ADIS16080/PCBZ [ADI]

【80∑/sec Yaw Rate Gyro with SPI Interface; 【80Σ /秒偏航角速度陀螺仪,SPI接口
ADIS16080/PCBZ
型号: ADIS16080/PCBZ
厂家: ADI    ADI
描述:

【80∑/sec Yaw Rate Gyro with SPI Interface
【80Σ /秒偏航角速度陀螺仪,SPI接口

文件: 总16页 (文件大小:606K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
± ±80°/sec YacꢀYꢁscGyroc  
aiꢁhcSPI®cInꢁsrfYes  
ADIS168±8  
cc  
FEATURES  
GENERAL DESCRIPTION  
Complete angular rate gyroscope  
Z-axis (yaw rate) response  
SPI digital output interface  
High vibration rejection over wide frequency  
2000 g powered shock survivability  
Externally controlled self test  
Internal temperature sensor output  
Dual auxiliary 12-bit ADC inputs  
Absolute rate output for precision applications  
5 V single-supply operation  
The ADIS16080 is a complete angular rate sensor (gyroscope)  
that uses the Analog Devices, Inc. surface-micromachining  
process to make a functionally complete angular rate sensor  
with an integrated serial peripheral interface (SPI).  
The digital data available at the SPI port is proportional to the  
angular rate about the axis normal to the top surface of the  
package (see Figure 19). A single external resistor can be used  
to increase the measurement range. An external capacitor can  
be used to lower the bandwidth.  
8.2 mm × 8.2 mm × 5.2 mm package  
RoHS-compliant  
Access to an internal temperature sensor measurement is  
provided, through the SPI, for compensation techniques.  
Two pins are available for the user to input analog signals for  
digitization. An additional output pin provides a precision  
voltage reference. Two digital self-test inputs electro-  
mechanically excite the sensor to test operation of the  
sensor and the signal conditioning circuits.  
APPLICATIONS  
Platform stabilization  
Image stabilization  
Guidance and control  
Inertial measurement units  
Robotics  
The ADIS16080 is available in an 8.2 mm × 8.2 mm × 5.2 mm  
16-terminal, peripheral land grid array (LGA) package.  
FUNCTIONAL BLOCK DIAGRAM  
C
OUT  
FILT  
RATE  
ADIS16080  
±80°/s  
SCLK  
DIN  
GYROSCOPE  
4-CHANNEL  
SPI  
TEMPERATURE  
SENSOR  
MUX/ADC  
CS  
DOUT  
AIN2  
AIN1  
REFERENCE  
V
REF  
ST1  
ST2  
V
COM  
V
CC  
5V  
DRIVE  
3V TO 5V  
Figure 1.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
ADIS16080  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Supply and Common Considerations ..................................... 11  
Increasing Measurement Range ............................................... 11  
Setting Bandwidth...................................................................... 11  
Self-Test Function ...................................................................... 11  
Continuous Self Test .................................................................. 11  
Rate Sensitive Axis ..................................................................... 11  
Control Register.............................................................................. 12  
Serial Interface............................................................................ 13  
Second-Level Assembly............................................................. 14  
Outline Dimensions....................................................................... 15  
Ordering Guide .......................................................................... 15  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Specifications .................................................................. 5  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 8  
Theory of Operation ...................................................................... 11  
REVISION HISTORY  
7/06—Revision 0: Initial Version  
Rev. 0 | Page 2 of 16  
 
ADIS16080  
SPECIFICATIONS  
TA = 25°C, VCC = VDRIVE = 5 V, angular rate = 0°/sec, COUT = 0 μF, ±± g, unless otherwise noted.  
Table 1.  
Parameter  
SENSITIVITY  
Dynamic Range2  
Initial  
Conditions  
Min1  
Typ  
Max1  
Unit  
Full-scale range over specifications range  
Clockwise rotation is positive output,  
TA = −40°C to +±5°C  
±±0  
9.21  
°/sec  
LSB/°/sec  
10.24  
11.26  
Change over Temperature3  
Nonlinearity  
Voltage Sensitivity  
NULL  
VCC = VDRIVE = 4.75 V to 5.25 V  
Best fit straight line  
VCC = VDRIVE = 4.75 V to 5.25 V  
±5  
0.15  
0.7  
%
% of FS  
% of FS  
Initial  
1629  
204±  
±±5  
35  
2.05  
±10.24  
2466  
LSB  
LSB  
ms  
LSB/g  
LSB/V  
Change Over Temperature3  
VCC = VDRIVE = 4.75 V to 5.25 V  
Power on to ±ꢀ°/sec of final  
Any axis  
Turn-On Time  
Linear Acceleration Effect  
Voltage Sensitivity  
NOISE PERFORMANCE  
Total Noise  
VCC = VDRIVE = 4.75 V to 5.25 V  
0.1 Hz to 40 Hz; no averaging  
@ 25°C  
0.42  
43  
0.05  
0.51  
°/sec rms  
LSB rms  
°/sec /√Hz  
LSB rms/√Hz  
Rate Noise Density  
FREQUENCY RESPONSE  
3 dB Bandwidth (User-Selectable)4 COUT = 0 μF  
Sensor Resonant Frequency  
40  
14  
Hz  
kHz  
SELF-TEST INPUTS  
ST1 RATEOUT Response5  
ST2 RATEOUT Response5  
Logic 1 Input Voltage  
Logic 0 Input Voltage  
Input Impedance  
TEMPERATURE SENSOR  
Reading at 29± K  
ST1 pin from Logic 0 to Logic 1  
−32±  
+32±  
3.3  
−540  
+540  
−±19  
+±19  
LSB  
LSB  
V
V
kΩ  
ST2 pin from Logic 0 to Logic 1  
Standard high logic level definition  
Standard low logic level definition  
To common  
1.7  
50  
204±  
6.±±  
LSB  
LSB/K  
Scale Factor  
Proportional to absolute temperature  
2.5 V REFERENCE  
Voltage Value  
Load Drive to Ground  
Load Regulation  
Power Supply Rejection  
Temperature Drift  
LOGIC INPUTS  
2.45  
2.5  
100  
5.0  
1.0  
5.0  
2.55  
V
μA  
mV/mA  
mV/V  
mV  
Source  
0 μA < IOUT < 100 μA  
VCC = VDRIVE = 4.75 V to 5.25 V  
Delta from 25°C  
0.7 × VDRIVE  
−1  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Current, IIN  
Input Capacitance, CIN  
ANALOG INPUTS6  
Resolution  
Integral Nonlinearity6  
Differential Nonlinearity  
Offset Error  
V
V
μA  
pF  
0.3 × VDRIVE  
+1  
Typically 10 nA  
10  
12  
Bits  
LSB  
LSB  
LSB  
LSB  
V
−2  
−2  
−±  
−2  
0
+2  
+2  
+±  
+2  
Gain Error  
Input Voltage Range  
VREF × 2  
Rev. 0 | Page 3 of 16  
 
 
 
 
 
ADIS16080  
Parameter  
Conditions  
Min1  
Typ  
Max1  
Unit  
μA  
Leakage Current  
−1  
+1  
Input Capacitance  
Full Power Bandwidth  
DIGITAL OUTPUTS  
Output High Voltage (VOH)  
Output Low Voltage (VOL)  
CONVERSION RATE  
Conversion Time  
20  
8
pF  
MHz  
ISOURCE = 200 μA  
ISINK = 200 μA  
VDRIVE − 0.2  
V
V
0.4  
16 SCLK cycles with SCLK at 20 MHz  
800  
1
ns  
MSPS  
Throughput Rate  
POWER SUPPLY7  
VCC  
VDRIVE  
4.75  
2.7  
5
5.25  
5.25  
9.0  
V
V
mA  
μA  
mW  
VCC Quiescent Supply Current  
VDRIVE Quiescent Supply Current  
Power Dissipation  
TEMPERATURE RANGE  
Specified Performance  
VCC @ 5 V, fSCLK = 50 kSPS  
VDRIVE @ 5 V, fSCLK = 50 kSPS  
VCC and VDRIVE @ 5 V, fSCLK = 50 kSPS  
7.0  
70  
40  
500  
Tested to max and min specifications  
−40  
+85  
°C  
1 All minimum and maximum specifications are guaranteed. Typical specifications are neither tested nor guaranteed.  
2 Dynamic range is the maximum full-scale measurement range possible, including output swing range, initial offset, sensitivity, offset drift, and sensitivity drift at 5 V  
supplies.  
3 Defined as the output change from ambient to maximum temperature or ambient to minimum temperature.  
4 Frequency at which the response is 3 dB down from dc response. Bandwidth = 1/(2 × π × 180 kΩ × (22 nF + COUT)). For COUT = 0, bandwidth = 40 Hz. For COUT = 1 μF,  
bandwidth = 0.87 Hz.  
5 Self-test response varies with temperature.  
6 For VIN < VCC.  
7 All at TA = −40°C to +85°C.  
Rev. 0 | Page 4 of 16  
 
 
ADIS16080  
TIMING SPECIFICATIONS  
TA = 25°C, angular rate = 0°/sec, unless otherwise noted.1  
Table 2.  
Parameter  
VCC = VDRIVE = 5  
Unit  
Description  
2
fSCLK  
10  
20  
kHz min  
MHz max  
tCONVERT  
tQUIET  
t2  
16 × tSCLK  
50  
ns min  
ns min  
ns max  
ns max  
ns min  
ns min  
ns min  
Minimum quiet time required between CS rising edge and start of next conversion  
CS to SCLK setup time  
10  
3
t3  
30  
Delay from CS until DOUT three-state disabled  
Data access time after SCLK falling edge  
SCLK low pulse width  
SCLK high pulse width  
SCLK to DOUT valid hold time  
3
t4  
40  
0.4 × tSCLK  
0.4 × tSCLK  
10  
15/35  
10  
5
20  
1
t5  
t6  
t7  
4
t8  
ns min/max SCLK falling edge to DOUT high impedance  
t9  
ns min  
ns min  
ns min  
μs max  
DIN setup time prior to SCLK falling edge  
DIN hold time after SCLK falling edge  
16th SCLK falling edge to CS high  
t10  
t11  
t12  
Power-up time from full power-down/auto shutdown modes  
1 Guaranteed by design. All input signals are specified with tR and tF = 5 ns (10% to 90% of VCC) and timed from a voltage level of 1.6 V. The 5 V operating range spans  
from 4.75 V to 5.25 V.  
2 Mark/space ratio for the SCLK input is 40/60 to 60/40.  
3 Measured with the load circuit in Figure 3 and defined as the time required for the output to cross 0.4 V or 0.7 V × VDRIVE  
.
4 t8 is derived from the measured time taken by the data outputs to change 0.5 V when loaded with the circuit in Figure 3. The measured number is then extrapolated  
back to remove the effects of charging or discharging the 50 pF capacitor. This means that the time, t8, quoted in the timing characteristics is the true bus relinquish  
time of the part and is independent of the bus loading.  
CS  
tCONVERT  
t2  
t6  
B
1
2
3
4
5
6
11  
12  
13  
14  
t5  
15  
16  
t11  
SCLK  
t7  
DB10  
t3  
t4  
t8  
DB0  
tQUIET  
ZERO  
t9  
ADD1  
ADD0  
DB11  
DB4  
DB3  
DB2  
DB1  
DOUT  
THREE-STATE  
ZERO  
THREE-STATE  
2 IDENTIFICATION  
BITS  
t10  
ADD0  
DIN  
WRITE  
LOW  
DONTC DONTC  
ADD1  
CODING DONTC DONTC  
DONTC  
DONTC  
Figure 2. Gyroscope Serial Interface Timing Diagram  
200µA  
I
OL  
TO OUTPUT  
PIN  
1.6V  
C
L
50pF  
200µA  
I
OH  
Figure 3. Load Circuit for Digital Output Timing Specifications  
Rev. 0 | Page 5 of 16  
 
 
 
 
 
 
ADIS16080  
ABSOLUTE MAXIMUM RATINGS  
Table 3.  
Stresses above those listed under the Absolute Maximum  
Ratings may cause permanent damage to the device. This is a  
stress rating only; functional operation of the device at these or  
any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
Acceleration (Any Axis, Unpowered, 0.5 ms)  
Acceleration (Any Axis, Powered, 0.5 ms)  
VCC to COM  
2000 g  
2000 g  
−0.3 V to +6.0 V  
−0.3 V to VCC + 0.3 V  
−0.3 V to VCC + 0.3 V  
−0.3V to +7.0V  
−0.3V to VCC + 0.3 V  
−0.3 V to VCC + 0.3 V  
−55°C to +125°C  
−65°C to +150°C  
VDRIVE to COM  
Analog Input Voltage to COM  
Digital Input Voltage to COM  
Digital Output Voltage to COM  
STx Input Voltage to COM  
Operating Temperature Range  
Storage Temperature Range  
Drops onto hard surfaces can cause shocks of greater than  
2000 g and exceed the absolute maximum rating of the device.  
Care should be exercised in handling to avoid damage.  
ESD CAUTION  
Rev. 0 | Page 6 of 16  
 
ADIS16080  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
5
6
7
8
4
3
2
1
9
NC  
DOUT  
SCLK  
DIN  
AIN2  
COM  
ADIS16080  
10  
11  
12  
BOTTOM  
VIEW  
(Not to Scale)  
V
REF  
ST2  
16  
15  
14  
13  
NC = NO CONNECT  
Figure 4. Pin Configuration  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic  
Type1  
Description  
1
DIN  
I
Data In. Data to be written to the control register is provided on this input and is clocked in on the  
falling edge of the SCLK.  
2
3
SCLK  
I
Serial Clock. SCLK provides the serial clock for accessing data from the part and writing serial data  
to the control registers. Also used as a clock source for the ADIS16080 conversion process.  
Data Out. The data on this pin represents data being read from the control registers and is clocked  
on the falling edge of the SCLK.  
DOUT  
O
4
5
6
7
NC  
No Connect.  
RATE  
FILT  
VDRIVE  
O
I
S
Buffered Analog Output. Represents the angular rate signal.  
External Capacitor Connection to Control Bandwidth.  
Power to SPI. The voltage supplied to this pin determines the voltage at which the serial interface  
operates.  
8
9
AIN1  
AIN2  
I
I
External Analog Input Channel 1. Single-ended analog input multiplexed into the on-chip track-  
and-hold, according to the setting of the ADD0 and ADD1 address bits (see Table 5).  
External Analog Input Channel 2. Single-ended analog input multiplexed into the on-chip track-  
and-hold, according to the setting of the ADD0 and ADD1 address bits (see Table 5).  
10  
11  
12  
13  
14  
15  
16  
COM  
VREF  
ST2  
ST1  
VCC  
S
O
I
I
S
Common. Reference point for all circuitry in the ADIS16080.  
Precision 2.5 V Reference.  
Self-Test Input 2.  
Self-Test Input 1.  
Analog Power.  
NC  
CS  
No Connect.  
I
Chip Select. Active low. This input frames the serial data transfer and initiates the conversion  
process.  
1 I = input; O = output; S = power supply.  
Rev. 0 | Page 7 of 16  
 
ADIS16080  
TYPICAL PERFORMANCE CHARACTERISTICS  
70  
60  
50  
40  
30  
20  
10  
0
25  
AVERAGE = 2014.38  
STD. DEVIATION = 99.3236  
AVERAGE = 6.4mA  
STD. DEVIATION = 0.2mA  
20  
15  
10  
5
0
1600 1700 1800 1900 2000 2100 2200 2300 2400 2500  
SUPPLY CURRENT (mA)  
NULL (LSB)  
Figure 8. Supply Current Histogram  
Figure 5. Initial Null Histogram  
20  
18  
16  
14  
12  
10  
8
2080  
AVERAGE = –519.6 LSB  
STD. DEVIATION = 21.892 LSB  
–40°C  
2070  
2060  
2050  
2040  
+25°C  
2030  
6
2020  
4
+85°C  
2010  
2
0
2000  
4.7  
4.8  
4.9  
5.0  
(V)  
5.1  
5.2  
5.3  
V
ST1 (LSB)  
CC  
Figure 9. Self Test 1 Histogram  
Figure 6. Null Level vs. Supply Voltage  
25  
20  
15  
10  
5
2080  
30 PART AVERAGE, V  
30 PART AVERAGE, V  
30 PART AVERAGE, V  
= 4.75V  
= 5.00V  
= 5.25V  
AVERAGE = 522.47 LSB  
STD. DEVIATION = 19.9086 LSB  
CC  
CC  
CC  
2070  
2060  
2050  
2040  
2030  
2020  
2010  
2000  
0
–50  
–30  
–10  
10  
30  
50  
70  
90  
110  
TEMPERATURE (°C)  
ST2 (LSB)  
Figure 7. Null Level vs. Temperature  
Figure 10. Self Test 2 Histogram  
Rev. 0 | Page 8 of 16  
 
ADIS16080  
–400  
–420  
–440  
–460  
–480  
–500  
–520  
–540  
–560  
–580  
–600  
600  
580  
560  
540  
520  
500  
480  
460  
440  
420  
400  
30 PART AVERAGE, V = 4.75V  
CC  
30 PART AVERAGE, V = 5.00V  
30 PART AVERAGE, T = –40°C  
CC  
A
30 PART AVERAGE, V = 5.25V  
CC  
30 PART AVERAGE, T = +25°C  
A
30 PART AVERAGE, T = +85°C  
A
4.7  
4.8  
4.9  
5.0  
(V)  
5.1  
5.2  
5.3  
–50  
–30  
–10  
10  
30  
50  
70  
90  
110  
V
CC  
TEMPERATURE (°C)  
Figure 11. Self Test 1 vs. Supply Voltage  
Figure 14. Self Test 2 vs. Temperature  
600  
550  
500  
450  
400  
0
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
30 PART AVERAGE, V = 4.75V  
CC  
30 PART AVERAGE, T = +85°C  
A
30 PART AVERAGE, V = 5.00V  
CC  
30 PART AVERAGE, V = 5.25V  
CC  
30 PART AVERAGE, T = +25°C  
A
30 PART AVERAGE, T = –40°C  
A
4.7  
4.8  
4.9  
5.0  
(V)  
5.1  
5.2  
5.3  
–50  
–30  
–10  
10  
30  
50  
70  
90  
110  
V
CC  
TEMPERATURE (°C)  
Figure 12. Self Test 2 vs. Supply Voltage  
Figure 15. ADC Offset vs. Temperature and Supply Voltage  
–400  
–420  
–440  
–460  
–480  
–500  
–520  
–540  
–560  
–580  
1.0  
30 PART AVERAGE, V = 4.75V  
CC  
30 PART AVERAGE, V = 4.75V  
CC  
30 PART AVERAGE, V = 5.00V  
CC  
30 PART AVERAGE, V = 5.25V  
CC  
30 PART AVERAGE, V = 5.00V  
CC  
0.9  
0.8  
0.7  
0.6  
0.5  
0.4  
0.3  
0.2  
0.1  
0
30 PART AVERAGE, V = 5.25V  
CC  
–50 –40 –30 –20 –10  
0
10 20 30 40 50 60 70 80 90 100  
–50  
–30  
–10  
10  
30  
50  
70  
90  
110  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 13. Self Test 1 vs. Temperature  
Figure 16. ADC Gain Error vs. Temperature (Excluding VREF)  
Rev. 0 | Page 9 of 16  
ADIS16080  
2.486  
2.485  
2.484  
2.483  
2.482  
2.481  
2.480  
2.479  
1825  
1820  
1815  
1810  
1805  
1800  
30 PART AVERAGE, T = +25°C  
A
30 PART AVERAGE, T = –40°C  
A
30 PART AVERAGE, T = +85°C  
A
0
1000 2000 3000 4000 5000 6000 7000 8000  
4.7  
4.8  
4.9  
5.0  
(V)  
5.1  
5.2  
5.3  
000001110000010X  
000001110000011X  
3
19  
V
CC  
000001110000100X  
000001110000101X  
000001110000110X  
000001110000111X  
000001110001000X  
000001110001001X  
000001110001010X  
000001110001011X  
000001110001100X  
000001110001101X  
000001110001110X  
000001110001111X  
000001110010000X  
000001110010010X  
39  
87  
Figure 17. VREF vs. Supply Voltage  
249  
844  
1136  
1303  
1702  
1229  
924  
447  
150  
43  
13  
4
SAMPLES = 8192, MAX CODE = 1827, MIN CODE = 1796,  
SPREAD = 32, STD DEV = 4.057, MEAN = 1811.803  
Figure 18. Noise Histogram  
Rev. 0 | Page 10 of 16  
ADIS16080  
THEORY OF OPERATION  
The ADIS16080 operates on the principle of a resonator gyro.  
Two polysilicon sensing structures each contain a dither frame,  
which is electrostatically driven to resonance. This produces the  
necessary velocity element to produce a Coriolis force during  
angular rate. At two of the outer extremes of each frame,  
orthogonal to the dither motion, are movable fingers that are  
placed between fixed pickoff fingers to form a capacitive pickoff  
structure that senses Coriolis motion. The resulting signal is fed  
to a series of gain and demodulation stages that produce the  
electrical rate signal output. The rate signal is then converted to  
a digital representation of the output on the SPI pins. The dual-  
sensor design rejects external g forces and vibration. Fabricating  
the sensor with the signal conditioning electronics preserves  
signal integrity in noisy environments.  
SETTING BANDWIDTH  
An external capacitor can be used in combination with an on-  
chip resistor to create a low-pass filter to limit the bandwidth of  
the ADIS16080 rate response.  
The −3 dB frequency is defined as  
fOUT =1/  
(
2×π×ROUT  
×
(
COUT + 0.022 μF
))  
where ROUT represents an internal impedance that was trimmed  
during manufacturing to 180 kΩ 1%.  
Any external resistor applied between the RATE pin and the  
FILT pin results in  
ROUT  
=
(
180 k× REXT  
)
/
(
180 kꢀ + REXT  
)
With COUT = 0 μF, a default −3 dB frequency response of 40 Hz  
is obtained based upon an internal 0.022 μF capacitor  
implemented on-chip.  
The electrostatic resonator requires 14 V to 16 V for operation.  
Because only 5 V is typically available in most applications,  
a charge pump is included on-chip.  
After the demodulation stage, there is a single-pole, low-pass filter  
included on-chip that is used to limit high frequency artifacts  
before final amplification. The frequency response is dominated  
by the second low-pass filter, which is set at 40 Hz. For additional  
bandwidth reduction options, see the Setting Bandwidth section.  
SELF-TEST FUNCTION  
The ADIS16080 includes a self-test feature that actuates each of  
the sensing structures and associated electronics in the same  
manner as if subjected to angular rate. It provides a simple  
method for exercising the mechanical structure of the sensor,  
along with the entire signal processing circuit. It is activated by  
standard logic high levels applied to inputs ST1, ST2, or both.  
ST1 causes a change in the digital output equivalent to typically  
−540 LSB, and ST2 causes an opposite +540 LSB change. The self-  
test response follows the viscosity temperature dependence of the  
package atmosphere, approximately 0.25%/°C.  
SUPPLY AND COMMON CONSIDERATIONS  
Power supply noise and transient behaviors can influence the  
accuracy and stability of any sensor-based measurement system.  
When considering the power supply for the ADIS16080, it is  
important to understand that the ADIS16080 provides 0.2 μF of  
decoupling capacitance on the VCC pin. Depending on the level of  
noise present in the system power supply, the ADIS16080 may not  
require any additional decoupling capacitance for this supply.  
The analog supply, VCC, and the digital drive supply, VDRIVE, are  
segmented to allow multiple logic levels to be used in receiving the  
digital output data. VDRIVE is intended for the down-stream logic  
power supply and supports standard 3.3 V and 5 V logic families.  
The VDRIVE supply does not have internal decoupling capacitors.  
Activating both ST1 and ST2 simultaneously is not damaging.  
Because ST1 and ST2 are not necessarily closely matched, actuating  
both simultaneously can result in an apparent null bias shift.  
CONTINUOUS SELF TEST  
As an additional failure detection measure, power-on self test  
can be performed. However, some applications can warrant  
continuous self test while sensing rate.  
INCREASING MEASUREMENT RANGE  
RATE SENSITIVE AXIS  
The full-scale measurement range of the ADIS16080 is increased  
by placing an external resistor between the RATE pin and FILT pin,  
which results in a parallel connection with the internal 180 kΩ,  
1% resistor. For example, a 330 kΩ external resistor gives ~50%  
increase in the full-scale range. This is effective for up to a 4×  
increase in the full-scale range (minimum value of the parallel  
resistor allowed is 45 kΩ). The internal circuitry headroom require-  
ments prevent further increase in the linear full-scale output range.  
This is a z-axis rate-sensing device that is also called a yaw rate  
sensor. It produces a positive going output voltage for clockwise  
rotation about the axis normal to the package top, that is,  
clockwise when looking down at the package lid.  
RATE  
RATE  
AXIS  
V
= 5V  
CC  
LONGITUDINAL  
AXIS  
4.75V  
2.5V  
The trade-offs associated with increasing the full-scale range are  
potential increase in output null drift (as much as 2°/sec over  
temperature) and introducing initial null bias errors that must  
be calibrated.  
RATE IN  
0.25V  
A1  
LATERAL AXIS  
GND  
Figure 19. Rate Signal Increases with Clockwise Rotation  
Rev. 0 | Page 11 of 16  
 
 
 
ADIS16080  
CONTROL REGISTER  
The control register on the ADIS16080 is a 12-bit, write-only  
register. Data is loaded from the DIN pin on the falling edge of  
SCLK. The data is transferred on the DIN line at the same time  
that the conversion result is read from the part. The data  
transferred on the DIN line dictates the configuration for the  
next conversion.  
MSB denotes the first bit in the data stream. The DIN Bit  
Stream bit map shows the analog input channel selection  
options.  
Table 5. Channel Selection  
Analog Input Channel  
ADD1  
ADD0  
Gyroscope  
Temperature Sensor  
AIN1 Input  
0
0
1
1
0
1
0
1
This requires 16 serial clocks for every data transfer. Only the  
information provided on the first 12 falling clock edges (after  
CS  
falling edge) is loaded to the control register.  
AIN2 Input  
DIN Bit Stream  
MSB (11)  
LSB (0)  
CODING  
WRITE  
LOW  
DONTC  
DONTC  
ADD1  
ADD0  
HIGH  
HIGH  
DONTC  
DONTC  
LOW  
Table 6. Analog Input Channel Selection Options  
Bit  
Mnemonic  
Comments  
11  
WRITE  
The value written to this bit of the control register determines whether the following 11 bits are loaded to the  
control register or not. If this bit is a 1, the following 11 bits are written to the control register. If it is a 0, the  
remaining 11 bits are not loaded to the control register, and it remains unchanged.  
10  
9, 8  
7, 6  
LOW  
DONTC  
ADD1, ADD0  
This bit should be low.  
Don’t care.  
These two address bits are loaded at the end of the present conversion sequence and select which analog input  
channel is to be converted in the next serial transfer. The selected input channel is decoded as shown in Table 5.  
The address bits corresponding to the conversion result are output on DOUT prior to the 12 bits of data. The next  
channel to be converted is selected by the mux on the 14th SCLK falling edge.  
5, 4  
3, 2  
1
HIGH  
DONTC  
LOW  
These bits should be high.  
Don’t care.  
This bit should be low.  
0
CODING  
This bit selects the type of output coding used for the conversion result. If this bit is set to 0, the output coding for  
the part is twos complement. If this bit is set to 1, the output coding from the part is straight binary (for the next  
conversion).  
Rev. 0 | Page 12 of 16  
 
 
 
 
ADIS16080  
SERIAL INTERFACE  
CS  
going low clocks out the first leading zero to be read in by  
the system microcontroller or DSP on the first falling edge of  
SCLK. The first falling edge of SCLK will also clock out the  
second leading zero to be read in by the microcontroller or DSP  
on the second SCLK falling edge, and so on.  
Figure 2 shows the detailed timing diagram for the serial  
CS  
interface to the ADIS16080. The chip select signal, , frames  
the entire data transfer, because it must be kept in a Logic 0  
state to communicate with the ADIS16080. The serial clock,  
SCLK, provides the conversion clock and controls the transfer  
of information to and from the ADIS16080 during each  
conversion cycle. The data input, DIN, provides access to  
critical control parameters in the control register; and the  
output signal, DOUT, provides access to the ADIS16080  
output data.  
The remaining two address bits and 12 bits are then clocked out  
by subsequent SCLK falling edges, beginning with the first  
address bit, ADD1; thus, the second falling clock edge on the  
serial clock has the second leading 0 provided and also clocks  
out Address Bit ADD1. The final bit in the data transfer is valid  
on the 16th falling edge, having been clocked out on the previous  
(15th) falling edge.  
The ADIS16080 offers an efficient data transfer function by  
supporting simultaneous READ and WRITE cycles. A data  
After the 16th falling edge of SCLK, the DOUT line goes back  
CS  
transfer cycle is started when the  
transitions to a Logic 0  
CS  
into a three-state mode. If the rising edge of  
occurs before  
state. If DIN is in a Logic 1 state during the first falling edge of  
the SCLK, then the next 11 SCLK cycles fill the control register  
with the contents on the DIN pin. The appropriate bit defini-  
tions for DIN can be found in the DIN Bit Stream bit map and  
Table 6. If DIN is in a Logic 0 state during the first falling edge  
of the SCLK, then the contents of the control register remain  
unchanged. Because the control register is only 12 bits wide,  
the contents on the DIN pin during the last four SCLK cycles  
are ignored.  
16 SCLKs have elapsed, the DOUT line goes back into three-  
state mode and the control register is not updated. Otherwise,  
DOUT returns to a three-state mode on the 16th SCLK falling  
edge, as shown in Figure 2.  
CS  
For the analog inputs, the  
signal initiates the data transfer  
CS  
and conversion process. The falling edge of  
put the track and  
hold into hold mode and takes the bus out of the three-state.  
The analog input is sampled at this point. The conversion is also  
initiated at this point and requires 16 SCLK cycles to complete.  
During this same cycle, the digital output data is clocked out on  
the DOUT pin. The 12 bits of data are preceded by two leading  
0s and two channel address bits, ADD1 and ADD0, identifying  
to which channel the result corresponds (see the Reading DOUT  
Bit Stream bit map and Table 7).  
Reading DOUT Bit Stream  
SCLK1  
SCLK16  
LOW  
LOW  
ADD1  
ADD0  
DB11  
DB10  
DB9  
DB8  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DB0  
Table 7. DOUT Bit Functions  
SCLK  
1, 2  
Mnemonic  
LOW  
Comments  
The outputs are low for SCLK1 and SCLK2.  
3, 4  
ADD1, ADD0  
The address bits corresponding to the conversion result are output on DOUT prior to the 12 bits of data.  
See Table 5 for the coding of these address bits.  
5
DB11  
DB10 to DB1  
DB0  
Data Bit 11 (MSB).  
Data Bit 10 to Data Bit 1.  
Data Bit 0 (LSB).  
6 to 15  
16  
Rev. 0 | Page 13 of 16  
 
 
 
ADIS16080  
CRITICAL ZONE  
TO T  
T
tP  
SECOND-LEVEL ASSEMBLY  
L
P
T
P
RAMP-UP  
The ADIS16080 can be attached to the second-level assembly  
board using Sn63 (or equivalent) or an RoHS-compliant solder.  
Figure 21 and Table 8 provide acceptable solder reflow profiles  
for each solder type. Note that these profiles may not be the  
optimum profile for the users application. In no case shall the  
260°C limit be exceeded. It is recommended that the user develop  
a reflow profile based upon the specific application. In general,  
keep in mind the lowest peak temperature and shortest dwell  
time above the melt temperature of the solder results in less  
shock and stress to the product. In addition, evaluating the  
cooling rate and peak temperature can result in a more reliable  
assembly.  
T
L
tL  
T
SMAX  
T
SMIN  
tS  
RAMP-DOWN  
PREHEAT  
t
25°C TO PEAK  
TIME  
Figure 21. Recommended Solder Reflow Profiles  
Table 8.  
Condition  
6.873  
2×  
Profile Feature  
Average Ramp Rate (TL to TP)  
Preheat  
Sn63/Pb37  
Pb-Free  
0.5 BSC  
16×  
3°C/sec max  
3°C/sec max  
Minimum Temperature (TSMIN  
Maximum Temperature (TSMAX  
)
100°C  
150°C  
150°C  
200°C  
0.67 BSC  
12×  
)
Time (TSMIN to TSMAX) (tS)  
60 sec to  
120 sec  
60 sec to  
150 sec  
1 BSC  
16×  
TSMAX to TL  
Ramp-Up Rate  
3°C/sec  
3°C/sec  
0.9315  
4×  
Time Maintained Above  
Liquidous (TL)  
Liquidous Temperature (TL)  
Time (tL)  
183°C  
60 sec to  
150 sec  
217°C  
60 sec to  
150 sec  
0.9315  
4×  
Peak Temperature (TP)  
240°C +  
260°C +  
0°C/–5°C  
0°C/–5°C  
Time Within 5°C of Actual Peak  
Temperature (tP)  
10 sec to  
30 sec  
20 sec to  
40 sec  
Figure 20. Second Level Assembly Pad Layout  
Ramp-Down Rate  
6°C/sec max  
6 min max  
6°C/sec max  
8 min max  
Time 25°C to Peak Temperature  
Rev. 0 | Page 14 of 16  
 
 
 
ADIS16080  
OUTLINE DIMENSIONS  
8.33  
8.20 SQ  
8.07  
1.1585  
BSC  
PIN 1  
INDICATOR  
13  
16  
0.797  
BSC  
12  
1
PIN 1  
INDICATOR  
0.873  
BSC  
4
9
8
5
TOP VIEW  
7.00 TYP  
BOTTOM VIEW  
0.373  
BSC  
0.227  
BSC  
5.20  
MAX  
SIDE VIEW  
Figure 22. 16-Terminal Land Grid Array [LGA]  
(CC-16-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
ADIS16080ACCZ1  
ADIS16080/PCBZ1  
Temperature Range  
−40°C to +85°C  
Package Description  
Package Option  
CC-16-1  
16-Terminal Land Grid Array (LGA)  
Evaluation Board  
1 Z = Pb-free part.  
Rev. 0 | Page 15 of 16  
 
 
 
ADIS16080  
NOTES  
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D06045-0-7/06(0)  
Rev. 0 | Page 16 of 16  
 
 
 
 
 
 
 
 

相关型号:

ADIS16080ACCZ

【80∑/sec Yaw Rate Gyro with SPI Interface
ADI

ADIS16080PCBZ

iSensor⑩ PC Evaluation System
ADI

ADIS16100

+-300∑/sec Yaw Rate Gyro with SPI Interface
ADI

ADIS16100ACC

IC SPECIALTY ANALOG CIRCUIT, PBGA16, 8.20 X 8.20 MM, 5.20 MM HEIGHT, LGA-16, Analog IC:Other
ADI

ADIS16100PCB

iSensor⑩ PC Evaluation System
ADI

ADIS16120

Low Noise, Angular Rate Sensor
ADI

ADIS16120/PCB

Low Noise, Angular Rate Sensor
ADI

ADIS16120AML

Low Noise, Angular Rate Sensor
ADI

ADIS16130

Digital Output, High-Precision Angular Rate Sensor
ADI

ADIS16130AMLZ

Digital Output, High-Precision Angular Rate Sensor
ADI

ADIS16133

±1200°/sec Precision Angular Rate Sensor
ADI

ADIS16133/PCBZ

±1200°/sec Precision Angular Rate Sensor
ADI