ADIS16100 [ADI]

+-300∑/sec Yaw Rate Gyro with SPI Interface; + -300Σ /秒偏航角速度陀螺仪,SPI接口
ADIS16100
型号: ADIS16100
厂家: ADI    ADI
描述:

+-300∑/sec Yaw Rate Gyro with SPI Interface
+ -300Σ /秒偏航角速度陀螺仪,SPI接口

文件: 总16页 (文件大小:260K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
± ±330°/sec YacꢀYꢁscGyroc  
aiꢁhcSPIcInꢁsrfYes  
ADIS16133  
cc  
FEATURES  
GENERAL DESCRIPTION  
Complete angular rate gyroscope  
Z-axis (yaw rate) response  
SPI® digital output interface  
High vibration rejection over wide frequency  
2000 g powered shock survivability  
Externally controlled self test  
Internal temperature sensor output  
Dual auxiliary 12-bit ADC inputs  
Absolute rate output for precision applications  
5 V single-supply operation  
The ADIS16100 is a complete angular rate sensor (gyroscope)  
that uses the Analog Devices surface-micromachining process  
to make a functionally complete angular rate sensor with an  
integrated serial peripheral interface (SPI).  
The digital data available at the SPI port is proportional to the  
angular rate about the axis normal to the top surface of the  
package (see Figure 19). A single external resistor can be used to  
increase the measurement range. An external capacitor can be  
used to lower the bandwidth.  
8.2 mm × 8.2 mm × 5.2 mm package  
Access to an internal temperature sensor measurement is  
provided, through the SPI, for compensation techniques.  
Two pins are available to the user to input analog signals for  
digitization. An additional output pin provides a precision  
voltage reference. Two digital self-test inputs electro-  
mechanically excite the sensor to test operation of the  
sensor and the signal conditioning circuits.  
APPLICATIONS  
Platform stabilization  
Image stabilization  
Guidance and control  
Inertial measurement units  
The ADIS16100 is available in an 8.2 mm × 8.2 mm × 5.2 mm,  
16-terminal, peripheral land grid array (LGA) package.  
FUNCTIONAL BLOCK DIAGRAM  
C
OUT  
FILT  
RATE  
ADIS16100  
±300°/s  
GYROSCOPE  
SCLK  
DIN  
4-CHANNEL  
SPI  
MUX/ADC  
CS  
DOUT  
TEMP  
SENSOR  
AIN2  
AIN1  
V
REF  
REF  
COM  
V
V
DRIVE  
+3V TO +5V  
CC  
+5V  
ST1  
ST2  
Figure 1.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2006 Analog Devices, Inc. All rights reserved.  
 
ADIS16133c  
c
TABLEcOFcCONTENTSc  
Features .............................................................................................. 1  
Supply and Common Considerations ..................................... 11  
Increasing Measurement Range ............................................... 11  
Setting Bandwidth...................................................................... 11  
Self-Test Function ...................................................................... 11  
Continuous Self Test .................................................................. 11  
Control Register ......................................................................... 12  
Serial Interface............................................................................ 13  
Rate Sensitive Axis ..................................................................... 13  
Second-Level Assembly............................................................. 14  
Outline Dimensions....................................................................... 15  
Ordering Guide .......................................................................... 15  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Timing Diagram ........................................................................... 4  
Timing Specifications............................... ....................................... 5  
Absolute Maximum Ratings............................................................ 6  
ESD Caution.................................................................................. 6  
Pin Configuration and Function Descriptions............................. 7  
Typical Performance Characteristics ............................................. 8  
Theory of Operation ...................................................................... 11  
REVISION HISTORY  
5/06—Rev. 0 to Rev. A  
Changes to Table 1............................................................................ 4  
Changes to Setting Bandwidth Section........................................ 11  
Changes to Table 9 and Table 10................................................... 13  
1/06—Revision 0: Initial Version  
Rev. A | Page 2 of 16  
 
cc  
ADIS16133  
SPECIFICATIONSc  
TA = 25°C, VCC = VDR = 5 V, angular rate = 0°/sec, COUT = 0 μF, 1 g, unless otherwise noted.  
Table 1.  
Parameter  
Conditions  
Min1  
Typ  
Max1  
Unit  
SENSITIVITY  
Clockwise rotation is positive output  
Full-scale range over specifications range  
@ 25°C  
VCC = VDRIVE = 4.75 V to 5.25 V  
Best fit straight line  
Dynamic Range2  
±3ꢀꢀ  
3.68  
°/sec  
LSB/°/sec  
%
Initial  
4.1  
±1ꢀ  
ꢀ.15  
4.52  
Change Over Temperature3  
Nonlinearity  
% of FS  
NULL  
Initial Null  
1876  
2ꢀ48  
±2ꢀ5  
75  
ꢀ.82  
4.1  
22ꢀꢀ  
LSB  
LSB  
ms  
LSB/g  
LSB/V  
LSB rms  
LSB rms/√Hz  
Change Over Temperature3  
VCC = VDR = 4.75 V to 5.25 V  
Power on to ±±°/sec of final  
Any axis  
VCC = VDRIVE = 4.75 V to 5.25 V  
ꢀ.1 Hz to 4ꢀ Hz  
Turn-On Time  
Linear Acceleration Effect  
Voltage Sensitivity  
NOISE PERFORMANCE  
Rate Noise Density  
FREQUENCY RESPONSE  
3 dB Bandwidth (User-Selectable)4  
Sensor Resonant Frequency  
SELF-TEST INPUTS  
ST1 RATEOUT Response5  
ST2 RATEOUT Response5  
Logic 1 Input Voltage  
Logic ꢀ Input Voltage  
Input Impedance  
TEMPERATURE SENSOR  
Reading at 298 K  
3.25  
ꢀ.43  
f = 1ꢀꢀ Hz  
COUT = ꢀ μF  
4ꢀ  
14  
Hz  
kHz  
ST1 pin from Logic ꢀ to Logic 1  
ST2 pin from Logic ꢀ to Logic 1  
Standard high logic level definition  
Standard low logic level definition  
To common  
−121  
+121  
3.3  
−221  
+221  
−376  
+376  
LSB  
LSB  
V
V
kΩ  
1.7  
5ꢀ  
2ꢀ48  
6.88  
LSB  
LSB/K  
Scale Factor  
Proportional to absolute temperature  
2.5 V REFERENCE  
Voltage Value  
Load Drive to Ground  
Load Regulation  
Power Supply Rejection  
Temperature Drift  
LOGIC INPUTS  
2.45  
2.5  
1ꢀꢀ  
5.ꢀ  
1.ꢀ  
5.ꢀ  
2.55  
V
μA  
mV/mA  
mV/V  
mV  
Source  
ꢀ μA < IOUT < 1ꢀꢀ μA  
VCC = VDRIVE = 4.75 V to 5.25 V  
Delta from 25°C  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Current, IIN  
Input Capacitance, CIN  
ANALOG INPUTS6  
Resolution  
Integral Nonlinearity6  
Differential Nonlinearity  
Offset Error  
ꢀ.7 × VDRIVE  
−1  
V
V
μA  
pF  
ꢀ.3 × VDRIVE  
+1  
Typically 1ꢀ nA  
1ꢀ  
12  
All at TA = −4ꢀ°C to +85°C  
Bits  
LSB  
LSB  
LSB  
%FSR  
V
−2  
−2  
−8  
−2  
+2  
+2  
+8  
+2  
VREF × 2  
+1  
Gain Error  
Input Voltage Range  
Leakage Current  
−1  
μA  
Input Capacitance  
Full Power Bandwidth  
2ꢀ  
8
pF  
MHz  
Rev. A | Page 3 of 16  
 
 
 
 
 
ADIS16133c  
c
Parameter  
Conditions  
Min1  
Typ  
Max1  
Unit  
DIGITAL OUTPUTS  
Output High Voltage (VOH)  
Output Low Voltage (VOL)  
CONVERSION RATE  
Conversion Time  
Throughput Rate  
POWER SUPPLY  
ISOURCE = 2ꢀꢀ μA  
ISINK = 2ꢀꢀ μA  
VDRIVE − ꢀ.2  
V
V
ꢀ.4  
16 SCLK cycles with SCLK at 2ꢀ MHz  
All at TA = −4ꢀ°C to +85°C  
8ꢀꢀ  
1
ns  
MSPS  
VCC  
VDRIVE  
4.75  
2.7  
5
5.25  
5.25  
9.ꢀ  
V
V
mA  
μA  
mW  
VCC Quiescent Supply Current  
VDRIVE Quiescent Supply Current  
Power Dissipation  
VCC @ 5 V, fSCLK = 5ꢀ kSPS  
VDRIVE @ 5 V, fSCLK = 5ꢀ kSPS  
VCC and VDRIVE @ 5 V, fSCLK = 5ꢀ kSPS  
7.ꢀ  
7ꢀ  
4ꢀ  
5ꢀꢀ  
1 All minimum and maximum specifications are guaranteed. Typical specifications are neither tested nor guaranteed.  
2 Dynamic range is the maximum full-scale measurement range possible, including output swing range, initial offset, sensitivity, offset drift, and sensitivity drift at 5 V  
supplies.  
3 Defined as the output change from ambient to maximum temperature or ambient to minimum temperature.  
4 Frequency at which the response is 3 dB down from dc response. Bandwidth = 1/(2 × π × 18ꢀ kΩ × (22 nF + COUT)). For COUT = ꢀ, bandwidth = 4ꢀ Hz. For COUT = 1 μF,  
bandwidth = ꢀ.87 Hz.  
5 Self-test response varies with temperature.  
6 For VIN < VCC  
.
TIMING DIAGRAM  
CS  
tCONVERT  
6
t2  
t6  
B
1
2
3
4
5
11  
12  
13  
14  
t5  
15  
16  
t11  
SCLK  
t7  
DB10  
t3  
t4  
t8  
DB0  
tQUIET  
ZERO  
t9  
ADD1  
ADD0  
DB11  
DB4  
DB3  
DB2  
DB1  
DOUT  
THREE-STATE  
THREE-STATE  
2 IDENTIFICATION  
BITS  
ZERO  
t10  
ADD0  
DIN  
WRITE  
LOW  
DONTC DONTC  
ADD1  
CODING DONTC DONTC  
DONTC  
DONTC  
Figure 2. Gyroscope Serial Interface Timing Diagram  
The DIN bit functions are outlined in the following table (see the Control Register section for additional information).  
Table 2. DIN Bit Functions  
MSB (11)  
LSB (0)  
CODING  
WRITE  
LOW  
DONTC  
DONTC  
ADD1  
ADDꢀ  
HIGH  
HIGH  
DONTC  
DONTC  
LOW  
Rev. A | Page 4 of 16  
 
 
 
cc  
ADIS16133  
TIMINGcSPECIFICATIONSc  
TA = 25°C, angular rate = 0°/sec, unless otherwise noted.1  
Table 3.  
Parameter  
VCC = VDR = 5 Unit  
Description  
2
fSCLK  
1ꢀ  
kHz min  
2ꢀ  
MHz max  
tCONVERT  
tQUIET  
t2  
16 × tSCLK  
5ꢀ  
ns min  
ns min  
ns max  
ns max  
ns min  
ns min  
ns min  
ns min/max  
ns min  
ns min  
ns min  
ꢁs max  
Minimum quiet time required between CS rising edge and start of next conversion  
CS to SCLK setup time  
1ꢀ  
3
t3  
3ꢀ  
Delay from CS until DOUT three-state disabled  
Data access time after SCLK falling edge  
SCLK low pulse width  
SCLK high pulse width  
SCLK to DOUT valid hold time  
SCLK falling edge to DOUT high impedance  
DIN setup time prior to SCLK falling edge  
DIN hold time after SCLK falling edge  
16th SCLK falling edge to CS high  
3
t4  
4ꢀ  
ꢀ.4 × tSCLK  
ꢀ.4 × tSCLK  
1ꢀ  
15/35  
1ꢀ  
5
2ꢀ  
1
t5  
t6  
t7  
4
t8  
t9  
t1ꢀ  
t11  
t12  
Power-up time from full power-down/auto shutdown modes  
1 Guaranteed by design. All input signals are specified with tR and tF = 5 ns (1ꢀ% to 9ꢀ% of VCC) and timed from a voltage level of 1.6 V. The 5 V operating range spans  
from 4.75 V to 5.25 V.  
2 Mark/Space ratio for the SCLK input is 4ꢀ/6ꢀ to 6ꢀ/4ꢀ.  
3 Measured with the load circuit in Figure 3 and defined as the time required for the output to cross ꢀ.4 V or ꢀ.7 V × VDRIVE  
.
4 t8 is derived from the measured time taken by the data outputs to change ꢀ.5 V when loaded with the circuit in Figure 3. The measured number is then extrapolated  
back to remove the effects of charging or discharging the 5ꢀ pF capacitor. This means that the time, t8, quoted in the timing characteristics is the true bus relinquish  
time of the part and is independent of the bus loading.  
200µA  
I
OL  
TO OUTPUT  
PIN  
1.6V  
C
L
50pF  
200µA  
I
OH  
Figure 3. Load Circuit for Digital Output Timing Specifications  
Rev. A | Page 5 of 16  
 
 
 
 
ADIS16133c  
c
ABSOLUTEcMAXIMUMcꢀATINGSc  
Table 4.  
Stresses above those listed under the Absolute Maximum  
Ratings may cause permanent damage to the device. This is a  
stress rating only; functional operation of the device at these or  
any other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Parameter  
Rating  
Acceleration (Any Axis, Unpowered, ꢀ.5 ms)  
Acceleration (Any Axis, Powered, ꢀ.5 ms)  
+VCC to COM  
2ꢀꢀꢀ g  
2ꢀꢀꢀ g  
−ꢀ.3 V to +6.ꢀ V  
−ꢀ.3 V to VCC + ꢀ.3 V  
−ꢀ.3 V to VCC + ꢀ.3 V  
−ꢀ.3V to +7.V  
−ꢀ.3V to VCC + ꢀ.3 V  
−ꢀ.3 V to VCC + ꢀ.3 V  
−4ꢀ°C to +85°C  
−65°C to +15ꢀ°C  
+VDRIVE to COM  
Analog Input Voltage to COM  
Digital Input Voltage to COM  
Digital Output Voltage to COM  
STx Input Voltage to COM  
Operating Temperature Range  
Storage Temperature Range  
Drops onto hard surfaces can cause shocks of greater than  
2000 g and exceed the absolute maximum rating of the device.  
Care should be exercised in handling to avoid damage.  
ESD CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4ꢀꢀꢀ V readily accumulate on  
the human body and test equipment and can discharge without detection. Although this product features  
proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy  
electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance  
degradation or loss of functionality.  
Rev. A | Page 6 of 16  
 
cc  
ADIS16133  
PINcCONFIGUꢀATIONcANDcFUNCTIONcDESCꢀIPTIONSc  
5
6
7
8
4
3
2
1
9
NC  
DOUT  
SCLK  
DIN  
AIN2  
COM  
ADIS16100  
10  
11  
12  
BOTTOM  
VIEW  
(Not to Scale)  
V
REF  
ST2  
14  
13  
16  
15  
NC = NO CONNECT  
Figure 4. Pin Configuration  
Table 5. Pin Function Descriptions  
Pin No.  
Mnemonic  
Type1  
Description  
1
DIN  
I
Data In. Data to be written to the control register is provided on this input and is clocked in on the  
falling edge of the SCLK.  
2
3
SCLK  
I
Serial Clock. SCLK provides the serial clock for accessing data from the part and writing serial data  
to the control registers. Also used as a clock source for the ADIS161ꢀꢀ conversion process.  
Data Out. The data on this pin represents data being read from the control registers and is clocked  
on the falling edge of the SCLK.  
DOUT  
O
4
5
6
7
NC  
No Connect.  
RATE  
FILT  
VDRIVE  
O
I
S
Buffered analog output representing the angular rate signal.  
External capacitor connection to control bandwidth.  
Power to SPI. The voltage supplied to this pin determines the voltage at which the serial interface  
operates.  
8
9
AIN1  
AIN2  
I
I
External Analog Input Channel 1. Single-ended analog input multiplexed into the on-chip track-  
and-hold according to the setting of the ADDꢀ and ADD1 address bits.  
External Analog Input Channel 2. Single-ended analog input multiplexed into the on-chip track-  
and-hold according to the setting of the ADDꢀ and ADD1 address bits.  
1ꢀ  
11  
12  
13  
14  
15  
16  
COM  
VREF  
ST2  
ST1  
VCC  
S
O
I
I
S
Common. Reference point for all circuitry in the ADIS161ꢀꢀ.  
Precision 2.5 V Reference.  
Self Test Input 2.  
Self Test Input 1.  
Analog Power.  
NC  
CS  
No Connect.  
I
Chip Select. Active low. This input frames the serial data transfer and initiates the conversion  
process.  
1 I = Input; O = Output; S = Power supply.  
Rev. A | Page 7 of 16  
 
 
ADIS16133c  
c
T PICALcPEꢀFOꢀMANCEcCHAꢀACTEꢀISTICSc  
30  
60  
50  
40  
30  
20  
10  
0
25  
20  
15  
10  
5
0
1845 1895 1945 1995 2045 2095 2145 2195 2245  
6.2  
6.3  
6.4  
6.5  
6.6  
6.7  
6.8  
6.9  
7.0  
NULL (LSB)  
SUPPLY CURRENT (mA)  
Figure 5. Initial Null Histogram  
Figure 8. Supply Current Histogram  
2250  
2200  
2150  
80  
70  
60  
50  
40  
30  
20  
10  
0
2100  
+85°C  
+25°C  
2050  
2000  
1950  
1900  
1850  
–40°C  
4.7  
4.8  
4.9  
5.0  
(V)  
5.1  
5.2  
5.3  
–371 –346 –321 –296 –271 –246 –221 –196 –171 –146 –121  
ST1 (LSB)  
V
CC  
Figure 9. Self Test 1 Histogram  
Figure 6. Null Level vs. Supply Voltage  
80  
70  
60  
50  
40  
30  
20  
10  
0
2040  
2030  
2020  
2010  
2000  
1990  
1980  
1970  
30 PART AVERAGE, V = 4.75V  
CC  
30 PART AVERAGE, V = 5V  
CC  
30 PART AVERAGE, V = 5.25V  
CC  
121 146 171 196 221 246 271 296 321 346 371  
ST2 (LSB)  
–50  
–20  
10  
40  
70  
100  
TEMPERATURE (°C)  
Figure 10. Self Test 2 Histogram  
Figure 7. Null Level vs. Temperature  
Rev. A | Page 8 of 16  
 
cc  
ADIS16133  
0
–50  
250  
240  
230  
220  
210  
200  
190  
180  
170  
160  
150  
–100  
–150  
–200  
–250  
–300  
–350  
–400  
–40°C  
30 PART AVERAGE, V = 4.75V  
CC  
+25°C  
30 PART AVERAGE, V = 5V  
CC  
+85°C  
30 PART AVERAGE, V = 5.25V  
CC  
4.7  
4.8  
4.9  
5.0  
(V)  
5.1  
5.2  
5.3  
5.3  
100  
–50  
–20  
10  
40  
70  
100  
100  
100  
V
TEMPERATURE (°C)  
CC  
Figure 14. Self Test 2 vs. Temperature  
Figure 11. Self Test 1 vs. Supply Voltage  
3
2
400  
350  
300  
250  
200  
150  
100  
50  
30 PART AVERAGE, V = 4.75V  
CC  
30 PART AVERAGE, V = 5V  
CC  
30 PART AVERAGE, V = 5.25V  
CC  
+85°C  
+25°C  
1
0
–40°C  
–1  
–2  
–3  
0
4.7  
–50  
–20  
10  
40  
70  
4.8  
4.9  
5.0  
(V)  
5.1  
5.2  
TEMPERATURE (°C)  
V
CC  
Figure 15. ADC Offset vs. Temperature and Supply Voltage  
Figure 12. Self Test 2 vs. Supply Voltage  
3
–150  
–160  
–170  
–180  
–190  
–200  
–210  
–220  
–230  
–240  
–250  
30 PART AVERAGE, V = 4.75V  
CC  
30 PART AVERAGE, V = 4.75V  
CC  
30 PART AVERAGE, V = 5V  
CC  
30 PART AVERAGE, V = 5V  
CC  
30 PART AVERAGE, V = 5.25V  
CC  
30 PART AVERAGE, V = 5.25V  
CC  
2
1
0
–1  
–2  
–3  
–50  
–20  
10  
40  
70  
–50  
–20  
10  
40  
70  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 16. ADC Gain Error vs. Temperature (Excluding VREF  
)
Figure 13. Self Test 1 vs. Temperature  
Rev. A | Page 9 of 16  
ADIS16133c  
c
2060  
2055  
2050  
2045  
2040  
2.500  
2.499  
2.498  
2.497  
2.496  
2.495  
2.494  
2.493  
2.492  
2.491  
2.490  
+25°C  
+85°C  
–40°C  
0
1000 2000 3000 4000 5000 6000 7000 8000  
4.7  
4.8  
4.9  
5.0  
(V)  
5.1  
5.2  
5.3  
V
000001111111011X  
000001111111100X  
1
0
5
9
339  
1307  
4132  
1996  
387  
12  
3
CC  
Figure 17. VREF vs. Supply Voltage  
000001111111101X  
000001111111110X  
000001111111111X  
000010000000000X  
000010000000001X  
000010000000010X  
0000100000000 11X  
000010000000100X  
000010000000101X  
000010000000 110X  
1
SAMPLES = 8192, SPREAD = 23, STD DEV = 1.695,  
MEAN = 2050.682  
Figure 18. Noise Histogram  
Rev. A | Page 1ꢀ of 16  
cc  
ADIS16133  
THEOꢀ cOFcOPEꢀATIONc  
The ADIS16100 operates on the principle of a resonator gyro.  
Two polysilicon sensing structures each contain a dither frame,  
which is electrostatically driven to resonance. This produces the  
necessary velocity element to produce a Coriolis force during  
angular rate. At two of the outer extremes of each frame, orthogo-  
nal to the dither motion, are movable fingers that are placed  
between fixed pickoff fingers to form a capacitive pickoff structure  
that senses Coriolis motion. The resulting signal is fed to a series  
of gain and demodulation stages that produce the electrical rate  
signal output. The rate signal is then converted to a digital  
representation of the output on the SPI pins. The dual-sensor  
design rejects external g-forces and vibration. Fabricating the  
sensor with the signal conditioning electronics preserves signal  
integrity in noisy environments.  
The trade-off associated with increasing the full-scale range are  
potential increase in output null drift (as much as 2°/sec over  
temperature) and introducing initial null bias errors that must  
be calibrated.  
SETTING BANDWIDTH  
The ADIS16100 provides the ability to reduce the bandwidth.  
This important feature enables a simple method for achieving  
optimal bandwidth/noise trade-offs. An external capacitor can  
be used in combination with an on-chip resistor to create a low-  
pass filter to limit the bandwidth of the ADIS16100s rate response.  
The −3 dB frequency is defined as  
fOUT =1/  
(
2×π×ROUT  
×
(
COUT + 0.022 μF
))  
The electrostatic resonator requires 14 V to 16 V for operation.  
Because only 5 V is typically available in most applications, a  
charge pump is included on-chip.  
where ROUT represents an internal impedance that was trimmed  
during manufacturing to 180 kΩ 1ꢀ.  
Any external resistor applied between the RATE pin and the  
FILT pin results in  
After the demodulation stage, there is a single-pole, low-pass  
filter included on-chip that is used to limit high frequency  
artifacts before final amplification. A second single-pole, low-  
pass filter is set up via the bandwidth limit capacitor, COUT. This  
pole acts as the primary filter within the system (see the Increasing  
Measurement Range section).  
ROUT  
=
(
180 k× REXT  
)
/
(
180 kꢁ + REXT  
)
With COUT = 0 μF, a default −3 dB frequency response of 40 Hz  
is obtained, based upon an internal 0.022 μF capacitor imple-  
mented on-chip.  
SUPPLY AND COMMON CONSIDERATIONS  
SELF-TEST FUNCTION  
Power supply noise and transient behaviors can influence the  
accuracy and stability of any sensor-based measurement system.  
When considering the power supply for the ADIS16100, it is  
important to understand that the ADIS16100 provides 0.2 μF of  
decoupling capacitance on the VCC pin. Depending on the level  
of noise present in the system power supply, the ADIS16100  
may not require any additional decoupling capacitance for this  
supply. The analog supply, VCC, and the digital drive supply,  
The ADIS16100 includes a self-test feature that actuates each of  
the sensing structures and associated electronics in the same  
manner, as if subjected to angular rate. It provides a simple  
method for exercising the mechanical structure of the sensor,  
along with the entire signal processing circuit. It is activated by  
standard logic high levels applied to Input ST1, Input ST2, or  
both. ST1 causes a change in the digital output equivalent to  
typically −221 LSB, and ST2 causes an opposite +221 LSB  
change. The self-test response follows the viscosity temperature  
dependence of the package atmosphere, approximately  
0.25ꢀ/°C.  
VDRIVE, are segmented to allow multiple logic levels to be used in  
receiving the digital output data. VDRIVE is intended for the  
down-stream logic power supply and supports standard 3.3 V  
and 5 V logic families. The VDRIVE supply does not have internal  
decoupling capacitors.  
Activating both ST1 and ST2 simultaneously is not damaging.  
Because ST1 and ST2 are not necessarily closely matched,  
actuating both simultaneously can result in an apparent null  
bias shift.  
INCREASING MEASUREMENT RANGE  
The full-scale measurement range of the ADIS16100 is increased  
by placing an external resistor between the RATE pin and the  
FILT pin. This external resistor would be in parallel with an  
internal 180 kΩ, 1ꢀ resistor. For example, a 330 kΩ external  
resistor gives ~50ꢀ increase in the full-scale range. This is  
effective for up to a 4× increase in the full-scale range  
(minimum value of the parallel resistor allowed is 45 kΩ). The  
internal circuitry headroom requirements prevent further  
increase in the linear full-scale output range.  
CONTINUOUS SELF TEST  
As an additional failure detection measure, power-on self test  
can be performed. However, some applications warrant a  
continuous self test-while-sensing rate.  
Rev. A | Page 11 of 16  
 
 
 
ADIS16133c  
c
CONTROL REGISTER  
The control register on the ADIS16100 is a 12-bit, write-only  
register. Data is loaded from the DIN pin on the falling edge of  
SCLK. The data is transferred on the DIN line at the same time  
that the conversion result is read from the part. The data  
transferred on the DIN line dictates the configuration for the  
next conversion. This requires 16 serial clocks for every data  
transfer. Only the information provided on the first 12 falling  
Table 6. Channel Selection  
ADD1  
ADD0  
Analog Input Channel  
1
1
1
1
Gyroscope  
Temperature sensor  
AIN1 input  
AIN2 input  
CS  
clock edges (after  
register.  
falling edge) is loaded to the control  
MSB denotes the first bit in the data stream. Table 8 shows the  
analog input channel selection options.  
Table 7. The DIN Bit Stream  
MSB (11)  
LSB (0)  
CODING  
WRITE  
LOW  
DONTC  
DONTC  
ADD1  
ADDꢀ  
HIGH  
HIGH  
DONTC  
DONTC  
LOW  
Table 8. Analog Input Channel Selection Options  
Bit  
Mnemonic  
Comment  
11  
WRITE  
The value written to this bit of the control register determines whether the following 11 bits are loaded to the  
control register or not. If this bit is a 1, the following 11 bits are written to the control register. If it is a ꢀ, the  
remaining 11 bits are not loaded to the control register, and it remains unchanged.  
1ꢀ  
9, 8  
7, 6  
LOW  
DONTC  
ADD1, ADDꢀ  
This bit should be held low.  
Don’t care.  
These two address bits are loaded at the end of the present conversion sequence and select which analog input  
channel is to be converted in the next serial transfer. The selected input channel is decoded as shown in Table 6.  
The address bits corresponding to the conversion result are output on DOUT prior to the 12 bits of data. The next  
channel to be converted is selected by the mux on the 14th SCLK falling edge.  
5, 4  
HIGH  
These pins should be held high.  
3, 2  
1
DONTC  
LOW  
Don’t care.  
This bit should be held low.  
CODING  
This bit selects the type of output coding used for the conversion result. If this bit is set to ꢀ, the output coding for  
the part is twos complement. If this bit is set to 1, the output coding from the part is straight binary (for the next  
conversion).  
Rev. A | Page 12 of 16  
 
 
 
 
 
cc  
ADIS16133  
During this same cycle, the digital output data is clocked out on  
the DOUT pin, with the bit transitions occurring shortly after  
the SCLK falling edges. The DOUT bit sequence is character-  
ized in Table 9 and Table 10. On the 16th falling edge of SCLK, the  
DOUT line goes back into a three-state mode. If the rising edge of  
SERIAL INTERFACE  
Figure 2 shows the detailed timing diagram for the serial  
interface to the ADIS16100. The chip select signal, , frames  
CS  
the entire data transfer, because it must be kept in a Logic 0  
state to communicate with the ADIS16100. The serial clock,  
SCLK, provides the conversion clock and controls the transfer  
of information to and from the ADIS16100 during each conver-  
sion cycle. The data input, DIN, provides access to critical  
control parameters in the control register, and the output signal,  
DOUT, provides access to the output data of the ADIS16100.  
CS  
occurs before 16 SCLKs have elapsed, the DOUT line goes  
back into three-state mode and the control register is not updated.  
Otherwise, DOUT returns to a three-state mode on the 16th  
SCLK falling edge, as shown in Figure 2.  
RATE SENSITIVE AXIS  
The ADIS16100 offers an efficient data transfer function by  
supporting simultaneous READ and WRITE cycles. A data  
This is a z-axis rate-sensing device that is also called a yaw rate  
sensing device. It produces a positive going output voltage for  
clockwise rotation about the axis normal to the package top,  
that is, clockwise when looking down at the package lid.  
CS  
transfer cycle is started when the  
transitions to a Logic 0  
state. If DIN is in Logic 1 state during the first falling edge of  
the SCLK, then the next 11 SCLK cycles fill the control register  
with the contents on the DIN pin. The appropriate bit definitions  
for DIN can be found in Table 7 and Table 8. If the DIN is in  
a Logic 0 state during the first falling edge of the SCLK, then  
contents of the control register remain unchanged. Because the  
control register is only 12-bits wide, the contents on the DIN  
pin during the last four SCLK cycles are ignored.  
RATE  
RATE  
AXIS  
V
= 5V  
CC  
LONGITUDINAL  
AXIS  
4.75V  
2.5V  
RATE IN  
0.25V  
A1  
LATERAL AXIS  
GND  
Figure 19. Rate Signal Increases with Clockwise Rotation  
Table 9. DOUT Bit Stream  
SCLK1  
SCLK16  
LOW  
LOW  
ADD1  
ADDꢀ  
DB11  
DB1ꢀ  
DB9  
DB8  
DB7  
DB6  
DB5  
DB4  
DB3  
DB2  
DB1  
DBꢀ  
Table 10. DOUT Bit Functions  
SCLK  
Mnemonic  
Comment  
1, 2  
LOW  
The outputs are low for SCLK1 and SCLK2.  
3, 4  
ADD1, ADDꢀ  
The address bits corresponding to the conversion result are output on DOUT prior to the 12 bits of data.  
See Table 6 for the coding of these address bits.  
5
DB11  
DB1ꢀ to DB1  
DBꢀ  
Data Bit 11 (MSB).  
Data Bit 1ꢀ to Data Bit 1.  
Data Bit ꢀ (LSB).  
6 to 15  
16  
Rev. A | Page 13 of 16  
 
 
 
 
ADIS16133c  
c
SECOND-LEVEL ASSEMBLY  
CRITICAL ZONE  
TO T  
The recommended pad geometries for the ADIS16100 are  
displayed in Figure 20. The ADIS16100 can be attached to  
printed circuit boards using Sn63 or an equivalent solder.  
Figure 21 and Table 11 provide recommended solder reflow  
profiles for each solder type. Note: These profiles may not be  
the optimum profile for the users application. In no case should  
the temperature exceed 260°C. It is recommended that the user  
develop a reflow profile based upon the specific application.  
In general, keep in mind that the lowest peak temperature and  
shortest dwell time above the melt temperature of the solder  
results in less shock and stress to the product. In addition,  
evaluating the cooling rate and peak temperature can result in  
a more reliable assembly.  
T
tP  
L
P
T
P
RAMP-UP  
T
L
tL  
T
SMAX  
T
SMIN  
tS  
RAMP-DOWN  
PREHEAT  
t
25°C TO PEAK  
TIME  
Figure 21. Recommended Solder Reflow Profiles  
Table 11. Solder Profile Characteristics  
Profile Feature  
6.873  
2×  
Sn63/Pb37  
Average Ramp Rate (TL to TP)  
Preheat  
3°C/sec max  
0.5 BSC  
16×  
Minimum Temperature (TSMIN  
Maximum Temperature (TSMAX  
Time (TSMIN to TSMAX) (tS)  
TSMAX to TL  
Ramp-Up Rate  
Time Maintained Above Liquidous (TL)  
Liquidous Temperature (TL)  
Time (tL)  
)
)
1ꢀꢀ°C  
15ꢀ°C  
6ꢀ sec to 12ꢀ sec  
0.67 BSC  
12×  
3°C/sec  
1 BSC  
16×  
183°C  
0.9315  
4×  
6ꢀ sec to 15ꢀ sec  
24ꢀ°C + ꢀ°C/–5°C  
1ꢀ sec to 3ꢀ sec  
Peak Temperature (TP)  
Time Within 5°C of Actual Peak  
Temperature (tp)  
Ramp-Down Rate  
Time 25°C to Peak Temperature  
6°C/sec max  
6 min max  
0.9315  
4×  
Figure 20. Second Level Assembly Pad Layout  
Rev. A | Page 14 of 16  
 
 
 
 
ADIS16100  
OUTLINE DIMENSIONS  
8.33  
8.20 SQ  
8.07  
1.1585  
BSC  
PIN 1  
INDICATOR  
13  
16  
0.797  
BSC  
12  
1
PIN 1  
INDICATOR  
0.873  
BSC  
4
9
8
5
TOP VIEW  
7.00 TYP  
BOTTOM VIEW  
0.373  
BSC  
0.227  
BSC  
5.20  
MAX  
SIDE VIEW  
Figure 22. 16-Terminal Land Grid Array [LGA]  
(CC-16-1)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model  
ADIS16100ACC  
ADIS16100/PCB  
Temperature Range  
−40°C to +85°C  
Package Description  
Package Option  
CC-16-1  
16-Terminal Land Grid Array (LGA)  
Evaluation Board  
Rev. A | Page 15 of 16  
 
ADIS16133c  
NOTESc  
c
©2006 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D05461-0-5/06(A)  
Rev. A | Page 16 of 16  
 
 
 
 
 
 
 

相关型号:

ADIS16100ACC

IC SPECIALTY ANALOG CIRCUIT, PBGA16, 8.20 X 8.20 MM, 5.20 MM HEIGHT, LGA-16, Analog IC:Other
ADI

ADIS16100PCB

iSensor⑩ PC Evaluation System
ADI

ADIS16120

Low Noise, Angular Rate Sensor
ADI

ADIS16120/PCB

Low Noise, Angular Rate Sensor
ADI

ADIS16120AML

Low Noise, Angular Rate Sensor
ADI

ADIS16130

Digital Output, High-Precision Angular Rate Sensor
ADI

ADIS16130AMLZ

Digital Output, High-Precision Angular Rate Sensor
ADI

ADIS16133

±1200°/sec Precision Angular Rate Sensor
ADI

ADIS16133/PCBZ

±1200°/sec Precision Angular Rate Sensor
ADI

ADIS16133BMLZ

±1200°/sec Precision Angular Rate Sensor
ADI

ADIS16135

Precision Angular Rate Sensor
ADI

ADIS16135/PCBZ

Precision Angular Rate Sensor
ADI