ADG3248BKS-REEL7 [ROCHESTER]

2-CHANNEL, SGL ENDED MULTIPLEXER, PDSO6, MO-203AB, SC-70, 6 PIN;
ADG3248BKS-REEL7
型号: ADG3248BKS-REEL7
厂家: Rochester Electronics    Rochester Electronics
描述:

2-CHANNEL, SGL ENDED MULTIPLEXER, PDSO6, MO-203AB, SC-70, 6 PIN

光电二极管
文件: 总13页 (文件大小:1224K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2.5 V/3.3 V, 2:1 Multiplexer/  
Demultiplexer Bus Switch  
ADG3248  
FUNCTIONAL BLOCK DIAGRAM  
FEATURES  
225 ps propagation delay through the switch  
4.5 Ω switch connection between ports  
Data rate 1.244 Gbps  
2.5 V/3.3 V supply operation  
Level translation  
ADG3248  
A0  
B
A1  
IN  
3.3 V to 2.5 V  
2.5 V to 1.8 V  
NOTES  
Small signal bandwidth 610 MHz  
6-lead SC70 package  
1. SWITCHES SHOWN FOR A LOGIC 0 INPUT  
Figure 1.  
APPLICATIONS  
3.3 V to 2.5 V voltage translation  
2.5 V to 1.8 V voltage translation  
Bus switching  
Docking stations  
Memory switching  
Analog switch applications  
GENERAL DESCRIPTION  
Table 1. ADG3248 Truth Table  
IN Pin Logic Level Function  
The ADG3248 is a 2.5 V or 3.3 V, high performance 2:1  
multiplexer/demultiplexer. It is designed on a low voltage  
CMOS process, which provides low power dissipation yet gives  
high switching speed and very low on resistance. The low on  
resistance allows the input to be connected to the output  
without additional propagation delay or generating additional  
ground bounce noise.  
Low (L)  
High (H)  
B = A0  
B = A1  
PRODUCT HIGHLIGHTS  
1. 3.3 V or 2.5 V supply operation.  
2. Extremely low propagation delay through switch.  
3. 4.5 Ω switches connect inputs to outputs.  
4. Tiny SC70 package.  
Each switch of the ADG3248 conducts equally well in both  
directions when on. The ADG3248 exhibits break-before-make  
switching action, preventing momentary shorting when  
switching channels.  
The ADG3248 is available in a tiny 6-lead SC70 package.  
Rev. A  
Information furnished by Analog Devices is believed to be accurate and reliable. However, no  
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other  
rights of third parties that may result from its use. Specifications subject to change without notice. No  
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.  
Trademarks and registeredtrademarks arethe property of their respective owners.  
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.  
Tel: 781.329.4700  
www.analog.com  
Fax: 781.461.3113 ©2003–2007 Analog Devices, Inc. All rights reserved.  
 
ADG3248  
TABLE OF CONTENTS  
Features .............................................................................................. 1  
Pin Configuration and Function Descriptions..............................5  
Typical Performance Characteristics ..............................................6  
Terminology.......................................................................................9  
Bus Switch Applications ................................................................ 10  
Mixed Voltage Operation, Level Translation.......................... 10  
Analog Switching ....................................................................... 10  
Multiplexing................................................................................ 11  
Outline Dimensions....................................................................... 12  
Ordering Guide .......................................................................... 12  
Applications....................................................................................... 1  
General Description......................................................................... 1  
Functional Block Diagram .............................................................. 1  
Product Highlights ........................................................................... 1  
Revision History ............................................................................... 2  
Specifications..................................................................................... 3  
Absolute Maximum Ratings............................................................ 4  
ESD Caution.................................................................................. 4  
REVISION HISTORY  
10/07—Rev. 0 to Rev. A  
Updated Format..................................................................Universal  
Changes to Table 1............................................................................ 1  
Changes to Table 3,........................................................................... 4  
Changes to Ordering Guide .......................................................... 12  
10/03—Revision 0: Initial Version  
Rev. A | Page 2 of 12  
 
ADG3248  
SPECIFICATIONS  
VCC = 2.3 V to 3.6 V, GND = 0 V, all specifications TMIN to TMAX, unless otherwise noted.1  
Table 2.  
B Version  
Typ2  
Parameter  
Symbol  
Conditions  
Min  
Max  
Unit  
DC ELECTRICAL CHARACTERISTICS  
Input High Voltage  
VINH  
VINH  
VINL  
VINL  
II  
IOZ  
IOL  
VP  
VCC = 2.7 V to 3.6 V  
VCC = 2.3 V to 2.7 V  
VCC = 2.7 V to 3.6 V  
VCC = 2.3 V to 2.7 V  
2.0  
1.7  
V
V
V
V
μA  
μA  
μA  
V
Input Low Voltage  
0.8  
0.7  
1
1
1
Input Leakage Current  
Off State Leakage Current  
On State Leakage Current  
Maximum Pass Voltage  
0.01  
0.01  
0.01  
2.5  
0 ≤ A, B ≤ VCC  
0 ≤ A, B ≤ VCC  
VA/VB = VCC = 3.3 V, IO = −5 μA  
VA/VB = VCC = 2.5 V, IO= −5 μA  
2.0  
1.5  
2.9  
2.1  
1.8  
V
CAPACITANCE3  
A Port Off Capacitance  
B Port Off Capacitance  
A, B Port On Capacitance  
Control Input Capacitance  
SWITCHING CHARACTERISTICS3  
Propagation Delay A to B or B to A, tPD  
Propagation Delay Matching5  
Transition Time  
CA Off  
CB Off  
CA, CB On  
CIN  
f = 1 MHz  
f = 1 MHz  
f = 1 MHz  
f = 1 MHz  
3.5  
4.5  
8.5  
4
pF  
pF  
pF  
pF  
4
tPHL, tPLH  
CL = 50 pF, VCC = 3 V  
0.225  
5
29  
ns  
ps  
ns  
ns  
Gbps  
ps p-p  
tTRANS  
tBBM  
RL = 510 Ω, CL = 50 pF  
RL = 510 Ω, CL = 50 pF  
VCC = 3.3 V; VA/VB = 2 V  
VCC = 3.3 V; VA/VB = 2 V  
16  
10  
1.244  
45  
Break-Before-Make Time  
Maximum Data Rate  
Channel Jitter  
5
DIGITAL SWITCH  
On Resistance  
RON  
VCC = 3 V, VA = 0 V, IBA = 8 mA  
VCC = 3 V, VA = 1.7 V, IBA = 8 mA  
VCC = 2.3 V, VA = 0 V, IBA = 8 mA  
VCC = 2.3 V, VA = 1 V, IBA = 8 mA  
VCC = 3 V, VA = 0 V, IA = 8 mA  
4.5  
12  
5
9
0.1  
8
28  
9
18  
0.5  
Ω
Ω
Ω
Ω
Ω
On-Resistance Matching  
POWER REQUIREMENTS  
VCC  
ΔRON  
2.3  
3.6  
1
V
μA  
Quiescent Power Supply Current  
ICC  
Digital inputs = 0 V or VCC  
0.01  
1 Temperature range is as follows for B Version: −40°C to +85°C.  
2 Typical values are at 25°C, unless otherwise stated.  
3 Guaranteed by design, not subject to production test.  
4 The digital switch contributes no propagation delay other than the resistance-capacitance (RC) delay of the typical RON of the switch and the load capacitance when  
driven by an ideal voltage source. Because the time constant is much smaller than the rise/fall times of typical driving signals, it adds very little propagation delay to  
the system. Propagation delay of the digital switch when used in a system is determined by the driving circuit on the driving side of the switch and its interaction with  
the load on the driven side.  
5 Propagation delay matching between channels is calculated from the on-resistance matching and load capacitance of 50 pF.  
Rev. A | Page 3 of 12  
 
 
 
ADG3248  
ABSOLUTE MAXIMUM RATINGS  
TA = 25°C, unless otherwise noted.  
Stresses above those listed under Absolute Maximum Ratings  
may cause permanent damage to the device. This is a stress  
rating only; functional operation of the device at these or any  
other conditions above those indicated in the operational  
section of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect  
device reliability.  
Table 3.  
Parameter  
VCC to GND  
Digital Inputs to GND  
DC Input Voltage  
Rating  
−0.5 V to +4.6 V  
−0.5 V to +4.6 V  
−0.5 V to +4.6 V  
25 mA per channel  
DC Output Current  
Operating Temperature Range  
Industrial (B Version)  
Storage Temperature Range  
Junction Temperature  
θJA Thermal Impedance  
Lead Soldering  
ESD CAUTION  
−40°C to +85°C  
−65°C to +150°C  
150°C  
332°C/W  
Lead Temperature, Soldering (10 sec)  
IR Reflow, Peak Temperature  
Pb-Free Soldering  
300°C  
220°C  
Reflow, Peak Temperature  
Time at Peak Temperature  
260(+0/−5)°C  
20 sec to 40 sec  
Rev. A | Page 4 of 12  
 
ADG3248  
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS  
A0  
GND  
A1  
1
2
3
6
5
4
IN  
ADG3248  
V
TOP VIEW  
CC  
(Not to Scale)  
B
Figure 2. 6-Lead SC70  
Table 4. Pin Function Descriptions  
Pin No.  
Mnemonic  
Description  
1
2
3
4
5
6
A0  
GND  
A1  
B
VCC  
IN  
Port A0, Input or Output.  
Ground Reference.  
Port A1, Input or Output.  
Port B, Input or Output.  
Positive Power Supply Voltage.  
Channel Select.  
Rev. A | Page 5 of 12  
 
ADG3248  
TYPICAL PERFORMANCE CHARACTERISTICS  
40  
15  
10  
5
T
= 25°C  
V
= 2.5V  
A
CC  
35  
30  
+85°C  
V
= 3V  
CC  
25  
20  
V
V
= 3.3V  
= 3.6V  
+25°C  
CC  
CC  
15  
10  
5
–40°C  
0
0
0
0
0
0.5  
1.0  
1.5  
2.0  
/V (V)  
2.5  
3.0  
3.5  
3.0  
2.0  
0
0.5  
1.0  
1.2  
V
V /V (V)  
A B  
A
B
Figure 3. On Resistance vs. Input Voltage  
Figure 6. On Resistance vs. Input Voltage for Different Temperatures  
3.0  
40  
35  
30  
T
= 25°C  
= 5µA  
T
= 25°C  
A
A
V
= 3.6V  
CC  
I
O
2.5  
2.0  
1.5  
1.0  
V
= 3.3V  
V
= 2.5V  
CC  
CC  
25  
20  
V
= 3V  
CC  
V
= 2.3V  
CC  
15  
10  
5
V
= 2.7V  
CC  
0.5  
0
0
0
0.5  
1.0  
1.5  
V
2.0  
/V (V)  
2.5  
3.0  
3.5  
0.5  
1.0  
1.5  
/V (V)  
2.0  
2.5  
V
A
B
A
B
Figure 7. Pass Voltage vs. VCC  
Figure 4. On Resistance vs. Input Voltage  
2.5  
2.0  
1.5  
1.0  
0.5  
0
20  
15  
10  
5
V
= 3.3V  
T
= 25°C  
CC  
A
V
= 2.7V  
CC  
I
= 5µA  
O
V
= 2.5V  
CC  
V
= 2.3V  
CC  
+85°C  
+25°C  
–40°C  
0
0
0.5  
1.0  
1.5  
/V (V)  
2.0  
2.5  
3.0  
0.5  
1.0  
/V (V)  
B
1.5  
V
V
A
B
A
Figure 5. On Resistance vs. Input Voltage for Different Temperatures  
Figure 8. Pass Voltage vs. VCC  
Rev. A | Page 6 of 12  
 
 
ADG3248  
1
0
3.0  
2.5  
2.0  
1.5  
1.0  
T
V
= 25°C  
= 0V  
A
A
–1  
–2  
–3  
–4  
V
= 2.5V  
CC  
–5  
–6  
T
= 25°C  
A
V
V
= 3.3V/2.5V  
CC  
= 0dBm  
IN  
0.5  
0
N/W ANALYZER:  
= R = 50  
–7  
–8  
V
= 3.3V  
R
CC  
L
S
0.03  
0.1  
1.0  
10  
100  
1k  
0
0.02  
0.04  
0.06  
0.08  
0.10  
I
(A)  
FREQUENCY (MHz)  
O
Figure 12. Bandwidth vs. Frequency  
Figure 9. Output Low Characteristic  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
3.0  
2.5  
2.0  
1.5  
1.0  
T
V
= 25°C  
= V  
CC  
T
A
= 25°C  
= 3.3V/2.5V  
= 0dBm  
A
V
A
CC  
V
IN  
N/W ANALYZER:  
= R = 50Ω  
R
L
S
V
= 3.3V  
CC  
–80  
V
= 2.5V  
CC  
0.5  
0
–90  
–100  
0.03  
0.1  
1.0  
10  
100  
1k  
–0.10  
–0.08  
–0.06  
–0.04  
–0.02  
0
FREQUENCY (MHz)  
I
(A)  
O
Figure 13. Crosstalk vs. Frequency  
Figure 10. Output High Characteristic  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
T
= 25°C  
T = 25°C  
A
A
ON = OFF  
= 1nF  
V
V
= 3.3V/2.5V  
= 0dBm  
CC  
V
= 2.5V  
–0.2  
CC  
C
L
IN  
N/W ANALYZER:  
R = R = 50  
L
–0.4  
–0.6  
–0.8  
S
V
= 3.3V  
CC  
–1.0  
–1.2  
–1.4  
–80  
–90  
–100  
0.03  
0.1  
1.0  
10  
100  
1k  
0
0.5  
1.0  
1.5  
V
2.0  
/V (V)  
2.5  
3.0  
3.5  
FREQUENCY (MHz)  
A
B
Figure 14. Off Isolation vs. Frequency  
Figure 11. Charge Injection vs. Input Voltage  
Rev. A | Page 7 of 12  
ADG3248  
25  
20  
15  
10  
5
V
= 2.5V  
CC  
V
= 3.3V  
CC  
0
–40  
V
= 3.3V  
20dB  
–20  
0
20  
40  
60  
80 85  
CC  
38.7mV/DIV  
133.7ps/DIV  
ATTENUATION  
TA = 25°C  
TEMPERATURE (°C)  
V
= 2V p-p  
IN  
Figure 18. Eye Pattern; 1.244 Gbps, VCC = 3.3 V, PRBS 31  
Figure 15. Transition Time vs. Temperature  
100  
V
V
= 3.3V  
= 1.5V p-p  
CC  
90  
80  
70  
60  
50  
40  
30  
A
20dB ATTENUATION  
20  
10  
0
V
= 2.5V  
20dB  
ATTENUATION  
TA = 25°C  
0.5  
0.7  
0.9  
1.1  
1.3  
1.5  
1.7  
1.9  
CC  
20mV/DIV  
166.3ps/DIV  
DATA RATE (Gbps)  
V
= 1V p-p  
IN  
Figure 19. Eye Pattern; 1 Gbps, VCC = 2.5 V, PRBS 31  
Figure 16. Jitter vs. Data Rate; PRBS 31  
100  
95  
90  
85  
80  
75  
70  
65  
V
V
= 3.3V  
CC  
= 1.5V p-p  
A
20dB ATTENUATION  
60  
% EYE WIDTH = ((CLOCK PERIOD –  
JITTER p-p)/CLOCK PERIOD) × 100%  
55  
50  
0.5  
0.7  
0.9  
1.1  
1.3  
1.5  
1.7  
1.9  
DATA RATE (Gbps)  
Figure 17. Eye Width vs. Data Rate; PRBS 31  
Rev. A | Page 8 of 12  
ADG3248  
TERMINOLOGY  
CX Off  
Off switch capacitance.  
VCC  
Positive power supply voltage.  
CX On  
On switch capacitance.  
GND  
Ground (0 V) reference.  
CIN  
VINH  
Control input capacitance. CIN consists of IN.  
Minimum input voltage for Logic 1.  
ICC  
VINL  
Quiescent power supply current. ICC represents the leakage  
current between the VCC and ground pins and is measured  
when all control inputs are at a logic high or logic low level and  
the switches are off.  
Maximum input voltage for Logic 0.  
II  
Input leakage current at the control inputs.  
IOZ  
t
PLH, tPHL  
Off state leakage current. IOZ is the maximum leakage current at  
the switch pin in the off state.  
Data propagation delay through the switch in the on state.  
Propagation delay is related to the RC time constant RON × CL,  
where CL is the load capacitance.  
IOL  
On state leakage current. IOL is the maximum leakage current at  
the switch pin in the on state.  
tBBM  
On or off time measured between the 90% points of both  
switches when switching from one to another.  
VP  
Maximum pass voltage. VP relates to the clamped output voltage  
of an NMOS device when the switch input voltage is equal to  
the supply voltage.  
tTRANS  
Time taken to switch from one channel to the other, measured  
from 50% of the in signal to 90% of the out signal.  
RON  
Maximum Data Rate  
Maximum rate at which data can be passed through the switch.  
Ohmic resistance offered by a switch in the on state. RON is  
measured at a given voltage by forcing a specified amount of  
current through the switch.  
Channel Jitter  
Peak-to-peak value of the sum of the deterministic and random  
jitter of the switch channel.  
ΔRON  
On resistance match between any two channels, that is,  
RON max − RON min.  
Rev. A | Page 9 of 12  
 
ADG3248  
BUS SWITCH APPLICATIONS  
MIXED VOLTAGE OPERATION, LEVEL  
TRANSLATION  
V
OUT  
3.3V SUPPLY  
2.5V  
Bus switches can provide an ideal solution for interfacing between  
mixed voltage systems. The ADG3248 is suitable for applications  
in which voltage translation from 3.3 V technology to a lower  
voltage technology is needed. This device can translate from 2.5 V  
to 1.8 V or bidirectionally from 3.3 V directly to 2.5 V.  
V
IN  
0V  
3.3V  
SWITCH  
INPUT  
Figure 20 shows a block diagram of a typical application in  
which a user needs to interface between a 3.3 V ADC and a 2.5 V  
microprocessor. The microprocessor may not have 3.3 V  
tolerant inputs; therefore, placing the ADG3248 between the  
two devices allows the devices to communicate easily. The bus  
switch directly connects the two blocks, thus introducing  
minimal propagation delay, timing skew, or noise.  
Figure 22. 3.3 V to 2.5 V Voltage Translation  
2.5 V to 1.8 V Translation  
When VCC is 2.5 V and the input signal range is 0 V to VCC, the  
maximum output signal is, as before, clamped to within a voltage  
threshold below the VCC supply. In this case, the output is limited  
to approximately 1.8 V, as shown in Figure 24.  
2.5V  
3.3V  
3.3V  
2.5V  
2.5V  
3.3V ADC  
MICROPROCESSOR  
ADG3248  
2.5V  
1.8V  
Figure 20. Level Translation Between a 3.3 V ADC and a 2.5 V Microprocessor  
3.3 V to 2.5 V Translation  
Figure 23. 2.5 V to 1.8 V Voltage Translation  
When VCC is 3.3 V and the input signal range is 0 V to VCC, the  
maximum output signal is clamped to within a voltage threshold  
below the VCC supply.  
V
OUT  
2.5V SUPPLY  
1.8V  
In this case, the output is limited to 2.5 V, as shown in Figure 22.  
This device can be used for translation from 2.5 V to 3.3 V  
devices and also between two 3.3 V devices.  
3.3V  
V
IN  
0V  
2.5V  
SWITCH  
INPUT  
3.3V  
2.5V  
2.5V  
2.5V  
Figure 24. 2.5 V to 1.8 V Voltage Translation  
ADG3248  
ANALOG SWITCHING  
Bus switches can be used in many analog switching applica-  
tions, for example, video graphics. Bus switches can have lower  
on resistance, smaller on and off channel capacitance, and thus  
better frequency performance than their analog counterparts.  
The bus switch channel itself, consisting solely of an NMOS  
switch, limits the operating voltage (see Figure 3 for a typical  
plot) but, in many cases, this does not present an issue.  
Figure 21. 3.3 V to 2.5 V Voltage Translation  
Rev. A | Page 10 of 12  
 
 
 
 
ADG3248  
MEMORY  
ADDRESS  
MULTIPLEXING  
DATA  
MEMORY  
BANK A  
Many systems, such as docking stations and memory banks,  
have a large number of common bus signals. Common problems  
faced by designers of these systems include  
MEMORY  
BANK B  
Large delays caused by capacitive loading of the bus  
MEMORY  
BANK C  
Noise due to simultaneous switching of the address and  
data bus signals  
MEMORY  
BANK D  
Figure 25 shows an array of memory banks in which each  
address and data signal is loaded by the sum of the individual  
loads. If a bus switch is used as shown in Figure 26, the output  
load on the memory address and data bits is halved. The speed  
at which data from the selected bank can flow is much improved  
because the capacitance loading is halved and the switches  
introduce negligible propagation delay. Bus noise is also reduced.  
Figure 25. All Memory Banks Are Permanently Connected to the Bus  
MEMORY  
BANK A  
MEMORY  
ADDRESS  
DATA  
MEMORY  
BANK B  
MEMORY  
BANK C  
MEMORY  
BANK D  
Figure 26. ADG3248 Used to Reduce Both Access Time and Noise  
Rev. A | Page 11 of 12  
 
 
 
ADG3248  
OUTLINE DIMENSIONS  
2.20  
2.00  
1.80  
2.40  
2.10  
1.80  
6
1
5
2
4
3
1.35  
1.25  
1.15  
PIN 1  
1.30 BSC  
0.65 BSC  
1.00  
0.90  
0.70  
0.40  
0.10  
1.10  
0.80  
0.46  
0.36  
0.26  
0.30  
0.15  
0.22  
0.08  
0.10 MAX  
SEATING  
PLANE  
0.10 COPLANARITY  
COMPLIANT TO JEDEC STANDARDS MO-203-AB  
Figure 27. 6-Lead Thin Shrink Small Outline Transistor Package [SC70]  
(KS-6)  
Dimensions shown in millimeters  
ORDERING GUIDE  
Package  
Option  
Model  
Temperature Range  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
−40°C to +85°C  
Package Description  
Branding  
SMA  
SMA  
SMA  
S1W  
ADG3248BKS-R2  
ADG3248BKS-REEL  
ADG3248BKS-REEL7  
ADG3248BKSZ-REEL71  
6-Lead Thin Shrink Small Outline Transistor Package (SC70)  
6-Lead Thin Shrink Small Outline Transistor Package (SC70)  
6-Lead Thin Shrink Small Outline Transistor Package (SC70)  
6-Lead Thin Shrink Small Outline Transistor Package (SC70)  
KS-6  
KS-6  
KS-6  
KS-6  
1 Z = RoHS Compliant Part.  
©2003–2007 Analog Devices, Inc. All rights reserved. Trademarks and  
registered trademarks are the property of their respective owners.  
D04404-0-10/07(A)  
Rev. A | Page 12 of 12  
 
 
 
 
 
 
 
 

相关型号:

ADG3248BKSZ-REEL7

2-CHANNEL, SGL ENDED MULTIPLEXER, PDSO6, MO-203AB, SC-70, 6 PIN
ROCHESTER

ADG3249

2.5 V/3.3 V, 2:1 Multiplexer/ Demultiplexer Bus Switch
ADI

ADG3249BRJ-R2

2.5 V/3.3 V, 2:1 Multiplexer/ Demultiplexer Bus Switch
ADI

ADG3249BRJ-REEL

2.5 V/3.3 V, 2:1 Multiplexer/ Demultiplexer Bus Switch
ADI

ADG3249BRJ-REEL7

2.5 V/3.3 V, 2:1 Multiplexer/ Demultiplexer Bus Switch
ADI

ADG3249BRJZ-REEL7

2-CHANNEL, SGL ENDED MULTIPLEXER, PDSO8, MO-178BA, SOT-23, 8 PIN
ROCHESTER

ADG3249BRJZ-REEL7

2-CHANNEL, SGL ENDED MULTIPLEXER, PDSO8, MO-178BA, SOT-23, 8 PIN
ADI

ADG3257

High Speed, 3.3 V/5 V Quad 2:1 Mux/Demux (4-Bit, 1 of 2) Bus Switch
ADI

ADG3257BRQ

High Speed, 3.3 V/5 V Quad 2:1 Mux/Demux (4-Bit, 1 of 2) Bus Switch
ADI

ADG3257BRQ-REEL

High Speed, 3.3 V/5 V Quad 2:1 Mux/Demux (4-Bit, 1 of 2) Bus Switch
ADI

ADG3257BRQ-REEL7

High Speed, 3.3 V/5 V Quad 2:1 Mux/Demux (4-Bit, 1 of 2) Bus Switch
ADI

ADG3257BRQZ

High Speed, 3.3 V/5 V Quad 2:1 Mux/Demux (4-Bit, 1 of 2) Bus Switch
ADI