ADIS16130 [ADI]

Digital Output, High-Precision Angular Rate Sensor; 数字输出,高精度角速率传感器
ADIS16130
型号: ADIS16130
厂家: ADI    ADI
描述:

Digital Output, High-Precision Angular Rate Sensor
数字输出,高精度角速率传感器

传感器
文件: 总16页 (文件大小:376K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Digital Output, High-Precision  
Angular Rate Sensor  
ADIS16130  
FEATURES  
GENERAL DESCRIPTION  
Low noise density, 0.0125o/sec/√Hz  
Industry-standard serial peripheral interface (SPI)  
24-bit digital resolution  
The ADIS16130 is a low noise, digital output angular rate sensor  
(gyroscope) that provides an output response over the complete  
dynamic range of 250o/sec.  
250o/sec dynamic range  
Its industry-standard serial interface and register structure provide  
a simple interface that is supported by most MCU, DSP, and FPGA  
platforms.  
Z-axis, yaw rate response  
300 Hz bandwidth, adjustable  
35 ms turn-on time  
By implementing a unique design, the device provides superior  
stability over variations in temperature, voltage, linear acceleration,  
vibration, and next-level assembly. In addition, the surface-micro-  
machining technology used to manufacture the device is the  
same high volume BiMOS process used by Analog Devices, Inc.,  
for its high reliability automotive sensor products.  
Digital self-test  
High vibration rejection  
High shock survivability  
Embedded temperature sensor output  
Precision voltage reference output  
5 V single-supply operation  
−40°C to +85°C  
Features include a temperature output that provides critical  
information for system-level calibrations, and a digital self-test  
feature, which exercises the mechanical structure of the sensor  
and enables system-level diagnostics.  
APPLICATIONS  
Guidance and control  
Instrumentation  
Inertial measurement units (IMU)  
Platform stabilization  
Navigation  
The package configuration is a 36 mm × 44 mm × 16 mm  
module with a standard 24-lead connector interface.  
FUNCTIONAL BLOCK DIAGRAM  
SYNC  
ADIS16130  
REFERENCE  
SYNC  
TEMPERATURE  
SENSOR  
CS  
SCLK  
SDI  
SERIAL  
INTERFACE  
24-BIT  
Σ-Δ ADC  
2:1  
MUX  
MEMS  
ANGULAR  
RATE  
SDO  
SENSOR  
RDY  
SELF-TEST  
ST  
ROA1  
ROA2  
VCC GND  
Figure 1.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2008 Analog Devices, Inc. All rights reserved.  
 
ADIS16130  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Typical Performance Characteristics ..............................................8  
Basic Operation .................................................................................9  
Getting Started Quickly................................................................9  
Configuration Options .............................................................. 10  
Control Registers............................................................................ 11  
Control Register Details ............................................................ 11  
Applications Information.............................................................. 12  
Achieving Optimal Noise Performance .................................. 12  
Second-Level Assembly............................................................. 12  
Outline Dimensions....................................................................... 13  
Ordering Guide .......................................................................... 13  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Specifications .................................................................. 4  
Absolute Maximum Ratings............................................................ 6  
Thermal Resistance ...................................................................... 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
REVISION HISTORY  
1/08—Revision 0: Initial Version  
Rev. 0 | Page 2 of 16  
 
ADIS16130  
SPECIFICATIONS  
TA = 25°C, VCC = 5 V, angular rate = 0°/sec, COUT = 0 μF, 1 g, unless otherwise noted.  
Table 1.  
Parameter  
Conditions  
Min1  
Typ  
Max  
Unit  
SENSITIVITY  
Dynamic Range2  
Clockwise rotation is positive output (See Figure 5)  
Full-scale range over specified operating conditions  
250  
°/sec  
Initial  
Nonlinearity  
22,548  
23,488  
0.04  
24,428  
LSB/°/sec  
% of FS  
Best fit straight line  
NULL  
Initial Null  
1ꢀ  
3
°/sec  
In-Run Bias Stability  
Angle Random Walk  
Turn-On Time  
1ꢀ  
1ꢀ  
0.0016  
0.56  
35  
°/sec  
°/√hr  
ms  
Power on to 0.5°/sec of final value, 80 Hz bandwidth  
Linear Acceleration Effect  
Voltage Sensitivity  
NOISE PERFORMANCE  
Rate Noise Density3  
FREQUENCY RESPONSE  
Bandwidth  
Sensor Resonant Frequency  
SELF-TEST INPUTS  
ST RATEOUT Response4  
Logic 1 Input Voltage  
Logic 0 Input Voltage  
Input Impedance  
TEMPERATURE SENSOR  
Output at 298 K (25°C)  
Scale Factor  
Any axis  
VCC = 4.75 V to 5.25 V  
0.05  
0.2  
°/sec/g  
°/sec /V  
0.0125  
°/sec/√Hz  
−3 dB frequency with no external capacitance  
300  
14  
Hz  
kHz  
ST pins from Logic 0 to Logic 1  
Standard high logic level definition  
Standard low logic level definition  
To GND  
65  
3.3  
75  
85  
°/sec  
V
V
1.7  
3.13  
kΩ  
8,388,608  
14,093  
LSB  
LSB/°C  
DIGITAL OUTPUTS  
Output Low Voltage (VOL  
Output High Voltage (VOH  
)
0.4  
V
V
)
4
DIGITAL INPUTS  
Input Current  
CS  
10  
1
μA  
μA  
pF  
V
V
V
All others  
Input Capacitance  
VT+  
VT−  
(VT+) – (VT−)  
POWER SUPPLY  
Operating Voltage Range  
Quiescent Supply Current  
TEMPERATURE RANGE  
Operating Range  
5
1.4  
0.8  
0.3  
2
1.4  
0.85  
4.75  
–40  
5.00  
73  
5.25  
85  
V
mA  
IOUT = 0 mA, 5 V  
+85  
°C  
1 All minimum and maximum specifications are guaranteed. Typical specifications are not tested or guaranteed.  
2 Dynamic range is the maximum full-scale measurement range possible, including output swing range, initial offset, sensitivity, offset drift, and sensitivity drift at 4.75 V  
to 5.25 V supplies.  
3 Resulting bias stability is <0.01°/sec.  
4 Self-test response varies with temperature, see Figure 12.  
Rev. 0 | Page 3 of 16  
 
ADIS16130  
TIMING SPECIFICATIONS  
All input signals are specified with 10% to 90% rise and fall times of less than 5 ns.  
Table 2.  
Parameter  
Min  
Typ  
Max  
Unit  
Test Conditions/Comments  
t1  
50  
ns  
SYNC pulse width  
Read Operation  
t4  
0
0
ns  
ns  
CS falling edge to SCLK falling edge setup time  
SCLK falling edge to data valid delay  
DVDD of 4.75 V to 5.25 V  
CS falling edge to data valid delay  
DVDD of 4.75 V to 5.25 V  
SCLK high pulse width  
SCLK low pulse width  
CS rising edge after SCLK rising edge hold time  
Bus relinquish time after SCLK rising edge  
1
t5  
60  
60  
1, 2  
t5A  
0
ns  
ns  
ns  
ns  
ns  
t6  
t7  
t8  
50  
50  
0
3
t9  
10  
80  
Write Operation  
t11  
t12  
t13  
t14  
t15  
t16  
0
ns  
ns  
ns  
ns  
ns  
ns  
CS falling edge to SCLK falling edge setup  
Data valid to SCLK rising edge setup time  
Data valid after SCLK rising edge hold time  
SCLK high pulse width  
SCLK low pulse width  
CS rising edge after SCLK rising edge hold time  
30  
25  
50  
50  
0
1 These numbers are measured with the load circuit shown in Figure 4 and defined as the time required for the output to cross the VOL or VOH limits.  
2
CS  
This specification is relevant only if goes low while SCLK is low.  
3 These numbers are derived from the measured time taken by the data output to change 0.5 V when loaded with the circuit shown in Figure 4. The measured number  
is then extrapolated back to remove effects of charging or discharging the 50 pF capacitor. Therefore, the times quoted are the true bus relinquish times of the part  
and as such are independent of external bus loading capacitances.  
Rev. 0 | Page 4 of 16  
 
 
ADIS16130  
CS  
t11  
t14  
t16  
SCLK  
t15  
t12  
t13  
MSB  
SDI  
LSB  
Figure 2. Input Timing for Write Operation  
CS  
t8  
t4  
t6  
SCLK  
t5  
t7  
t9  
t5A  
MSB  
LSB  
SDO  
Figure 3. Output Timing for Read Operation  
I
(800µA AT DV = 5V  
DD  
SINK  
100µA AT DV = 3V)  
DD  
TO OUTPUT  
PIN  
1.6V  
50pF  
I
(200µA AT DV = 5V  
DD  
SOURCE  
100µA AT DV = 3V)  
DD  
Figure 4. Load Circuit for Access Time and Bus Relinquish Time  
Rev. 0 | Page 5 of 16  
 
 
ADIS16130  
ABSOLUTE MAXIMUM RATINGS  
THERMAL RESISTANCE  
Table 3.  
The ADIS16130 provides a temperature output that is  
representative of the junction temperature. This can be used  
for system-level monitoring and power management/thermal  
characterization.  
Parameter  
Rating  
Acceleration (Any Axis, Unpowered, 0.5 ms)  
Acceleration (Any Axis, Powered, 0.5 ms)  
+VS  
Output Short-Circuit Duration  
(Any Pin to Common)  
2000 g  
2000 g  
−0.3 V to +6.0 V  
Indefinite  
Table 4. Thermal Characteristics  
Package Type1  
θJA  
θJC  
Unit  
Operating Temperature Range  
Storage Temperature Range  
−40°C to +85°C  
−65°C to +150°C  
24-Lead Module  
15.7  
1.48  
°C/W  
1 Weight = 28.5 g typical.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
RATE  
AXIS  
POSITIVE  
ROTATION  
DIRECTION  
+
Dropping the device onto a hard surface may cause a shock of  
greater than 2000 g and exceed the absolute maximum rating of  
the device. Care should be exercised when handling the device  
to avoid damage.  
Figure 5. Rotational Measurement Orientation  
ESD CAUTION  
Rev. 0 | Page 6 of 16  
 
 
ADIS16130  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
ADIS16130  
TOP VIEW  
(Not to Scale)  
2
1
4
3
6
5
8
7
10 12 14 16 18 20 22 24  
9
11 13 15 17 19 21 23  
Figure 6. Pin Configuration, Top View  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1 to 7, 9  
8
ST  
CS  
Self-Test (see the Self-Test Function section)  
Chip Select of the SPI  
Data Ready  
10  
RDY  
11, 13, 15  
VCC  
Power Supply  
12  
14  
16  
SDO  
SDI  
SCLK  
Data Output of the SPI  
Data Input of the SPI  
Serial Clock of the SPI  
Power Supply Ground  
Synchronization Input  
Analog Filter Node 1  
Analog Filter Node 2  
17, 19 to 22 GND  
18  
23  
24  
SYNC  
ROA1  
ROA2  
Rev. 0 | Page 7 of 16  
 
 
ADIS16130  
TYPICAL PERFORMANCE CHARACTERISTICS  
2.5  
0.010  
2.0  
1.5  
1.0  
σ
0.5  
0
µ
–0.5  
µ + σ  
–1.0  
σ
–1.5  
–2.0  
–2.5  
µ
µ – σ  
0.001  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
1
10  
100  
1000  
TEMPERATURE (°C)  
τ (sec)  
Figure 7. Bias Shift vs. Temperature, VCC = 5 V  
Figure 10. Root Allen Variance, VCC = 5 V, 25°C  
1.00  
2.0  
1.0  
0.75  
0.50  
0.25  
0
0
–0.25  
–0.50  
–0.75  
–1.00  
–1.0  
–2.0  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
0
50  
100  
150  
200  
250  
300  
350  
400  
TEMPERATURE (°C)  
ANGULAR RATE (°/sec)  
Figure 8. Sensitivity Error vs. Temperature, VCC = 5 V  
Figure 11. Sensitivity Error vs. Angular Rate, VCC = 5 V, 25°C  
0.05  
0
90  
85  
80  
75  
70  
65  
60  
–0.05  
–0.10  
–0.15  
4.75  
5.0  
5.25  
–60  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
POWER SUPPLY (V)  
TEMPERATURE (°C)  
Figure 9. Sensitivity Error vs. Power Supply, 25°C  
Figure 12. Self-Test Response vs. Temperature, VCC = 5 V  
Rev. 0 | Page 8 of 16  
 
ADIS16130  
BASIC OPERATION  
The ADIS16130 produces digital angular rate (RATE) and  
temperature (TEMP) data. The digital communication employs  
a simple 4-wire SPI, which provides access to output data and  
several configuration features. A set of communication and  
configuration registers govern the operation in the ADIS16130.  
See Table 8 for a summary of these registers.  
Figure 13 provides an example read sequence, and Table 2 and  
Figure 3 provide critical timing details for the output signal.  
The first byte of the sequence uses SDI to establish a read of the  
RATE output register. This is accomplished by writing 0x48 to the  
COM register.  
The most significant byte is first in the SDO sequence, followed  
by the next significant, and then the least significant. When 16-bit  
resolution is in use, only two bytes are output from the SDO during  
the read sequence.  
GETTING STARTED QUICKLY  
The ADIS16130 SPI operates in 8-bit segments. The first byte of  
a SPI sequence goes into the COM register, which contains the  
read/write control bit and the address of the target register. When  
writing information into control registers, the next byte contains  
the configuration information. When reading output data, the  
next one to three bytes contain the contents of the register selected.  
CS  
SCLK  
SDO  
SDI  
DATA  
DATA  
DATA  
0x48  
Configuration Sequence  
RDY  
The sequence in Table 6 provides the recommended configuration  
sequence. Table 2 and Figure 2 provide the timing information  
for each segment of this configuration sequence.  
Figure 13. Read Sequence Example  
RDY  
The data-ready signal,  
, indicates that unread data is  
Table 6. Configuration Sequence  
available on both RATE and TEMP output registers. After the  
RATE or TEMP channel is read, the signal returns high, as  
shown in Figure 13. The RATE and TEMP channels update  
sequentially, and each has a sample rate of 5.7 kSPS. The  
internal sample rate is not dependent on the SPI signals or read  
rates. Using the data-ready signal to drive data collection helps  
avoid losing data due to data collision, which is when a user-  
driven read cycle coincides with the internal update time. In  
this case, the old data remains and the new data is lost.  
Step SDI1  
Register  
0x01 COM  
0x38 IOP  
Purpose  
1
2
Start a write sequence for IOP.  
Configure the data-ready signal to  
pulse low when the RATEDATA and  
TEMPDATA output registers  
contain new data. The data-ready  
signal goes high after reading  
either of these registers.  
3
4
5
0x28 COM  
0x0A RATECS  
0x30 COM  
Start a write sequence for the  
RATECS register.  
Enable and configure the  
gyroscope data channel.  
Start a write sequence for  
RATECONV register.  
If a lower sample rate meets system-level requirements, the  
data-ready signal can still be useful in facilitating SPI read  
sequences. In this case, the data-ready signal pulses high for  
approximately 26 μs before returning low and then repeats this  
pattern at two times the internal sample rate. This signal can  
feed a counter circuit (or firmware), which drives a processor  
interrupt routine at a reduced sample rate.  
6
7
0x05 RATECONV Initialize the RATE conversion.  
0x2A COM  
0x0A TEMPCS  
0x32 COM  
Start a write sequence for the  
TEMPCS register.  
Enable and configure the  
temperature data channel.  
Start a write sequence for  
TEMPCONV.  
8
9
Reading TEMP Output Data  
Reading TEMP data requires a sequence that is very similar to  
that of Figure 13, except that the initial SDI sequence must be  
changed from 0x48 to 0x4A. If the TEMP data is not used, Step 7  
to Step 10 of the configuration sequence are not required.  
10  
11  
0x05 TEMPCONV Initialize the TEMP conversion.  
0x38 COM  
Start a write sequence for the  
MODE register.  
12  
0x22 MODE  
Establish the data output  
resolution to 24 bits and start the  
conversion process with the  
RATEDATA channel.  
1 The SDI column lists the hexadecimal code representation of the SDI bit  
input sequence.  
Reading RATE Output Data  
After the configuration sequence in Table 6 is complete, reading the  
output data is very simple. The ADIS16130 converts the RATE  
and TEMP data continuously. To better understand this process,  
Rev. 0 | Page 9 of 16  
 
 
 
 
ADIS16130  
CONFIGURATION OPTIONS  
Synchronization Input  
ADC  
327Hz  
1kHz  
SYNC  
The  
other devices in the system. When the  
SYNC  
pin can be used to synchronize the ADIS16130 with  
Figure 14. Frequency Response Block Diagram  
SYNC  
bit in the I/O port  
pin is low, the ADIS16130  
does not process any conversions. Instead, it waits until the  
SYNC  
0
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–8  
–9  
–10  
register (IOP) is set and the  
C
= 0.15µF  
ext  
pin goes high, and then starts the operation. This allows  
the conversion to start from a known point in time (for example,  
C
= 0µF  
ext  
SYNC  
the rising edge of the  
pin).  
Self-Test Function  
The self-test function enables system-level diagnostic checks for the  
entire ADIS16130 sensor/signal conditioning circuit. To activate  
the self-test function, there must be a logic high signal on all  
ST pins (see Table 5). When activated, the self-test function results  
in a rate measurement shift. By comparing the observed shift  
with the limits specified in this data sheet, users can determine  
the pass/fail criteria for system-level diagnostic routines.  
1
10  
100  
FREQUENCY (Hz)  
1k  
10k  
Figure 15. Frequency Response: Cext = 0 μF vs. Cext = 0.15 μF  
For normal gyroscope operation, place a logic low input on  
all ST pins. For systems that do not require this feature, tie all  
ST pins to GND.  
Table 7. Nominal Bandwidth for Standard Capacitor Values  
Cext (pF) BW (Hz) Cext (pF) BW (Hz)  
Cext (pF) BW (Hz)  
100,000 52.2  
120,000 44.8  
150,000 37.0  
180,000 31.5  
220,000 26.3  
270,000 21.8  
330,000 18.1  
390,000 15.5  
430,000 14.1  
470,000 12.9  
510,000 12.0  
560,000 10.9  
620,000 9.9  
750,000 8.2  
820,000 7.6  
910,000 6.8  
1000  
1200  
1500  
1800  
2200  
2700  
3300  
3900  
4300  
4700  
5100  
5600  
6200  
7500  
8200  
9100  
276.8  
274.4  
270.9  
267.5  
263.1  
257.7  
251.6  
245.8  
242.1  
238.4  
234.9  
230.7  
225.8  
215.8  
210.8  
204.7  
10,000  
12,000  
15,000  
18,000  
22,000  
27,000  
33,000  
39,000  
43,000  
47,000  
51,000  
56,000  
62,000  
75,000  
82,000  
91,000  
198.9  
187.2  
172.1  
159.2  
144.7  
129.9  
115.7  
104.4  
97.9  
Analog Bandwidth  
The typical −3 dB cutoff frequency for the ADIS16130 is  
300 Hz, which is the combined response of two single-pole  
filters, as shown in Figure 14. Pin ROA1 and Pin ROA2 provide  
the opportunity for further bandwidth reduction in the first  
filter stage, as shown in the following relationship:  
1
f3dB  
=
2×π×R×  
(
C +Cext  
)
92.3  
where:  
R = 25 kΩ.  
C = 6800 pF.  
ext is as defined in Figure 15 and Table 7.  
87.2  
81.6  
75.8  
C
65.6  
The relationship between the −3 dB cutoff frequency and the  
external capacitance of the ADIS16130 is shown in Table 7 and  
Figure 15.  
61.2  
56.3  
Rev. 0 | Page 10 of 16  
 
 
 
 
 
ADIS16130  
CONTROL REGISTERS  
Table 8. Register Descriptions  
Name  
COM  
IOP  
Address  
Type  
W
R/W  
Purpose  
0x00  
0x01  
0x02 to 0x07  
0x08  
0x0A  
0x10 to 0x22  
0x28  
0x2A  
0x30  
0x32  
Facilitate communications in the SPI port (see Table 9)  
Data-ready and synchronization controls (see Table 10)  
Reserved  
Gyroscope output, rate of rotation (see Figure 13)  
Temperature output (see Figure 13)  
Reserved  
Gyroscope channel setup (see Table 11)  
Temperature channel setup (see Table 12)  
Gyroscope conversion time control (see Table 13)  
Temperature conversion time control (see Table 13)  
Reserved  
RATEDATA  
TEMPDATA  
R
R
RATECS  
TEMPCS  
RATECONV  
TEMPCONV  
R/W  
R/W  
R/W  
R/W  
0x33 to 0x37  
0x38  
MODE  
R/W  
Resolution mode control (see Table 14)  
CONTROL REGISTER DETAILS  
Table 12. TEMPCS Register Bit Assignments  
Bit Description  
[7:4] 0000  
[3]  
1 = channel enable;  
0 = channel disable  
[2:0] 010  
Table 9. COM Register Bit Assignments  
Bit  
[7]  
[6]  
Description  
0
1 = read;  
0 = write  
[5:0] Register address  
Table 13. RATECONV/TEMPCONV Bit Assignments  
Bit Description  
Table 10. IOP Register Bit Assignments  
Bit  
[7:4] 0011  
[3]  
Description  
[7:0] 00000101  
1 = data-ready signal low when unread data on all channels;  
0 = data-ready signal low when unread data on one channel  
Table 14. MODE Register Bit Assignments  
[2:1] 00  
[0]  
0 = synchronization disabled;  
1 = synchronization enabled  
Bit  
Description  
[7:2] 001000  
[1]  
[0]  
1 = 24-bit resolution;  
0 = 16-bit resolution  
0
Table 11. RATECS Register Bit Assignments  
Bit Description  
[7:4] 0000  
[3]  
1 = channel enable;  
0 = channel disable  
[2:0] 010  
Rev. 0 | Page 11 of 16  
 
 
 
 
 
 
 
 
ADIS16130  
APPLICATIONS INFORMATION  
31.200 BSC  
ACHIEVING OPTIMAL NOISE PERFORMANCE  
15.600 BSC  
Several system-level considerations can have an impact on the  
noise and accuracy of the ADIS16130. Understanding and  
managing these factors can influence the behavior of any high  
performance system.  
2x 0.560 BSC  
ALIGNMENT HOLES  
FOR MATING SOCKET  
39.60 BSC  
19.800 BSC  
17.520  
Supply and Common Considerations  
The ADIS16130 provides approximately 1.8 μF of decoupling  
capacitance. This capacitance is distributed throughout the  
device and should be taken into account when considering  
potential noise threats on the power supply lines.  
2.280  
Bandwidth Setting  
4x 2.500 BSC  
5.00 BSC  
If COUT is applied to reduce the bandwidth of the ADIS16130  
response, it should be placed close to the device. Long cable  
leads and PCB traces increase the risk of introducing noise into  
the system.  
5.00 BSC  
Figure 16. Suggested Hole Pattern for Mounting  
SECOND-LEVEL ASSEMBLY  
0.4334 [11.0]  
The ADIS16130 package supports two mounting approaches:  
a bulkhead mount, where the interface is separate from the  
attachment surface, and a PCB mount, which provides the  
mechanical and electrical connections on the same surface.  
0.019685  
[0.5000]  
(TYP)  
0.0240 [0.610]  
0.054 [1.37]  
Figure 16 provides a suggested design for the ADIS16130s  
mechanical attachment. The hole pattern shown in Figure 16  
can support either mounting approach and enables the integration  
of the mating socket layout, which is illustrated in Figure 17.  
0.1800  
[4.57]  
0.0394 [1.00]  
0.0394 [1.00]  
0.022±  
DIA (TYP)  
NONPLATED  
THRU HOLE 2×  
0.022 DIA THRU HOLE (TYP)  
NONPLATED THRU HOLE  
The mating socket layout uses the Samtec CLM-112-02 family of  
connectors. The 24 holes that are inside the pad accommodate the  
pins on the ADIS16130, which can extend beyond the package  
body. The stress relief provided by these holes is important for  
maintaining reliability and optimal bias stability performance.  
Figure 17. Mating Socket Recommended Pad Layout, with  
Dimensions Shown in Inches (Millimeters)  
Rev. 0 | Page 12 of 16  
 
 
 
ADIS16130  
OUTLINE DIMENSIONS  
35.854  
35.600  
35.346  
31.350  
31.200  
31.050  
15.700  
15.600  
15.500  
2.400 THRU HOLE  
(4 PLACES)  
2.200  
TYP  
44.254  
44.000  
43.746  
17.670  
17.520  
17.370  
39.750  
39.600  
39.450  
19.900  
19.800  
19.700  
TOP VIEW  
END VIEW  
2.200 TYP  
14.054  
13.800  
13.546  
3.27  
3.07  
2.87  
0.30 BSC SQ  
(PIN SIZE)  
1.00 BSC  
(LEAD PITCH)  
5.50 BSC  
Figure 18. PCB Module with Connector Interface  
(ML-24-3)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
ADIS16130AMLZ1  
Temperature Range  
Package Description  
Package Option  
ML-24-3  
−40°C to +105°C  
PCB Module with Connector Interface  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 13 of 16  
 
ADIS16130  
NOTES  
Rev. 0 | Page 14 of 16  
ADIS16130  
NOTES  
Rev. 0 | Page 15 of 16  
ADIS16130  
NOTES  
©2008 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D07238-0-1/08(0)  
Rev. 0 | Page 16 of 16  

相关型号:

ADIS16130AMLZ

Digital Output, High-Precision Angular Rate Sensor
ADI

ADIS16133

±1200°/sec Precision Angular Rate Sensor
ADI

ADIS16133/PCBZ

±1200°/sec Precision Angular Rate Sensor
ADI

ADIS16133BMLZ

±1200°/sec Precision Angular Rate Sensor
ADI

ADIS16135

Precision Angular Rate Sensor
ADI

ADIS16135/PCBZ

Precision Angular Rate Sensor
ADI

ADIS16135BMLZ

Precision Angular Rate Sensor
ADI

ADIS16136

±450°/Sec Precision Angular Rate Sensor
ADI

ADIS16136/PCBZ

±450°/Sec Precision Angular Rate Sensor
ADI

ADIS16136AMLZ

±450°/Sec Precision Angular Rate Sensor
ADI

ADIS16201

Programmable Dual-Axis
ADI

ADIS16201/PCB

Programmable Dual-Axis
ADI