ADG3249BRJ-REEL7 [ADI]

2.5 V/3.3 V, 2:1 Multiplexer/ Demultiplexer Bus Switch; 2.5 V / 3.3 V , 2 : 1多路复用器/多路解复用器总线开关
ADG3249BRJ-REEL7
型号: ADG3249BRJ-REEL7
厂家: ADI    ADI
描述:

2.5 V/3.3 V, 2:1 Multiplexer/ Demultiplexer Bus Switch
2.5 V / 3.3 V , 2 : 1多路复用器/多路解复用器总线开关

解复用器 开关 复用器或开关 信号电路 光电二极管
文件: 总12页 (文件大小:217K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2.5 V/3.3 V, 2:1 Multiplexer/  
Demultiplexer Bus Switch  
ADG3249  
FEATURES  
FUNCTIONAL BLOCK DIAGRAM  
225 ps Propagation Delay through the Switch  
4.5 Switch Connection between Ports  
Data Rate 1.244 Gbps  
ADG3249  
A0  
2.5 V/3.3 V Supply Operation  
Selectable Level Shifting/Translation  
Level Translation  
B
A1  
CONTROL  
LOGIC  
3.3 V to 2.5 V  
3.3 V to 1.8 V  
2.5 V to 1.8 V  
IN EN  
Small Signal Bandwidth 610 MHz  
8-Lead SOT-23 Package  
APPLICATIONS  
3.3 V to 1.8 V Voltage Translation  
3.3 V to 2.5 V Voltage Translation  
2.5 V to 1.8 V Voltage Translation  
Docking Stations  
Memory Switching  
Analog Switch Applications  
GENERAL DESCRIPTION  
PRODUCT HIGHLIGHTS  
The ADG3249 is a 2.5 V or 3.3 V, high performance 2:1 multi-  
plexer/demultiplexer bus switch. It is designed on a low voltage  
CMOS process, which provides low power dissipation yet gives  
high switching speed and very low on resistance. This allows the  
input to be connected to the output without additional propaga-  
tion delay or generating additional ground bounce noise.  
1. 3.3 V or 2.5 V supply operation.  
2. Extremely low propagation delay through switch.  
3. 4.5 switches connect inputs to outputs.  
4. Tiny SOT-23 package.  
Each switch of the ADG3249 conducts equally well in both direc-  
tions when on. The ADG3249 exhibits break-before-make  
switching action, preventing momentary shorting when switch-  
ing channels.  
This device is ideal for applications requiring level translation.  
When operated from a 3.3 V supply, level translation from  
3.3 V inputs to 2.5 V outputs is allowed. Similarly, if the device  
is operated from 2.5 V supply and 2.5 V inputs are applied, the  
device will translate the outputs to 1.8 V. In addition, a level  
translating pin (SEL) is included. When SEL is low, VCC is  
reduced internally, allowing for level translating between 3.3 V  
inputs and 1.8 V outputs.  
The ADG3249 is available in a tiny 8-lead SOT-23 package.  
REV. 0  
Information furnished by Analog Devices is believed to be accurate and  
reliable. However, no responsibility is assumed by Analog Devices for its  
use, norforanyinfringementsofpatentsorotherrightsofthirdpartiesthat  
may result from its use. No license is granted by implication or otherwise  
under any patent or patent rights of Analog Devices. Trademarks and  
registered trademarks are the property of their respective companies.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781/329-4700  
Fax: 781/326-8703  
www.analog.com  
© 2003 Analog Devices, Inc. All rights reserved.  
(VCC = 2.3 V to 3.6 V, GND = 0 V, all specifications TMIN to TMAX  
,
ADG3249–SPECIFICATIONS1 unless otherwise noted.)  
B Version  
Typ2  
Parameter  
Symbol  
Conditions  
Min  
Max  
Unit  
DC ELECTRICAL CHARACTERISTICS  
Input High Voltage  
VINH  
VINH  
VINL  
VINL  
II  
VCC = 2.7 V to 3.6 V  
VCC = 2.3 V to 2.7 V  
VCC = 2.7 V to 3.6 V  
VCC = 2.3 V to 2.7 V  
2.0  
1.7  
V
V
V
V
µA  
µA  
µA  
V
V
V
Input Low Voltage  
0.8  
0.7  
1
1
1
2.9  
2.1  
2.1  
Input Leakage Current  
0.01  
0.01  
0.01  
2.5  
1.8  
1.8  
OFF State Leakage Current  
ON State Leakage Current  
Maximum Pass Voltage  
IOZ  
0 A, B VCC  
0 A, B VCC  
VA/VB = VCC = SEL = 3.3 V, IO = 5 µA  
VA/VB = VCC = SEL = 2.5 V, IO= 5 µA  
VA/VB = VCC = 3.3 V, SEL = 0 V, IO = 5 µA  
VP  
2.0  
1.5  
1.5  
CAPACITANCE3  
A Port Off Capacitance  
B Port Off Capacitance  
A, B Port On Capacitance  
Control Input Capacitance  
CA OFF  
f = 1 MHz; EN = VCC  
f = 1 MHz; EN = VCC  
3.5  
4.5  
8.5  
4
pF  
pF  
pF  
pF  
pF  
C
B OFF  
CA, CB ON f = 1 MHz  
CIN, CSEL  
CEN  
f = 1 MHz  
f = 1 MHz  
6.5  
SWITCHING CHARACTERISTICS3  
Propagation Delay A to B or B to A, tPD  
4
tPHL, tPLH  
CL = 50 pF, VCC = SEL = 3 V  
0.225 ns  
Propagation Delay Matching5  
Bus Enable Time EN to A or B6  
Bus Disable Time EN to A or B6  
Bus Enable Time EN to A or B6  
Bus Disable Time EN to A or B6  
Bus Enable Time EN to A or B6  
Bus Disable Time EN to A or B6  
Break-before-Make Time  
5
ps  
tPZH, tPZL  
tPHZ, tPLZ  
tPZH, tPZL  
tPHZ, tPLZ  
tPZH, tPZL  
tPHZ, tPLZ  
tBBM  
VCC = 3.0 V to 3.6 V; SEL = VCC  
VCC = 3.0 V to 3.6 V; SEL = VCC  
VCC = 3.0 V to 3.6 V; SEL = 0 V  
VCC = 3.0 V to 3.6 V; SEL = 0 V  
VCC = 2.3 V to 2.7 V; SEL = VCC  
VCC = 2.3 V to 2.7 V; SEL = VCC  
RL = 510 , CL = 50 pF  
1
1
1
1
1
1
5
3.5  
5.5  
3.2  
4.5  
3.5  
4
4.8  
8.2  
4.5  
7.7  
4.6  
5.8  
ns  
ns  
ns  
ns  
ns  
ns  
10  
ns  
Transition Time  
tTRANS  
RL = 510 , CL = 50 pF; SEL = VCC  
RL = 510 , CL = 50 pF; SEL = 0 V  
VCC = SEL = 3.3 V; VA/VB = 2 V  
VCC = SEL = 3.3 V; VA/VB = 2 V  
16  
15  
1.244  
45  
29  
22  
ns  
ns  
Gbps  
ps p-p  
Maximum Data Rate  
Channel Jitter  
DIGITAL SWITCH  
On Resistance  
RON  
VCC = 3 V, SEL = VCC, VA = 0 V, IBA = 8 mA  
VCC = 3 V, SEL = VCC, VA = 1.7 V, IBA = 8 mA  
4.5  
12  
5
9
5
12  
0.1  
0.1  
8
28  
9
18  
8
V
CC = 2.3 V, SEL = VCC, VA = 0 V, IBA = 8 mA  
VCC = 2.3 V, SEL = VCC, VA = 1 V, IBA = 8 mA  
VCC = 3 V, SEL = 0 V VA = 0 V, IBA = 8 mA  
V
CC = 3 V, SEL = 0 V, VA = 1 V, IBA = 8 mA  
On Resistance Matching  
RON  
VCC = 3 V, SEL = VCC, VA = 0 V, IA = 8 mA  
VCC = 3 V, SEL = 0 V, VA = 0 V, IA = 8 mA  
0.5  
0.5  
POWER REQUIREMENTS  
VCC  
Quiescent Power Supply Current  
2.3  
3.6  
1
0.2  
8
V
ICC  
Digital Inputs = 0 V or VCC; SEL = VCC  
Digital Inputs = 0 V or VCC; SEL = 0 V  
VCC = 3.6 V, EN = 3.0 V; SEL = VCC; IN = VCC  
0.01  
0.1  
0.15  
µA  
mA  
µA  
Increase in ICC per Input7  
NOTES  
ICC  
1Temperature range is as follows: B Version: 40°C to +85°C.  
2Typical values are at 25°C, unless otherwise stated.  
3Guaranteed by design, not subject to production test.  
4The digital switch contributes no propagation delay other than the RC delay of the typical RON of the switch and the load capacitance when driven by an ideal voltage  
source. Since the time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagation delay to the system. Propagation delay  
of the digital switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.  
5Propagation delay matching between channels is calculated from the on resistance matching and load capacitance of 50 pF.  
6See Timing Measurement Information section.  
7This current applies to the control pin EN only. The A and B ports contribute no significant ac or dc currents as they transition.  
Specifications subject to change without notice.  
–2–  
REV. 0  
ADG3249  
ABSOLUTE MAXIMUM RATINGS*  
(TA = 25°C, unless otherwise noted.)  
PIN CONFIGURATION  
8-Lead SOT-23  
VCC to GND . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 V to +4.6 V  
Digital Inputs to GND . . . . . . . . . . . . . . . . . 0.5 V to +4.6 V  
DC Input Voltage . . . . . . . . . . . . . . . . . . . . . 0.5 V to +4.6 V  
DC Output Current . . . . . . . . . . . . . . . . . 25 mA per Channel  
Operating Temperature Range  
1
2
3
4
EN  
8
7
6
5
V
CC  
ADG3249  
SEL  
IN  
A0  
A1  
TOP VIEW  
(Not to Scale)  
GND  
B
Industrial (B Version) . . . . . . . . . . . . . . . . . 40°C to +85°C  
Storage Temperature Range . . . . . . . . . . . . 65°C to +150°C  
Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C  
Table I. Pin Function Descriptions  
JA Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . 206°C/W  
Pin No.  
Mnemonic  
Description  
Lead Temperature, Soldering (10 sec) . . . . . . . . . . . . . 300°C  
IR Reflow, Peak Temperature (<20 sec) . . . . . . . . . . . . 235°C  
*Stresses above those listed under Absolute Maximum Ratings may cause perma-  
nent damage to the device. This is a stress rating only; functional operation of the  
device at these or any other conditions above those listed in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect device reliability. Only one absolute  
maximum rating may be applied at any one time.  
1
2
3
4
5
6
7
8
EN  
A0  
A1  
GND  
B
IN  
Enable (Active Low)  
Port A0, Input or Output  
Port A1, Input or Output  
Ground Reference  
Port B, Input or Output  
Channel Select  
SEL  
VCC  
Level Translation Select  
Positive Power Supply Voltage  
Table II. Truth Table  
SEL* FUNCTION  
EN  
IN  
H
L
L
L
L
X
L
L
H
H
X
L
H
L
Disconnect  
A0 = B; 3.3 V to 1.8 V Level Shifting  
A0 = B; 3.3 V to 2.5 V/2.5 V to 1.8 V Level Shifting  
A1 = B; 3.3 V to 1.8 V Level Shifting  
H
A1 = B; 3.3 V to 2.5 V/2.5 V to 1.8 V Level Shifting  
*SEL = 0 V only when VDD = 3.3 V 10%  
ORDERING GUIDE  
Model  
Temperature Range  
Package Description  
Package  
Branding  
ADG3249BRJ-R2  
ADG3249BRJ-REEL  
ADG3249BRJ-REEL7 40°C to +85°C  
40°C to +85°C  
40°C to +85°C  
SOT-23 (Small Outline Transistor Package)  
SOT-23 (Small Outline Transistor Package)  
SOT-23 (Small Outline Transistor Package)  
RJ-8  
RJ-8  
RJ-8  
SHA  
SHA  
SHA  
CAUTION  
ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily  
accumulate on the human body and test equipment and can discharge without detection. Although the  
ADG3249 features proprietary ESD protection circuitry, permanent damage may occur on devices  
subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended  
to avoid performance degradation or loss of functionality.  
REV. 0  
–3–  
ADG3249  
TERMINOLOGY  
VCC  
GND  
VINH  
VINL  
II  
Positive Power Supply Voltage.  
Ground (0 V) Reference.  
Minimum Input Voltage for Logic 1.  
Maximum Input Voltage for Logic 0.  
Input Leakage Current at the Control Inputs.  
IOZ  
IOL  
OFF State Leakage Current. It is the maximum leakage current at the switch pin in the OFF state.  
ON State Leakage Current. It is the maximum leakage current at the switch pin in the ON state.  
VP  
Maximum Pass Voltage. The maximum pass voltage relates to the clamped output voltage of an NMOS device when  
the switch input voltage is equal to the supply voltage.  
RON  
Ohmic Resistance Offered by a Switch in the ON State. It is measured at a given voltage by forcing a specified  
amount of current through the switch.  
RON  
CX OFF  
CX ON  
ON Resistance Match between Any Two Channels, i.e., RON max to RON min.  
OFF Switch Capacitance.  
ON Switch Capacitance.  
CIN, CSEL, CEN Control Input Capacitance. This consists of IN, SEL, and EN.  
ICC  
Quiescent Power Supply Current. This current represents the leakage current between the VCC and ground pins.  
It is measured when all control inputs are at a logic high or low level and the switches are OFF.  
ICC  
Extra power supply current component for the EN control input when the input is not driven at the supplies.  
t
t
t
PLH, tPHL  
PZH, tPZL  
PHZ, tPLZ  
Data Propagation Delay through the Switch in the ON State. Propagation delay is related to the RC time constant  
RON × CL, where CL is the load capacitance.  
Bus Enable Times. These are the times taken to cross the VT voltage at the switch output when the switch turns on  
in response to the control signal, EN.  
Bus Disable Times. These are the time taken to place the switch in the high impedance OFF state in response to the  
control signal. They are measured as the time taken for the output voltage to change by Vfrom the original  
quiescent level, with reference to the logic level transition at the control input. (Refer to Figure 3 for enable  
and disable times.)  
tBBM  
On or Off Time. Measured between the 90% points of both switches when switching fom one to another.  
tTRANS  
Time taken to switch from one channel to the other, measured from 50% of the IN signal to 90% of the  
OUT signal.  
Max Data Rate Maximum Rate at which Data Can Be Passed through the Switch.  
Channel Jitter  
Peak-to-Peak Value of the Sum of the Deterministic and Random Jitter of the Switch Channel.  
–4–  
REV. 0  
Typical Performance Characteristics–ADG3249  
40  
35  
30  
25  
40  
35  
30  
25  
20  
15  
10  
5
40  
V = 3V  
CC  
V
= 3V  
V
= 2.3V  
CC  
T
= 25C  
CC  
T
= 25C  
A
T
= 25C  
35  
30  
25  
20  
15  
10  
5
A
A
SEL = 0V  
SEL = V  
SEL = V  
CC  
CC  
V
= 3.3V  
= 3.6V  
V
= 3.3V  
V
= 2.5V  
= 2.7V  
CC  
CC  
CC  
20  
15  
10  
5
V
CC  
V
CC  
V
= 3.6V  
CC  
0
0
0
0
0.5  
1.0  
1.5  
2.0  
)
2.5  
3.0  
3.5  
0
0.5  
1.0  
1.5  
2.0  
/V (V  
2.5  
3.0 3.5  
0
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
V
/V (V  
V
)
A
B
V
/V (V)  
A
B
A
B
TPC 1. On Resistance vs.  
Input Voltage  
TPC 3. On Resistance vs.  
Input Voltage  
TPC 2. On Resistance vs.  
Input Voltage  
3.0  
2.5  
20  
15  
10  
5
15  
10  
5
V
= 3.6V  
T
= 25C  
CC  
V
= 3.3V  
A
CC  
V
= 2.5V  
CC  
SEL = V  
CC  
= –5A  
SEL = V  
CC  
SEL = V  
I
CC  
O
2.0  
1.5  
V
= 3.3V  
CC  
85C  
V
= 3V  
CC  
85C  
1.0  
0.5  
0
40C  
25C  
25C  
40C  
0
0
0
0.5  
1.0  
1.5  
2.0 2.5  
/V (V)  
3.0 3.5  
1.0  
/V (V)  
2.0  
0
0.5  
1.5  
0
0.5  
V
1.0  
1.2  
V
V
A
B
A
B
/V (V)  
A
B
TPC 4. On Resistance vs. Input  
TPC 5. On Resistance vs. Input  
TPC 6. Pass Voltage vs. VCC  
Voltage for Different Temperatures  
Voltage for Different Temperatures  
2.5  
2.5  
300  
250  
200  
150  
100  
50  
T
= 25C  
A
T
= 25C  
T
= 25C  
A
A
V
= 2.7V  
= 2.5V  
V
= 3.6V  
CC  
CC  
SEL = V  
SEL = 0V  
= –5A  
CC  
= –5A  
2.0  
1.5  
1.0  
0.5  
2.0  
1.5  
1.0  
0.5  
I
I
O
O
V
= SEL = 3.3V  
CC  
V
= 3.3V  
CC  
V
CC  
SEL = 0V  
V
= 3.3V  
CC  
V
= 2.3V  
V
= 3V  
CC  
CC  
V
= SEL = 2.5V  
CC  
0
0
0
0
0.5  
1.0  
1.5  
2.0  
/V (V)  
2.5  
3.0 3.5  
0
0.5  
1.0  
1.5  
/V (V)  
2.0  
2.5  
3.0  
0
5
10 15 20 25 30 35 40 45 50  
ENABLE FREQUENCY (MHz)  
V
V
A
B
A
B
TPC 7. Pass Voltage vs. VCC  
TPC 8. Pass Voltage vs. VCC  
TPC 9. ICC vs. Enable Frequency  
REV. 0  
–5–  
ADG3249  
3.0  
3.0  
2.5  
2.0  
1.5  
0
–0.2  
–0.4  
–0.6  
–0.8  
–1.0  
–1.2  
–1.4  
T
= 25C  
T
V
= 25C  
T = 25C  
A
A
A
V
= 0V  
= V  
SEL = V  
CC  
A
A CC  
2.5  
2.0  
1.5  
1.0  
ON = OFF  
= INF.  
V
= 2.5V  
EN = 0  
EN = 0  
CC  
C
L
V
= SEL = 3.3V  
CC  
V
= 3.3V; SEL = 0V  
CC  
V
= SEL = 3.3V  
CC  
1.0  
V
= SEL = 2.5V  
CC  
V
= 3.3V  
CC  
0.5  
0
0.5  
0
V
= 3.3V; SEL = 0V  
CC  
V
= SEL = 2.5V  
CC  
0
0.02  
0.04  
0.06  
(A)  
0.08  
0.10  
–0.10 –0.08  
–0.06  
–0.04  
I (A)  
O
–0.02  
0
0
0.5  
1.0  
1.5  
V
2.0  
/V (V)  
2.5  
3.0  
3.5  
I
O
A
B
TPC 11. Output High Characteristic  
TPC 10. Output Low Characteristic  
TPC 12. Charge Injection vs.  
Source Voltage  
0
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
1
0
T
V
= 25C  
T
V
= 25C  
A
A
–10  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
–100  
= 3.3V/2.5V  
= 3.3V/2.5V  
CC  
CC  
SEL = V  
V
N/W ANALYZER:  
R
SEL = V  
V
N/W ANALYZER:  
R
CC  
CC  
–1  
–2  
–3  
–4  
= 0dBm  
= 0dBm  
IN  
IN  
= R = 50ꢀ  
= R = 50ꢀ  
L
S
L
S
T
V
= 25C  
A
–5  
–6  
–7  
–8  
= 3.3V/2.5V  
CC  
SEL = V  
V
N/W ANALYZER:  
R
CC  
= 0dBm  
IN  
= R = 50ꢀ  
L
S
0.03 0.1  
1.0  
10  
100  
1000  
0.03 0.1  
1.0  
10  
100  
1000  
0.03 0.1  
1.0  
10  
100  
1000  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
TPC 13. Bandwidth vs. Frequency  
TPC 14. Crosstalk vs. Frequency  
TPC 15. Off Isolation vs.  
Frequency  
6
4.0  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
V
= SEL = 3.3V  
CC  
3.5  
DISABLE  
DISABLE  
5
V
= 1.5V p-p  
IN  
V
= SEL = 3.3V  
V
= SEL = 2.5V  
CC  
CC  
20dB ATTENUATION  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0
DISABLE  
ENABLE  
4
3
2
1
ENABLE  
V
= 3.3V, SEL = 0V  
CC  
ENABLE  
0
–40  
–20  
0
20  
40  
60  
80  
–40  
–20  
0
20  
40  
60  
80  
0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9  
DATA RATE (Gbps)  
TEMPERATURE (C)  
TEMPERATURE (C)  
TPC 16. Enable/Disable Time  
vs. Temperature  
TPC 17. Enable/Disable Time  
vs. Temperature  
TPC 18. Jitter vs. Data Rate;  
PRBS 31  
–6–  
REV. 0  
ADG3249  
100  
95  
90  
85  
80  
75  
V
= SEL = 3.3V  
= 1.5V p-p  
CC  
V
IN  
20dB ATTENUATION  
70  
65  
60  
55  
50  
V
= 3.3V  
20dB  
ATTENUATION  
V
= 2.5V  
20dB  
ATTENUATION  
T = 25C  
A
CC  
SEL = 3.3V  
= 2V p-p  
CC  
SEL = 2.5V  
= 1V p-p  
38.7mV/DIV  
133.7ps/DIV  
20mV/DIV  
166.3ps/DIV  
V
T
= 25C  
V
IN  
A
IN  
% EYE WIDTH = ((CLOCK PERIOD –  
JITTER p-p)/CLOCK PERIOD) 100%  
TPC 20. Eye Pattern; 1.244 Gbps,  
VCC = 3.3 V, PRBS 31  
TPC 21. Eye Pattern; 1 Gbps,  
VCC = 2.5 V, PRBS 31  
0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9  
DATA RATE (Gbps)  
TPC 19. Eye Width vs. Data  
Rate; PRBS 31  
REV. 0  
–7–  
ADG3249  
TIMING MEASUREMENT INFORMATION  
For the following load circuit and waveforms, the notation that is used is VIN and VOUT where  
VIN = VA and VOUT = VB or VIN = VB and VOUT = VA  
V
V
IH  
CC  
2 V  
CC  
SW1  
CONTROL  
INPUT EN  
V
T
0V  
GND  
tPLH  
tPLH  
R
L
V
V
H
T
V
V
OUT  
IN  
V
PULSE  
GENERATOR  
OUT  
DUT  
V
L
R
R
C
L
L
T
Figure 2. Propagation Delay  
NOTES  
PULSE GENERATOR FOR ALL PULSES: t  
FREQUENCY 10MHz.  
2.5ns, t  
2.5ns,  
R
F
C
R
INCLUDES BOARD, STRAY, AND LOAD CAPACITANCES.  
ISTHETERMINATION RESISTOR, SHOULD BE EQUALTO Z  
OFTHE PULSE GENERATOR.  
L
T
OUT  
Figure 1. Load Circuit  
Test Conditions  
Symbol  
VCC = 3.3 V 0.3 V (SEL = VCC  
)
VCC = 2.5 V 0.2 V (SEL = VCC  
)
VCC = 3.3 V 0.3 V (SEL = 0 V) Unit  
RL  
V⌬  
CL  
VT  
500  
300  
50  
500  
150  
30  
500  
150  
30  
mV  
pF  
V
1.5  
0.9  
0.9  
DISABLE  
ENABLE  
V
INH  
V
CONTROL INPUT EN  
T
Table III. Switch Position  
0V  
tPZL  
tPLZ  
Test  
S1  
V
CC  
V
CC  
V
OUT  
V
tPLZ, tPZL  
tPHZ, tPZH  
2 × VCC  
GND  
V
= 0V  
= V  
T
IN  
V
V
+V  
L
L
SW1 @ 2V  
CC  
tPZH  
tPHZ  
V
V
H
V
OUT  
V
–V  
V
IN  
CC  
H
T
SW1 @ GND  
0V  
0V  
Figure 3. Enable and Disable Times  
–8–  
REV. 0  
ADG3249  
BUS SWITCH APPLICATIONS  
2.5 V to 1.8 V Translation  
Mixed Voltage Operation, Level Translation  
Bus switches can provide an ideal solution for interfacing  
between mixed voltage systems. The ADG3249 is suitable for  
applications where voltage translation from 3.3 V technology to  
a lower voltage technology is needed. This device can translate  
from 2.5 V to 1.8 V, or bidirectionally from 3.3 V directly  
to 2.5 V.  
When VCC is 2.5 V (SEL = 2.5 V) and the input signal range is  
0 V to VCC, the maximum output signal will, as before, be clamped  
to within a voltage threshold below the VCC supply. In this case,  
the output will be limited to approximately 1.8 V, as shown  
in Figure 8.  
2.5V  
Figure 4 shows a block diagram of a typical application in which  
a user needs to interface between a 3.3 V ADC and a 2.5 V  
microprocessor. The microprocessor may not have 3.3 V toler-  
ant inputs, therefore placing the ADG3249 between the two  
devices allows the devices to communicate easily. The bus  
switch directly connects the two blocks, thus introducing  
minimal propagation delay, timing skew, or noise.  
ADG3249  
2.5V  
1.8V  
Figure 7. 2.5 V to 1.8 V Voltage Translation, SEL = 2.5 VCC  
3.3V  
3.3V  
2.5V  
V
OUT  
2.5V SUPPLY  
SEL = 2.5V  
2.5V  
1.8V  
3.3V ADC  
MICROPROCESSOR  
Figure 4. Level Translation between a 3.3 V ADC  
and a 2.5 V Microprocessor  
V
IN  
0V  
SWITCH  
INPUT  
2.5V  
3.3 V to 2.5 V Translation  
When VCC is 3.3 V (SEL = 3.3 V) and the input signal range is  
0 V to VCC, the maximum output signal will be clamped to  
within a voltage threshold below the VCC supply. In this case,  
the output will be limited to 2.5 V, as shown in Figure 6. This  
device can be used for translation from 2.5 V to 3.3 V devices  
and also between two 3.3 V devices.  
Figure 8. 2.5 V to 1.8 V Voltage Translation, SEL = VCC  
3.3 V to 1.8 V Translation  
The ADG3249 offers the option of interfacing between a 3.3 V  
device and a 1.8 V device. This is possible through use of the  
SEL pin. The SEL pin is an active low control pin. SEL acti-  
vates internal circuitry in the ADG3242 that allows voltage  
translation between 3.3 V devices and 1.8 V devices.  
3.3V  
When VCC is 3.3 V and the input signal range is 0 V to VCC, the  
maximum output signal will be clamped to 1.8 V, as shown in  
Figure 9. To do this, the SEL pin must be tied to Logic 0. If  
3.3V  
2.5V  
2.5V  
2.5V  
ADG3249  
SEL is unused, it should be tied directly to VCC  
.
3.3V  
Figure 5. 3.3 V to 2.5 V Voltage Translation, SEL = VCC  
3.3V  
ADG3249  
1.8V  
V
OUT  
3.3V SUPPLY  
SEL = 3.3V  
2.5V  
Figure 9. 3.3 V to 1.8 V Voltage Translation, SEL = 0 V  
V
V
IN  
OUT  
3.3V SUPPLY  
SEL = 0V  
0V  
SWITCH  
INPUT  
3.3V  
1.8V  
Figure 6. 3.3 V to 2.5 V Voltage Translation, SEL = VCC  
V
IN  
0V  
SWITCH  
INPUT  
3.3V  
Figure 10. 3.3 V to 1.8 V Voltage Translation, SEL = 0 V  
REV. 0  
–9–  
ADG3249  
Analog Switching  
MEMORY  
ADDRESS  
DATA  
MEMORY  
BANK A  
Bus switches can be used in many analog switching applications,  
for example, video graphics. Bus switches can have lower on  
resistance, smaller ON and OFF channel capacitance, and thus  
improved frequency performance than their analog counterparts.  
The bus switch channel itself, consisting solely of an NMOS  
switch, limits the operating voltage (see TPC 1 for a typical  
plot), but in many cases, this does not present an issue.  
MEMORY  
BANK B  
MEMORY  
BANK C  
Multiplexing  
MEMORY  
BANK D  
Many systems, such as docking stations and memory banks,  
have a large number of common bus signals. Common prob-  
lems faced by designers of these systems include  
Figure 11. All Memory Banks Are Permanently  
Connected to the Bus  
Large delays caused by capacitive loading of the bus  
Noise due to simultaneous switching of the address and data  
bus signals  
MEMORY  
BANK A  
MEMORY  
ADDRESS  
DATA  
Figure 11 shows an array of memory banks in which each ad-  
dress and data signal is loaded by the sum of the individual  
loads. If a bus switch is used as shown in Figure 12, the output  
load on the memory address and data bits is halved. The speed  
at which the selected banks data can flow is much improved  
because the capacitance loading is halved and the switches  
introduce negligible propagation delay. Bus noise is also reduced.  
MEMORY  
BANK B  
MEMORY  
BANK C  
MEMORY  
BANK D  
High Impedance during Power-Up/Power-Down  
To ensure the high impedance state during power-up or power-  
down, EN should be tied to VCC through a pull-up resistor; the  
minimum value of the resistor is determined by the current-  
sinking capability of the driver.  
Figure 12. ADG3249 Used to Reduce Both Access  
Time and Noise  
–10–  
REV. 0  
ADG3249  
OUTLINE DIMENSIONS  
8-Lead Small Outline Transistor Package [SOT-23]  
(RJ-8)  
Dimensions shown in millimeters  
2.90 BSC  
8
1
7
2
6
3
5
4
1.60 BSC  
PIN 1  
2.80 BSC  
0.65 BSC  
1.95  
BSC  
1.30  
1.15  
0.90  
1.45 MAX  
0.22  
0.08  
0.60  
0.45  
0.30  
8ꢂ  
4ꢂ  
0ꢂ  
0.38  
0.22  
0.15 MAX  
SEATING  
PLANE  
COMPLIANT TO JEDEC STANDARDS MO-178BA  
REV. 0  
–11–  
–12–  

相关型号:

ADG3249BRJZ-REEL7

2-CHANNEL, SGL ENDED MULTIPLEXER, PDSO8, MO-178BA, SOT-23, 8 PIN
ROCHESTER

ADG3249BRJZ-REEL7

2-CHANNEL, SGL ENDED MULTIPLEXER, PDSO8, MO-178BA, SOT-23, 8 PIN
ADI

ADG3257

High Speed, 3.3 V/5 V Quad 2:1 Mux/Demux (4-Bit, 1 of 2) Bus Switch
ADI

ADG3257BRQ

High Speed, 3.3 V/5 V Quad 2:1 Mux/Demux (4-Bit, 1 of 2) Bus Switch
ADI

ADG3257BRQ-REEL

High Speed, 3.3 V/5 V Quad 2:1 Mux/Demux (4-Bit, 1 of 2) Bus Switch
ADI

ADG3257BRQ-REEL7

High Speed, 3.3 V/5 V Quad 2:1 Mux/Demux (4-Bit, 1 of 2) Bus Switch
ADI

ADG3257BRQZ

High Speed, 3.3 V/5 V Quad 2:1 Mux/Demux (4-Bit, 1 of 2) Bus Switch
ADI

ADG3257BRQZ-REEL

High Speed, 3.3 V/5 V Quad 2:1 Mux/Demux (4-Bit, 1 of 2) Bus Switch
ADI

ADG3257BRQZ-REEL7

High Speed, 3.3 V/5 V Quad 2:1 Mux/Demux (4-Bit, 1 of 2) Bus Switch
ADI

ADG3300

Low Voltage 1.15 V to 5.5 V, 8-Channel Bidirectional Logic Level Translator
ADI

ADG3300BRUZ

Low Voltage 1.15 V to 5.5 V, 8-Channel Bidirectional Logic Level Translator
ADI

ADG3300BRUZ-REEL

Low Voltage 1.15 V to 5.5 V, 8-Channel Bidirectional Logic Level Translator
ADI