ADG5204BCPZ-RL7 [ADI]

High Voltage, Latch-Up Proof, 4-Channel Multiplexer Automatic test equipment; 高电压,闭锁证明, 4通道多路复用器自动测试设备
ADG5204BCPZ-RL7
型号: ADG5204BCPZ-RL7
厂家: ADI    ADI
描述:

High Voltage, Latch-Up Proof, 4-Channel Multiplexer Automatic test equipment
高电压,闭锁证明, 4通道多路复用器自动测试设备

复用器 测试
文件: 总20页 (文件大小:329K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High Voltage, Latch-Up Proof,  
4-Channel Multiplexer  
ADG5204  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
Latch-up proof  
ADG5204  
3 pF off source capacitance  
S1  
26 pF off drain capacitance  
S2  
D
−0.6 pC charge injection  
S3  
Low leakage: 0.4 nA maximum at 85°C  
9 V to 22 V dual-supply operation  
9 V to 40 V single-supply operation  
48 V supply maximum ratings  
Fully specified at 15 V, 20 V, +12 V, and +36 V  
S4  
1 OF 4  
DECODERS  
A0  
A1 EN  
Figure 1.  
V
SS to VDD analog signal range  
APPLICATIONS  
Automatic test equipment  
Data acquisition  
Instrumentation  
Avionics  
Audio and video switching  
Communication systems  
GENERAL DESCRIPTION  
PRODUCT HIGHLIGHTS  
The ADG5204 is a complementary metal oxide semiconductor  
(CMOS) analog multiplexer, comprising four single channels.  
1. Trench Isolation Guards Against Latch-Up.  
A dielectric trench separates the P and N channel transistors,  
thereby preventing latch-up even under severe overvoltage  
conditions.  
2. Ultralow Capacitance and <1 pC Charge Injection.  
3. Dual-Supply Operation.  
For applications where the analog signal is bipolar, the  
ADG5204 can be operated from dual supplies up to 22 V.  
4. Single-Supply Operation.  
The ultralow capacitance and charge injection of these switches  
make them ideal solutions for data acquisition and sample-and-  
hold applications, where low glitch and fast settling are required.  
Fast switching speed together with high signal bandwidth make  
the ADG5204 suitable for video signal switching.  
The ADG5204 is designed on a trench process, which guards  
against latch-up. A dielectric trench separates the P and N  
channel transistors, thereby preventing latch-up even under  
severe overvoltage conditions.  
For applications where the analog signal is unipolar, the  
ADG5204 can be operated from a single rail power supply  
up to 40 V.  
The ADG5204 switches one of four inputs to a common output,  
D, as determined by the 3-bit binary address lines, A0, A1, and  
EN. Logic 0 on the EN pin disables the device. Each switch con-  
ducts equally well in both directions when on, and each switch  
has an input signal range that extends to the supplies. In the off  
condition, signal levels up to the supplies are blocked. All switches  
exhibit break-before-make switching action.  
5. 3 V Logic-Compatible Digital Inputs.  
V
INH = 2.0 V, VINL = 0.8 V.  
6. No VL Logic Power Supply Required.  
Rev. 0  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
Fax: 781.461.3113  
www.analog.com  
©2011 Analog Devices, Inc. All rights reserved.  
 
ADG5204  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Absolute Maximum Ratings ............................................................8  
ESD Caution...................................................................................8  
Pin Configurations and Function Descriptions............................9  
Truth Table .....................................................................................9  
Typical Performance Characteristics ........................................... 10  
Test Circuits..................................................................................... 14  
Terminology.................................................................................... 16  
Trench Isolation.............................................................................. 17  
Applications Information.............................................................. 18  
Outline Dimensions....................................................................... 19  
Ordering Guide .......................................................................... 19  
Applications....................................................................................... 1  
Functional Block Diagram .............................................................. 1  
General Description......................................................................... 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
15 V Dual Supply ....................................................................... 3  
20 V Dual Supply ....................................................................... 4  
12 V Single Supply........................................................................ 5  
36 V Single Supply........................................................................ 6  
Continuous Current per Channel, Sx or D............................... 7  
REVISION HISTORY  
5/11—Revision 0: Initial Version  
Rev. 0 | Page 2 of 20  
 
ADG5204  
SPECIFICATIONS  
15 V DUAL SUPPLY  
VDD = 15 V 10%, VSS = −15 V 10%, GND = 0 V, unless otherwise noted.  
Table 1.  
Parameter  
25°C  
−40°C to +85°C −40°C to +125°C Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
VDD to VSS  
280  
V max  
160  
200  
4.5  
Ω typ  
Ω max  
Ω typ  
VS = 10 V, IS = −1 mA, see Figure 24  
VDD = +13.5 V, VSS = −13.5 V  
VS = 10 V, IS = −1 mA  
250  
On-Resistance Match  
Between Channels, ∆RON  
8
38  
50  
9
10  
70  
Ω max  
Ω typ  
Ω max  
On-Resistance Flatness, RFLAT(ON)  
VS = 10 V, IS = −1 mA  
65  
LEAKAGE CURRENTS  
VDD = +16.5 V, VSS = −16.5 V  
Source Off Leakage, IS (Off)  
0.01  
nA typ  
VS = VS = 10 V, VD = 10 V, see Figure 23  
0.1  
0.01  
0.2  
0.4  
nA max  
nA typ  
Drain Off Leakage, ID (Off)  
VS = VS = 10 V, VD = 10 V, see Figure 23  
0.1  
0.4  
0.5  
1.2  
1.2  
nA max  
nA typ  
nA max  
Channel On Leakage, ID, IS (On)  
0.02  
0.2  
VS = VD = 10 V, see Figure 26  
DIGITAL INPUTS  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Current, IINL or IINH  
2.0  
0.8  
V min  
V max  
μA typ  
μA max  
pF typ  
0.002  
3
VIN = VGND or VDD  
0.1  
Digital Input Capacitance, CIN  
DYNAMIC CHARACTERISTICS1  
Transition Time, tTRANSITION  
175  
230  
155  
205  
150  
175  
80  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
ns min  
pC typ  
dB typ  
dB typ  
MHz typ  
dB typ  
pF typ  
pF typ  
pF typ  
RL = 300 Ω, CL = 35 pF  
VS = 10 V, see Figure 29  
RL = 300 Ω, CL = 35 pF  
VS = 10 V, see Figure 31  
RL = 300 Ω, CL = 35 pF  
VS = 10 V, see Figure 31  
RL = 300 Ω, CL = 35 pF  
VS1 = VS2 = 10 V, see Figure 30  
VS = 0 V, RS = 0 Ω, CL = 1 nF, see Figure 32  
RL = 50 Ω, CL = 5 pF, f = 100 kHz, see Figure 25  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see Figure 28  
RL = 50 Ω, CL = 5 pF, see Figure 27  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see Figure 27  
VS = 0 V, f = 1 MHz  
285  
255  
200  
320  
285  
215  
30  
tON (EN)  
tOFF (EN)  
Break-Before-Make Time Delay, tD  
Charge Injection, QINJ  
Off Isolation  
Channel-to-Channel Crosstalk  
−3 dB Bandwidth  
Insertion Loss  
CS (Off)  
−0.6  
−80  
−80  
136  
−6.8  
3
CD (Off)  
CD, CS (On)  
26  
30  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
POWER REQUIREMENTS  
IDD  
VDD = +16.5 V, VSS = −16.5 V  
Digital inputs = 0 V or VDD  
45  
55  
0.001  
μA typ  
μA max  
μA typ  
μA max  
70  
ISS  
Digital inputs = 0 V or VDD  
1
VDD/VSS  
9/ 22  
V min/max GND = 0 V  
1 Guaranteed by design; not subject to production test.  
Rev. 0 | Page 3 of 20  
 
 
ADG5204  
20 V DUAL SUPPLY  
VDD = +20 V 10%, VSS = −20 V 10%, GND = 0 V, unless otherwise noted.  
Table 2.  
Parameter  
25°C  
−40°C to +85°C  
−40°C to +125°C Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
VDD to VSS  
230  
V max  
140  
160  
4.5  
Ω typ  
Ω max  
Ω typ  
VS = 15 V, IS = −1 mA, see Figure 24  
VDD = +18 V, VSS = −18 V  
VS = 15 V, IS = −1 mA  
200  
On-Resistance Match  
Between Channels, ∆RON  
8
33  
45  
9
10  
60  
Ω max  
Ω typ  
Ω max  
On-Resistance Flatness, RFLAT(ON)  
VS = 15 V, IS = −1 mA  
55  
LEAKAGE CURRENTS  
VDD = +22 V, VSS = −22 V  
Source Off Leakage, IS (Off)  
0.01  
nA typ  
VS = 15 V, VD = 15 V, see Figure 23  
0.1  
0.01  
0.2  
0.4  
nA max  
nA typ  
Drain Off Leakage, ID (Off)  
VS = 15 V, VD = 15 V, see Figure 23  
0.1  
0.02  
0.2  
0.4  
0.5  
1.2  
1.2  
nA max  
nA typ  
nA max  
Channel On Leakage, ID, IS (On)  
VS = VD = 15 V, see Figure 26  
DIGITAL INPUTS  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Current, IINL or IINH  
2.0  
0.8  
V min  
V max  
μA typ  
μA max  
pF typ  
0.002  
3
VIN = VGND or VDD  
0.1  
Digital Input Capacitance, CIN  
DYNAMIC CHARACTERISTICS1  
Transition Time, tTRANSITION  
160  
215  
150  
185  
150  
175  
75  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
ns min  
pC typ  
dB typ  
RL = 300 Ω, CL = 35 pF  
VS = 10 V, see Figure 29  
RL = 300 Ω, CL = 35 pF  
VS = 10 V, see Figure 31  
RL = 300 Ω, CL = 35 pF  
VS = 10 V, see Figure 31  
RL = 300 Ω, CL = 35 pF  
VS1 = VS2 = 10 V, see Figure 30  
VS = 0 V, RS = 0 Ω, CL = 1 nF, see Figure 32  
RL = 50 Ω, CL = 5 pF, f = 100 kHz,  
see Figure 25  
260  
225  
195  
290  
255  
210  
30  
tON (EN)  
tOFF (EN)  
Break-Before-Make Time Delay, tD  
Charge Injection, QINJ  
Off Isolation  
−0.6  
−80  
Channel-to-Channel Crosstalk  
−3 dB Bandwidth  
Insertion Loss  
CS (Off)  
CD (Off)  
CD, CS (On)  
−80  
150  
−6  
3
26  
30  
dB typ  
MHz typ  
dB typ  
pF typ  
pF typ  
pF typ  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see Figure 28  
RL = 50 Ω, CL = 5 pF, see Figure 27  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see Figure 27  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
VS = 0 V, f = 1 MHz  
POWER REQUIREMENTS  
IDD  
VDD = +22 V, VSS = −22 V  
Digital inputs = 0 V or VDD  
50  
μA typ  
70  
0.001  
110  
μA max  
μA typ  
ISS  
Digital inputs = 0 V or VDD  
GND = 0 V  
1
μA max  
V min/max  
VDD/VSS  
9/ 22  
1 Guaranteed by design; not subject to production test.  
Rev. 0 | Page 4 of 20  
 
 
ADG5204  
12 V SINGLE SUPPLY  
VDD = 12 V 10%, VSS = 0 V, GND = 0 V, unless otherwise noted.  
Table 3.  
Parameter  
25°C  
−40°C to +85°C −40°C to +125°C Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
0 V to VDD  
700  
V max  
340  
500  
5
Ω typ  
Ω max  
Ω typ  
VS = 0 V to 10 V, IS = −1 mA, see Figure 24  
VDD = 10.8 V, VSS = 0 V  
VS = 0 V to 10 V, IS = −1 mA  
610  
On-Resistance Match  
Between Channels, ∆RON  
20  
145  
280  
21  
22  
Ω max  
Ω typ  
Ω max  
On-Resistance Flatness, RFLAT(ON)  
VS = 0 V to 10 V, IS = −1 mA  
335  
370  
LEAKAGE CURRENTS  
VDD = 13.2 V, VSS = 0 V  
Source Off Leakage, IS (Off)  
0.01  
0.1  
0.01  
0.1  
0.02  
0.2  
nA typ  
nA max  
nA typ  
nA max  
nA typ  
nA max  
VS = 1 V/10 V, VD = 10 V/1 V, see Figure 23  
0.2  
0.4  
0.5  
0.4  
1.2  
1.2  
Drain Off Leakage, ID (Off)  
VS = 1 V/10 V, VD = 10 V/1 V, see Figure 23  
VS = VD = 1 V/10 V, see Figure 26  
Channel On Leakage, ID, IS (On)  
DIGITAL INPUTS  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Current, IINL or IINH  
2.0  
0.8  
V min  
V max  
μA typ  
μA max  
pF typ  
0.002  
3
VIN = VGND or VDD  
0.1  
Digital Input Capacitance, CIN  
DYNAMIC CHARACTERISTICS1  
Transition Time, tTRANSITION  
240  
350  
250  
335  
160  
195  
140  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
ns min  
pC typ  
dB typ  
dB typ  
MHz typ  
dB typ  
pF typ  
pF typ  
pF typ  
RL = 300 Ω, CL = 35 pF  
VS = 8 V, see Figure 29  
RL = 300 Ω, CL = 35 pF  
VS = 8 V, see Figure 31  
RL = 300 Ω, CL = 35 pF  
VS = 8 V, see Figure 31  
RL = 300 Ω, CL = 35 pF  
VS1 = VS2 = 8 V, see Figure 30  
VS = 6 V, RS = 0 Ω, CL = 1 nF, see Figure 32  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see Figure 25  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see Figure 28  
RL = 50 Ω, CL = 5 pF, see Figure 27  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see Figure 27  
VS = 6 V, f = 1 MHz  
445  
420  
220  
515  
485  
240  
60  
tON (EN)  
tOFF (EN)  
Break-Before-Make Time Delay, tD  
Charge Injection, QINJ  
Off Isolation  
Channel-to-Channel Crosstalk  
−3 dB Bandwidth  
Insertion Loss  
CS (Off)  
−1.2  
−80  
−80  
106  
−11  
3.5  
CD (Off)  
CD, CS (On)  
29  
33  
VS = 6 V, f = 1 MHz  
VS = 6 V, f = 1 MHz  
POWER REQUIREMENTS  
IDD  
VDD = 13.2 V  
Digital inputs = 0 V or VDD  
40  
μA typ  
65  
μA max  
VDD  
9/40  
V min/max GND = 0 V, VSS = 0 V  
1 Guaranteed by design; not subject to production test.  
Rev. 0 | Page 5 of 20  
 
 
ADG5204  
36 V SINGLE SUPPLY  
VDD = 36 V 10%, VSS = 0 V, GND = 0 V, unless otherwise noted.  
Table 4.  
Parameter  
25°C  
−40°C to +85°C  
−40°C to +125°C Unit  
Test Conditions/Comments  
ANALOG SWITCH  
Analog Signal Range  
On Resistance, RON  
0 V to VDD  
245  
V max  
150  
170  
4.5  
Ω typ  
Ω max  
Ω typ  
VS = 0 V to 30 V, IS = −1 mA, see Figure 24  
VDD = 32.4 V, VSS = 0 V  
VS = 0 V to 30 V, IS = −1 mA  
215  
On-Resistance Match  
Between Channels, ∆RON  
8
35  
50  
9
10  
65  
Ω max  
Ω typ  
Ω max  
On-Resistance Flatness, RFLAT(ON)  
VS = 0 V to 30 V, IS = −1 mA  
60  
LEAKAGE CURRENTS  
VDD = 39.6 V, VSS = 0 V  
Source Off Leakage, IS (Off)  
0.01  
0.1  
0.01  
0.1  
0.02  
0.2  
nA typ  
nA max  
nA typ  
nA max  
nA typ  
nA max  
VS = 1 V/30 V, VD = 30 V/1 V, see Figure 23  
0.2  
0.4  
0.5  
0.4  
1.2  
1.2  
Drain Off Leakage, ID (Off)  
VS = 1 V/30 V, VD = 30 V/1 V, see Figure 23  
VS = VD = 1 V/30 V, see Figure 26  
Channel On Leakage, ID, IS (On)  
DIGITAL INPUTS  
Input High Voltage, VINH  
Input Low Voltage, VINL  
Input Current, IINL or IINH  
2.0  
0.8  
V min  
V max  
μA typ  
μA max  
pF typ  
0.002  
3
VIN = VGND or VDD  
0.1  
Digital Input Capacitance, CIN  
DYNAMIC CHARACTERISTICS1  
Transition Time, tTRANSITION  
180  
250  
170  
220  
170  
210  
80  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
ns max  
ns typ  
ns min  
pC typ  
dB typ  
dB typ  
MHz typ  
dB typ  
pF typ  
pF typ  
pF typ  
RL = 300 Ω, CL = 35 pF  
VS = 18 V, see Figure 29  
RL = 300 Ω, CL = 35 pF  
VS = 18 V, see Figure 31  
RL = 300 Ω, CL = 35 pF  
VS = 18 V, see Figure 31  
RL = 300 Ω, CL = 35 pF  
VS1 = VS2 = 18 V, see Figure 30  
VS = 18 V, RS = 0 Ω, CL = 1 nF, see Figure 32  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see Figure 25  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see Figure 28  
RL = 50 Ω, CL = 5 pF, see Figure 27  
RL = 50 Ω, CL = 5 pF, f = 1 MHz, see Figure 27  
VS = 18 V, f = 1 MHz  
275  
251  
215  
305  
285  
220  
30  
tON (EN)  
tOFF (EN)  
Break-Before-Make Time Delay, tD  
Charge Injection, QINJ  
Off Isolation  
Channel-to-Channel Crosstalk  
−3 dB Bandwidth  
Insertion Loss  
CS (Off)  
−0.6  
−80  
−80  
136  
−6.7  
3
CD (Off)  
CD, CS (On)  
26  
30  
VS = 18 V, f = 1 MHz  
VS = 18 V, f = 1 MHz  
POWER REQUIREMENTS  
IDD  
VDD = 39.6 V  
Digital inputs = 0 V or VDD  
85  
μA typ  
100  
130  
9/40  
μA max  
V min/max  
VDD  
GND = 0 V, VSS = 0 V  
1 Guaranteed by design; not subject to production test.  
Rev. 0 | Page 6 of 20  
 
 
ADG5204  
CONTINUOUS CURRENT PER CHANNEL, Sx OR D  
Table 5.  
Parameter  
25°C  
85°C  
125°C  
Unit  
CONTINUOUS CURRENT, Sx OR D PINS  
VDD = +15 V, VSS = −15 V  
TSSOP (θJA = 112.6°C/W)  
LFCSP (θJA = 30.4°C/W)  
VDD = +20 V, VSS = −20 V  
TSSOP (θJA = 112.6°C/W)  
LFCSP (θJA = 30.4°C/W)  
VDD = 12 V, VSS = 0 V  
24.5  
35.7  
7.5  
7.7  
2.8  
2.8  
mA max  
mA max  
26  
37  
7.5  
7.7  
2.8  
2.8  
mA max  
mA max  
TSSOP (θJA = 112.6°C/W)  
LFCSP (θJA = 30.4°C/W)  
VDD = 36 V, VSS = 0 V  
18  
28  
7
7.7  
2.8  
2.8  
mA max  
mA max  
TSSOP (θJA = 112.6°C/W)  
LFCSP (θJA = 30.4°C/W)  
30  
41  
7.7  
7.7  
2.8  
2.8  
mA max  
mA max  
Rev. 0 | Page 7 of 20  
 
 
ADG5204  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Table 6.  
Parameter  
VDD to VSS  
VDD to GND  
VSS to GND  
Analog Inputs1  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Rating  
48 V  
−0.3 V to +48 V  
+0.3 V to −48 V  
VSS − 0.3 V to VDD + 0.3 V or  
30 mA, whichever occurs first  
VSS − 0.3 V to VDD + 0.3 V or  
30 mA, whichever occurs first  
81 mA (pulsed at 1 ms,  
Digital Inputs1  
Only one absolute maximum rating can be applied at any  
one time.  
Peak Current, Sx or D Pins  
10% duty cycle maximum)  
ESD CAUTION  
Continuous Current, Sx or D2  
Operating Temperature Range  
Storage Temperature Range  
Junction Temperature  
Data + 15%  
−40°C to +125°C  
−65°C to +150°C  
150°C  
Thermal Impedance, θJA  
16-Lead TSSOP, θJA Thermal  
Impedance (4-Layer Board)  
16-Lead LFCSP, θJA Thermal  
Impedance (4-Layer Board)  
112.6°C/W  
30.4°C/W  
Reflow Soldering Peak  
Temperature, Pb Free  
260(+0/−5)°C  
1 Overvoltages at the Sx and D pins are clamped by internal diodes. Limit  
current to the maximum ratings given.  
2 See Table 5.  
Rev. 0 | Page 8 of 20  
 
 
 
ADG5204  
PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
A0  
EN  
A1  
GND  
V
V
DD  
SS  
12 GND  
11  
10 S3  
S4  
V
1
2
3
4
SS  
ADG5204  
ADG5204  
TOP VIEW  
(Not to Scale)  
S1  
S3  
S4  
NC  
NC  
NC  
S1  
S2  
V
TOP VIEW  
DD  
(Not to Scale)  
S2  
D
9
8
NC  
NC = NO CONNECT  
NOTES  
1. NC = NO CONNECT.  
2. EXPOSED PAD TIED TO SUBSTRATE, V  
.
SS  
Figure 2. TSSOP Pin Configuration  
Figure 3. LFCSP Pin Configuration  
Table 7. Pin Function Descriptions  
Pin No.  
LFCSP  
TSSOP  
Mnemonic  
Description  
1
2
15  
16  
A0  
EN  
Logic Control Input.  
Active High Digital Input. When this pin is low, the device is disabled and all switches are off.  
When this pin is high, the Ax logic inputs determine the on switches.  
3
4
5
6
1
3
4
6
VSS  
S1  
S2  
D
NC  
S4  
S3  
VDD  
Most Negative Power Supply Potential.  
Source Terminal. Can be an input or an output.  
Source Terminal. Can be an input or an output.  
Drain Terminal. Can be an input or an output.  
No Connect. These pins are open.  
Source Terminal. Can be an input or an output.  
Source Terminal. Can be an input or an output.  
Most Positive Power Supply Potential.  
Ground (0 V) Reference.  
7 to 9  
10  
11  
12  
13  
14  
N/A1  
2, 5, 7, 8, 13  
9
10  
11  
12  
14  
EP  
GND  
A1  
Exposed Pad  
Logic Control Input.  
Exposed Pad. The exposed pad is connected internally. For increased reliability of the solder  
joints and maximum thermal capability, it is recommended that the pad be soldered to the  
substrate, VSS.  
1 N/A means not applicable.  
TRUTH TABLE  
Table 8.  
EN  
A1  
X1  
0
0
1
A0  
X1  
0
1
0
S1  
S2  
S3  
S4  
0
1
1
1
Off  
On  
Off  
Off  
Off  
Off  
Off  
On  
Off  
Off  
Off  
Off  
Off  
On  
Off  
Off  
Off  
Off  
Off  
On  
1
1
1
1 X is don’t care.  
Rev. 0 | Page 9 of 20  
 
 
 
ADG5204  
TYPICAL PERFORMANCE CHARACTERISTICS  
160  
160  
140  
120  
100  
80  
T
= 25°C  
T
= 25°C  
A
A
V
V
= 32.4V  
= 0V  
DD  
SS  
140  
120  
100  
80  
V
V
= +18V  
= –18V  
DD  
SS  
V
V
= 39.6V  
= 0V  
DD  
SS  
V
V
= 36V  
= 0V  
DD  
SS  
V
V
= +20V  
= –20V  
DD  
SS  
V
V
= +22V  
= –22V  
DD  
SS  
60  
60  
40  
40  
20  
20  
0
0
–25 –20 –15 –10  
–5  
0
5
10  
15  
20  
25  
0
5
10  
15  
20  
V , V (V)  
25  
30  
35  
40  
V , V (V)  
S
D
S
D
Figure 4. RON as a Function of VD or VS, Dual Supply  
Figure 7. RON as a Function of VD or VS, Single Supply  
250  
200  
150  
100  
50  
250  
200  
150  
100  
50  
T
= 25°C  
V
V
= +15V  
= –15V  
A
V
V
= +9V  
= –9V  
DD  
SS  
DD  
SS  
T
= +125°C  
= +85°C  
A
T
A
T
T
= +25°C  
= –40°C  
A
V
V
= +13.2V  
= –13.2V  
DD  
SS  
A
V
V
= +16.5V  
= –16.5V  
DD  
SS  
V
V
= +15V  
= –15V  
DD  
SS  
0
0
–20  
–15  
–10  
–5  
0
5
10  
15  
20  
–15  
–10  
–5  
0
5
10  
15  
V , V (V)  
V
V (V)  
S, D  
S
D
Figure 5. RON as a Function of VD or VS, Dual Supply  
Figure 8. RON as a Function of VD or VS, for Different Temperatures,  
15 V Dual Supply  
200  
180  
160  
500  
450  
400  
350  
300  
250  
200  
150  
100  
50  
T
= 25°C  
V
V
= 9V  
= 0V  
A
DD  
SS  
V
V
= 10.8V  
= 0V  
DD  
SS  
T
= +125°C  
= +85°C  
A
V
V
= 12V  
= 0V  
DD  
SS  
140  
120  
100  
80  
T
A
V
= 13.2V  
= 0V  
DD  
V
SS  
T
T
= +25°C  
= –40°C  
A
A
60  
40  
20  
V
V
= +20V  
= –20V  
DD  
SS  
0
0
–20  
–15  
–10  
–5  
0
5
10  
15  
20  
0
2
4
6
8
10  
12  
14  
V
V (V)  
D
V , V (V)  
S,  
S
D
Figure 6. RON as a Function of VD or VS, Single Supply  
Figure 9. RON as a Function of VD or VS, for Different Temperatures,  
20 V Dual Supply  
Rev. 0 | Page 10 of 20  
 
ADG5204  
500  
450  
400  
340  
300  
250  
200  
150  
100  
50  
100  
50  
I
(OFF) – +  
D
I
I
(ON) + +  
S
D,  
(OFF) + –  
I
S
T
= +125°C  
= +85°C  
A
T
A
0
I
(OFF) – +  
S
T
T
= +25°C  
= –40°C  
A
–50  
–100  
–150  
–200  
I
(OFF) + –  
A
D
I
I (ON) – –  
S
D,  
V
V
V
= +20V  
= –20V  
DD  
SS  
V
V
= 12V  
= 0V  
DD  
SS  
= +15V/–15V  
BIAS  
0
0
2
4
6
8
10  
12  
0
20  
40  
60  
80  
100  
120  
V
V (V)  
D
TEMPERATURE (°C)  
S,  
Figure 10. RON as a Function of VD or VS for Different Temperatures,  
12 V Single Supply  
Figure 13. Leakage Current vs. Temperature, 20 V Dual Supply  
40  
250  
V
V
= 36V  
= 0V  
DD  
SS  
I
(OFF) + –  
S
I
(OFF) – +  
D
20  
0
200  
150  
100  
50  
I
(OFF) – +  
S
T
= +125°C  
= +85°C  
A
–20  
–40  
–60  
–80  
–100  
–120  
T
I
I (ON) + +  
D, S  
A
T
T
= +25°C  
= –40°C  
A
I
(OFF) + –  
D
A
I
I (ON) – –  
S
D,  
V
V
V
= 12V  
= 0V  
DD  
SS  
= 1V/10V  
BIAS  
0
0
20  
40  
60  
80  
100  
120  
0
5
10  
15  
20  
25  
30  
35  
TEMPERATURE (°C)  
V
V
(V)  
D
S,  
Figure 11. RON as a Function of VD or VS for Different Temperatures,  
36 V Single Supply  
Figure 14. Leakage Current vs. Temperature, 12 V Single Supply  
10  
50  
I
(OFF) – +  
I
I
(ON) + +  
I
S
(OFF) + –  
D
D,  
S
I
(OFF) + –  
S
I
(OFF) – +  
D
I
, I (ON) + +  
S
D
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–50  
I
(OFF) – +  
S
I
(OFF) + –  
D
I
(OFF) – +  
S
I
I (ON) – –  
S
D,  
–100  
–150  
–200  
–250  
I
(OFF) + –  
D
I
, I (ON) – –  
S
D
V
V
V
= +15V  
= –15V  
V
V
V
= 36V  
= 0V  
DD  
DD  
SS  
SS  
= +10V/–10V  
= 1V/30V  
BIAS  
BIAS  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
TEMPERATURE (°C)  
TEMPERATURE (°C)  
Figure 12. Leakage Current vs. Temperature, 15 V Dual Supply  
Figure 15. Leakage Current vs. Temperature, 36 V Single Supply  
Rev. 0 | Page 11 of 20  
ADG5204  
0
350  
300  
250  
200  
150  
100  
50  
T
V
V
= 25°C  
A
= +15V  
= –15V  
DD  
SS  
–20  
–40  
V
V
= +36V  
= 0V  
V
V
= +12V  
= 0V  
DD  
SS  
DD  
SS  
–60  
V
V
= +15V  
= –15V  
DD  
SS  
–80  
V
V
= +20V  
= –20V  
DD  
SS  
–100  
–120  
0
10k  
100k  
1M  
10M  
100M  
1G  
1G  
40  
–40  
–20  
0
20  
40  
60  
80  
100  
120  
FREQUENCY (Hz)  
TEMPERATURE (°C)  
Figure 16. Off Isolation vs. Frequency, 15 V Dual Supply  
Figure 19. Transition Time vs. Temperature  
0
–20  
0
–20  
T
V
V
= 25°C  
= +15V  
= –15V  
T
= 25°C  
= +15V  
= –15V  
A
A
V
V
DD  
SS  
DD  
SS  
–40  
–40  
NO DECOUPLING CAPACITORS  
BETWEEN S1 AND S2  
–60  
–60  
–80  
–80  
BETWEEN S1 AND S4  
–100  
–120  
–100  
–120  
DECOUPLING CAPACITORS  
10k  
100k  
1M  
10M  
100M  
1k  
10k  
100k  
FREQUENCY (Hz)  
1M  
10M  
FREQUENCY (Hz)  
Figure 17. Crosstalk vs. Frequency, 15 V Dual Supply  
Figure 20. ACPSRR vs. Frequency, 15 V Dual Supply  
40  
35  
30  
25  
20  
15  
10  
5
2.5  
2.0  
T
= 25°C  
T = 25°C  
A
V
V
A
V
V
= +20V  
= –20V  
DD  
= +15V  
= –15V  
DD  
SS  
SS  
1.5  
SOURCE/DRAIN ON  
DRAIN OFF  
1.0  
0.5  
V
= +15V  
= –15V  
DD  
V
V
= +36V  
= 0V  
DD  
V
0
SS  
V
= +12V  
= 0V  
DD  
SS  
V
SS  
–0.5  
–1.0  
–1.5  
–2.0  
–2.5  
SOURCE OFF  
0
–15  
–10  
–5  
0
5
10  
15  
–20  
–10  
0
10  
(V)  
20  
30  
V
(V)  
V
S
S
Figure 21. Capacitance vs. Source Voltage, Dual Supply  
Figure 18. Charge Injection vs. Source Voltage  
Rev. 0 | Page 12 of 20  
ADG5204  
0
–2  
T
V
V
= 25°C  
A
= +15V  
= –15V  
DD  
SS  
–4  
–6  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
100k  
1M  
10M  
100M  
1G  
FREQUENCY (Hz)  
Figure 22. Bandwidth  
Rev. 0 | Page 13 of 20  
ADG5204  
TEST CIRCUITS  
I
(OFF)  
A
I
(OFF)  
A
I
(ON)  
A
S
D
D
Sx  
D
Sx  
D
NC  
V
V
D
V
D
S
NC = NO CONNECT  
Figure 23. Off Leakage  
Figure 26. On Leakage  
V
V
SS  
DD  
0.1µF  
0.1µF  
NETWORK  
ANALYZER  
V
V
SS  
DD  
50  
Sx  
V
S
D
V
V
OUT  
R
L
50Ω  
GND  
Sx  
D
I
DS  
V
S
V
WITH SWITCH  
OUT  
INSERTION LOSS = 20 log  
V
WITHOUT SWITCH  
OUT  
Figure 27. Bandwidth  
Figure 24. On Resistance  
V
V
DD  
SS  
V
V
V
DD  
SS  
0.1µF  
0.1µF  
0.1µF  
0.1µF  
NETWORK  
ANALYZER  
NETWORK  
ANALYZER  
V
V
DD  
SS  
V
S1  
DD  
SS  
V
OUT  
50  
R
L
50  
D
Sx  
50Ω  
S2  
R
L
V
S
50Ω  
D
V
OUT  
V
S
R
L
GND  
50Ω  
GND  
V
V
V
OUT  
OUT  
OFF ISOLATION = 20 log  
CHANNEL-TO-CHANNEL CROSSTALK = 20 log  
V
S
S
Figure 25. Off Isolation  
Figure 28. Channel-to-Channel Crosstalk  
Rev. 0 | Page 14 of 20  
 
 
 
 
 
 
 
ADG5204  
V
V
V
V
DD  
DD  
SS  
0.1µF  
0.1µF  
3V  
0V  
ADDRESS  
DRIVE (V  
50%  
50%  
SS  
)
IN  
S1  
V
A1  
S1  
S2  
S3  
S4  
A0  
V
IN  
90%  
V
S4  
V
OUT  
90%  
2.4V  
EN  
V
D
OUT  
GND  
R
C
L
tTRANSITION  
L
300  
35pF  
tTRANSITION  
Figure 29. Address to Output Switching Times  
V
V
V
DD  
DD  
SS  
0.1µF  
0.1µF  
3V  
V
SS  
S1  
ADDRESS  
DRIVE (V  
V
A1  
S1  
)
IN  
0V  
S2  
S3  
S4  
A0  
V
IN  
300  
80%  
80%  
V
2.4V  
EN  
D
OUT  
V
OUT  
GND  
C
35pF  
R
300Ω  
L
L
tD  
Figure 30. Break-Before-Make Time Delay, tD  
V
V
V
DD  
DD  
SS  
SS  
0.1µF  
0.1µF  
3V  
ENABLE  
50%  
50%  
V
DRIVE (V )  
IN  
0V  
V
S1  
A1  
S
S2  
S3  
S4  
A0  
V
OUT  
0.9V  
OUT  
OUTPUT  
0.1V  
OUT  
V
OUT  
EN  
D
0V  
GND  
R
C
L
L
V
IN  
300Ω  
300Ω  
35pF  
tON (EN)  
tOFF (EN)  
Figure 31. Enable-to-Output Switching Delay  
V
V
V
SS  
SS  
DD  
V
OUT  
V  
OUT  
V
DD  
Q
= C × V  
OUT  
INJ  
L
R
S
Sx  
D
V
V
OUT  
IN  
SW OFF  
SW OFF  
SW OFF  
C
1nF  
L
V
S
SW ON  
DECODER  
GND  
SW OFF  
V
IN  
A1 A2  
EN  
Figure 32. Charge Injection  
Rev. 0 | Page 15 of 20  
 
 
 
 
ADG5204  
TERMINOLOGY  
IDD  
The positive supply current.  
CIN  
The digital input capacitance.  
ISS  
tTRANSITION  
The negative supply current.  
The delay time between the 50% and 90% points of the digital  
input and switch-on condition when switching from one address  
state to another.  
VD, VS  
The analog voltage on Terminal D and Terminal S.  
t
ON (EN)  
RON  
The delay between applying the digital control input and the  
output switching on. See Figure 31.  
The ohmic resistance between Terminal D and Terminal S.  
RFLAT(ON)  
t
OFF (EN)  
Flatness that is defined as the difference between the maximum  
and minimum value of on resistance measured over the specified  
analog signal range.  
The delay between applying the digital control input and the  
output switching off. See Figure 31.  
Charge Injection  
A measure of the glitch impulse transferred from the digital  
input to the analog output during switching.  
IS (Off)  
The source leakage current with the switch off.  
ID (Off)  
Off Isolation  
The drain leakage current with the switch off.  
A measure of unwanted signal coupling through an off switch.  
ID, IS (On)  
Crosstalk  
The channel leakage current with the switch on.  
A measure of unwanted signal that is coupled through from one  
channel to another as a result of parasitic capacitance.  
VINL  
The maximum input voltage for Logic 0.  
Bandwidth  
VINH  
The frequency at which the output is attenuated by 3 dB.  
The minimum input voltage for Logic 1.  
On Response  
The frequency response of the on switch.  
I
INL, IINH  
The input current of the digital input.  
Insertion Loss  
The loss due to the on resistance of the switch.  
CS (Off)  
The off switch source capacitance, which is measured with  
reference to ground.  
ACPSRR (AC Power Supply Rejection Ratio)  
The ratio of the amplitude of signal on the output to the amplitude  
of the modulation. This is a measure of the ability of the device  
to avoid coupling noise and spurious signals that appear on the  
supply voltage pins to the output of the switch. The dc voltage on  
the device is modulated by a sine wave of 0.62 V p-p.  
CD (Off)  
The off switch drain capacitance, which is measured with  
reference to ground.  
CD (On), CS (On)  
The on switch capacitance, which is measured with reference to  
ground.  
Rev. 0 | Page 16 of 20  
 
ADG5204  
TRENCH ISOLATION  
NMOS  
PMOS  
In the ADG5204, an insulating oxide layer (trench) is placed  
between the NMOS and the PMOS transistors of each CMOS  
switch. Parasitic junctions, which occur between the transistors  
in junction isolated switches, are eliminated, and the result is a  
completely latch-up proof switch.  
In junction isolation, the N and P wells of the PMOS and  
NMOS transistors form a diode that is reverse-biased under  
normal operation. However, during overvoltage conditions, this  
diode can become forward-biased. A silicon controlled rectifier  
(SCR) type circuit is formed by the two transistors causing a  
significant amplification of the current that, in turn, leads to  
latch-up. By using trench isolation, this diode is removed, and  
the result is a latch-up proof switch.  
P WELL  
N WELL  
TRENCH  
BURIED OXIDE LAYER  
HANDLE WAFER  
Figure 33. Trench Isolation  
Rev. 0 | Page 17 of 20  
 
ADG5204  
APPLICATIONS INFORMATION  
The ADG52xx family of switches and multiplexers provide a  
robust solution for instrumentation, industrial, automotive,  
aerospace, and other harsh environments that are prone to  
latch-up, which is an undesirable high current state that can  
lead to device failure and persists until the power supply is  
turned off. The ADG5204 high voltage multiplexer allows  
single-supply operation from 9 V to 40 V and dual-supply  
operation from 9 V to 22 V.  
Rev. 0 | Page 18 of 20  
 
ADG5204  
OUTLINE DIMENSIONS  
5.10  
5.00  
4.90  
14  
8
7
4.50  
4.40  
4.30  
6.40  
BSC  
1
PIN 1  
0.65 BSC  
1.05  
1.00  
0.80  
1.20  
MAX  
0.20  
0.09  
0.75  
0.60  
0.45  
8°  
0°  
0.15  
0.05  
COPLANARITY  
0.10  
SEATING  
PLANE  
0.30  
0.19  
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1  
Figure 34. 14-Lead Thin Shrink Small Outline Package [TSSOP]  
(RU-14)  
Dimensions shown in millimeters  
4.10  
4.00 SQ  
3.90  
0.35  
0.30  
0.25  
PIN 1  
INDICATOR  
PIN 1  
INDICATOR  
13  
16  
0.65  
BSC  
12  
1
EXPOSED  
PAD  
2.70  
2.60 SQ  
2.50  
4
9
8
5
0.45  
0.40  
0.35  
0.20 MIN  
TOP VIEW  
BOTTOM VIEW  
0.80  
0.75  
0.70  
FOR PROPER CONNECTION OF  
THE EXPOSED PAD, REFER TO  
THE PIN CONFIGURATION AND  
FUNCTION DESCRIPTIONS  
0.05 MAX  
0.02 NOM  
COPLANARITY  
0.08  
SECTION OF THIS DATA SHEET.  
SEATING  
PLANE  
0.20 REF  
COMPLIANT TO JEDEC STANDARDS MO-220-WGGC.  
Figure 35. 16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
4 mm × 4 mm Body, Very Very Thin Quad  
(CP-16-17)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Model1  
ADG5204BRUZ  
ADG5204BRUZ-RL7  
ADG5204BCPZ-RL7  
Temperature Range  
−40°C to +125°C  
−40°C to +125°C  
−40°C to +125°C  
Package Description  
Package Option  
RU-14  
RU-14  
14-Lead Thin Shrink Small Outline Package [TSSOP]  
14-Lead Thin Shrink Small Outline Package [TSSOP]  
16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]  
CP-16-17  
1 Z = RoHS Compliant Part.  
Rev. 0 | Page 19 of 20  
 
 
ADG5204  
NOTES  
©2011 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D09768-0-5/11(0)  
Rev. 0 | Page 20 of 20  

相关型号:

ADG5204BRUZ

High Voltage, Latch-Up Proof, 4-Channel Multiplexer Automatic test equipment
ADI

ADG5204BRUZ-RL7

High Voltage, Latch-Up Proof, 4-Channel Multiplexer Automatic test equipment
ADI

ADG5206

High Voltage, Latch-Up Proof, 8-/16-Channel Multiplexers
ADI

ADG5206BCPZ-RL7

High Voltage, Latch-Up Proof, 8-/16-Channel Multiplexers
ADI

ADG5206BRUZ

High Voltage, Latch-Up Proof, 8-/16-Channel Multiplexers
ADI

ADG5206BRUZ-RL7

High Voltage, Latch-Up Proof, 8-/16-Channel Multiplexers
ADI

ADG5207

High Voltage, Latch-Up Proof, 8-/16-Channel Multiplexers
ADI

ADG5207BCPZ-RL7

High Voltage, Latch-Up Proof, 8-/16-Channel Multiplexers
ADI

ADG5207BRUZ

High Voltage, Latch-Up Proof, 8-/16-Channel Multiplexers
ADI

ADG5207BRUZ-RL7

High Voltage, Latch-Up Proof, 8-/16-Channel Multiplexers
ADI

ADG5208

High Voltage, Latch-Up Proof
ADI

ADG5208BCPZ-RL7

High Voltage, Latch-Up Proof
ADI