ADG3248BKS-REEL [ADI]

2.5 V/ 3.3 V, 2 :1 Multiplexer/ Demultiplexer Bus Switch; 2.5 V / 3.3 V , 2 : 1多路复用器/多路解复用器总线开关
ADG3248BKS-REEL
型号: ADG3248BKS-REEL
厂家: ADI    ADI
描述:

2.5 V/ 3.3 V, 2 :1 Multiplexer/ Demultiplexer Bus Switch
2.5 V / 3.3 V , 2 : 1多路复用器/多路解复用器总线开关

解复用器 开关 复用器或开关 信号电路 光电二极管
文件: 总12页 (文件大小:170K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2.5 V/3.3 V, 2:1 Multiplexer/  
Demultiplexer Bus Switch  
ADG3248  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
225 ps Propagation Delay through the Switch  
4.5 Switch Connection between Ports  
Data Rate 1.244 Gbps  
ADG3248  
A0  
2.5 V/3.3 V Supply Operation  
Level Translation  
B
A1  
3.3 V to 2.5 V  
2.5 V to 1.8 V  
IN  
Small Signal Bandwidth 610 MHz  
6-Lead SC70 Package  
SWITCHES SHOWN FOR A LOGIC 0 INPUT  
APPLICATIONS  
3.3 V to 2.5 V Voltage Translation  
2.5 V to 1.8 V Voltage Translation  
Bus Switching  
Docking Stations  
Memory Switching  
Analog Switch Applications  
GENERAL DESCRIPTION  
PRODUCT HIGHLIGHTS  
The ADG3248 is a 2.5 V or 3.3 V, high performance 2:1 multi-  
plexer/demultiplexer. It is designed on a low voltage CMOS  
process, which provides low power dissipation yet gives high  
switching speed and very low on resistance. This allows the input  
to be connected to the output without additional propagation  
delay or generating additional ground bounce noise.  
1. 3.3 V or 2.5 V supply operation.  
2. Extremely low propagation delay through switch.  
3. 4.5 switches connect inputs to outputs.  
4. Tiny SC70 package.  
Each switch of the ADG3248 conducts equally well in both direc-  
tions when on. The ADG3248 exhibits break-before-make  
switching action, preventing momentary shorting when switch-  
ing channels.  
The ADG3248 is available in a tiny 6-lead SC70 package.  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
(VCC = 2.3 V to 3.6 V, GND = 0 V, all specifications TMIN to TMAX, unless  
ADG3248–SPECIFICATIONS1 otherwise noted.)  
B Version  
Typ2  
Parameter  
Symbol  
Conditions  
Min  
Max  
Unit  
DC ELECTRICAL CHARACTERISTICS  
Input High Voltage  
VINH  
VINH  
VINL  
VINL  
II  
VCC = 2.7 V to 3.6 V  
VCC = 2.3 V to 2.7 V  
VCC = 2.7 V to 3.6 V  
VCC = 2.3 V to 2.7 V  
2.0  
1.7  
V
V
V
V
µA  
µA  
µA  
V
Input Low Voltage  
0.8  
0.7  
1
1
1
Input Leakage Current  
0.01  
0.01  
0.01  
2.5  
OFF State Leakage Current  
ON State Leakage Current  
Maximum Pass Voltage  
IOZ  
0 A, B VCC  
0 A, B VCC  
VA/VB = VCC = 3.3 V, IO = –5 µA  
VA/VB = VCC = 2.5 V, IO= –5 µA  
VP  
2.0  
1.5  
2.9  
2.1  
1.8  
V
CAPACITANCE3  
A Port Off Capacitance  
B Port Off Capacitance  
A, B Port On Capacitance  
Control Input Capacitance  
CA OFF  
CB OFF  
CA, CB ON f = 1 MHz  
f = 1 MHz  
f = 1 MHz  
3.5  
4.5  
8.5  
4
pF  
pF  
pF  
pF  
CIN  
f = 1 MHz  
SWITCHING CHARACTERISTICS3  
4
Propagation Delay A to B or B to A, tPD  
tPHL, tPLH  
CL = 50 pF, VCC = 3 V  
0.225 ns  
Propagation Delay Matching5  
Transition Time  
5
ps  
tTRANS  
tBBM  
RL = 510 , CL = 50 pF  
RL = 510 , CL = 50 pF  
VCC = 3.3 V; VA/VB = 2 V  
16  
10  
1.244  
45  
29  
ns  
ns  
Gbps  
ps p-p  
Break-before-Make Time  
Maximum Data Rate  
Channel Jitter  
5
V
CC = 3.3 V; VA/VB = 2 V  
DIGITAL SWITCH  
On Resistance  
RON  
VCC = 3 V, VA = 0 V, IBA = 8 mA  
VCC = 3 V, VA = 1.7 V, IBA = 8 mA  
4.5  
12  
5
9
0.1  
8
28  
9
18  
0.5  
V
CC = 2.3 V, VA = 0 V, IBA = 8 mA  
VCC = 2.3 V, VA = 1 V, IBA = 8 mA  
VCC = 3 V, VA = 0 V, IA = 8 mA  
On Resistance Matching  
RON  
POWER REQUIREMENTS  
VCC  
Quiescent Power Supply Current  
2.3  
3.6  
1
V
µA  
ICC  
Digital Inputs = 0 V or VCC  
0.01  
NOTES  
1Temperature range is as follows: B Version: –40°C to +85°C.  
2Typical values are at 25°C, unless otherwise stated.  
3Guaranteed by design, not subject to production test.  
4The digital switch contributes no propagation delay other than the RC delay of the typical RON of the switch and the load capacitance when driven by an ideal voltage  
source. Since the time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay  
of the digital switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.  
5Propagation delay matching between channels is calculated from the on resistance matching and load capacitance of 50 pF.  
Specifications subject to change without notice.  
–2–  
REV. 0  
ADG3248  
ABSOLUTE MAXIMUM RATINGS*  
(TA = 25°C, unless otherwise noted.)  
PIN CONFIGURATION  
6-Lead SC70  
VCC to GND . . . . . . . . . . . . . . . . . . . . . . . . . –0.5 V to +4.6 V  
Digital Inputs to GND . . . . . . . . . . . . . . . . . –0.5 V to +4.6 V  
DC Input Voltage . . . . . . . . . . . . . . . . . . . . . –0.5 V to +4.6 V  
DC Output Current . . . . . . . . . . . . . . . . . 25 mA per Channel  
Operating Temperature Range  
1
2
3
IN  
V
A0  
6
5
4
ADG3248  
TOP VIEW  
(Not to Scale)  
GND  
A1  
CC  
B
Industrial (B Version) . . . . . . . . . . . . . . . . . –40°C to +85°C  
Storage Temperature Range . . . . . . . . . . . . –65°C to +150°C  
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
Table I. Pin Function Descriptions  
JA Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . 332°C/W  
Pin No.  
Mnemonic  
Description  
Lead Temperature, Soldering (10 sec) . . . . . . . . . . . . . 300°C  
IR Reflow, Peak Temperature (<20 sec) . . . . . . . . . . . . 235°C  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those listed in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability. Only one absolute  
maximum rating may be applied at any one time.  
1
2
3
4
5
6
A0  
GND  
A1  
Port A0, Input or Output  
Ground Reference  
Port A1, Input or Output  
Port B, Input or Output  
Positive Power Supply Voltage  
Channel Select  
B
VCC  
IN  
Table II. Truth Table  
IN  
Function  
L
H
B = A0  
B = A1  
ORDERING GUIDE  
Temperature  
Range  
Package  
Description  
Model  
Package Branding  
ADG3248BKS-R2  
ADG3248BKS-REEL  
ADG3248BKS-REEL7  
–40°C to +85°C  
–40°C to +85°C  
–40°C to +85°C  
SC70 (Thin Shrink Small Outline Transistor Package)  
SC70 (Thin Shrink Small Outline Transistor Package)  
SC70 (Thin Shrink Small Outline Transistor Package)  
KS-6  
KS-6  
KS-6  
SMA  
SMA  
SMA  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although the  
ADG3248 features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended  
to avoid performance degradation or loss of functionality.  
REV. 0  
–3–  
ADG3248  
TERMINOLOGY  
VCC  
GND  
VINH  
VINL  
II  
Positive Power Supply Voltage.  
Ground (0 V) Reference.  
Minimum Input Voltage for Logic 1.  
Maximum Input Voltage for Logic 0.  
Input Leakage Current at the Control Inputs.  
IOZ  
IOL  
OFF State Leakage Current. It is the maximum leakage current at the switch pin in the OFF state.  
ON State Leakage Current. It is the maximum leakage current at the switch pin in the ON state.  
VP  
Maximum Pass Voltage. The maximum pass voltage relates to the clamped output voltage of an NMOS device when  
the switch input voltage is equal to the supply voltage.  
RON  
Ohmic Resistance Offered by a Switch in the ON State. It is measured at a given voltage by forcing a specified  
amount of current through the switch.  
RON  
CX OFF  
CX ON  
CIN  
ON Resistance Match between Any Two Channels, i.e., RON max – RON min.  
OFF Switch Capacitance.  
ON Switch Capacitance.  
Control Input Capacitance. This consists of IN.  
ICC  
Quiescent Power Supply Current. This current represents the leakage current between the VCC and ground pins.  
It is measured when all control inputs are at a logic high or low level and the switches are OFF.  
t
PLH, tPHL  
Data Propagation Delay through the Switch in the ON State. Propagation delay is related to the RC time constant  
RON × CL, where CL is the load capacitance.  
tBBM  
On or Off time measured between the 90% points of both switches when switching from one to another.  
tTRANS  
Time taken to switch from one channel to the other, measured from 50% of the IN signal to 90% of the  
OUT signal.  
Max Data Rate Maximum Rate at which Data Can Be Passed through the Switch.  
Channel Jitter  
Peak-to-Peak Value of the Sum of the Deterministic and Random Jitter of the Switch Channel.  
–4–  
REV. 0  
Typical Performance Characteristics–ADG3248  
40  
35  
30  
25  
40  
35  
30  
25  
20  
15  
10  
5
20  
T
= 25؇C  
A
T
= 25؇C  
= 3.3V  
CC  
V
A
V
= 3V  
V
= 2.3V  
CC  
CC  
15  
10  
5
V
= 3.3V  
V
= 2.5V  
= 2.7V  
CC  
CC  
20  
15  
10  
5
؉85؇C  
V
CC  
V
= 3.6V  
CC  
؉25؇C  
؊40؇C  
0
0
0
0
0.5  
1.0  
1.5  
2.0  
/V (V  
2.5  
3.0 3.5  
1.0  
V /V (V)  
A
2.0  
0
0.5  
1.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
V
)
V
/V (V)  
A
B
B
A
B
TPC 1. On Resistance vs.  
Input Voltage  
TPC 2. On Resistance vs.  
Input Voltage  
TPC 3. On Resistance vs. Input  
Voltage for Different Temperatures  
2.5  
15  
10  
5
3.0  
2.5  
V
= 3.6V  
T = 25؇C  
A
O
CC  
V
= 2.5V  
T
= 25؇C  
= –5A  
CC  
A
V
= 2.7V  
= 2.5V  
CC  
I
= –5A  
I
O
2.0  
1.5  
1.0  
0.5  
2.0  
1.5  
V
= 3.3V  
CC  
؉85؇C  
V
CC  
V
= 3V  
CC  
V
= 2.3V  
CC  
1.0  
0.5  
0
؊40؇C  
؉25؇C  
0
0
0
0.5  
1.0  
1.5  
/V (V)  
2.0  
2.5  
3.0  
0
0.5  
1.0  
1.5  
2.0 2.5  
/V (V)  
3.0 3.5  
0
0.5  
V
1.0  
1.2  
V
V
A
B
A
B
/V (V)  
A
B
TPC 4. On Resistance vs. Input  
Voltage for Different Temperatures  
TPC 5. Pass Voltage vs. VCC  
TPC 6. Pass Voltage vs. VCC  
3.0  
3.0  
2.5  
2.0  
1.5  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
–1.4  
T
= 25؇C  
T
V
= 25؇C  
= 0V  
T
V
= 25؇C  
= V  
CC  
A
A
A
ON = OFF  
= 1nF  
A
A
2.5  
2.0  
1.5  
1.0  
C
V
= 2.5V  
L
CC  
V
= 3.3V  
CC  
V
= 2.5V  
CC  
1.0  
V
= 2.5V  
CC  
V
= 3.3V  
CC  
0.5  
0
0.5  
0
V
= 3.3V  
CC  
0
0.02  
0.04  
0.06  
(A)  
0.08  
0.10  
–0.10 –0.08  
–0.06  
–0.04  
(A)  
–0.02  
0
0
0.5  
1.0  
1.5  
V
2.0  
/V (V)  
2.5  
3.0  
3.5  
I
I
O
A
B
O
TPC 7. Output Low Characteristic  
TPC 8. Output High Characteristic  
TPC 9. Charge Injection vs.  
Source Voltage  
REV. 0  
–5–  
ADG3248  
1
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
T
V
V
= 25؇C  
T = 25؇C  
A
A
0
= 3.3V/2.5V  
V
= 3.3V/2.5V  
CC  
CC  
= 0dBm  
V = 0dBm  
IN  
IN  
–1  
–2  
–3  
–4  
N/W ANALYZER:  
R
N/W ANALYZER:  
= R = 50⍀  
R
= R = 50⍀  
L
S
L
S
T
= 25؇C  
A
–5  
–6  
–7  
–8  
V
V
= 3.3V/2.5V  
= 0dBm  
CC  
IN  
N/W ANALYZER:  
R
= R = 50⍀  
L
S
0.03 0.1  
1.0  
10  
100  
1000  
0.03 0.1  
1.0  
10  
100  
1000  
0.03 0.1  
1.0  
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
TPC 10. Bandwidth vs. Frequency  
TPC 11. Crosstalk vs. Frequency  
TPC 12. Off Isolation vs.  
Frequency  
25  
100  
100  
V
= 3.3V  
CC  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
95  
90  
85  
80  
75  
V
= 1.5V p-p  
A
V
= 3.3V  
= 1.5V p-p  
CC  
V
= 2.5V  
20dB ATTENUATION  
CC  
20  
15  
10  
5
V
A
20dB ATTENUATION  
V
= 3.3V  
CC  
70  
65  
60  
55  
50  
% EYE WIDTH = ((CLOCK PERIOD –  
JITTER p-p)/CLOCK PERIOD) 
؋
 100%  
0
–40  
–20  
0
20  
40  
60  
80 85  
0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9  
DATA RATE (Gbps)  
0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9  
TEMPERATURE (؇C)  
DATA RATE (Gbps)  
TPC 13. Transition Time vs.  
Temperature  
TPC 14. Jitter vs. Data Rate;  
PRBS 31  
TPC 15. Eye Width vs. Data Rate;  
PRBS 31  
V
V
= 3.3V  
20dB  
ATTENUATION  
T = 25؇C  
A
V
V
= 2.5V  
20dB  
ATTENUATION  
T = 25؇C  
A
CC  
CC  
38.7mV/DIV  
133.7ps/DIV  
20mV/DIV  
166.3ps/DIV  
= 2V p-p  
= 1V p-p  
IN  
IN  
TPC 16. Eye Pattern; 1.244 Gbps,  
VCC = 3.3 V, PRBS 31  
TPC 17. Eye Pattern; 1 Gbps,  
VCC = 2.5 V, PRBS 31  
–6–  
REV. 0  
ADG3248  
V
BUS SWITCH APPLICATIONS  
OUT  
3.3V SUPPLY  
Mixed Voltage Operation, Level Translation  
Bus switches can provide an ideal solution for interfacing  
between mixed voltage systems. The ADG3248 is suitable for  
applications where voltage translation from 3.3 V technology to  
a lower voltage technology is needed. This device can translate  
from 2.5 V to 1.8 V, or bidirectionally from 3.3 V directly  
to 2.5 V.  
2.5V  
V
IN  
0V  
SWITCH  
INPUT  
3.3V  
Figure 1 shows a block diagram of a typical application in which  
a user needs to interface between a 3.3 V ADC and a 2.5 V  
microprocessor. The microprocessor may not have 3.3 V toler-  
ant inputs, therefore placing the ADG3248 between the two  
devices allows the devices to communicate easily. The bus  
switch directly connects the two blocks, thus introducing  
minimal propagation delay, timing skew, or noise.  
Figure 3. 3.3 V to 2.5 V Voltage Translation  
2.5 V to 1.8 V Translation  
When VCC is 2.5 V and the input signal range is 0 V to VCC, the  
maximum output signal will, as before, be clamped to within a  
voltage threshold below the VCC supply. In this case, the output  
will be limited to approximately 1.8 V, as shown in Figure 5.  
3.3V  
3.3V  
2.5V  
2.5V  
2.5V  
3.3V ADC  
MICROPROCESSOR  
ADG3248  
2.5V  
1.8V  
Figure 1. Level Translation between a 3.3 V ADC  
and a 2.5 V Microprocessor  
3.3 V to 2.5 V Translation  
Figure 4. 2.5 V to 1.8 V Voltage Translation  
When VCC is 3.3 V and the input signal range is 0 V to VCC, the  
maximum output signal will be clamped to within a voltage  
threshold below the VCC supply.  
V
OUT  
2.5V SUPPLY  
1.8V  
In this case, the output will be limited to 2.5 V, as shown in  
Figure 3. This device can be used for translation from 2.5 V to  
3.3 V devices and also between two 3.3 V devices.  
3.3V  
V
IN  
0V  
SWITCH  
INPUT  
2.5V  
3.3V  
2.5V  
2.5V  
2.5V  
Figure 5. 2.5 V to 1.8 V Voltage Translation  
Analog Switching  
ADG3248  
Bus switches can be used in many analog switching applications,  
for example, video graphics. Bus switches can have lower on  
resistance, smaller ON and OFF channel capacitance, and thus  
improved frequency performance than their analog counterparts.  
The bus switch channel itself, consisting solely of an NMOS  
switch, limits the operating voltage (see TPC 1 for a typical  
plot), but in many cases, this does not present an issue.  
Figure 2. 3.3 V to 2.5 V Voltage Translation  
REV. 0  
–7–  
ADG3248  
Multiplexing  
MEMORY  
ADDRESS  
DATA  
MEMORY  
BANK A  
Many systems, such as docking stations and memory banks,  
have a large number of common bus signals. Common prob-  
lems faced by designers of these systems include  
MEMORY  
BANK B  
Large delays caused by capacitive loading of the bus  
Noise due to simultaneous switching of the address and data  
bus signals  
MEMORY  
BANK C  
Figure 6 shows an array of memory banks in which each address  
and data signal is loaded by the sum of the individual loads. If  
a bus switch is used as shown in Figure 7, the output load on  
the memory address and data bits is halved. The speed at which  
the selected bank’s data can flow is much improved  
MEMORY  
BANK D  
Figure 6. All Memory Banks Are Permanently  
Connected to the Bus  
because the capacitance loading is halved and the switches  
introduce negligible propagation delay. Bus noise is also reduced.  
MEMORY  
BANK A  
MEMORY  
ADDRESS  
DATA  
MEMORY  
BANK B  
MEMORY  
BANK C  
MEMORY  
BANK D  
Figure 7. ADG3248 Used to Reduce Both Access  
Time and Noise  
–8–  
REV. 0  
ADG3248  
OUTLINE DIMENSIONS  
6-Lead Thin Shrink Small Outline Transistor Package [SC70]  
(KS-6)  
Dimensions shown in millimeters  
2.00 BSC  
6
5
2
4
3
2.10 BSC  
1.25 BSC  
1
PIN 1  
1.30 BSC  
0.65 BSC  
1.00  
0.90  
0.70  
1.10 MAX  
0.22  
0.08  
0.46  
0.36  
0.26  
8؇  
4؇  
0؇  
0.30  
0.15  
0.10 MAX  
SEATING  
PLANE  
0.10 COPLANARITY  
COMPLIANT TO JEDEC STANDARDS MO-203AB  
REV. 0  
–9–  
–10–  
–11–  
–12–  

相关型号:

ADG3248BKS-REEL7

2.5 V/ 3.3 V, 2 :1 Multiplexer/ Demultiplexer Bus Switch
ADI

ADG3248BKS-REEL7

2-CHANNEL, SGL ENDED MULTIPLEXER, PDSO6, MO-203AB, SC-70, 6 PIN
ROCHESTER

ADG3248BKSZ-REEL7

2-CHANNEL, SGL ENDED MULTIPLEXER, PDSO6, MO-203AB, SC-70, 6 PIN
ROCHESTER

ADG3249

2.5 V/3.3 V, 2:1 Multiplexer/ Demultiplexer Bus Switch
ADI

ADG3249BRJ-R2

2.5 V/3.3 V, 2:1 Multiplexer/ Demultiplexer Bus Switch
ADI

ADG3249BRJ-REEL

2.5 V/3.3 V, 2:1 Multiplexer/ Demultiplexer Bus Switch
ADI

ADG3249BRJ-REEL7

2.5 V/3.3 V, 2:1 Multiplexer/ Demultiplexer Bus Switch
ADI

ADG3249BRJZ-REEL7

2-CHANNEL, SGL ENDED MULTIPLEXER, PDSO8, MO-178BA, SOT-23, 8 PIN
ROCHESTER

ADG3249BRJZ-REEL7

2-CHANNEL, SGL ENDED MULTIPLEXER, PDSO8, MO-178BA, SOT-23, 8 PIN
ADI

ADG3257

High Speed, 3.3 V/5 V Quad 2:1 Mux/Demux (4-Bit, 1 of 2) Bus Switch
ADI

ADG3257BRQ

High Speed, 3.3 V/5 V Quad 2:1 Mux/Demux (4-Bit, 1 of 2) Bus Switch
ADI

ADG3257BRQ-REEL

High Speed, 3.3 V/5 V Quad 2:1 Mux/Demux (4-Bit, 1 of 2) Bus Switch
ADI