
Rev. 0 | Page 5 of 20  
ADL5592  
ABSOLUTE MAXIMUM RATINGS  
Table 2.  
Parameter  
Supply Voltage VCC  
RFIN  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rating  
5.5 V  
15 dBm  
10 dBm  
5.5 V  
1650 mW  
47°C/W  
150°C  
−40°C to +85°C  
−65°C to +150°C  
LOIP  
LOOP EN, DATA, CLK, LE  
Internal Power Dissipation  
θJA (Exposed Paddle Soldered Down)  
Maximum Junction Temperature  
Operating Temperature Range  
Storage Temperature Range  
ESD CAUTION  
Rev. 0 | Page 6 of 20  
 
ADL5592  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
LOIP  
LOIN  
1
2
3
4
5
6
7
8
9
30 GND  
29 NC  
28 NC*  
27 NC  
26 GND  
25 GND  
24 GND  
23 NC  
22 GND  
21 VCC  
VCC  
LOOP OUT  
LOOP EN  
DATA  
ADL5592  
(Not to Scale)  
CLK  
LE  
DVCC  
GND 10  
*THE PADS FOR PIN 28 AND PIN 31 MUST REMAIN FREE  
OF TRACES TO AVOID STRAY CAPACITANCE.  
NOTES  
1. NC = NO CONNECT  
2. CONNECT EXPOSED PADDLE TO A LOW IMPEDANCE  
GROUND PLANE.  
Figure 2. Pin Configuration (Top View)  
Table 3. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
LOIP  
Loopback Mixer Differential LO Input. Should be ac-coupled to the source of the mixer local  
oscillator signal.  
2
3, 21  
LOIN  
VCC  
Loopback Mixer Differential LO Input. Should be ac-coupled to ground.  
Positive Supply. Nominally equal to 5 V. VCC and DVCC must be connected together externally  
and be properly bypassed.  
4
5
LOOP OUT  
LOOP EN  
Loopback Mixer RF Output. Single-ended 50 Ω output.  
Loopback Mixer Enable. Apply logic high for normal transmit mode. Apply logic mode low for  
loopback mode.  
6
7
8
9
12  
39  
DATA  
CLK  
LE  
DVCC  
RFOUT  
RFIN  
GND  
SPI Data Input. Both attenuators are programmed with a single 10-bit word.  
SPI Clock Input. Data is clocked on the rising edge of CLK.  
SPI Latch Enable. Data is latched on the falling edge of LE.  
Digital Positive Supply. Nominally equal to 5 V.  
RF Output. Should be ac-coupled.  
RF Input. Should be ac-coupled.  
Common. Connect to a low impedance ground plane.  
10, 11, 13, 14, 17,  
19, 22, 24 to 26,  
30, 32, 35, 37, 38  
15, 16, 18, 20, 23,  
27 to 29, 31, 33,  
34, 36, 40  
NC  
EP  
No Connection. The pad for Pin 28 and Pin 31 must remain free of traces to avoid stray capacitances.  
Exposed Paddle. Connect to a low impedance ground plane.  
Rev. 0 | Page 7 of 20  
 
ADL5592  
TYPICAL PERFORMANCE CHARACTERISTICS  
TA = 25°C, VS = 5.0 V, unless otherwise noted.  
40  
35  
30  
20  
0dB  
–40°C  
–25°C  
0°C  
+25°C  
+85°C  
10  
0
–10  
–20  
31dB  
–30  
25  
20  
–40  
–50  
250  
500  
750  
1000 1250 1500 1750 2000 2250  
FREQUENCY (MHz)  
250  
500  
750  
1000 1250 1500 1750 2000 2250  
FREQUENCY (MHz)  
Figure 3. Gain vs. Frequency by Gain Code,  
All Input Attenuator (ATTN 1) Code Steps  
Figure 6. Output Third-Order Intercept vs. Frequency Across Temperature,  
Maximum Gain, 0 dBm per Input Tones with 1 MHz Spacing  
30  
20  
0dB  
–40°C  
–25°C  
0°C  
+25°C  
10  
0
+85°C  
25  
20  
–10  
–20  
–30  
–40  
–50  
31dB  
15  
10  
250  
500  
750  
1000 1250 1500 1750 2000 2250  
FREQUENCY (MHz)  
250  
500  
750  
1000 1250 1500 1750 2000 2250  
FREQUENCY (MHz)  
Figure 4. Gain vs. Frequency by Gain Code,  
All Output Attenuator (ATTN 2) Code Steps  
Figure 7. Output P1dB Compression vs. Frequency Across Temperature,  
Maximum Gain  
10  
8
20  
16  
12  
8
0
–5  
–10  
–15  
–20  
NOISE FIGURE  
6
–25  
–30  
–35  
–40  
–45  
–50  
4
GAIN  
RFIN 0dB ATTENUATION  
RFIN 31dB ATTENUATION  
RFOUT 0dB ATTENUATION  
RFOUT 31dB ATTENUATION  
LOOP OUT  
2
4
0
250  
0
250  
500  
750  
1000 1250 1500 1750 2000 2250  
FREQUENCY (MHz)  
500  
750  
1000 1250 1500 1750 2000 2250  
FREQUENCY (MHz)  
Figure 5. Return Loss vs. Frequency, RFIN, RFOUT, and LOOP OUT  
Figure 8. Noise Figure and Gain vs. Frequency,  
at Maximum Gain  
Rev. 0 | Page 8 of 20  
 
ADL5592  
0.4  
0.3  
2.00  
–40°C  
–25°C  
0°C  
+25°C  
+85°C  
–40°C  
–25°C  
0°C  
+25°C  
+85°C  
1.75  
1.50  
0.2  
0.1  
1.25  
1.00  
0
0.75  
0.50  
–0.1  
–0.2  
–0.3  
0.25  
0
–0.25  
–0.50  
ATTENUATOR 1  
ATTENUATOR 2  
ATTENUATOR 1  
ATTENUATOR 2  
–0.4  
0
8
16  
24  
32  
0
8
16  
24  
32  
0
8
16  
24  
32  
0
8
16  
24  
32  
GAIN CODE  
GAIN CODE  
GAIN CODE  
GAIN CODE  
Figure 9. Gain Step Error Across Temperature, Frequency = 492 MHz  
(Each Attenuator Is Swept Independently from 0 to 31)  
Figure 12. Absolute Gain Error Across Temperature, Frequency = 492 MHz  
(Each Attenuator Is Swept Independently from 0 to 31)  
0.4  
1.75  
–40°C  
–25°C  
0°C  
–40°C  
–25°C  
0.3  
1.50  
0°C  
+25°C  
+25°C  
+85°C  
+85°C  
1.25  
0.2  
1.00  
0.75  
0.50  
0.25  
0.1  
0
–0.1  
–0.2  
–0.3  
0
ATTENUATOR 1  
ATTENUATOR 2  
ATTENUATOR 1  
ATTENUATOR 2  
–0.4  
–0.25  
0
8
16  
24  
32  
0
8
16  
24  
32  
0
8
16  
24  
32  
0
8
16  
24  
32  
GAIN CODE  
GAIN CODE  
GAIN CODE  
GAIN CODE  
Figure 10. Gain Step Error Across Temperature, Frequency = 925 MHz  
(Each Attenuator Is Swept Independently from 0 to 31)  
Figure 13. Absolute Gain Error Across Temperature, Frequency = 925 MHz  
(Each Attenuator Is Swept Independently from 0 to 31)  
0.4  
2.00  
–40°C  
–40°C  
–25°C  
0°C  
+25°C  
+85°C  
–25°C  
0°C  
+25°C  
+85°C  
1.75  
1.50  
0.3  
0.2  
0.1  
1.25  
1.00  
0
0.75  
0.50  
–0.1  
–0.2  
–0.3  
0.25  
0
–0.25  
–0.50  
ATTENUATOR 1  
ATTENUATOR 2  
ATTENUATOR 1  
ATTENUATOR 2  
–0.4  
0
8
16  
24  
32  
0
8
16  
24  
32  
0
8
16  
24  
32  
0
8
16  
24  
32  
GAIN CODE  
GAIN CODE  
GAIN CODE  
GAIN CODE  
Figure 11. Gain Step Error Across Temperature, Frequency = 1960 MHz  
(Each Attenuator Is Swept Independently from 0 to 31)  
Figure 14. Absolute Gain Error Across Temperature, Frequency = 1960 MHz  
(Each Attenuator Is Swept Independently from 0 to 31)  
Rev. 0 | Page 9 of 20  
ADL5592  
14  
492.4MHz  
925.2MHz  
12  
10  
8
1960MHz  
6
4
2
0
4.50  
4.75  
5.00  
SUPPLY VOLTAGE (V)  
5.25  
5.50  
Figure 15. Gain vs. Supply Voltage at Maximum Gain  
Rev. 0 | Page 10 of 20  
ADL5592  
THEORY OF OPERATION  
Figure 16 shows a simplified schematic of the ADL5592.  
state (n dB). The various combinations of the five blocks  
provide the attenuation states from 0 dB to 31 dB, in 1 dB  
increments.  
RFOUT  
RFIN  
SPI INTERFACE  
ATTENUATOR  
LOIP  
The ADL5592 includes a SPI-compatible, 3-wire serial interface.  
The Si CMOS interface internally level-shifts the SPI signals,  
which are used to program a 10-bit shift register and to control  
the loading of a 10-bit parallel latch. The outputs of the latch are  
fed into drivers, which convert the logic-level outputs of the  
latches to signals appropriate for driving the attenuators.  
CONTROL  
CIRCUITRY  
LOOP EN  
ADL5592  
LOOP OUT  
SPI PORT*  
*COMPRISES THE DATA, CLK, AND LE PINS.  
Figure 16. Simplified Schematic  
FIXED-GAIN AMPLIFIER  
The output of the input attenuator (ATTN 1) is connected to a  
fixed-gain amplifier that drives the output attenuator (ATTN 2).  
Because the passive attenuators are linear and contribute minimal  
noise, the fixed-gain amplifier is the major source of nonlinear  
distortion and noise. This results in a constant OIP3 and noise  
figure throughout the different attenuation stages. The fixed-gain  
amplifier provides 14 dB of gain and broadband, 50 Ω, single-  
ended input and output impedances.  
INPUT SWITCH  
The high performance single-pole, double throw (SPDT) GaAs  
pHEMT switch is connected to the RF input pin of the ADL5592  
to switch the input signal between the VGA and the mixer. To  
diminish the impact of the switch on the performance of the VGA  
and the mixer, this SPDT switch exhibits low insertion loss and  
high isolation in the operating frequency range. The switch-state  
control signal is provided by a Si CMOS control circuit.  
LOOPBACK MIXER  
DIGITAL ATTENUATOR  
The loopback mixer is a Si CMOS Gilbert-cell mixer designed to  
provide 10 MHz to 100 MHz of frequency translation from the  
RF input to the mixer output. The mixer has 50 Ω loads at the  
output for a broadband, single-ended output. The input is fed  
from the SPDT GaAs pHEMT switch. The overall mixer gain is  
typically −17 dB. The mixer LO input is designed to operate from  
10 MHz to greater than 100 MHz.  
The digital attenuator consists of five attenuation blocks—1 dB,  
2 dB, 4 dB, 8 dB, and 16 dB—each separately controlled by a Si  
CMOS control circuit. Each attenuation block consists of field  
effect transistor (FET) switches and resistors that form either a  
pi- or a T- shaped attenuator. By controlling the states of the  
FET switches through the Si CMOS control lines, each attenuation  
block can be set to be in the pass state (0 dB) or the attenuation  
Rev. 0 | Page 11 of 20  
 
 
ADL5592  
APPLICATIONS INFORMATION  
RF INPUT  
1000pF  
0.1µF  
LO INPUT  
0.1µF  
VPOS  
LOIP  
LOIN  
VCC  
GND  
NC  
0.1µF  
100pF  
NC  
1000pF  
LOOP OUT  
LOOP OUT  
LOOP EN  
DATA  
CLK  
NC  
MIXER ENABLE  
GND  
GND  
GND  
NC  
ADL5592  
SPI DATA  
CHOKE INDUCTOR (COILCRAFT 0603CS)  
33nH FOR 1800MHz, 1900MHz BANDS  
270nH FOR 450MHz, 850MHz, 900MHz BANDS  
SPI CLOCK  
SPI LATCH  
VPOS  
LE  
DVCC  
GND  
GND  
VCC  
0.1µF  
100pF  
VPOS  
100pF  
10µF  
1000pF  
RF OUTPUT  
Figure 17. Basic Connections  
PROGRAMMING THE SPI PORT  
BASIC CONNECTIONS  
Both attenuators are programmed with a single 10-bit word.  
Figure 18 shows the input and output attenuators, ATTN 1 and  
ATTN 2, respectively. Table 4 lists the 10-bit words corresponding  
to the various gain levels. The five least significant bits (LSBs)  
set the input attenuator, ATTN 1. The five most significant bits  
(MSBs) set the output attenuator, ATTN 2.  
Figure 17 shows the basic connections for the ADL5592. A  
single power supply between 4.75 V and 5.25 V is applied to  
the VCC pins. All the VCC pins must be connected to the same  
potential. Each power supply pin should be decoupled using a  
100 pF capacitor in addition to either a 0.1 μF or 10 μF capacitor.  
These capacitors should be located as close as possible to the  
device. One of the supply pins (Pin 21) also requires biasing of  
an open-collector using an RF choke (Coilcraft 0603CS). The  
value of the inductor is dictated by the frequency band of  
operation: 270 nH for the 450 MHz, 850 MHz, and 900 MHz  
bands and 33 nH for the 1800 MHz and 1900 MHz bands. The  
RFIN, RFOUT, and LOOP OUT pins have 50 ꢀ impedances  
and must be ac-coupled.  
RFIN  
RFOUT  
ATTN 1  
AMP  
ATTN 2  
Figure 18. Block Diagram of Attenuator Chain  
Figure 19 shows the timing diagram of the SPI port transmission.  
DATA is clocked on the rising edge of CLK. The data is latched  
and the attenuation is updated on the falling edge of LE (the latch  
enable pin). The timing requirements indicated in Figure 19 are  
described in Table 5.  
Rev. 0 | Page 12 of 20  
 
 
 
ADL5592  
1
LE  
t0  
0
1
t1  
t2  
t3  
CLK  
0
1
0
D0  
D9  
DATA  
LOAD DATA INTO  
SERIAL REGISTER  
ON RISING EDGE.  
TRANSFER DATA FROM SERIAL  
REGISTER TO PARALLEL LATCHES  
ON LE FALLING EDGE.  
Figure 19. Timing Diagram of SPI Port Transmission  
Table 4. 10-Bit Gain Words for SPI Port  
ATTN 2  
ATTN 1  
D2  
Resulting Attenuation  
D9  
0
0
0
0
0
1
1
0
0
0
0
0
0
1
D8  
0
0
0
0
1
0
1
0
0
0
0
0
0
1
D7  
0
0
0
1
0
0
1
0
0
0
0
0
0
1
D6 D5  
D4  
0
0
0
0
0
0
0
0
0
0
0
1
1
1
D3  
0
0
0
0
0
0
0
0
0
0
1
0
1
1
D1  
0
0
0
0
0
0
0
0
1
0
0
0
1
1
D0  
0
0
0
0
0
0
0
1
0
0
0
0
1
1
ATTN 1 (dB)  
ATTN 2 (dB)  
Total Attenuation (dB)  
0
0
1
0
0
0
1
0
0
0
0
0
0
1
0
1
0
0
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
1
0
0
1
1
0
0
0
0
0
0
0
0
0
1
1
2
2
4
4
8
8
16  
31  
0
16  
31  
1
1
2
4
8
16  
31  
31  
0
2
0
4
0
8
0
0
31  
16  
31  
62  
Table 5. Timing Requirements for the SPI Port  
Mnemonic Description  
Min Max Unit  
t0  
t1  
Latch enable setup time. Time between latch enable active (high) and first rising edge of serial clock.  
Serial data setup time. Time between valid serial data and rising clock edge. Note that this time applies  
to all bits in the serial data stream  
15  
15  
ns  
ns  
t2  
Serial data hold time. Time after rising clock edge during which the serial data line cannot change in  
value. Note that this time applies to all bits in the serial data stream  
Latch enable hold time. Time after final falling clock edge during which the latch enable must remain  
active (high).  
15  
15  
ns  
t3  
ns  
fCLK  
Clock period.  
15  
MHz  
Rev. 0 | Page 13 of 20  
 
 
 
ADL5592  
0
–10  
–20  
–30  
–40  
10  
9
GSM/EDGE TRANSMIT APPLICATION  
Figure 20, Figure 21, and Figure 22 show effects of different input  
power levels on the spectral mask and EVM. The gain code is held  
constant at the minimum attenuation (corresponding to Code 0  
for both attenuators).  
8
7
PEAK EVM  
6
–50  
–60  
–70  
–80  
5
4
3
2
At low output power levels, both the spectral mask and EVM  
remain flat. At higher output power levels, however, the spectral  
mask expands and the EVM increases.  
400kHz OFFSET  
RMS EVM  
600kHz OFFSET  
At an output of 12 dBm at 925.5 MHz, the peak and rms EVM  
are 0.56% and 1.51%, respectively. The spectral mask offsets at  
400 kHz, 600 kHz, and 1.2 MHz sit at −72.2 dBc, −84.8 dBc,  
and −88.01 dBc, respectively.  
–90  
1
0
1.2MHz OFFSET  
15.0  
–100  
7.5  
10.0  
12.5  
OUTPUT (dBm)  
17.5  
Note that the minimum attenuation setting results in the highest  
spectral mask and EVM values (excluding noise floor limitations).  
Increasing the input attenuation of ATTN 1 causes less power to  
be presented to the amplifier stage. Therefore, the levels of the  
spectral mask and EVM decrease as the input attenuation of  
ATTN 1 is increased. As the output attenuation of ATTN 2 is  
increased, the levels of the spectral mask and EVM remain flat.  
Figure 20. EVM and Spectral Mask vs. Output Power,  
488.8 MHz EDGE Signal, 270 nH RF Choke, Minimum Attenuation  
0
–10  
–20  
–30  
–40  
10  
9
8
7
PEAK EVM  
6
SOLDERING INFORMATION  
–50  
–60  
–70  
–80  
5
4
3
2
On the underside of the chip scale package, there is an exposed  
compressed paddle. This paddle is internally connected to the  
chip’s ground. Solder the paddle to the low impedance ground  
plane on the printed circuit board to ensure specified electrical  
performance and to provide thermal relief. It is also recommended  
that the ground planes on all layers under the paddle be stitched  
together with vias to reduce thermal impedance.  
400kHz OFFSET  
600kHz OFFSET  
RMS EVM  
–90  
1
0
1.2MHz OFFSET  
15.0  
–100  
7.5  
10.0  
12.5  
17.5  
OUTPUT (dBm)  
Figure 21. EVM and Spectral Mask vs. Output Power,  
925.5 MHz EDGE Signal, 270 nH RF Choke, Minimum Attenuation  
0
–10  
–20  
–30  
–40  
10  
9
8
7
6
–50  
–60  
–70  
–80  
5
4
3
2
PEAK EVM  
400kHz OFFSET  
600kHz OFFSET  
RMS EVM  
–90  
1
0
1.2MHz OFFSET  
15.0  
–100  
7.5  
10.0  
12.5  
17.5  
OUTPUT (dBm)  
Figure 22. EVM and Spectral Mask vs. Output Power,  
1960 MHz EDGE Signal, 33 nH RF Choke, Minimum Attenuation  
Rev. 0 | Page 14 of 20  
 
 
 
 
ADL5592  
EVALUATION BOARD  
and mixer characterization.) The gain control data was generated  
by a Tektronix DG2020A data generator. The DG2020A generated  
all three of the SPI input signals: CLK, DATA, and LE. A separate  
SMT 03 was used to generate the mixer local oscillator signal  
(LO input signal) when the loopback mixer was enabled. An  
Agilent Visual Engineering Environment (VEE) program  
controlled the test instruments through the general-purpose  
interface bus (GPIB) interface.  
CHARACTERIZATION SETUP  
The primary setup used to characterize the ADL5592 is shown  
in Figure 23. This setup was used to measure the frequency  
response, linearity, and output compression of the amplifier. A  
Rohde & Schwarz SMT 03 signal generator was used to drive  
the amplifier with a 4 dBm input. The output of the ADL5592  
was connected to a Rohde & Schwarz FSIQ7 spectrum analyzer  
through an RF switch matrix unit. For the linearity measurement,  
two SMT 03 signal generators were used to generate the two-tone  
RF input signal. (The same SMT 03 is used for both amplifier  
R&S FSIQ7  
R&S SMT 03  
SIGNAL GENERATOR  
SPECTRUM ANALYZER  
ADL5592  
RFIN  
RFOUT  
RF  
SWITCH  
LOIP  
LOOP OUT  
VCC  
R&S SMT 03  
SIGNAL GENERATOR  
DATA CLK LE  
GPIB INTERFACE  
INSTRUMENT CONTROLLER  
TEKTRONIX DG2020A  
DATA GENERATOR  
AGILENT 6624A  
DC POWER SUPPLY  
Figure 23. Characterization Bench Setup  
Rev. 0 | Page 15 of 20  
 
 
ADL5592  
The RFIN, RFOUT, and LOOP OUT pins have 50 ꢀ impedances  
and must be ac-coupled. One of the supply pins (Pin 21) requires  
supply biasing using an RF choke (Coilcraft 0603CS). The value  
of the inductor is dictated by the frequency band of operation:  
270 nH for the 450 MHz, 850 MHz, and 900 MHz bands and  
33 nH for the 1800 MHz and 1900 MHz bands.  
SCHEMATIC AND LAYOUT  
Figure 24 shows the schematic and Figure 25 and Figure 26 show  
the layout of the ADL5592 evaluation board. The board is powered  
by a single supply in the 4.75 V to 5.25 V range. Each power supply  
pin should be decoupled using a 100 pF capacitor in addition to  
either a 0.1 μF or 10 μF capacitor. Table 6 details the various  
configuration options of the evaluation board.  
C2A  
0.1µF  
IN_ATTA  
LOPA  
C17A  
1000pF  
C3A  
0.1µF  
C9A  
OPEN  
VPOS  
C7A  
C6A  
R5A  
0.1µF  
100pF  
0  
MX_OUTA  
LOIP  
GND  
NC  
C1A  
1000pF  
LOIN  
VCC  
NC  
LBENBA  
C8A  
NC  
VPOS  
LOOP OUT  
LOOP EN  
DATA  
CLK  
SW1A  
OPEN  
GND  
ADL5592  
0
R8A  
0Ω  
GND  
R12A  
10kΩ  
0
GND  
SW2A  
TO  
HEADER  
L2A  
LE  
NC  
33nH OR 270nH  
DVCC  
GND  
GND  
VCC  
(COILCRAFT 0603CS)  
VPOS  
R9A  
0Ω  
R10A  
0Ω  
R11A  
0Ω  
SPI_DATA-A  
SPI_CLK-A  
SPI_SEL-A  
C10A  
100pF  
C11A  
10µF  
R3A  
OPEN  
R2A  
OPEN  
R1A  
OPEN  
TP1A  
VPOS  
TP2A  
C14A  
1000pF  
TP1A  
R4A  
0Ω  
C4A  
100pF  
C5A  
0.1µF  
RF_OUTA  
VPOS  
Figure 24. Evaluation Board Schematic  
Rev. 0 | Page 16 of 20  
 
 
ADL5592  
Figure 25. Evaluation Board Layout, Component Side  
Figure 26. Evaluation Board Layout, Circuit Side  
Rev. 0 | Page 17 of 20  
 
 
ADL5592  
CONFIGURATION OPTIONS  
Table 6. Evaluation Board Configuration Options  
Component  
Designator  
Default  
Conditions  
Component Name  
Description  
TP1A, TP2A  
L1A, L2A, C4A to  
C11A, R4A, R5A  
Supply and ground vector pins  
Power supply decoupling  
Not applicable  
The nominal power supply decoupling is accomplished by using  
a 100 pF (C4A, C6A, and C10A) in addition to either a 0.1 μF (C5A  
and C7A) or a 10 μF (C11A) capacitor at each power supply pin. A  
L2A = 270 nH or  
33 nH (Size 0603)  
(Coilcraft 0603CS);  
series inductor, L2A, is used to bias the open collector at Pin 21. To C4A, C6A, C10A =  
tune the ADL5592 for the low bands (450 MHz, 850 MHz, and 900  
MHz), the value should be 270 nH. For the high bands (1800 MHz  
and 1900 MHz), the inductor should be changed to 33 nH.  
100 pF (Size 0402);  
C5A, C7A = 0.1 μF  
(Size 0402); C11A =  
10 μF (Size 0402);  
R4A, R5A = 0 Ω  
(Size 0402); C8A,  
C9A = open (Size  
0402)  
C14A, C17A  
C1A to C3A  
Input and output interfaces  
C14A and C17A are dc blocks. The SMA labeled IN_ATTA is used to  
drive the RF input. The SMA labeled RF_OUTA corresponds to the RF  
output.  
C1A to C3A are dc blocks. The SMA labeled LOPA drives the  
balanced differential mixer input with a single-ended LO source.  
The unused differential input is ac-coupled to ground. The SMA  
labeled MX_OUTA corresponds to the mixer output. To use this  
function, the loopback mode must be enabled.  
C14A, C17A =  
1000 pF (Size 0402)  
Mixer input and output interfaces  
C1A = 1000 pF (Size  
0402); C2A, C3A =  
0.1 μF (Size 0402)  
SW1A, SW2A,  
R8A, R12A  
Loopback enable interface  
Normal transmit mode is exercised by applying a logic high voltage  
to the LOOP EN pin, setting Switch SW1A to the position opposite  
Label O. For loopback mode, a logic low voltage must be applied to  
the LOOP EN pin by setting both Switch SW1A and Switch SW2A to  
the positions closest to the O labels. To exercise the control function  
from an external source, Switch SW1A must be set to the position  
closest to the O label and Switch SW2A must be set to the opposite  
position. The signal is driven from the LBENBA SMA.  
SW1A, SW2A =  
installed; R8A = 0 Ω  
(Size 0402); R12A =  
10 kΩ (Size 0402)  
R1A to R3A, R9A Serial control interface  
to R11A  
The evaluation board can be controlled using most PCs. Windows®-  
based control software is shipped with the evaluation kit. A 25-pin  
R1A, R2A, R3A =  
open (Size 0402);  
D-subadapter and cable are required to connect the PC to the SPI R9A, R10A, R11A =  
port test points on the evaluation board. In some cases, the quality  
of the PC port signals can be improved by adding capacitance to  
R1A to R3A. The addition of 50 Ω values for R1A to R3A allow for SPI  
port control from digital generators driven from the SMAs  
connectors, SPI_DATA-A, SPI_CLK-A, and SPI_SEL-A.  
0 Ω (Size 0402)  
Rev. 0 | Page 18 of 20  
 
 
ADL5592  
OUTLINE DIMENSIONS  
6.00  
BSC SQ  
PIN 1  
INDICATOR  
INDEX  
AREA  
31  
30  
40  
1
0.50  
BSC  
4.25  
4.15 SQ  
4.00  
EXPOSED  
PAD  
21  
20  
10  
11  
0.50  
0.40  
0.30  
0.20 MIN  
BOTTOM VIEW  
TOP VIEW  
0.80  
0.75  
0.70  
THE EXPOSED METAL PADDLE ON THE  
BOTTOM OF THE LFCSP PACKAGE  
MUST BE SOLDERED TO PCB GROUND  
FOR PROPER HEAT DISSIPATION AND  
ALSO FOR NOISE AND MECHANICAL  
STRENGTH BENEFITS.  
0.05 MAX  
0.02 NOM  
SEATING  
PLANE  
0.30  
0.25  
0.18  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WJJD-2  
Figure 27. 40-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
6 mm × 6 mm Body, Very Very Thin Quad  
(CP-40-2)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
ADL5592ACPZ-R71  
ADL5592-EVALZ1  
Temperature Range  
−40°C to +85°C  
Package Description  
Package Option  
CP-40-2  
Ordering Quantity  
40-Lead LFCSP_WQ, 7" Tape and Reel  
Evaluation Board  
3,000  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 19 of 20  
 
ADL5592  
NOTES  
©2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06662-0-6/08(0)  
Rev. 0 | Page 20 of 20  

相关型号:

ADL5593

Correcting Imperfections in IQ Modulators to Improve RF Signal Fidelity
ADI

ADL5601

50 MHz to 4.0 GHz RF/IF Gain Block
ADI

ADL5601-EVALZ

50 MHz to 4.0 GHz RF/IF Gain Block
ADI

ADL5601ARKZ

50 MHz to 4.0 GHz RF/IF Gain Block
ADI

ADL5601ARKZ-R7

50 MHz to 4.0 GHz RF/IF Gain Block
ADI

ADL5602

50 MHz to 4.0 GHz RF/IF Gain Block
ADI

ADL5602-EVALZ

50 MHz to 4.0 GHz RF/IF Gain Block
ADI

ADL5602ARKZ-R7

50 MHz to 4.0 GHz RF/IF Gain Block
ADI

ADL5604

700 MHz to 2700 MHz 1 W RF Driver Amplifier
ADI

ADL5604-EVALZ

700 MHz to 2700 MHz 1 W RF Driver Amplifier
ADI

ADL5604ACPZ-R7

700 MHz to 2700 MHz 1 W RF Driver Amplifier
ADI

ADL5605

700 MHz to 1000 MHz
ADI